1
|
Chen X, Han D, Zeng Y, Li H, Wang X, Huang Z, Yang L, Wagenaar GTM, Lin B, Yang C. Inhibition of lysophosphatidic acid receptor 2 attenuates neonatal chronic lung disease in mice by preserving vascular and alveolar development. Eur J Pharmacol 2024; 985:177120. [PMID: 39522686 DOI: 10.1016/j.ejphar.2024.177120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
AIM Bronchopulmonary dysplasia (BPD) is a common morbidity in extremely premature infants. Previous studies demonstrated the important role of lysophosphatidic acid (LPA) in inflammation in BPD. However, the role of LPA and its receptors in hyperoxia-induced vascular malformations in BPD remains to be elucidated. METHODS AND RESULTS Elevated plasma LPA levels were observed in mice with BPD compared to controls (792 vs. 607 ng/mL, p < 0.05). Inhibition of LPA signaling protected against hyperoxia-induced lung injury in neonatal mice, demonstrated by a 2.8-fold increase in pulmonary vascular density and a 14% reduction in alveolar enlargement. In vitro studies showed that LPA suppressed tube formation in human umbilical vein endothelial cells (HUVECs) by approximately 50%. LPA receptor 2 (LPA2) was identified as a functional LPA receptor in primary endothelial cells from the lungs of hyperoxic mice and in HUVECs under hyperoxic conditions. The LPA2 antagonist H2L5186303 enhanced the tube formation ability of HUVECs exposed to LPA, both under normoxia (4-fold) and hyperoxia (5-fold). Moreover, H2L5186303 significantly protected against hyperoxia-induced vascular malformation (2-fold) and improved alveolarization in neonatal mice (12% decrease in mean linear intercept, MLI). Early growth response 1 (EGR1) was characterized as a downstream target of LPA2, silencing EGR1 restored tube formation in HUVECs exposed to LPA and hyperoxia. CONCLUSIONS Our in vitro and in vivo findings demonstrate that the inhibition of LPA/LPA2 signaling mitigates hyperoxia-induced pulmonary vascular malformations, suggesting the LPA/LPA2-dependent signaling pathway has therapeutic potential for extremely premature infants with BPD.
Collapse
Affiliation(s)
- Xueyu Chen
- Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, The First School of Medicine, Southern Medical University, Shenzhen, China; Shenzhen Key Laboratory of Maternal and Child Health and Diseases, Shenzhen, China
| | - Dongshan Han
- Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, The First School of Medicine, Southern Medical University, Shenzhen, China
| | - Yali Zeng
- Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, The First School of Medicine, Southern Medical University, Shenzhen, China
| | - Huitao Li
- Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, The First School of Medicine, Southern Medical University, Shenzhen, China
| | - Xuan Wang
- Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, The First School of Medicine, Southern Medical University, Shenzhen, China
| | - Zilu Huang
- Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, The First School of Medicine, Southern Medical University, Shenzhen, China
| | - Lingling Yang
- Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, The First School of Medicine, Southern Medical University, Shenzhen, China
| | | | - Bingchun Lin
- Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, The First School of Medicine, Southern Medical University, Shenzhen, China.
| | - Chuanzhong Yang
- Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, The First School of Medicine, Southern Medical University, Shenzhen, China; Shenzhen Key Laboratory of Maternal and Child Health and Diseases, Shenzhen, China.
| |
Collapse
|
2
|
Zou K, Zeng Z. Role of early growth response 1 in inflammation-associated lung diseases. Am J Physiol Lung Cell Mol Physiol 2023; 325:L143-L154. [PMID: 37401387 PMCID: PMC10511164 DOI: 10.1152/ajplung.00413.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/03/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023] Open
Abstract
Early growth response 1 (EGR1), which is involved in cell proliferation, differentiation, apoptosis, adhesion, migration, and immune and inflammatory responses, is a zinc finger transcription factor. EGR1 is a member of the EGR family of early response genes and can be activated by external stimuli such as neurotransmitters, cytokines, hormones, endotoxins, hypoxia, and oxidative stress. EGR1 expression is upregulated during several common respiratory diseases, such as acute lung injury/acute respiratory distress syndrome, chronic obstructive pulmonary disease, asthma, pneumonia, and novel coronavirus disease 2019. Inflammatory response is the common pathophysiological basis of these common respiratory diseases. EGR1 is highly expressed early in the disease, amplifying pathological signals from the extracellular environment and driving disease progression. Thus, EGR1 may be a target for early and effective intervention in these inflammation-associated lung diseases.
Collapse
Affiliation(s)
- Kang Zou
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical College, Ganzhou, People's Republic of China
- Department of Critical Care Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Zhenguo Zeng
- Department of Critical Care Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
3
|
Trametinib alleviates lipopolysaccharide-induced acute lung injury by inhibiting the MEK-ERK-Egr-1 pathway. Int Immunopharmacol 2020; 80:106152. [PMID: 31926447 DOI: 10.1016/j.intimp.2019.106152] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/09/2019] [Accepted: 12/22/2019] [Indexed: 01/15/2023]
Abstract
Acute lung injury (ALI) is a devastating clinical disorder with a high mortality rate and for which there is no effective treatment. The main characteristic of ALI is uncontrolled inflammation, and macrophages play a critical role in the development of this disorder. Trametinib, an inhibitor of MAPK/ERK kinase (MEK) activity that possesses anti-inflammatory properties, has been approved for clinical use. Herein, the influence of trametinib and its underlying mechanism were investigated using a lipopolysaccharide (LPS)-induced murine ALI model. We found that trametinib treatment prevented the LPS-facilitated expression of proinflammatory mediators in macrophages, and this anti-inflammatory action was closely correlated with suppression of the MEK-ERK-early growth response (Egr)-1 pathway. Furthermore, trametinib treatment alleviated LPS-induced ALI in mice, and attenuated edema, proinflammatory mediator production, and neutrophil infiltration. Trametinib pretreatment also attenuated the MEK-ERK-Egr-1 pathway in lung tissues. In conclusion, these data demonstrate that trametinib pretreatment suppresses inflammation in LPS-activated macrophages in vitro and protects against murine ALI established by LPS administration in vivo through inhibition of the MEK-ERK-Egr-1 pathway. Therefore, trametinib might have therapeutic potential for ALI.
Collapse
|
4
|
Xu F, Cao J, Luo M, Che L, Li W, Ying S, Chen Z, Shen H. Early growth response gene 1 is essential for urban particulate matter-induced inflammation and mucus hyperproduction in airway epithelium. Toxicol Lett 2018; 294:145-155. [DOI: 10.1016/j.toxlet.2018.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/26/2018] [Accepted: 05/07/2018] [Indexed: 11/25/2022]
|
5
|
Toumpanakis D, Vassilakopoulou V, Sigala I, Zacharatos P, Vraila I, Karavana V, Theocharis S, Vassilakopoulos T. The role of Src & ERK1/2 kinases in inspiratory resistive breathing induced acute lung injury and inflammation. Respir Res 2017; 18:209. [PMID: 29237457 PMCID: PMC5729404 DOI: 10.1186/s12931-017-0694-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/05/2017] [Indexed: 01/08/2023] Open
Abstract
Background Inspiratory resistive breathing (IRB), a hallmark of obstructive airway diseases, is associated with large negative intrathoracic pressures, due to strenuous contractions of the inspiratory muscles. IRB is shown to induce lung injury in previously healthy animals. Src is a multifunctional kinase that is activated in the lung by mechanical stress. ERK1/2 kinase is a downstream target of Src. We hypothesized that Src is activated in the lung during IRB, mediates ERK1/2 activation and IRB-induced lung injury. Methods Anaesthetized, tracheostomized adult rats breathed spontaneously through a 2-way non-rebreathing valve. Resistance was added to the inspiratory port to provide a peak tidal inspiratory pressure of 50% of maximum (inspiratory resistive breathing). Activation of Src and ERK1/2 in the lung was estimated during IRB. Following 6 h of IRB, respiratory system mechanics were measured by the forced oscillation technique and bronchoalveolar lavage (BAL) was performed to measure total and differential cell count and total protein levels. IL-1b and MIP-2a protein levels were measured in lung tissue samples. Wet lung weight to total body weight was measured and Evans blue dye extravasation was estimated to measure lung permeability. Lung injury was evaluated by histology. The Src inhibitor, PP-2 or the inhibitor of ERK1/2 activation, PD98059 was administrated 30 min prior to IRB. Results Src kinase was activated 30 min after the initiation of IRB. Src inhibition ameliorated the increase in BAL cellularity after 6 h IRB, but not the increase of IL-1β and MIP-2a in the lung. The increase in BAL total protein and lung injury score were not affected. The increase in tissue elasticity was partly inhibited. Src inhibition blocked ERK1/2 activation at 3 but not at 6 h of IRB. ERK1/2 inhibition ameliorated the increase in BAL cellularity after 6 h of IRB, blocked the increase of IL-1β and returned Evans blue extravasation and wet lung weight to control values. BAL total protein and the increase in elasticity were partially affected. ERK1/2 inhibition did not significantly change total lung injury score compared to 6 h IRB. Conclusions Src and ERK1/2 are activated in the lung following IRB and participate in IRB-induced lung injury.
Collapse
Affiliation(s)
- Dimitrios Toumpanakis
- 1st Department of Critical Care and Pulmonary Medicine and "Marianthi Simou" Applied Biomedical Research and Training Center, Medical School, University of Athens, 45-47 Ispilandou str, 10676, Athens, Greece
| | - Vyronia Vassilakopoulou
- 1st Department of Critical Care and Pulmonary Medicine and "Marianthi Simou" Applied Biomedical Research and Training Center, Medical School, University of Athens, 45-47 Ispilandou str, 10676, Athens, Greece
| | - Ioanna Sigala
- 1st Department of Critical Care and Pulmonary Medicine and "Marianthi Simou" Applied Biomedical Research and Training Center, Medical School, University of Athens, 45-47 Ispilandou str, 10676, Athens, Greece
| | - Panagiotis Zacharatos
- 1st Department of Critical Care and Pulmonary Medicine and "Marianthi Simou" Applied Biomedical Research and Training Center, Medical School, University of Athens, 45-47 Ispilandou str, 10676, Athens, Greece
| | - Ioanna Vraila
- 1st Department of Critical Care and Pulmonary Medicine and "Marianthi Simou" Applied Biomedical Research and Training Center, Medical School, University of Athens, 45-47 Ispilandou str, 10676, Athens, Greece
| | - Vassiliki Karavana
- 1st Department of Critical Care and Pulmonary Medicine and "Marianthi Simou" Applied Biomedical Research and Training Center, Medical School, University of Athens, 45-47 Ispilandou str, 10676, Athens, Greece
| | | | - Theodoros Vassilakopoulos
- 1st Department of Critical Care and Pulmonary Medicine and "Marianthi Simou" Applied Biomedical Research and Training Center, Medical School, University of Athens, 45-47 Ispilandou str, 10676, Athens, Greece.
| |
Collapse
|
6
|
Wellman TJ, de Prost N, Tucci M, Winkler T, Baron RM, Filipczak P, Raby B, Chu JH, Harris RS, Musch G, Dos Reis Falcao LF, Capelozzi V, Venegas JG, Vidal Melo MF. Lung Metabolic Activation as an Early Biomarker of Acute Respiratory Distress Syndrome and Local Gene Expression Heterogeneity. Anesthesiology 2016; 125:992-1004. [PMID: 27611185 PMCID: PMC5096592 DOI: 10.1097/aln.0000000000001334] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is an inflammatory condition comprising diffuse lung edema and alveolar damage. ARDS frequently results from regional injury mechanisms. However, it is unknown whether detectable inflammation precedes lung edema and opacification and whether topographically differential gene expression consistent with heterogeneous injury occurs in early ARDS. The authors aimed to determine the temporal relationship between pulmonary metabolic activation and density in a large animal model of early ARDS and to assess gene expression in differentially activated regions. METHODS The authors produced ARDS in sheep with intravenous lipopolysaccharide (10 ng ⋅ kg ⋅ h) and mechanical ventilation for 20 h. Using positron emission tomography, the authors assessed regional cellular metabolic activation with 2-deoxy-2-[(18)F]fluoro-D-glucose, perfusion and ventilation with NN-saline, and aeration using transmission scans. Species-specific microarray technology was used to assess regional gene expression. RESULTS Metabolic activation preceded detectable increases in lung density (as required for clinical diagnosis) and correlated with subsequent histologic injury, suggesting its predictive value for severity of disease progression. Local time courses of metabolic activation varied, with highly perfused and less aerated dependent lung regions activated earlier than nondependent regions. These regions of distinct metabolic trajectories demonstrated differential gene expression for known and potential novel candidates for ARDS pathogenesis. CONCLUSIONS Heterogeneous lung metabolic activation precedes increases in lung density in the development of ARDS due to endotoxemia and mechanical ventilation. Local differential gene expression occurs in these early stages and reveals molecular pathways relevant to ARDS biology and of potential use as treatment targets.
Collapse
Affiliation(s)
- Tyler J Wellman
- From the Departments of Anesthesia, Critical Care and Pain Medicine (T.J.W., M.T., T.W., G.M., L.F.d.R.F., J.G.V., M.F.V.M.) and Medicine (Pulmonary and Critical Care; R.S.H.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Medical Intensive Care Unit, Hôpital Henri Mondor, Assistance Publique - Hôpitaux de Paris, Créteil, France (N.d.P.); Department of Medicine (Pulmonary and Critical Care) (R.M.B., P.F.) and Channing Laboratory (B.R., J.-h.C.), Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and Laboratory of Histomorphometry and Lung Genomics, University of Sao Paulo, Sao Paulo, Brazil (V.C.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Kim SH, Park YY, Cho SN, Margalit O, Wang D, DuBois RN. Krüppel-Like Factor 12 Promotes Colorectal Cancer Growth through Early Growth Response Protein 1. PLoS One 2016; 11:e0159899. [PMID: 27442508 PMCID: PMC4956169 DOI: 10.1371/journal.pone.0159899] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 07/11/2016] [Indexed: 01/05/2023] Open
Abstract
Krüppel-like factor 12 (KLF12) is a transcription factor that plays a role in normal kidney development and repression of decidualization. KLF12 is frequently elevated in esophageal adenocarcinoma and has been reported to promote gastric cancer progression. Here, we examined the role of KLF12 in colorectal cancer (CRC). Indeed, KLF12 promotes tumor growth by directly activating early growth response protein 1 (EGR1). The levels of KLF12 and EGR1 correlate synergistically with a poor prognosis. These results indicate that KLF12 likely plays an important role in CRC and could serve as a potential prognostic marker and therapeutic target.
Collapse
Affiliation(s)
- Sun-Hee Kim
- Departments of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Yun-Yong Park
- ASAN Institute for Life Sciences, ASAN Medical Center, Department of Medicine, University of Ulsan College of Medicine, Seoul 138–736, Korea
| | - Sung-Nam Cho
- Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Ofer Margalit
- Biodesign Institute of Arizona State University, Tempe, Arizona, United States of America
| | - Dingzhi Wang
- Biodesign Institute of Arizona State University, Tempe, Arizona, United States of America
| | - Raymond N. DuBois
- Biodesign Institute of Arizona State University, Tempe, Arizona, United States of America
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona, United States of America
- Department of Research and Division of Gastroenterology, Mayo Clinic, Scottsdale, Arizona, United States of America
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
8
|
Pereira-Fantini PM, Rajapaksa AE, Oakley R, Tingay DG. Selection of Reference Genes for Gene Expression Studies related to lung injury in a preterm lamb model. Sci Rep 2016; 6:26476. [PMID: 27210246 PMCID: PMC4876477 DOI: 10.1038/srep26476] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/04/2016] [Indexed: 12/13/2022] Open
Abstract
Preterm newborns often require invasive support, however even brief periods of supported ventilation applied inappropriately to the lung can cause injury. Real-time quantitative reverse transcriptase-PCR (qPCR) has been extensively employed in studies of ventilation-induced lung injury with the reference gene 18S ribosomal RNA (18S RNA) most commonly employed as the internal control reference gene. Whilst the results of these studies depend on the stability of the reference gene employed, the use of 18S RNA has not been validated. In this study the expression profile of five candidate reference genes (18S RNA, ACTB, GAPDH, TOP1 and RPS29) in two geographical locations, was evaluated by dedicated algorithms, including geNorm, Normfinder, Bestkeeper and ΔCt method and the overall stability of these candidate genes determined (RefFinder). Secondary studies examined the influence of reference gene choice on the relative expression of two well-validated lung injury markers; EGR1 and IL1B. In the setting of the preterm lamb model of lung injury, RPS29 reference gene expression was influenced by tissue location; however we determined that individual ventilation strategies influence reference gene stability. Whilst 18S RNA is the most commonly employed reference gene in preterm lamb lung studies, our results suggest that GAPDH is a more suitable candidate.
Collapse
Affiliation(s)
| | - Anushi E Rajapaksa
- Neonatal Research Group, Murdoch Childrens Research Institute, Parkville, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - Regina Oakley
- Neonatal Research Group, Murdoch Childrens Research Institute, Parkville, Australia
| | - David G Tingay
- Neonatal Research Group, Murdoch Childrens Research Institute, Parkville, Australia.,Department of Neonatology, Royal Children's Hospital, Parkville, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Australia
| |
Collapse
|
9
|
Tingay DG, Rajapaksa A, Zonneveld CE, Black D, Perkins EJ, Adler A, Grychtol B, Lavizzari A, Frerichs I, Zahra VA, Davis PG. Spatiotemporal Aeration and Lung Injury Patterns Are Influenced by the First Inflation Strategy at Birth. Am J Respir Cell Mol Biol 2016; 54:263-72. [DOI: 10.1165/rcmb.2015-0127oc] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
10
|
Blázquez-Prieto J, López-Alonso I, Amado-Rodríguez L, Batalla-Solís E, González-López A, Albaiceta GM. Exposure to mechanical ventilation promotes tolerance to ventilator-induced lung injury by Ccl3 downregulation. Am J Physiol Lung Cell Mol Physiol 2015; 309:L847-56. [DOI: 10.1152/ajplung.00193.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/14/2015] [Indexed: 01/22/2023] Open
Abstract
Inflammation plays a key role in the development of ventilator-induced lung injury (VILI). Preconditioning with a previous exposure can damp the subsequent inflammatory response. Our objectives were to demonstrate that tolerance to VILI can be induced by previous low-pressure ventilation, and to identify the molecular mechanisms responsible for this phenomenon. Intact 8- to 12-wk-old male CD1 mice were preconditioned with 90 min of noninjurious ventilation [peak pressure 17 cmH2O, positive end-expiratory pressure (PEEP) 2 cmH2O] and extubated. Seven days later, preconditioned mice and intact controls were submitted to injurious ventilation (peak pressure 20 cmH2O, PEEP 0 cmH2O) for 2 h to induce VILI. Preconditioned mice showed lower histological lung injury scores, bronchoalveolar lavage albumin content, and lung neutrophilic infiltration after injurious ventilation, with no differences in Il6 or Il10 expression. Microarray analyses revealed a downregulation of Calcb, Hspa1b, and Ccl3, three genes related to tolerance phenomena, in preconditioned animals. Among the previously identified genes, only Ccl3, which encodes the macrophage inflammatory protein 1 alpha (MIP-1α), showed significant differences between intact and preconditioned mice after high-pressure ventilation. In separate, nonconditioned animals, treatment with BX471, a specific blocker of CCR1 (the main receptor for MIP-1α), decreased lung damage and neutrophilic infiltration caused by high-pressure ventilation. We conclude that previous exposure to noninjurious ventilation induces a state of tolerance to VILI. Downregulation of the chemokine gene Ccl3 could be the mechanism responsible for this effect.
Collapse
Affiliation(s)
- Jorge Blázquez-Prieto
- Departamento de Biología Funcional, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Inés López-Alonso
- Departamento de Biología Funcional, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Laura Amado-Rodríguez
- Departamento de Biología Funcional, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
- Área de Gestión Clínica de Medicina Intensiva, Hospital Valle del Nalón, Langreo, Spain
| | - Estefanía Batalla-Solís
- Departamento de Biología Funcional, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Adrián González-López
- Department of Anesthesiology and Operative Intensive Care Medicine, Charité Universitätsmedizin, Berlin, Germany; and
| | - Guillermo M. Albaiceta
- Departamento de Biología Funcional, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
- Servicio de Medicina Intensiva, Hospital Universitario Central de Asturias, Oviedo, Spain
| |
Collapse
|
11
|
Schlingmann B, Molina SA, Koval M. Claudins: Gatekeepers of lung epithelial function. Semin Cell Dev Biol 2015; 42:47-57. [PMID: 25951797 DOI: 10.1016/j.semcdb.2015.04.009] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 04/24/2015] [Indexed: 12/25/2022]
Abstract
The lung must maintain a proper barrier between airspaces and fluid filled tissues in order to maintain lung fluid balance. Central to maintaining lung fluid balance are epithelial cells which create a barrier to water and solutes. The barrier function of these cells is mainly provided by tight junction proteins known as claudins. Epithelial barrier function varies depending on the different needs within the segments of the respiratory tree. In the lower airways, fluid is required to maintain mucociliary clearance, whereas in the terminal alveolar airspaces a thin layer of surfactant enriched fluid lowers surface tension to prevent airspace collapse and is critical for gas exchange. As the epithelial cells within the segments of the respiratory tree differ, the composition of claudins found in these epithelial cells is also different. Among these differences is claudin-18 which is uniquely expressed by the alveolar epithelial cells. Other claudins, notably claudin-4 and claudin-7, are more ubiquitously expressed throughout the respiratory epithelium. Claudin-5 is expressed by both pulmonary epithelial and endothelial cells. Based on in vitro and in vivo model systems and histologic analysis of lungs from human patients, roles for specific claudins in maintaining barrier function and protecting the lung from the effects of acute injury and disease are being identified. One surprising finding is that claudin-18 and claudin-4 control lung cell phenotype and inflammation beyond simply maintaining a selective paracellular permeability barrier. This suggests claudins have more nuanced roles for the control of airway and alveolar physiology in the healthy and diseased lung.
Collapse
Affiliation(s)
- Barbara Schlingmann
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University School of Medicine, Atlanta, GA 30322, United States; Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Samuel A Molina
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University School of Medicine, Atlanta, GA 30322, United States; Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Michael Koval
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University School of Medicine, Atlanta, GA 30322, United States; Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, United States.
| |
Collapse
|
12
|
Li G, Flodby P, Luo J, Kage H, Sipos A, Gao D, Ji Y, Beard LL, Marconett CN, DeMaio L, Kim YH, Kim KJ, Laird-Offringa IA, Minoo P, Liebler JM, Zhou B, Crandall ED, Borok Z. Knockout mice reveal key roles for claudin 18 in alveolar barrier properties and fluid homeostasis. Am J Respir Cell Mol Biol 2014; 51:210-22. [PMID: 24588076 DOI: 10.1165/rcmb.2013-0353oc] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Claudin proteins are major constituents of epithelial and endothelial tight junctions (TJs) that regulate paracellular permeability to ions and solutes. Claudin 18, a member of the large claudin family, is highly expressed in lung alveolar epithelium. To elucidate the role of claudin 18 in alveolar epithelial barrier function, we generated claudin 18 knockout (C18 KO) mice. C18 KO mice exhibited increased solute permeability and alveolar fluid clearance (AFC) compared with wild-type control mice. Increased AFC in C18 KO mice was associated with increased β-adrenergic receptor signaling together with activation of cystic fibrosis transmembrane conductance regulator, higher epithelial sodium channel, and Na-K-ATPase (Na pump) activity and increased Na-K-ATPase β1 subunit expression. Consistent with in vivo findings, C18 KO alveolar epithelial cell (AEC) monolayers exhibited lower transepithelial electrical resistance and increased solute and ion permeability with unchanged ion selectivity. Claudin 3 and claudin 4 expression was markedly increased in C18 KO mice, whereas claudin 5 expression was unchanged and occludin significantly decreased. Microarray analysis revealed changes in cytoskeleton-associated gene expression in C18 KO mice, consistent with observed F-actin cytoskeletal rearrangement in AEC monolayers. These findings demonstrate a crucial nonredundant role for claudin 18 in the regulation of alveolar epithelial TJ composition and permeability properties. Increased AFC in C18 KO mice identifies a role for claudin 18 in alveolar fluid homeostasis beyond its direct contributions to barrier properties that may, at least in part, compensate for increased permeability.
Collapse
Affiliation(s)
- Guanglei Li
- 1 Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kage H, Flodby P, Gao D, Kim YH, Marconett CN, DeMaio L, Kim KJ, Crandall ED, Borok Z. Claudin 4 knockout mice: normal physiological phenotype with increased susceptibility to lung injury. Am J Physiol Lung Cell Mol Physiol 2014; 307:L524-36. [PMID: 25106430 DOI: 10.1152/ajplung.00077.2014] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Claudins are tight junction proteins that regulate paracellular ion permeability of epithelium and endothelium. Claudin 4 has been reported to function as a paracellular sodium barrier and is one of three major claudins expressed in lung alveolar epithelial cells (AEC). To directly assess the role of claudin 4 in regulation of alveolar epithelial barrier function and fluid homeostasis in vivo, we generated claudin 4 knockout (Cldn4 KO) mice. Unexpectedly, Cldn4 KO mice exhibited normal physiological phenotype although increased permeability to 5-carboxyfluorescein and decreased alveolar fluid clearance were noted. Cldn4 KO AEC monolayers exhibited unchanged ion permeability, higher solute permeability, and lower short-circuit current compared with monolayers from wild-type mice. Claudin 3 and 18 expression was similar between wild-type and Cldn4 KO alveolar epithelial type II cells. In response to either ventilator-induced lung injury or hyperoxia, claudin 4 expression was markedly upregulated in wild-type mice, whereas Cldn4 KO mice showed greater degrees of lung injury. RNA sequencing, in conjunction with differential expression and upstream analysis after ventilator-induced lung injury, suggested Egr1, Tnf, and Il1b as potential mediators of increased lung injury in Cldn4 KO mice. These results demonstrate that claudin 4 has little effect on normal lung physiology but may function to protect against acute lung injury.
Collapse
Affiliation(s)
- Hidenori Kage
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Per Flodby
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Danping Gao
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Yong Ho Kim
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Crystal N Marconett
- Departments of Surgery and Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center
| | - Lucas DeMaio
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Kwang-Jin Kim
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Departments of Physiology and Biophysics and Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California; Department of Biomedical Engineering and
| | - Edward D Crandall
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Pathology, Keck School of Medicine, University of Southern California; Mork Family Department of Chemical Engineering and Materials Science, Viterbi School of Engineering, University of Southern California, Los Angeles, California
| | - Zea Borok
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center,
| |
Collapse
|
14
|
Otulakowski G, Engelberts D, Gusarova GA, Bhattacharya J, Post M, Kavanagh BP. Hypercapnia attenuates ventilator-induced lung injury via a disintegrin and metalloprotease-17. J Physiol 2014; 592:4507-21. [PMID: 25085885 DOI: 10.1113/jphysiol.2014.277616] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Hypercapnic acidosis, common in mechanically ventilated patients, has been reported to exert both beneficial and harmful effects in models of lung injury. Understanding its effects at the molecular level may provide insight into mechanisms of injury and protection. The aim of this study was to establish the effects of hypercapnic acidosis on mitogen‐activated protein kinase (MAPK) activation, and determine the relevant signalling pathways. p44/42 MAPK activation in a murine model of ventilator‐induced lung injury (VILI) correlated with injury and was reduced in hypercapnia. When cultured rat alveolar epithelial cells were subjected to cyclic stretch, activation of p44/42 MAPK was dependent on epidermal growth factor receptor (EGFR) activity and on shedding of EGFR ligands; exposure to 12% CO2 without additional buffering blocked ligand shedding, as well as EGFR and p44/42 MAPK activation. The EGFR ligands are known substrates of the matrix metalloprotease ADAM17, suggesting stretch activates and hypercapnic acidosis blocks stretch‐mediated activation of ADAM17. This was corroborated in the isolated perfused mouse lung, where elevated CO2 also inhibited stretch‐activated shedding of the ADAM17 substrate TNFR1 from airway epithelial cells. Finally, in vivo confirmation was obtained in a two‐hit murine model of VILI where pharmacological inhibition of ADAM17 reduced both injury and p44/42 MAPK activation. Thus, ADAM17 is an important proximal mediator of VILI; its inhibition is one mechanism of hypercapnic protection and may be a target for clinical therapy.
Collapse
Affiliation(s)
- Gail Otulakowski
- Physiology and Experimental Medicine Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Canada
| | - Doreen Engelberts
- Physiology and Experimental Medicine Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Canada
| | - Galina A Gusarova
- Departments of Medicine and Physiology, Columbia University, New York, NY, USA
| | - Jahar Bhattacharya
- Departments of Medicine and Physiology, Columbia University, New York, NY, USA
| | - Martin Post
- Physiology and Experimental Medicine Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Canada
| | - Brian P Kavanagh
- Physiology and Experimental Medicine Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Canada Departments of Critical Care Medicine and Anaesthesia, Hospital for Sick Children, University of Toronto, Toronto, Canada
| |
Collapse
|
15
|
Piegeler T, Dull RO, Hu G, Castellon M, Chignalia AZ, Koshy RG, Votta-Velis EG, Borgeat A, Schwartz DE, Beck-Schimmer B, Minshall RD. Ropivacaine attenuates endotoxin plus hyperinflation-mediated acute lung injury via inhibition of early-onset Src-dependent signaling. BMC Anesthesiol 2014; 14:57. [PMID: 25097454 PMCID: PMC4112848 DOI: 10.1186/1471-2253-14-57] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 07/08/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Acute lung injury (ALI) is associated with high mortality due to the lack of effective therapeutic strategies. Mechanical ventilation itself can cause ventilator-induced lung injury. Pulmonary vascular barrier function, regulated in part by Src kinase-dependent phosphorylation of caveolin-1 and intercellular adhesion molecule-1 (ICAM-1), plays a crucial role in the development of protein-/neutrophil-rich pulmonary edema, the hallmark of ALI. Amide-linked local anesthetics, such as ropivacaine, have anti-inflammatory properties in experimental ALI. We hypothesized ropivacaine may attenuate inflammation in a "double-hit" model of ALI triggered by bacterial endotoxin plus hyperinflation via inhibition of Src-dependent signaling. METHODS C57BL/6 (WT) and ICAM-1 (-/-) mice were exposed to either nebulized normal saline (NS) or lipopolysaccharide (LPS, 10 mg) for 1 hour. An intravenous bolus of 0.33 mg/kg ropivacaine or vehicle was followed by mechanical ventilation with normal (7 ml/kg, NTV) or high tidal volume (28 ml/kg, HTV) for 2 hours. Measures of ALI (excess lung water (ELW), extravascular plasma equivalents, permeability index, myeloperoxidase activity) were assessed and lungs were homogenized for Western blot analysis of phosphorylated and total Src, ICAM-1 and caveolin-1. Additional experiments evaluated effects of ropivacaine on LPS-induced phosphorylation/expression of Src, ICAM-1 and caveolin-1 in human lung microvascular endothelial cells (HLMVEC). RESULTS WT mice treated with LPS alone showed a 49% increase in ELW compared to control animals (p = 0.001), which was attenuated by ropivacaine (p = 0.001). HTV ventilation alone increased measures of ALI even more than LPS, an effect which was not altered by ropivacaine. LPS plus hyperinflation ("double-hit") increased all ALI parameters (ELW, EVPE, permeability index, MPO activity) by 3-4 fold compared to control, which were again decreased by ropivacaine. Western blot analyses of lung homogenates as well as HLMVEC treated in culture with LPS alone showed a reduction in Src activation/expression, as well as ICAM-1 expression and caveolin-1 phosphorylation. In ICAM-1 (-/-) mice, neither addition of LPS to HTV ventilation alone nor ropivacaine had an effect on the development of ALI. CONCLUSIONS Ropivacaine may be a promising therapeutic agent for treating the cause of pulmonary edema by blocking inflammatory Src signaling, ICAM-1 expression, leukocyte infiltration, and vascular hyperpermeability.
Collapse
Affiliation(s)
- Tobias Piegeler
- Department of Anesthesiology, University of Illinois Hospital > Health Sciences System, 835 S. Wolcott Ave (m/c 868), Chicago, IL 60612, USA
- Institute of Anesthesiology, University Hospital Zurich, Zurich, Switzerland
| | - Randal O Dull
- Department of Anesthesiology, University of Illinois Hospital > Health Sciences System, 835 S. Wolcott Ave (m/c 868), Chicago, IL 60612, USA
- Department of Pharmacology, University of Illinois Hospital > Health Sciences System, Chicago, IL, USA
- Department of Bioengineering, University of Illinois Hospital > Health Sciences System, Chicago, IL, USA
| | - Guochang Hu
- Department of Anesthesiology, University of Illinois Hospital > Health Sciences System, 835 S. Wolcott Ave (m/c 868), Chicago, IL 60612, USA
- Department of Pharmacology, University of Illinois Hospital > Health Sciences System, Chicago, IL, USA
| | - Maricela Castellon
- Department of Anesthesiology, University of Illinois Hospital > Health Sciences System, 835 S. Wolcott Ave (m/c 868), Chicago, IL 60612, USA
- Department of Pharmacology, University of Illinois Hospital > Health Sciences System, Chicago, IL, USA
| | - Andreia Z Chignalia
- Department of Anesthesiology, University of Illinois Hospital > Health Sciences System, 835 S. Wolcott Ave (m/c 868), Chicago, IL 60612, USA
| | - Ruben G Koshy
- Department of Anesthesiology, University of Illinois Hospital > Health Sciences System, 835 S. Wolcott Ave (m/c 868), Chicago, IL 60612, USA
| | - E Gina Votta-Velis
- Department of Anesthesiology, University of Illinois Hospital > Health Sciences System, 835 S. Wolcott Ave (m/c 868), Chicago, IL 60612, USA
- Department of Anesthesiology, Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Alain Borgeat
- Department of Anesthesiology, Balgrist University Hospital, Zurich, Switzerland
| | - David E Schwartz
- Department of Anesthesiology, University of Illinois Hospital > Health Sciences System, 835 S. Wolcott Ave (m/c 868), Chicago, IL 60612, USA
| | | | - Richard D Minshall
- Department of Anesthesiology, University of Illinois Hospital > Health Sciences System, 835 S. Wolcott Ave (m/c 868), Chicago, IL 60612, USA
- Department of Pharmacology, University of Illinois Hospital > Health Sciences System, Chicago, IL, USA
- Department of Bioengineering, University of Illinois Hospital > Health Sciences System, Chicago, IL, USA
- Center for Lung and Vascular Biology, University of Illinois Hospital > Health Sciences System, Chicago, IL, USA
| |
Collapse
|
16
|
Kroon AA, DelRiccio V, Tseu I, Kavanagh BP, Post M. Mechanical ventilation-induced apoptosis in newborn rat lung is mediated via FasL/Fas pathway. Am J Physiol Lung Cell Mol Physiol 2013; 305:L795-804. [DOI: 10.1152/ajplung.00048.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mechanical ventilation induces pulmonary apoptosis and inhibits alveolar development in preterm infants, but the molecular basis for the apoptotic injury is unknown. The objective was to determine the signaling mechanism(s) of ventilation (stretch)-induced apoptosis in newborn rat lung. Seven-day-old rats were ventilated with room air for 24 h using moderate tidal volumes (8.5 ml/kg). Isolated fetal rat lung epithelial and fibroblast cells were subjected to continuous cyclic stretch (5, 10, or 17% elongation) for up to 12 h. Prolonged ventilation significantly increased the number of apoptotic alveolar type II cells (i.e., terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling and anti-cleaved caspase-3 immunochemistry) and was associated with increased expression of the apoptotic mediator Fas ligand (FasL). Fetal lung epithelial cells, but not fibroblasts, subjected to maximal (i.e., 17%, but not lesser elongation) cyclic stretch exhibited increased apoptosis (i.e., nuclear fragmentation and DNA laddering), which appeared to be mediated via the extrinsic pathway (increased expression of FasL and cleaved caspase-3, -7, and -8). The intrinsic pathway appeared not to be involved [minimal mitochondrial membrane depolarization (JC-1 flow analysis) and no activation of caspase-9]. Universal caspases inhibition and neutralization of FasL abrogated the stretch-induced apoptosis. Prolonged mechanical ventilation induces apoptosis of alveolar type II cells in newborn rats and the mechanism appears to involve activation of the extrinsic death pathway via the FasL/Fas system.
Collapse
Affiliation(s)
- Andreas A. Kroon
- Physiology and Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Canada
- Department of Pediatrics, Erasmus MC-Sophia, Rotterdam, The Netherlands
| | - Veronica DelRiccio
- Physiology and Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Canada
| | - Irene Tseu
- Physiology and Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Canada
| | - Brian P. Kavanagh
- Physiology and Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Canada
- Departments of Critical Care Medicine and Anesthesia, Hospital for Sick Children, University of Toronto, Toronto, Canada
- Department of Physiology, University of Toronto, Toronto, Canada; and
| | - Martin Post
- Physiology and Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Canada
- Department of Physiology, University of Toronto, Toronto, Canada; and
- Department of Pediatrics, University of Toronto, Toronto, Canada
| |
Collapse
|
17
|
Puntorieri V, Hiansen JQ, McCaig LA, Yao LJ, Veldhuizen RAW, Lewis JF. The effects of exogenous surfactant administration on ventilation-induced inflammation in mouse models of lung injury. BMC Pulm Med 2013; 13:67. [PMID: 24256698 PMCID: PMC4222563 DOI: 10.1186/1471-2466-13-67] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 11/14/2013] [Indexed: 01/11/2023] Open
Abstract
Background Mechanical ventilation (MV) is an essential supportive therapy for acute lung injury (ALI); however it can also contribute to systemic inflammation. Since pulmonary surfactant has anti-inflammatory properties, the aim of the study was to investigate the effect of exogenous surfactant administration on ventilation-induced systemic inflammation. Methods Mice were randomized to receive an intra-tracheal instillation of a natural exogenous surfactant preparation (bLES, 50 mg/kg) or no treatment as a control. MV was then performed using the isolated and perfused mouse lung (IPML) set up. This model allowed for lung perfusion during MV. In experiment 1, mice were exposed to mechanical ventilation only (tidal volume =20 mL/kg, 2 hours). In experiment 2, hydrochloric acid or air was instilled intra-tracheally four hours before applying exogenous surfactant and ventilation (tidal volume =5 mL/kg, 2 hours). Results For both experiments, exogenous surfactant administration led to increased total and functional surfactant in the treated groups compared to the controls. Exogenous surfactant administration in mice exposed to MV only did not affect peak inspiratory pressure (PIP), lung IL-6 levels and the development of perfusate inflammation compared to non-treated controls. Acid injured mice exposed to conventional MV showed elevated PIP, lung IL-6 and protein levels and greater perfusate inflammation compared to air instilled controls. Instillation of exogenous surfactant did not influence the development of lung injury. Moreover, exogenous surfactant was not effective in reducing the concentration of inflammatory cytokines in the perfusate. Conclusions The data indicates that exogenous surfactant did not mitigate ventilation-induced systemic inflammation in our models. Future studies will focus on altering surfactant composition to improve its immuno-modulating activity.
Collapse
Affiliation(s)
- Valeria Puntorieri
- Department of Physiology & Pharmacology, Western University, London, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
18
|
|
19
|
Wilson MR, Patel BV, Takata M. Ventilation with "clinically relevant" high tidal volumes does not promote stretch-induced injury in the lungs of healthy mice. Crit Care Med 2012; 40:2850-7. [PMID: 22890257 PMCID: PMC3698535 DOI: 10.1097/ccm.0b013e31825b91ef] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Ventilator-induced lung injury is a crucial determinant of the outcome of mechanically ventilated patients. Increasing numbers of mouse studies have identified numerous pathways and mediators that are modulated by ventilation, but it is conceptually difficult to reconcile these into a single paradigm. There is substantial variability in tidal volumes used in these studies and no certainty about the pathophysiology that such varied models actually represent. This study was designed to investigate whether ventilation strategies ranging from "very high" to more "clinically relevant" tidal volumes induce similar pathophysiologies in healthy mice or represent distinct entities. DESIGN In vivo study. SETTING University research laboratory. SUBJECTS C57/Bl6 mice. INTERVENTIONS Anesthetized mice were ventilated with various tidal volumes up to 40 mL/kg. MEASUREMENTS AND MAIN RESULTS Respiratory system compliance and arterial blood gases were used to evaluate physiological variables of injury. Lung wet:dry weight ratio, lavage fluid protein, and cytokines were used to assess pulmonary edema and inflammation. All ventilation strategies induced changes in respiratory system compliance, although the pattern of change was unique for each strategy. Ventilation with 10 mL/kg and 40 mL/kg also induced decreases in arterial PO2 and blood pressure. Any physiological changes induced during the 10, 20, and 30 mL/kg strategies were largely reversed by recruitment maneuvers at the end of the protocol. Markers of pulmonary edema and inflammation indicated that only 40 mL/kg induced substantial increases in both, consistent with development of lung injury. CONCLUSIONS Tidal volumes up to 20 mL/kg are unlikely to induce substantial lung overstretch in models using healthy, young mice. Signs of injury/inflammation using such models are likely to result from other factors, particularly alveolar derecruitment and atelectasis. The results of such studies may need to be reevaluated before clinical relevance can be accurately determined.
Collapse
Affiliation(s)
- Michael R Wilson
- Section of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom.
| | | | | |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Ventilator-induced lung injury (VILI) is a ubiquitous iatrogenic clinical problem in critical care. Aside from avoiding large tidal volumes, little progress has been made in identifying effective clinical strategies to minimize this injury. With recent rapid development in bioinformatics and high-throughput molecular technology, the genetic basis of lung injury has been intensively investigated. This review will describe recent insights and potential therapies developed in the field. RECENT FINDINGS Much progress has been made in delineating the possible genes and gene products involved in VILI through various mechanisms such as early induced genes, capillary leak, apoptosis, fibrin deposition, inflammatory cytokines, oxidative stress, disrupted angiogenesis, and neutrophil infiltration. Some studies have translated bench findings to the bedside in an attempt to identify clinically important genetic susceptibility, which could aid in the identification of at-risk individuals who might benefit from careful titration of mechanical ventilation. Genetic insights also provide candidate pharmaceutical approaches that may ameliorate VILI in the future. SUMMARY Much relevant information exists for investigators and clinicians interested in VILI. Future research will interlink evolving data to provide a more integrated picture of the molecular mechanisms involved in VILI enabling translation of the most promising candidate therapies.
Collapse
|
21
|
Lu D, Han C, Wu T. Microsomal prostaglandin E synthase-1 promotes hepatocarcinogenesis through activation of a novel EGR1/β-catenin signaling axis. Oncogene 2012; 31:842-57. [PMID: 21743491 PMCID: PMC3193853 DOI: 10.1038/onc.2011.287] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 05/02/2011] [Accepted: 05/26/2011] [Indexed: 12/11/2022]
Abstract
Microsomal prostaglandin E synthase-1 (mPGES-1) is a key enzyme that couples with cyclooxygenase-2 (COX-2) for the production of PGE(2). Although COX-2 is known to mediate the growth and progression of several human cancers including hepatocellular carcinoma (HCC), the role of mPGES-1 in hepatocarcinogenesis is not well established. This study provides novel evidence for a key role of mPGES-1 in HCC growth and progression. Forced overexpression of mPGES-1 in two HCC cell lines (Hep3B and Huh7) increased tumor cell growth, clonogenic formation, migration and invasion, whereas knockdown of mPGES-1 inhibited these parameters, in vitro. In a mouse tumor xenograft model, mPGES-1-overexpressed cells formed palpable tumors at earlier time points and developed larger tumors when compared with the control (P<0.01); in contrast, mPGES-1 knockdown delayed tumor development and reduced tumor size (P<0.01). Mechanistically, mPGES-1-induced HCC cell proliferation, invasion and migration involve PGE(2) production and activation of early growth response 1 (EGR1) and β-catenin. Specifically, mPGES-1-derived PGE(2) induces the formation of EGR1-β-catenin complex, which interacts with T-cell factor 4/lymphoid enhancer factor 1 transcription factors and activates the expression of β-catenin downstream genes. Our findings depict a novel crosstalk between mPGES-1/PGE(2) and EGR1/β-catenin signaling that is critical for hepatocarcinogenesis.
Collapse
Affiliation(s)
- Dongdong Lu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA
- Tongji University School of Life Science and Technology, Shanghai, China
| | - Chang Han
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA
| | - Tong Wu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA
| |
Collapse
|
22
|
Dolan S, Hastie P, Crossan C, Nolan AM. Co-induction of cyclooxygenase-2 [correction of cyclooxyenase-2] and early growth response gene (Egr-1) in spinal cord in a clinical model of persistent inflammation and hyperalgesia. Mol Pain 2011; 7:91. [PMID: 22112635 PMCID: PMC3256114 DOI: 10.1186/1744-8069-7-91] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 11/23/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study characterised the effects of persistent peripheral inflammation of the foot on pain and spinal cord expression of cyclooxygenase-1 and -2 (COX-1 and COX-2) and early growth response gene 1 (Egr-1), known markers of neuronal plasticity, in a clinical model of naturally-occurring inflammatory disease and hyperalgesia in sheep ('footrot'), before and after routine treatment (parenteral treatment with antibiotics and antiseptic footbathing). The temporal pattern of expression of COX-1, COX-2 and Egr-1 mRNA and protein were analysed using real-time PCR and Western blotting. RESULTS Animals affected with persistent peripheral inflammation displayed significant hyperalgesia and lameness (a proxy indicator of spontaneous pain) restricted to the inflamed limb. Hyperalgesia and lameness were significantly attenuated 1 day after treatment, and resolved further by day 7 and day 3, respectively. COX-2 but not COX-1, protein expression was up-regulated in spinal cord from lame animals on day 0, before treatment. Following treatment and attenuation of pain behaviours, levels of COX-2 returned to control levels. Significant induction of Egr-1 mRNA and protein were observed in spinal cord from lame animals. Three days after treatment, levels of Egr-1 mRNA returned to control levels, however, Egr-1 protein remained elevated. CONCLUSION Elevated levels of spinal COX-2 and Egr-1 protein correlate with the presence of pain and hyperalgesia, and may underlie persistent pain, although a direct causal link has still to be established. Understanding the temporal pattern of expression of key mediators in clinical pain states may lead to better strategies to manage pain.
Collapse
Affiliation(s)
- Sharron Dolan
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Cowcaddens Road, Glasgow, G4 0BA, UK.
| | | | | | | |
Collapse
|
23
|
Aso H, Ito S, Mori A, Morioka M, Suganuma N, Kondo M, Imaizumi K, Hasegawa Y. Prostaglandin E2 enhances interleukin-8 production via EP4 receptor in human pulmonary microvascular endothelial cells. Am J Physiol Lung Cell Mol Physiol 2011; 302:L266-73. [PMID: 22080750 DOI: 10.1152/ajplung.00248.2011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Prostaglandin E(2) (PGE(2)) is a bioactive prostanoid implicated in the inflammatory processes of acute lung injury/acute respiratory distress syndrome. This study investigated whether PGE(2) can induce production of interleukin (IL)-8, the major chemokine for neutrophil activation, from human pulmonary microvascular endothelial cells (HPMVECs). PGE(2) significantly enhanced IL-8 protein production with increases in IL-8 mRNA expression and intracellular cAMP levels. HPMVECs expressed only EP4 receptor mRNA. The PGE(2) effects were mimicked by a selective EP4 receptor agonist, ONO-AE1-329, and inhibited by a selective EP4 receptor antagonist, ONO-AE3-208, or a protein kinase A inhibitor, Rp-adenosine 3',5'-cyclic monophosphorothioate triethylamine salt. The specific agonist for EP1, EP2, or EP3 receptor did not induce IL-8 production. PGE(2)-induced IL-8 production was accompanied by p38 phosphorylation and was significantly inhibited by a p38 inhibitor, SB-203580, but not by an ERK1/2 inhibitor, U-0126, or a JNK inhibitor, SP-600125. Additionally, PGE(2) increased cyclooxygenase-2 expression with no change in constitutive cyclooxygenase-1 expression, suggesting possible involvement of an autocrine or paracrine manner. In conclusion, PGE(2) enhances IL-8 production via EP4 receptor coupled to G(s) protein in HPMVECs. Activation of the cAMP/protein kinase A pathway, followed by p38 activation, is essential for these mechanisms. Because neutrophils play a critical role in the inflammation of acute lung injury/acute respiratory distress syndrome, IL-8 released from the pulmonary microvasculature in response to PGE(2) may contribute to pathophysiology of this disease.
Collapse
Affiliation(s)
- Hiromichi Aso
- Dept. of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Karcz M, Vitkus A, Papadakos PJ, Schwaiberger D, Lachmann B. State-of-the-art mechanical ventilation. J Cardiothorac Vasc Anesth 2011; 26:486-506. [PMID: 21601477 DOI: 10.1053/j.jvca.2011.03.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Indexed: 02/01/2023]
Affiliation(s)
- Marcin Karcz
- Department of Anesthesiology, University of Rochester, Rochester, NY 14642, USA.
| | | | | | | | | |
Collapse
|
25
|
Kroon AA, Wang J, Kavanagh B, Huang Z, Kuliszewski M, van Goudoever JB, Post M. Prolonged mechanical ventilation induces cell cycle arrest in newborn rat lung. PLoS One 2011; 6:e16910. [PMID: 21359218 PMCID: PMC3040197 DOI: 10.1371/journal.pone.0016910] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 01/15/2011] [Indexed: 01/07/2023] Open
Abstract
RATIONALE The molecular mechanism(s) by which mechanical ventilation disrupts alveolar development, a hallmark of bronchopulmonary dysplasia, is unknown. OBJECTIVE To determine the effect of 24 h of mechanical ventilation on lung cell cycle regulators, cell proliferation and alveolar formation in newborn rats. METHODS Seven-day old rats were ventilated with room air for 8, 12 and 24 h using relatively moderate tidal volumes (8.5 mL.kg⁻¹). MEASUREMENT AND MAIN RESULTS Ventilation for 24 h (h) decreased the number of elastin-positive secondary crests and increased the mean linear intercept, indicating arrest of alveolar development. Proliferation (assessed by BrdU incorporation) was halved after 12 h of ventilation and completely arrested after 24 h. Cyclin D1 and E1 mRNA and protein levels were decreased after 8-24 h of ventilation, while that of p27(Kip1) was significantly increased. Mechanical ventilation for 24 h also increased levels of p57(Kip2), decreased that of p16(INK4a), while the levels of p21(Waf/Cip1) and p15(INK4b) were unchanged. Increased p27(Kip1) expression coincided with reduced phosphorylation of p27(Kip1) at Thr¹⁵⁷, Thr¹⁸⁷ and Thr¹⁹⁸ (p<0.05), thereby promoting its nuclear localization. Similar -but more rapid- changes in cell cycle regulators were noted when 7-day rats were ventilated with high tidal volume (40 mL.kg⁻¹) and when fetal lung epithelial cells were subjected to a continuous (17% elongation) cyclic stretch. CONCLUSION This is the first demonstration that prolonged (24 h) of mechanical ventilation causes cell cycle arrest in newborn rat lungs; the arrest occurs in G₁ and is caused by increased expression and nuclear localization of Cdk inhibitor proteins (p27(Kip1), p57(Kip2)) from the Kip family.
Collapse
Affiliation(s)
- Andreas A. Kroon
- Physiology and Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Canada
- Department of Pediatrics, Erasmus MC-Sophia, Rotterdam, The Netherlands
| | - Jinxia Wang
- Physiology and Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Canada
| | - Brian Kavanagh
- Physiology and Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
- Departments of Critical Care Medicine and Anesthesia, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Zhen Huang
- Physiology and Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Canada
| | - Maciej Kuliszewski
- Physiology and Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Canada
| | - Johannes B. van Goudoever
- Department of Pediatrics, Erasmus MC-Sophia, Rotterdam, The Netherlands
- Department of Pediatrics, Amsterdam Medical Center Emma's Children's Hospital, Amsterdam, The Netherlands
- Department of Pediatrics, Free University Hospital, Amsterdam, The Netherlands
| | - Martin Post
- Physiology and Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Canada
- Department of Pediatrics University of Toronto, Toronto, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
- * E-mail:
| |
Collapse
|
26
|
Hillman NH, Polglase GR, Jane Pillow J, Saito M, Kallapur SG, Jobe AH. Inflammation and lung maturation from stretch injury in preterm fetal sheep. Am J Physiol Lung Cell Mol Physiol 2011; 300:L232-41. [PMID: 21131401 PMCID: PMC3043810 DOI: 10.1152/ajplung.00294.2010] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mechanical ventilation is a risk factor for the development of bronchopulmonary dysplasia in premature infants. Fifteen minutes of high tidal volume (V(T)) ventilation induces inflammatory cytokine expression in small airways and lung parenchyma within 3 h. Our objective was to describe the temporal progression of cytokine and maturation responses to lung injury in fetal sheep exposed to a defined 15-min stretch injury. After maternal anesthesia and hysterotomy, 129-day gestation fetal lambs (n = 7-8/group) had the head and chest exteriorized. Each fetus was intubated, and airway fluid was gently removed. While placental support was maintained, the fetus received ventilation with an escalating V(T) to 15 ml/kg without positive end-expiratory pressure (PEEP) for 15 min using heated, humidified 100% nitrogen. The fetus was then returned to the uterus for 1, 6, or 24 h. Control lambs received a PEEP of 2 cmH(2)O for 15 min. Tissue samples from the lung and systemic organs were evaluated. Stretch injury increased the early response gene Egr-1 and increased expression of pro- and anti-inflammatory cytokines within 1 h. The injury induced granulocyte/macrophage colony-stimulating factor mRNA and matured monocytes to alveolar macrophages by 24 h. The mRNA for the surfactant proteins A, B, and C increased in the lungs by 24 h. The airway epithelium demonstrated dynamic changes in heat shock protein 70 (HSP70) over time. Serum cortisol levels did not increase, and induction of systemic inflammation was minimal. We conclude that a brief period of high V(T) ventilation causes a proinflammatory cascade, a maturation of lung monocytic cells, and an induction of surfactant protein mRNA.
Collapse
Affiliation(s)
- Noah H. Hillman
- 1Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio; and
| | - Graeme R. Polglase
- 2School of Women's and Infants' Health, The University of Western Australia, Perth, Australia
| | - J. Jane Pillow
- 2School of Women's and Infants' Health, The University of Western Australia, Perth, Australia
| | - Masatoshi Saito
- 2School of Women's and Infants' Health, The University of Western Australia, Perth, Australia
| | - Suhas G. Kallapur
- 1Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio; and ,2School of Women's and Infants' Health, The University of Western Australia, Perth, Australia
| | - Alan H. Jobe
- 1Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio; and ,2School of Women's and Infants' Health, The University of Western Australia, Perth, Australia
| |
Collapse
|
27
|
Maniatis NA, Letsiou E, Orfanos SE, Kardara M, Dimopoulou I, Nakos G, Lekka ME, Roussos C, Armaganidis A, Kotanidou A. Inhaled activated protein C protects mice from ventilator-induced lung injury. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2010; 14:R70. [PMID: 20403177 PMCID: PMC2887192 DOI: 10.1186/cc8976] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 02/14/2010] [Accepted: 04/19/2010] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Activated Protein C (APC), an endogenous anticoagulant, improves tissue microperfusion and endothelial cell survival in systemic inflammatory states such as sepsis, but intravenous administration may cause severe bleeding. We have thus addressed the role of APC delivered locally by inhalation in preventing acute lung injury from alveolar overdistention and the subsequent ventilator-induced lung injury (VILI). We also assessed the effects of APC on the activation status of Extracellular- Regulated Kinase 1/2 (ERK) pathway, which has been shown to be involved in regulating pulmonary responses to mechanical stretch. METHODS Inhaled APC (12.5 microg drotrecogin-alpha x 4 doses) or saline was given to tracheotomized C57/Bl6 mice starting 20 min prior to initiation of injurious mechanical ventilation with tidal volume 25 mL/Kg for 4 hours and then hourly thereafter; control groups receiving inhaled saline were ventilated with 8 mL/Kg for 30 min or 4 hr. We measured lung function (respiratory system elastance H), arterial blood gases, surrogates of vascular leak (broncho-alveolar lavage (BAL) total protein and angiotensin-converting enzyme (ACE)-activity), and parameters of inflammation (BAL neutrophils and lung tissue myeloperoxidase (MPO) activity). Morphological alterations induced by mechanical ventilation were examined in hematoxylin-eosin lung tissue sections. The activation status of ERK was probed in lung tissue homogenates by immunoblotting and in paraffin sections by immunohistochemistry. The effect of APC on ERK signaling downstream of the thrombin receptor was tested on A549 human lung epithelial cells by immunoblotting. Statistical analyses were performed using ANOVA with appropriate post-hoc testing. RESULTS In mice subjected to VILI without APC, we observed hypoxemia, increased respiratory system elastance and inflammation, assessed by BAL neutrophil counts and tissue MPO activity. BAL total protein levels and ACE activity were also elevated by VILI, indicating compromise of the alveolo-capillary barrier. In addition to preserving lung function, inhaled APC prevented endothelial barrier disruption and attenuated hypoxemia and the inflammatory response. Mechanistically, we found a strong activation of ERK in lung tissues by VILI, which was prevented by APC, suggestive of pathogenetic involvement of the Mitogen-Activated Kinase pathway. In cultured human lung epithelial cells challenged by thrombin, APC abrogated the activation of ERK and its downstream effector, cytosolic Phospholipase A2. CONCLUSIONS Topical application of APC by inhalation may effectively reduce lung injury induced by mechanical ventilation in mice.
Collapse
Affiliation(s)
- Nikolaos A Maniatis
- 2nd Dept, of Critical Care, Attikon Hospital, National and Kapodistrian University of Athens Medical School, Rimini 1, Haidari, Greece.
| | | | | | | | | | | | | | | | | | | |
Collapse
|