1
|
Rungsung S, Singh TU, Perumalraja K, Mahobiya A, Sharma M, Lingaraju MC, Parida S, Sahoo M, Kumar D. Luteolin alleviates vascular dysfunctions in CLP-induced polymicrobial sepsis in mice. Pharmacol Rep 2022; 74:1054-1068. [PMID: 35939258 DOI: 10.1007/s43440-022-00399-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Luteolin, a naturally occurring flavonoid, is thought to have health-promoting properties as a part of human diet and has been reported to possess a wide range of pharmacological activities. Therefore, the present study was undertaken to evaluate the effect of luteolin pre-treatment on vascular dysfunctions in sepsis induced by caecal ligation and puncture (CLP) in the mouse model. METHODS Mice were divided into four groups: sham, luteolin plus sham, CLP, and luteolin plus CLP. Luteolin was administered (0.2 mg/kg body weight) intraperitoneally one hour (h) before CLP surgery in mice. 20 ± 2 h post CLP surgery, the isolated thoracic aorta of mice was assessed for its vascular reactivity to noradrenaline (NA) and acetylcholine (ACh). To explore the underlying mechanism, aortic mRNA expressions of α1D adrenoceptors, eNOS and iNOS were investigated. RESULTS In mice with CLP-induced sepsis luteolin pre-treatment markedly increased the survival time and attenuated serum lactate level. The CLP group manifested the reduced vascular reactivity to NA and this deficit was restored by luteolin pre-treatment. However, luteolin pre-treatment did not improve α1D adrenoceptors down-regulation observed in septic mice aorta. In the presence of 1400 W, the NA contractile response was significantly restored in CLP mice aortic tissue in comparison with the respective control of septic mice and further enhanced in the presence of luteolin. Luteolin reduced the iNOS mRNA expression and iNOS-derived nitrite production. Pre-treatment with luteolin restored the endothelial dysfunction in septic mice aorta by improving eNOS mRNA expression and enhanced eNOS-derived nitric oxide (NO) production in septic mice aorta and aortic iNOS gene expression and inducible NO production. CONCLUSION The present study suggests that the vasoplegic state to NA in aorta was restored through the iNOS pathway and endothelial dysfunction was reversed via eNOS and NO production pathway.
Collapse
Affiliation(s)
- Soya Rungsung
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Thakur Uttam Singh
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India.
| | - Kirthika Perumalraja
- Division of Animal Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Archana Mahobiya
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Meemansha Sharma
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Madhu Cholenahalli Lingaraju
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Subhashree Parida
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Monalisa Sahoo
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Dinesh Kumar
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| |
Collapse
|
2
|
Hu S, Pi Q, Xu X, Yan J, Guo Y, Tan W, He A, Cheng Z, Luo S, Xia Y. Disrupted eNOS activity and expression account for vasodilator dysfunction in different stage of sepsis. Life Sci 2021; 264:118606. [PMID: 33091444 DOI: 10.1016/j.lfs.2020.118606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/30/2020] [Accepted: 10/12/2020] [Indexed: 12/19/2022]
Abstract
AIMS Sepsis is a severe endothelial dysfunction syndrome. The role of endothelial nitric oxide synthase (eNOS) in endothelial dysfunction induced by sepsis is controversial. To explore the role of eNOS in vascular dysfunction. MAIN METHODS The effect of sepsis on vasodilation and eNOS levels was examined in septic mouse arteries and in cell models. KEY FINDINGS In early sepsis mouse arteries, endothelium-dependent relaxation decreased and phosphorylation of the inhibitory Thr495 site in endothelial nitric oxide synthase increased. Mechanically, the phosphorylation of endothelial nitric oxide synthase at Thr497 in bovine aortic endothelial cells occurred in a protein kinase C-α dependent manner. In late sepsis, both nitric oxide-dependent relaxation responses and endothelial nitric oxide synthase levels were decreased in septic mice arteries. Endothelial nitric oxide synthase levels expression levels decreased in tumor necrosis factor-α-treated human umbilical vein endothelial cells and this could be prevented by the ubiquitin proteasome inhibitor (MG-132). MG-132 could reverse the decrease in endothelial nitric oxide synthase expression and improve nitric oxide-dependent vasodilator dysfunction in septic mice arteries. SIGNIFICANCE These data indicate that vasodilator dysfunction is induced by the increased phosphorylation of endothelial nitric oxide synthase in early sepsis and its degradation in late sepsis.
Collapse
Affiliation(s)
- Shupeng Hu
- Division of Cardiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Qiangzhong Pi
- Division of Cardiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Xiudan Xu
- Emergency Ward, The First People's Hospital of Shangqiu, Henan 476000, China
| | - Jianghong Yan
- Institute of Life Science, Chongqing Medical University, Chongqing 400016, China
| | - Yongzheng Guo
- Division of Cardiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Wanying Tan
- Sichuan Academy of Chinese Medicine Science, Chengdu 610000, China
| | - An He
- Division of Cardiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Zhe Cheng
- Division of Cardiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Suxin Luo
- Division of Cardiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China.
| | - Yong Xia
- Division of Cardiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China; Institute of Life Science, Chongqing Medical University, Chongqing 400016, China; Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, 473 West 12(th) Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
3
|
Bahadoran Z, Carlström M, Mirmiran P, Ghasemi A. Nitric oxide: To be or not to be an endocrine hormone? Acta Physiol (Oxf) 2020; 229:e13443. [PMID: 31944587 DOI: 10.1111/apha.13443] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 01/05/2020] [Accepted: 01/10/2020] [Indexed: 01/02/2023]
Abstract
Nitric oxide (NO), a highly reactive gasotransmitter, is critical for a number of cellular processes and has multiple biological functions. Due to its limited lifetime and diffusion distance, NO has been mainly believed to act in autocrine/paracrine fashion. The increasingly recognized effects of pharmacologically delivered and endogenous NO at a distant site have changed the conventional wisdom and introduced NO as an endocrine signalling molecule. The notion is greatly supported by the detection of a number of NO adducts and their circulatory cycles, which in turn contribute to the transport and delivery of NO bioactivity, remote from the sites of its synthesis. The existence of endocrine sites of synthesis, negative feedback regulation of biosynthesis, integrated storage and transport systems, having an exclusive receptor, that is, soluble guanylyl cyclase (sGC), and organized circadian rhythmicity make NO something beyond a simple autocrine/paracrine signalling molecule that could qualify for being an endocrine signalling molecule. Here, we discuss hormonal features of NO from the classical endocrine point of view and review available knowledge supporting NO as a true endocrine hormone. This new insight can provide a new framework within which to reinterpret NO biology and its clinical applications.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Nutrition and Endocrine Research Center Research Institute for Endocrine Sciences Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Mattias Carlström
- Department of Physiology and Pharmacology Karolinska Institutet Stockholm Sweden
| | - Parvin Mirmiran
- Department of Clinical Nutrition and Dietetics Faculty of Nutrition Sciences and Food Technology National Nutrition and Food Technology Research Institute Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center Research Institute for Endocrine Sciences Shahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
4
|
Yadav S, Pathak S, Sarikhani M, Majumdar S, Ray S, Chandrasekar BS, Adiga V, Sundaresan NR, Nandi D. Nitric oxide synthase 2 enhances the survival of mice during Salmonella Typhimurium infection-induced sepsis by increasing reactive oxygen species, inflammatory cytokines and recruitment of neutrophils to the peritoneal cavity. Free Radic Biol Med 2018; 116:73-87. [PMID: 29309892 DOI: 10.1016/j.freeradbiomed.2017.12.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 12/29/2022]
Abstract
Sepsis, a leading cause of death in intensive care units, is primarily caused due to an exaggerated immune response. The hyperactive inflammatory response mediated by immune cells against infectious organisms and their toxins results in host cell death and tissue damage, the hallmarks of septic shock. Therefore, molecules that modulate inflammatory responses are attractive therapeutic targets for sepsis. Nitric oxide (NO) is a signaling molecule, which is implicated in regulating diverse immune functions. Although, the protective roles of NO in infectious diseases are well documented, its importance in sepsis is controversial. In the present study, the effects of intra-peritoneal injection of mice with Salmonella Typhimurium, a Gram-negative intracellular pathogen, were studied which leads to a rapid upregulation of serum cytokines and infiltration of neutrophils to the peritoneal cavity. Surprisingly, the induction of inflammatory cytokines and chemokines, e.g. IL6 and CCL2, and the infiltration of neutrophils into the peritoneal cavity are mitigated in mice lacking Nitric oxide synthase 2 (NOS2). The reduced inflammatory response in Nos2-/- mice is accompanied by greater bacterial burden in the peritoneal cavity, lower thymic atrophy, higher liver damage and cardiovascular dysfunction followed by decreased survival. However, no significant differences are observed in other responses between C57BL/6 wild type (WT) and Nos2-/- mice: induction of glucocorticoids, phagocytic ability and apoptosis of peritoneal cells. This study clearly highlights the NOS2-dependent and -independent responses in this mouse model of peritonitis induced sepsis. Importantly, pre-treatment of Nos2-/- mice with DETA-NO, a NO donor, upon infection, restores neutrophil recruitment, reduces bacterial numbers in the peritoneal cavity, improves liver and cardio-vascular function and enhances survival. Interestingly, DETA-NO treatment does not significantly increase the survival of infected WT mice. The implications of these results and the complex roles of NO as a target molecule during sepsis are discussed.
Collapse
Affiliation(s)
- Shikha Yadav
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sanmoy Pathak
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Mohsen Sarikhani
- Department of Microbiology & Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Shamik Majumdar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Semanti Ray
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | - Vasista Adiga
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| | - Nagalingam R Sundaresan
- Department of Microbiology & Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India; Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
5
|
Uludag MO, Ozdemir ED, Bal NB, Han S, Dayanir H, Babacan A, Emel Usanm S, Demirel-Yi E. Effects of Ozone Treatment in Endotoxin Induced Shock Model in Rats. INT J PHARMACOL 2017. [DOI: 10.3923/ijp.2017.166.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Shu X, Keller TCS, Begandt D, Butcher JT, Biwer L, Keller AS, Columbus L, Isakson BE. Endothelial nitric oxide synthase in the microcirculation. Cell Mol Life Sci 2015; 72:4561-75. [PMID: 26390975 PMCID: PMC4628887 DOI: 10.1007/s00018-015-2021-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/21/2015] [Accepted: 08/11/2015] [Indexed: 02/07/2023]
Abstract
Endothelial nitric oxide synthase (eNOS, NOS3) is responsible for producing nitric oxide (NO)--a key molecule that can directly (or indirectly) act as a vasodilator and anti-inflammatory mediator. In this review, we examine the structural effects of regulation of the eNOS enzyme, including post-translational modifications and subcellular localization. After production, NO diffuses to surrounding cells with a variety of effects. We focus on the physiological role of NO and NO-derived molecules, including microvascular effects on vessel tone and immune response. Regulation of eNOS and NO action is complicated; we address endogenous and exogenous mechanisms of NO regulation with a discussion of pharmacological agents used in clinical and laboratory settings and a proposed role for eNOS in circulating red blood cells.
Collapse
Affiliation(s)
- Xiaohong Shu
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VA, 22908, USA
| | - T C Stevenson Keller
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VA, 22908, USA
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, USA
| | - Daniela Begandt
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VA, 22908, USA
| | - Joshua T Butcher
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VA, 22908, USA
| | - Lauren Biwer
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VA, 22908, USA
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, USA
| | - Alexander S Keller
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VA, 22908, USA
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, USA
| | - Linda Columbus
- Department of Chemistry, University of Virginia, Charlottesville, USA
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VA, 22908, USA.
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, USA.
| |
Collapse
|
7
|
Bateman RM, Sharpe MD, Jagger JE, Ellis CG. Sepsis impairs microvascular autoregulation and delays capillary response within hypoxic capillaries. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:389. [PMID: 26537126 PMCID: PMC4634189 DOI: 10.1186/s13054-015-1102-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 10/16/2015] [Indexed: 11/10/2022]
Abstract
Introduction The microcirculation supplies oxygen (O2) and nutrients to all cells with the red blood cell (RBC) acting as both a deliverer and sensor of O2. In sepsis, a proinflammatory disease with microvascular complications, small blood vessel alterations are associated with multi-organ dysfunction and poor septic patient outcome. We hypothesized that microvascular autoregulation—existing at three levels: over the entire capillary network, within a capillary and within the erythrocyte—was impaired during onset of sepsis. This study had three objectives: 1) measure capillary response time within hypoxic capillaries, 2) test the null hypothesis that RBC O2-dependent adenosine triphosphate (ATP) efflux was not altered by sepsis and 3) develop a framework of a pathophysiological model. Methods This was an animal study, comparing sepsis with control, set in a university laboratory. Acute hypotensive sepsis was studied using cecal ligation and perforation (CLP) with a 6-hour end-point. Rat hindlimb skeletal muscle microcirculation was imaged, and capillary RBC supply rate (SR = RBC/s), RBC hemoglobin O2 saturation (SO2) and O2 supply rate (qO2 = pLO2/s) were quantified. Arterial NOx (nitrite + nitrate) and RBC O2-dependent ATP efflux were measured using a nitric oxide (NO) analyzer and gas exchanger, respectively. Results Sepsis increased capillary stopped-flow (p = 0.001) and increased plasma lactate (p < 0.001). Increased plasma NOx (p < 0.001) was related to increased capillary RBC supply rate (p = 0.027). Analysis of 30-second SR–SO2–qO2 profiles revealed a shift towards decreased (p < 0.05) O2 supply rates in some capillaries. Moreover, we detected a three- to fourfold increase (p < 0.05) in capillary response time within hypoxic capillaries (capillary flow states where RBC SO2 < 20 %). Additionally, sepsis decreased the erythrocyte’s ability to respond to hypoxic environments, as normalized RBC O2-dependent ATP efflux decreased by 62.5 % (p < 0.001). Conclusions Sepsis impaired microvascular autoregulation at both the individual capillary and erythrocyte level, seemingly uncoupling the RBC acting as an “O2 sensor” from microvascular autoregulation. Impaired microvascular autoregulation was manifested by increased capillary stopped-flow, increased capillary response time within hypoxic capillaries, decreased capillary O2 supply rate and decreased RBC O2-dependent ATP efflux. This loss of local microvascular control was partially off-set by increased capillary RBC supply rate, which correlated with increased plasma NOx. Electronic supplementary material The online version of this article (doi:10.1186/s13054-015-1102-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ryon M Bateman
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada. .,Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan. .,Ryleeon, 18519-77 Ave NW, Edmonton, AB, T5T6A8, Canada.
| | - Michael D Sharpe
- Department of Anesthesia and Critical Care Western, University of Western Ontario, London, ON, Canada.
| | - Justin E Jagger
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada.
| | - Christopher G Ellis
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
8
|
Kandasamy K, Choudhury S, Singh V, Addison MP, Darzi SA, Kasa JK, Thangamalai R, Dash JR, Kumar T, Sultan F, Singh TU, Parida S, Mishra SK. Erythropoietin Reverses Sepsis-Induced Vasoplegia to Norepinephrine Through Preservation of α1D-Adrenoceptor mRNA Expression and Inhibition of GRK2-Mediated Desensitization in Mouse Aorta. J Cardiovasc Pharmacol Ther 2015; 21:100-13. [DOI: 10.1177/1074248415587968] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 04/20/2015] [Indexed: 12/12/2022]
Abstract
We investigated the effect of erythropoietin (EPO) posttreatment on survival time and vascular functions in a mouse model of sepsis. Sepsis was induced by cecal ligation and puncture. After 20 ± 2 hours of sepsis, thoracic aorta was isolated for assessing its reactivity to norepinephrine (NE) and acetylcholine (ACh). We also measured the tissue nitric oxide (NO) level, inducible nitric oxide synthase (iNOS), endothelial nitric oxide synthase (eNOS), G protein-coupled receptor kinase 2 (GRK2), and α1D adrenoceptor messenger RNA (mRNA)/protein expression. In septic mice, EPO moderately improved the survival time from 19.68 ± 0.75 to 34.7 ± 3.2 hours. Sepsis significantly decreased the aortic contractile response to NE along with reduced α1D mRNA and protein expression. Erythropoietin significantly preserved the α1D receptor expression and restored NE-induced contractions to control levels in septic mice. Further, it attenuated the aortic α1D receptor desensitization in sepsis which was evident from reduced GRK2 mRNA expression. Accordingly, a selective GRK2 inhibitor markedly restored the contractile responses to NE in sepsis. Erythropoietin treatment attenuated iNOS mRNA expression and iNOS-induced overproduction of NO, but improved endothelium-dependent relaxation to ACh associated with increased eNOS mRNA expression. In conclusion, EPO seems to reverse sepsis-induced vasoplegia to NE through the preservation of α1D adrenoceptor mRNA/protein expression, inhibition of GRK2-mediated desensitization, and attenuation of NO overproduction in the mouse aorta.
Collapse
Affiliation(s)
- Kannan Kandasamy
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Soumen Choudhury
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Vishakha Singh
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - M. Pule Addison
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Sazad Ahmad Darzi
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Jaya Kiran Kasa
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Ramasamy Thangamalai
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Jeevan Ranjan Dash
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Tarun Kumar
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Faheem Sultan
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Thakur Uttam Singh
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Subhashree Parida
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Santosh Kumar Mishra
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| |
Collapse
|
9
|
Choudhury S, Kannan K, Pule Addison M, Darzi SA, Singh V, Singh TU, Thangamalai R, Dash JR, Parida S, Debroy B, Paul A, Mishra SK. Combined treatment with atorvastatin and imipenem improves survival and vascular functions in mouse model of sepsis. Vascul Pharmacol 2015; 71:139-50. [PMID: 25869507 DOI: 10.1016/j.vph.2015.03.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 02/28/2015] [Accepted: 03/03/2015] [Indexed: 01/22/2023]
Abstract
We have recently reported that pre-treatment, but not the post-treatment with atorvastatin showed survival benefit and improved hemodynamic functions in cecal ligation and puncture (CLP) model of sepsis in mice. Here we examined whether combined treatment with atorvastatin and imipenem after onset of sepsis can prolong survival and improve vascular functions. At 6 and 18h after sepsis induction, treatment with atorvastatin plus imipenem, atorvastatin or imipenem alone or placebo was initiated. Ex vivo experiments were done on mouse aorta to examine the vascular reactivity to nor-adrenaline and acetylcholine and mRNA expressions of α1D AR, GRK2 and eNOS. Atorvastatin plus imipenem extended the survival time to 56.00±4.62h from 20.00±1.66h observed in CLP mice. The survival time with atorvastatin or imipenem alone was 20.50±1.89h and 27.00±4.09h, respectively. The combined treatment reversed the hyporeactivity to nor-adrenaline through preservation of α1D AR mRNA/protein expression and reversal of α1D AR desensitization mediated by GRK2/Gβγ pathway. The treatment also restored endothelium-dependent relaxation to ACh through restoration of aortic eNOS mRNA expression and NO availability. In conclusion, combined treatment with atorvastatin and imipenem exhibited survival benefit and improved vascular functions in septic mice.
Collapse
Affiliation(s)
- Soumen Choudhury
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar-243122, Bareilly, Uttar Pradesh, India
| | - Kandasamy Kannan
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar-243122, Bareilly, Uttar Pradesh, India
| | - M Pule Addison
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar-243122, Bareilly, Uttar Pradesh, India
| | - Sazad A Darzi
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar-243122, Bareilly, Uttar Pradesh, India
| | - Vishakha Singh
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar-243122, Bareilly, Uttar Pradesh, India
| | - Thakur Uttam Singh
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar-243122, Bareilly, Uttar Pradesh, India
| | - Ramasamy Thangamalai
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar-243122, Bareilly, Uttar Pradesh, India
| | - Jeevan Ranjan Dash
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar-243122, Bareilly, Uttar Pradesh, India
| | - Subhashree Parida
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar-243122, Bareilly, Uttar Pradesh, India
| | - Biplab Debroy
- Division of Veterinary Pathology, Indian Veterinary Research Institute, Izatnagar-243122, Bareilly, Uttar Pradesh, India
| | - Avishek Paul
- Division of Physiology and Climatology, Indian Veterinary Research Institute, Izatnagar-243122, Bareilly, Uttar Pradesh, India
| | - Santosh Kumar Mishra
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar-243122, Bareilly, Uttar Pradesh, India.
| |
Collapse
|
10
|
Wijnands KAP, Castermans TMR, Hommen MPJ, Meesters DM, Poeze M. Arginine and citrulline and the immune response in sepsis. Nutrients 2015; 7:1426-63. [PMID: 25699985 PMCID: PMC4377861 DOI: 10.3390/nu7031426] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 01/15/2015] [Accepted: 01/26/2015] [Indexed: 01/01/2023] Open
Abstract
Arginine, a semi-essential amino acid is an important initiator of the immune response. Arginine serves as a precursor in several metabolic pathways in different organs. In the immune response, arginine metabolism and availability is determined by the nitric oxide synthases and the arginase enzymes, which convert arginine into nitric oxide (NO) and ornithine, respectively. Limitations in arginine availability during inflammatory conditions regulate macrophages and T-lymfocyte activation. Furthermore, over the past years more evidence has been gathered which showed that arginine and citrulline deficiencies may underlie the detrimental outcome of inflammatory conditions, such as sepsis and endotoxemia. Not only does the immune response contribute to the arginine deficiency, also the impaired arginine de novo synthesis in the kidney has a key role in the eventual observed arginine deficiency. The complex interplay between the immune response and the arginine-NO metabolism is further underscored by recent data of our group. In this review we give an overview of physiological arginine and citrulline metabolism and we address the experimental and clinical studies in which the arginine-citrulline NO pathway plays an essential role in the immune response, as initiator and therapeutic target.
Collapse
Affiliation(s)
- Karolina A P Wijnands
- Department of Surgery, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht 6200 MD, The Netherlands.
| | - Tessy M R Castermans
- Department of Surgery, Maastricht University Medical Center, Maastricht 6200MD, The Netherlands.
| | - Merel P J Hommen
- Department of Surgery, Maastricht University Medical Center, Maastricht 6200MD, The Netherlands.
| | - Dennis M Meesters
- Department of Surgery, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht 6200 MD, The Netherlands.
| | - Martijn Poeze
- Department of Surgery, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht 6200 MD, The Netherlands.
| |
Collapse
|
11
|
Arginine infusion in patients with septic shock increases nitric oxide production without haemodynamic instability. Clin Sci (Lond) 2014; 128:57-67. [PMID: 25036556 DOI: 10.1042/cs20140343] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Arginine deficiency in sepsis may impair nitric oxide (NO) production for local perfusion and add to the catabolic state. In contrast, excessive NO production has been related to global haemodynamic instability. Therefore, the aim of the present study was to investigate the dose-response effect of intravenous arginine supplementation in post-absorptive patients with septic shock on arginine-NO and protein metabolism and on global and regional haemodynamics. Eight critically ill patients with a diagnosis of septic shock participated in this short-term (8 h) dose-response study. L-Arginine-HCl was continuously infused [intravenously (IV)] in three stepwise-increasing doses (33, 66 and 99 μmol·kg-1·h-1). Whole-body arginine-NO and protein metabolism were measured using stable isotope techniques, and baseline values were compared with healthy controls. Global and regional haemodynamic parameters were continuously recorded during the study. Upon infusion, plasma arginine increased from 48±7 to 189±23 μmol·l-1 (means±S.D.; P<0.0001). This coincided with increased de novo arginine (P<0.0001) and increased NO production (P<0.05). Sepsis patients demonstrated elevated protein breakdown at baseline (P<0.001 compared with healthy controls), whereas protein breakdown and synthesis both decreased during arginine infusion (P<0.0001). Mean arterial and pulmonary pressure and gastric mucosal-arterial partial pressure of carbon dioxide difference (Pr-aCO2) gap did not alter during arginine infusion (P>0.05), whereas stroke volume (SV) increased (P<0.05) and arterial lactate decreased (P<0.05). In conclusion, a 4-fold increase in plasma arginine with intravenous arginine infusion in sepsis stimulates de novo arginine and NO production and reduces whole-body protein breakdown. These potential beneficial metabolic effects occurred without negative alterations in haemodynamic parameters, although improvement in regional perfusion could not be demonstrated in the eight patients with septic shock who were studied.
Collapse
|
12
|
Schweighöfer H, Rummel C, Mayer K, Rosengarten B. Brain function in iNOS knock out or iNOS inhibited (l-NIL) mice under endotoxic shock. Intensive Care Med Exp 2014; 2:24. [PMID: 26266921 PMCID: PMC4513038 DOI: 10.1186/s40635-014-0024-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 08/14/2014] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Microcirculatory dysfunction due to excessive nitric oxide production by the inducible nitric oxide synthase (iNOS) is often seen as a motor of sepsis-related organ dysfunction. Thus, blocking iNOS may improve organ function. Here, we investigated neuronal functional integrity in iNOS knock out (-/-) or l-NIL-treated wild-type (wt) animals in an endotoxic shock model. METHODS Four groups of each 10 male mice (28 to 32 g) were studied: wt, wt + lipopolysaccharide (LPS) (5 mg/kg body weight i.v.), iNOS(-/-) + LPS, wt + LPS + l-NIL (5 mg/kg body weight i.p. 30 min before LPS). Electric forepaw stimulation was performed before LPS/vehicle and then at fixed time points repeatedly up to 4.5 h. N1-P1 potential amplitudes as well as P1 latencies were calculated from EEG recordings. Additionally, cerebral blood flow was registered using laser Doppler. Blood gas parameters, mean arterial blood pressure, and glucose and lactate levels were obtained at the beginning and the end of experiments. Moreover, plasma IL-6, IL-10, CXCL-5, ICAM-1, neuron-specific enolase (NSE), and nitrate/nitrite levels were determined. RESULTS Decline in blood pressure, occurrence of cerebral hyperemia, acidosis, and increase in lactate levels were prevented in both iNOS-blocked groups. SEP amplitudes and NSE levels remained in the range of controls. Effects were related to a blocked nitrate/nitrite level increase whereas IL-6, ICAM-1, and IL-10 were similarly induced in all sepsis groups. Only CXCL-5 induction was lower in both iNOS-blocked groups. CONCLUSIONS Despite similar hyper-inflammatory responses, iNOS inhibition strategies appeared neurofunctionally protective possibly by stabilizing macro- as well as microcirculation. Overall, our data support modern sepsis guidelines recommending early prevention of microcirculatory failure.
Collapse
Affiliation(s)
- Hanna Schweighöfer
- Department of Neurology, Justus-Liebig-University Giessen, Klinikstrasse 33, 35392, Giessen, Germany,
| | | | | | | |
Collapse
|
13
|
Sharawy N. Vasoplegia in septic shock: do we really fight the right enemy? J Crit Care 2013; 29:83-7. [PMID: 24095623 DOI: 10.1016/j.jcrc.2013.08.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/19/2013] [Accepted: 08/25/2013] [Indexed: 12/13/2022]
Abstract
Vasoplegia is a key factor for the death of patients with septic shock in intensive care unit owing to persistent and irreversible hypotension. Impairment of vascular reactivity has been attributed to a combination of endothelial injury, arginine-vasopressin system dysfunction, release of other vasodilatory inflammatory mediators, and muscle hyperpolarizaton. Nitric oxide induced by a Ca(+2) independent isoform of nitric oxide synthase has been suggested to play an important role in sepsis-induced vasoplegia. However, inhibition of nitric oxide synthase only partially restores the endotoxin-induced vascular hyporeactivity. The aim of this review is to discuss in detail the recent suggested alternative mechanisms of vasoplegia and to briefly outline the current therapeutic strategies and the novel therapeutic options based on those mechanisms.
Collapse
Affiliation(s)
- Nivin Sharawy
- Department of Anaesthesia, Dalhousie University, Halifax, Nova Scotia, Canada B3H 2Y9.
| |
Collapse
|
14
|
Luiking YC, Ten Have GAM, Wolfe RR, Deutz NEP. Arginine de novo and nitric oxide production in disease states. Am J Physiol Endocrinol Metab 2012; 303:E1177-89. [PMID: 23011059 PMCID: PMC3517635 DOI: 10.1152/ajpendo.00284.2012] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Arginine is derived from dietary protein intake, body protein breakdown, or endogenous de novo arginine production. The latter may be linked to the availability of citrulline, which is the immediate precursor of arginine and limiting factor for de novo arginine production. Arginine metabolism is highly compartmentalized due to the expression of the enzymes involved in arginine metabolism in various organs. A small fraction of arginine enters the NO synthase (NOS) pathway. Tetrahydrobiopterin (BH4) is an essential and rate-limiting cofactor for the production of NO. Depletion of BH4 in oxidative-stressed endothelial cells can result in so-called NOS3 "uncoupling," resulting in production of superoxide instead of NO. Moreover, distribution of arginine between intracellular transporters and arginine-converting enzymes, as well as between the arginine-converting and arginine-synthesizing enzymes, determines the metabolic fate of arginine. Alternatively, NO can be derived from conversion of nitrite. Reduced arginine availability stemming from reduced de novo production and elevated arginase activity have been reported in various conditions of acute and chronic stress, which are often characterized by increased NOS2 and reduced NOS3 activity. Cardiovascular and pulmonary disorders such as atherosclerosis, diabetes, hypercholesterolemia, ischemic heart disease, and hypertension are characterized by NOS3 uncoupling. Therapeutic applications to influence (de novo) arginine and NO metabolism aim at increasing substrate availability or at influencing the metabolic fate of specific pathways related to NO bioavailability and prevention of NOS3 uncoupling. These include supplementation of arginine or citrulline, provision of NO donors including inhaled NO and nitrite (sources), NOS3 modulating agents, or the targeting of endogenous NOS inhibitors like asymmetric dimethylarginine.
Collapse
Affiliation(s)
- Yvette C Luiking
- Center for Translational Research in Aging & Longevity, Dept. of Health & Kinesiology, Texas A&M Univ., College Station, TX 77843, USA
| | | | | | | |
Collapse
|
15
|
Singer G, Stokes KY, Neil Granger D. Reactive oxygen and nitrogen species in sepsis-induced hepatic microvascular dysfunction. Inflamm Res 2012; 62:155-64. [PMID: 23076073 PMCID: PMC3543767 DOI: 10.1007/s00011-012-0562-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 08/25/2012] [Accepted: 10/02/2012] [Indexed: 11/24/2022] Open
Abstract
Objective and design Hepatic microvascular dysfunction is a critical event in the development of liver failure during sepsis. Activated blood cells and reactive oxygen and nitrogen species (RONS) have been implicated in the pathogenesis of sepsis. Methods Intravital-videomicroscopy was used to determine whether RONS contribute to the recruitment of leukocytes/platelets in the hepatic microvasculature during sepsis. Six hours following cecal-ligation and puncture (CLP), disturbances of the hepatic microvasculature were assessed in WT-mice (C57Bl/6 J; n = 8), in mice lacking gp91phox(n = 5), overexpressing superoxide-dismutase (SOD, n = 8), in WT-mice treated with a NOS-inhibitor (l-NAME, n = 5), lacking nNOS, eNOS or iNOS (n = 5 each), treated with the NO-donor DetaNO (n = 5), in WT-mice treated with gadolinium-chloride (GdCl2, n = 5) and compared to a group of WT-mice following a sham operation (n = 8). Six hours post-CLP, the adhesion of leukocytes and platelets in terminal hepatic venules (THV) and sinusoids was quantified. Results In WT-mice, CLP elicited increases in the number of adherent leukocytes and platelets. Similar responses to CLP were noted in mice overexpressing SOD or lacking either eNOS or gp91phox. The blood-cell recruitment was significantly blunted in septic iNOS-knockout mice and this response was reversed by pre-treatment with DetaNO. Conclusion These findings suggest that iNOS-derived NO is a determinant of the pro-inflammatory phenotype assumed by the hepatic microvasculature during sepsis.
Collapse
Affiliation(s)
- Georg Singer
- Department of Pediatric Surgery, Medical University of Graz, Graz, Austria.
| | | | | |
Collapse
|
16
|
Estradiol receptors agonists induced effects in rat intestinal microcirculation during sepsis. Microvasc Res 2012; 85:118-27. [PMID: 23063870 DOI: 10.1016/j.mvr.2012.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 10/02/2012] [Accepted: 10/03/2012] [Indexed: 01/26/2023]
Abstract
The steroid hormone estradiol is suggested to play a protective role in intestinal injury during systemic inflammation (sepsis). Our aim was to determine the effects of specific estradiol receptor (ER-α and ER-ß) agonists on the intestinal microcirculation during experimental sepsis. Male and sham ovariectomized female rats were subjected to sham colon ascendens stent peritonitis (CASP), and they were compared to male and ovariectomized female rats underwent CASP and either estradiol receptor α (ER-α) agonist propyl pyrazole triol (PPT), estradiol receptor ß (ER-ß) agonist diarylpropiolnitrile (DPN), or vehicle treatment. Intravital microscopy was performed, which is sufficiently sensitive to measure changes in the functional capillary density (FCD) as well as the major steps in leukocyte recruitment (rolling and adhesion). The leukocyte extravasations were also quantified by using histological paraffin sections of formalin fixed intestine. We found that either DPN (ER-β) or PPT (ER-α) significantly reduced (P<0.05) sepsis-induced leukocyte-endothelial interaction (rolling, adherent leukocytes and neutrophil extravasations) and improved the intestinal muscular FCD. [PPT: Female; Leukocyte rolling (n/min): V(3) 3.7±0.7 vs 0.8±0.2, Leukocyte adhesion(n/mm(2)): V(3) 131.3±22.6 vs 57.2±13.5, Neutrophil extravasations (n/10000 μm(2)): 3.1±0.7 vs 6 ±1. Male; Leukocyte adhesion (n/mm(2)): V(1) 154.8±19.2 vs 81.3±11.2, V(3) 115.5±23.1 vs 37.8±12]. [DPN: Female; neutrophil extravasations (n/10000 μm(2)) 3.8±0.6 vs 6 ±1. Male; Leukocyte adhesion (n/mm(2)) V(1) 154.8±19.2 vs 70±10.5, V(3) 115.5±23.1 vs 52.8±9.6].Those results suggest that the observed effects of estradiol receptors on different phases of leukocytes recruitment with the improvement of the functional capillary density could partially explain the previous demonstrated salutary effects of estradiol on the intestinal microcirculation during sepsis. The observed activity of this class of compounds could open up a new avenue of research into the potential treatment of sepsis.
Collapse
|
17
|
Scott JA, North ML, Rafii M, Huang H, Pencharz P, Subbarao P, Belik J, Grasemann H. Asymmetric dimethylarginine is increased in asthma. Am J Respir Crit Care Med 2011; 184:779-85. [PMID: 21719758 DOI: 10.1164/rccm.201011-1810oc] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
RATIONALE Asymmetric dimethylarginine (ADMA) is an endogenous nitric oxide synthase (NOS) inhibitor that competes with L-arginine for binding to NOS. It has been suggested that ADMA contributes to inflammation, collagen deposition, nitrosative stress, and lung function in murine models. OBJECTIVES To test the hypothesis that ADMA is increased in asthma and that NOS inhibition by ADMA contributes to airways obstruction. METHODS We assessed alterations of L-arginine, ADMA, and symmetric dimethylarginine (SDMA) levels in a murine model of allergic airways inflammation using LC-tandem mass spectrometry. Based on the levels of ADMA observed in the murine model, we further tested the direct effects of nebulized inhaled ADMA on airways responsiveness in naive control mice. We also assessed alterations of L-arginine, ADMA, and SDMA in humans in adult lung specimens and sputum samples from pediatric patients with asthma. MEASUREMENTS AND MAIN RESULTS ADMA was increased in lungs from the murine model of allergic airways inflammation. Exogenous administration of ADMA to naive mice, at doses consistent with the levels observed in the allergically inflamed lungs, resulted in augmentation of the airways responsiveness to methacholine. ADMA levels were also increased in human asthma lungs and sputum samples. CONCLUSIONS ADMA levels are increased in asthma and contribute to NOS-related pathophysiology.
Collapse
Affiliation(s)
- Jeremy A Scott
- Division of Occupational Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Biochemical aspects of nitric oxide synthase feedback regulation by nitric oxide. Interdiscip Toxicol 2011; 4:63-8. [PMID: 21753901 PMCID: PMC3131676 DOI: 10.2478/v10102-011-0012-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Revised: 03/14/2011] [Accepted: 03/18/2011] [Indexed: 11/21/2022] Open
Abstract
Nitric oxide (NO) is a small gas molecule derived from at least three isoforms of the enzyme termed nitric oxide synthase (NOS). More than 15 years ago, the question of feedback regulation of NOS activity and expression by its own product was raised. Since then, a number of trials have verified the existence of negative feedback loop both in vitro and in vivo. NO, whether released from exogenous donors or applied in authentic NO solution, is able to inhibit NOS activity and also intervenes in NOS expression processes by its effect on transcriptional nuclear factor NF-κB. The existence of negative feedback regulation of NOS may provide a powerful tool for experimental and clinical use, especially in inflammation, when massive NOS expression may be detrimental.
Collapse
|
19
|
Araújo AV, Ferezin CZ, Rodrigues GJ, Lunardi CN, Vercesi JA, Grando MD, Bonaventura D, Bendhack LM. Prostacyclin, not only nitric oxide, is a mediator of the vasorelaxation induced by acetylcholine in aortas from rats submitted to cecal ligation and perforation (CLP). Vascul Pharmacol 2011; 54:44-51. [DOI: 10.1016/j.vph.2010.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 11/06/2010] [Accepted: 12/09/2010] [Indexed: 10/18/2022]
|
20
|
Wang L, Mehta S, Gillis C, Law C, Taneja R. Modulation of neutrophil apoptosis by murine pulmonary microvascular endothelial cell inducible nitric oxide synthase. Biochem Biophys Res Commun 2010; 401:207-12. [PMID: 20833133 DOI: 10.1016/j.bbrc.2010.09.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 09/04/2010] [Indexed: 11/30/2022]
Abstract
Neutrophils contribute significantly to ALI (acute lung injury) through adhesion to pulmonary microvascular endothelial cells (PMEC), trans-PMEC migration and alveolar infiltration. Trans-PMEC migration delays expression of neutrophil apoptosis, which promotes intra-alveolar neutrophil survival and neutrophil mediated ALI. We assessed the role of neutrophil vs PMEC inducible nitric oxide (NO) synthase (iNOS) in modulating neutrophil apoptosis. Apoptosis of wild-type vs iNOS-/- neutrophils was quantified by microscopy and FACS annexin-V binding. In a murine model of ALI, neutrophils isolated by BAL(broncho-alveolar lavage) from iNOS-/- mice had increased expression of apoptosis after 24h culture ex vivo than wild-type neutrophils (15.2±3.3 vs 3.0±0.4%, mean±sd, p<0.01). Apoptosis rates of isolated bone marrow iNOS+/+ vs iNOS-/- neutrophils were similar under basal and LPS/IFN-γ stimulation, and following LPS/IFN-γ-stimulated trans-PMEC migration. Apoptosis of both iNOS+/+ and iNOS-/- neutrophils was inhibited by trans-PMEC migration only across iNOS+/+ PMEC (1.6±0.3 and 1.5±0.3%, respectively; p<0.05 for each vs non-migrated neutrophils) but not across iNOS-/- PMEC (4.3±1 and 3.1±0.6%, respectively). PMEC iNOS-dependent inhibition of neutrophil apoptosis was independent of changes in neutrophil caspase-3 activity. We conclude that PMEC iNOS, but not neutrophil iNOS, has an important inhibitory effect on neutrophil apoptosis during trans-PMEC neutrophil migration, which is independent of caspase-3 activity. Further studies will define the mechanism of PMEC iNOS-dependent inhibition of neutrophil apoptosis and assess the potential relevance of this phenomenon in human neutrophils and ALI.
Collapse
Affiliation(s)
- Lefeng Wang
- Centre for Critical Illness Research, Lawson Health Research Institute, London Health Sciences Center, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
21
|
Liao WC, Hou MC, Wang GJ, Yu KW, Lee FY, Lin HC, Lee SD. Sepsis worsening vascular hyporeactivity of the superior mesenteric artery in portal vein-ligated rats. J Chin Med Assoc 2010; 73:462-70. [PMID: 20875619 DOI: 10.1016/s1726-4901(10)70100-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 05/24/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Vascular hyporeactivity is observed in portal hypertensive animals and septic rats. The objective of this study was to investigate whether impairment of superior mesenteric artery vascular contractility in the portal hypertensive rat was further impaired after sepsis. METHODS Sepsis was induced by cecum ligation and puncture (CLP) in male portal hypertensive Sprague-Dawley rats that had been subjected to portal vein ligation (PVL) for 14 days. Hemodynamic studies, isolated vascular ring studies, microbiological studies, and plasma nitrite/nitrate measurements were performed 2, 6, and 18 hours after CLP. An additional group of PVL rats received prophylactic imipenem (10 mg intravenously for 1 hour) before CLP and then were studied 6 hours after CLP. RESULTS Mean arterial pressure and heart rate of PVL rats were significantly decreased shortly after CLP. CLP caused further nitric oxide production and vascular hyporesponsiveness 6 and 18 hours after CLP compared with the baseline portal hypertensive group. Vascular hyporeactivity was corrected by N-nitro-L-arginine methyl ester + 1400W (1400W is N-(3-(aminomethyl)benzyl)acetamidine hydrochloride, a selective inducible nitric oxide synthase inhibitor). Prophylactic imipenem did not alter nitric oxide production or vascular contractility after sepsis induced by CLP. CONCLUSION Our study showed that vascular contractility in portal hypertensive rats is further impaired soon after CLP-induced sepsis.
Collapse
Affiliation(s)
- Wei-Chih Liao
- National Yang-Ming University School of Medicine, #201 Section 2 Shih-Pai Road, Taipei, Taiwan, R.O.C
| | | | | | | | | | | | | |
Collapse
|
22
|
Haidara MA, Morsy MD, Abdel-Razek HA, Mikhailidis DP, Isenovic ER. Effects of L-canavanine and ozone on vascular reactivity in septicemic rats. J Physiol Biochem 2010; 66:255-264. [PMID: 20652469 DOI: 10.1007/s13105-010-0034-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 07/04/2010] [Indexed: 02/05/2023]
Abstract
Septicemia leads to oxidative stress with overproduction of reactive-oxygen species (ROS) and consumption of endogenous antioxidant enzymes. We tested a twofold hypothesis: (1) does oxidative stress (OxS) induced by sepsis acting alone or in concert with augmented inflammatory processes contributes to sepsis-related vascular dysfunction, and, (2) whether ozone (O(3)) and L-canavanine (CAV) mitigate the negative impact of the aforementioned phenomena. We investigated the relative impact of treatment with CAV and/or O(3) on vascular OxS associated vascular functional changes in septicemic rats. For this study, 60 male Sprague-Dawley rats were used and divided into six experimental groups (n = 10): control group (C), sham-operated (Sham), septicemic rats (S), S rats treated with CAV (100 mg/kg. i.p; S + CAV), S rats treated with O(3) (1.2 mg/kg, i.p.; S + O(3)) and S rats treated with both O(3) and CAV (S + O(3) + CAV). After 22 h, the mean arterial blood pressure (MAP), the aortic ring vascular reactivity to phenylephrine, abdominal aortic blood flow (AABF), serum tumor necrosis factor-alpha (TNF-alpha) and plasma nitrite/nitrate (NOx) concentration were measured. In addition, hepatic antioxidant enzyme activities sodium dismutase (SOD) and glutathione peroxidase (GSH-Px) were estimated. Septicemia caused significant elevation of serum TNF-alpha (p < 0.001) and plasma NOx (p < 0.001) and significant (p < 0.001) reduction of AABF (p < 0.001), aortic vascular response to phenylephrine (p < 0.001), MAP (p < 0.001) and hepatic SOD and GSH-Px activity (p < 0.001) compared with the C group, while treatment with O(3) and/or CAV induced significant amelioration of all those increases. Abnormalities were attenuated to a similar extent with treatment with both O(3) and CAV. These results suggested that concomitant administration of O(3) and CAV alleviated the compromised vascular reactivity in septicemic conditions and prevent its progression into septic shock compared with each alone.
Collapse
Affiliation(s)
- Mohamed A Haidara
- Department of Physiology Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo, Egypt.
| | | | | | | | | |
Collapse
|
23
|
Mansart A, Ruff LJ, Ariaans MP, Ross JJ, Reilly CS, Brown NJ, Kaufman S, Brookes ZLS. Constriction of rat extra-splenic veins to lipopolysaccharide involves endothelin-1. Naunyn Schmiedebergs Arch Pharmacol 2010; 381:555-62. [PMID: 20397012 DOI: 10.1007/s00210-010-0514-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 03/11/2010] [Indexed: 11/30/2022]
Abstract
The spleen has an important role in blood volume regulation and increased resistance of post-capillary hilar veins (in mesentery adjoining the spleen) can regulate this. This study investigated whether venular constriction to lipopolysaccharide (LPS) involved endothelin-1 (ET-1). Pressure myography was used to study isolated extra-splenic (hilar) vessels from male Wistar rats (n = 111). Arteries and veins were treated with LPS (50 microg ml(-1)) for 4 h. Extra-splenic veins constricted to LPS (p < 0.05), but there was no effect on arteries. Denudation did not abolish venular constriction to LPS, indicating an endothelial independent mechanism. However, the dual ET-1 receptor antagonist bosentan (10(-5) M) and specific ET(A) and ET(B) antagonists ABT-627 (atrasentan, 6.3 x 10(-6) M) and A-192621(1.45 x 10(-6) M) completely abolished constriction of LPS-treated veins. ET-1 alone also constricted the extra-splenic arteries and veins (p < 0.05), with a greater response observed in veins (p < 0.05). ELISA also confirmed that serum and spleen levels of ET-1 increased in response to LPS (p < 0.05). That LPS-induced constriction of extra-splenic veins is mediated by ET-1. Greater constriction of post- versus pre-capillary extra-splenic vessels to LPS would result in increased intra-splenic fluid extravasation and hypovolaemia in vivo.
Collapse
Affiliation(s)
- Arnaud Mansart
- Academic Unit of Anaesthesia, University of Sheffield, Royal Hallamshire Hospital, Sheffield, S10 2RX, UK
| | | | | | | | | | | | | | | |
Collapse
|
24
|
McGown CC, Brown NJ, Hellewell PG, Reilly CS, Brookes ZLS. Beneficial microvascular and anti-inflammatory effects of pravastatin during sepsis involve nitric oxide synthase III. Br J Anaesth 2010; 104:183-90. [PMID: 20086063 DOI: 10.1093/bja/aep361] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Sepsis induces microvascular inflammation and production of the vasodilator nitric oxide (NO) via endothelial and inducible nitric oxide synthase (eNOS or NOS III and iNOS or NOS II). Statins are cholesterol-lowering drugs; however, they also attenuate inflammation. This study aimed to determine whether pravastatin protected against sepsis-induced hypotension, loss of vascular tone, and microvascular inflammation via NOS pathways. METHODS Male Wistar rats (n=18) were anaesthetized and the mesentery prepared for fluorescent intravital microscopy. Animals received either lipopolysaccharide (LPS; n=6); LPS+pravastatin (18 and 3 h before LPS; n=6), or saline as a control, for 4 h. RESULTS Mean arterial pressure decreased in LPS-treated animals (P<0.05), but not in those also receiving pravastatin. Acetylcholine-induced relaxation of venules was abolished by LPS but improved by pravastatin. Pravastatin also reduced the increase in nitrite concentration and macromolecular leak from venules induced by LPS (P<0.05). The increased leucocyte adhesion seen in LPS-treated rats was also reduced in those also treated with pravastatin. Immunohistochemical analysis showed that pravastatin increased endothelial cell expression of NOS III during sepsis, but had no effect on LPS-induced up-regulation of NOS II. CONCLUSIONS Pravastatin improved NOS III-mediated vessel relaxation and exerted anti-inflammatory effects within the microcirculation after LPS administration in rats. Pravastatin therefore appears to have beneficial effects during sepsis, as a result of increased microvascular expression and function of NOS III.
Collapse
Affiliation(s)
- C C McGown
- Microcirculation Research Group, Department of Cardiovascular Sciences, University of Sheffield, Faculty of Medicine, Dentistry and Health, Beech Hill Road, Sheffield S10 2RX, UK
| | | | | | | | | |
Collapse
|
25
|
Subramani J, Leo MDM, Kathirvel K, Arunadevi R, Singh TU, Prakash VR, Mishra SK. Essential role of nitric oxide in sepsis-induced impairment of endothelium-derived hyperpolarizing factor-mediated relaxation in rat pulmonary artery. Eur J Pharmacol 2009; 630:84-91. [PMID: 20035746 DOI: 10.1016/j.ejphar.2009.12.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 12/01/2009] [Accepted: 12/15/2009] [Indexed: 10/20/2022]
Abstract
Both endothelial nitric oxide (NO) and endothelium-derived hyperpolarizing factor (EDHF) are important vasodilators in pulmonary circulation. Sepsis is known to impair endothelium-dependent dilation in the pulmonary vasculature, but the mechanisms are incompletely understood. We have examined the relative contribution of EDHF/NO to the attenuated endothelium-dependent relaxation of pulmonary artery in sepsis, and the role of inducible nitric oxide synthase (iNOS)-derived NO in this mechanism. Sepsis was induced in male adult Wistar rats by caecal ligation and puncture. At 18h after surgery, left and right branches of pulmonary arteries were isolated for tension recording, NO/cyclic guanosine monophosphate (cGMP) measurements, mRNA and protein expressions. Despite a marked decrease in the arterial endothelial nitric oxide synthase (eNOS) mRNA and phosphorylated-eNOS (p-eNOS) protein expressions in sepsis, endothelium-dependent relaxation to acetylcholine (ACh) mediated by NO, acetylcholine-stimulated NO release and tissue cGMP levels were moderately inhibited. Sepsis however abolished the N(G)-Nitro-l-arginine methyl ester (L-NAME)/indomethacin-resistant arterial relaxation (EDHF response) to acetylcholine in this vessel. In vitro treatment of the arterial rings from septic rats with 1400W, a selective inhibitor of iNOS restored the EDHF response, but had no effect on the acetylcholine-induced relaxation mediated by endothelial NO. The functional role of iNOS-derived NO in impairing EDHF-mediated relaxation was coincident with an increased basal NO production, iNOS mRNA and protein expressions in the rat pulmonary artery. In conclusion, the loss of the EDHF response may be primarily responsible for the endothelial dysfunction in sepsis, and its restoration by a selective iNOS inhibitor may improve pulmonary vasodilation.
Collapse
Affiliation(s)
- Jaganathan Subramani
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar-243 122 (U.P), India
| | | | | | | | | | | | | |
Collapse
|
26
|
Atorvastatin Restores the Impaired Vascular Endothelium-dependent Relaxations Mediated by Nitric Oxide and Endothelium-derived Hyperpolarizing Factors but Not Hypotension in Sepsis. J Cardiovasc Pharmacol 2009; 54:526-34. [DOI: 10.1097/fjc.0b013e3181bfafd6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Rosengarten B, Wolff S, Klatt S, Schermuly RT. Effects of inducible nitric oxide synthase inhibition or norepinephrine on the neurovascular coupling in an endotoxic rat shock model. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2009; 13:R139. [PMID: 19709421 PMCID: PMC2750197 DOI: 10.1186/cc8020] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 07/23/2009] [Accepted: 08/26/2009] [Indexed: 01/20/2023]
Abstract
Introduction The inducible nitric oxide synthase (iNOS) plays a crucial role in early sepsis-related microcirculatory dysfunction. Compared to a catecholamine therapy we tested effects of a specific iNOS-inhibitor (1400W) on the microcirculatory function in the brain. Methods Seventy SD-rats (280-310 g) were divided into 1 control and 6 sepsis groups. Sepsis groups received 1 or 5 mg/kg lipopolysaccharide (LPS) intravenously to induce a moderate or severe sepsis syndrome. Thirty minutes later rats were further randomized into subgroups receiving moderate volume therapy alone or additionally continuous norepinephrine (NE) or 1400W infusion. Separately, effects of 1400W on neurofunctional parameters were investigated in 3 rats without sepsis induction. Performing electric forepaw-stimulation evoked potentials (N2-P1 amplitude, P1-latency) and local hemodynamic responses were recorded with surface electrodes and laser Doppler over the somatosensory cortex at baseline and repeatedly after LPS administration. Cytokine levels (tumor necrosis factor-alpha (TNFα), interleukin-6 (IL6), interferon-gamma (IFNγ)) and cell destruction markers (neuron-specific enolase (NSE), S-100 calcium binding protein B (S100B)) were obtained at the end of experiments. Results During sepsis progression resting cerebral blood flow increased and functionally activated hemodynamic responses decreased in a dose-dependent manner. Whereas 1400W and NE improved blood pressure, only 1400W stabilized resting flow levels. However, both regimens were ineffective on the functionally coupled flow responses and destruction markers were similar between groups. Conclusions NE and 1400W appeared to be ineffective in mitigating the effects of sepsis on the neurovascular coupling. Other regimens are needed to protect the cerebral microcirculation under septic conditions.
Collapse
Affiliation(s)
- Bernhard Rosengarten
- Department of Neurology, Justus Liebig University Giessen, Am Steg 14, 35392 Giessen, Germany.
| | | | | | | |
Collapse
|
28
|
Abstract
The use of statins is widespread and many patients presenting for surgery are regularly taking them. There is evidence that statins have beneficial effects beyond those of lipid lowering, including reducing the perioperative risk of cardiac complications and sepsis. This review addresses the cellular mechanisms by which statins may produce these effects. Statins appear to have actions on vascular nitric oxide through the balance of inducible and endothelial nitric oxide synthase. The clinical evidence for these benefits is also briefly reviewed with the objective of clarifying the current status of statin use in the perioperative period. There is reasonably strong evidence that patients already taking statins should continue on them perioperatively. However, the evidence for the prophylactic use of statins perioperatively is weak and lacks prospective controlled studies.
Collapse
Affiliation(s)
- Z L S Brookes
- Microcirculation Research Group, School of Medicine and Biomedical Sciences, Royal Hallamshire Hospital, University of Sheffield, K Floor, Beech Hill Road, Sheffield, UK
| | | | | |
Collapse
|
29
|
Mansart A, Ross JJ, Reilly CS, Brown NJ, Brookes ZLS. LPS abolishes extrasplenic vasoconstriction to atrial natriuretic peptide: the role of NO and endothelin 1. Shock 2008; 29:675-80. [PMID: 17885645 DOI: 10.1097/shk.0b013e31815811a3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Sepsis causes changes in vascular resistance and hypovolemia. Previous studies have demonstrated that the spleen regulates blood volume via atrial natiuretic peptide (ANP). We hypothesized that LPS alters extrasplenic responses to ANP via endothelial-dependent mechanisms and studied the role of NO and endothelin 1 (ET-1). Isolated extrasplenic arteries and veins (vessels in mesentery adjoining spleen) were obtained from male Wistar rats weighing 200 to 280 g (n = 102) and mounted on a pressure myograph to determine intraluminal diameter for 4 h. Isolated vessels constricted in response to the half-maximum response of ANP (veins, 30% +/- 1.7%; arteries, 34.5 +/- 1.7%; P < 0.05), and this was abolished by the NO donor S-nitroso-N-acetylpenicillamine (SNAP 75 microM). Arteries and veins incubated with LPS (50 microg mL(-1) for 4 h) were unresponsive to ANP, and constriction was not restored by the NOS inhibitor N omega-nitro-L-arginine methyl ester (L-NAME 100 microM). However, venular constriction returned in the presence of the ET-1 antagonist Bosentan, increasing from -1.5 +/- 1.2 (10 min) to -10 +/- 2.5% (4 h) with LPS + Bosentan (3 x 10(-6) M) compared with -2.3 +/- 1.2 and 0% with LPS alone. In conclusion, LPS abolished endothelial-dependent extrasplenic venular constriction to ANP partially due to increased ET-1, whereas NO seemed to modulate vascular responses to ANP.
Collapse
Affiliation(s)
- Arnaud Mansart
- Academic Unit of Anaesthesia, University of Sheffield, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | | | | | | | | |
Collapse
|
30
|
Bateman RM, Sharpe MD, Goldman D, Lidington D, Ellis CG. Inhibiting nitric oxide overproduction during hypotensive sepsis increases local oxygen consumption in rat skeletal muscle*. Crit Care Med 2008; 36:225-31. [DOI: 10.1097/01.ccm.0000295307.92027.2f] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Novel insights into the effects of inducible nitric oxide synthase inhibition during sepsis*. Crit Care Med 2008; 36:359-60. [DOI: 10.1097/01.ccm.0000297947.51539.8f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Vissers YLJ, Debats IBJG, Luiking YC, Jalan R, van der Hulst RRWJ, Dejong CHC, Deutz NEP. Pros and cons of L-arginine supplementation in disease. Nutr Res Rev 2007; 17:193-210. [DOI: 10.1079/nrr200490] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The amino acid arginine and one of its metabolites NO have gathered broad attention in the last decade. Although arginine is regarded as a conditionally essential amino acid in disease, L-arginine supplementation in severe illness has not found its way into clinical practice. This might be due to the invalid interpretation of results from studies with immune-enhancing diets containing L-arginine amongst other pharmaconutrients. However, not much attention is given to research using L-arginine as a monotherapy and the possibility of the alternative hypothesis: that L-arginine supplementation is beneficial in disease. The present review will discuss data from studies in healthy and diseased animals and patients with monotherapy of L-arginine to come to an objective overview of positive and negative aspects of L-arginine supplementation in disease with special emphasis on sepsis, cancer, liver failure and wound healing.
Collapse
|
33
|
McGown CC, Brookes ZLS. Beneficial effects of statins on the microcirculation during sepsis: the role of nitric oxide. Br J Anaesth 2007; 98:163-75. [PMID: 17251210 DOI: 10.1093/bja/ael358] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This review describes the laboratory evidence and microvascular mechanisms responsible for the beneficial effects of statins in sepsis. During sepsis, changes occur within the microcirculation including alterations in arteriolar tone influencing blood pressure, adaptations to endothelial cell integrity causing leakage of proteins and macromolecules, and adhesion and migration of leucocytes through the vascular endothelium. Statins are widely used as cholesterol-lowering agents, but appear to have anti-inflammatory actions during sepsis. We have discussed the effects of statins on specific pathological processed within the microcirculation and focused on the role of nitric oxide (NO). The main mechanism by which statins appear to be an effective treatment for sepsis is increased expression of endothelial nitric oxide synthase (eNOS), in conjunction with down-regulation of inducible nitric oxide synthase. Combined, this results in an increase in physiological concentrations of NO, thus restoring endothelial function. Laboratory studies have therefore suggested that enhancement of eNOS activity during sepsis may lead to restoration of microvascular tone, maintenance of microvascular integrity, and inhibition of cell adhesion molecules. However, other mechanisms independent of lipid-lowering effects, including antioxidant activity and alterations in the development of vascular atherosclerosis, may also contribute to the beneficial effects of statins. We have also addressed the influence on the effects of statins of lipid solubility and pre- and pro-phylactic administration.
Collapse
Affiliation(s)
- C C McGown
- Academic Unit of Anaesthesia and Microcirculation Research Group, University of Sheffield, Royal Hallamshire Hospital, Sheffield S10 2JF, UK.
| | | |
Collapse
|
34
|
Kenyon NJ, Last MS, Eiserich JP, Morrissey BM, Temple LM, Last JA. Differentiation of the roles of NO from airway epithelium and inflammatory cells in ozone-induced lung inflammation. Toxicol Appl Pharmacol 2006; 215:250-9. [PMID: 16643973 PMCID: PMC1594585 DOI: 10.1016/j.taap.2006.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 03/15/2006] [Accepted: 03/16/2006] [Indexed: 11/21/2022]
Abstract
Mice lacking inducible nitric oxide synthase (NOS2-/-) are more susceptible to ozone-induced lung inflammation and injury than their isogenic wild-type (NOS2+/+) counterparts, demonstrating an apparent protective effect for NOS2 in murine lungs. We hypothesized that nitric oxide (NO) generated from either NOS2 in the airway epithelial cells or the bone-marrow-derived inflammatory cells was responsible for the protective effect of NOS2. To test this hypothesis, we prepared chimeric mice by killing their endogenous bone marrow cells by whole body irradiation followed by bone marrow transplantation from a heterologous donor mouse. We exposed C57BL/6 (NOS2+/+), NOS2-/-, and chimeric NOS2 mice (NOS2-/+, NOS2+/-) to 1 ppm of ozone for 3 consecutive nights. NOS2-/- mice were more severely injured after exposure to ozone than C57BL/6 mice, including a more robust inflammatory cell influx (4.14 x 10(5) +/- 2.19 x 10(5) vs. 2.78 x 10(5) +/- 1.36 x 10(5) cells respectively; P = 0.036) and greater oxidation of total protein sulfhydryls (R-SH) in their blood plasma. Chimeric NOS2-/+ mice, which had bone marrow from NOS2-/- mice transplanted into C57BL/6 recipients, had a significantly greater response to ozone (increased numbers of neutrophils in lung lavage and decreased concentrations of exhaled NO) as compared to the reciprocal chimeric strain (NOS2+/-). We conclude that NOS2 has a protective effect against acute lung injury caused by ozone inhalation, which may be mediated, in part, by NO generated by NOS2 from inflammatory cells, predominantly neutrophils, recruited into the lung.
Collapse
Affiliation(s)
| | | | - Jason P. Eiserich
- Nephrology, and
- Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, CA, 95616-8723
| | | | | | - Jerold A. Last
- Divisions of Pulmonary and Critical Care Medicine and
- Address for Correspondence: Jerold A. Last, Center for Comparative Respiratory Biology and Medicine, Genome and Biomedical Sciences Facility, 451 East Health Sciences Drive, Room 6517, Davis, CA 95616-8723, , Phone: (530) 752-6230, FAX: (530) 752-8632
| |
Collapse
|
35
|
Yu HP, Lui PW, Hwang TL, Yen CH, Lau YT. Propofol improves endothelial dysfunction and attenuates vascular superoxide production in septic rats. Crit Care Med 2006; 34:453-60. [PMID: 16424728 DOI: 10.1097/01.ccm.0000198530.68343.21] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To determine the effects of propofol on vascular functions, plasma and endothelium-derived nitric oxide (EDNO), vascular NO, and cyclic guanosine monophosphate (cGMP), as well as vascular production of superoxide anion (O2*-), in septic animals. DESIGN Prospective, multiexperimental, randomized, controlled studies. SETTING University research laboratory. SUBJECTS Male adult Sprague-Dawley rats weighing 350-400 g. INTERVENTIONS Cecal ligation and puncture (CLP), with and without propofol (25 mg/kg/hr) infusion, after sham or CLP (24 hrs postsurgery). MEASUREMENTS AND MAIN RESULTS Plasma NOx, basal aortic NOx, and cGMP concentrations all increased, whereas acetylcholine-induced endothelium-dependent relaxation (EDR), contractile response, and EDNO all decreased in CLP vs. sham rats (p < .001). Acetylcholine stimulated aortic NOx and cGMP significantly in sham and CLP-propofol (p < .01) but not CLP rats. Thus, propofol ameliorated the CLP-induced increases in plasma NOx, basal aortic NOx, and cGMP. It restored the CLP-induced impairment of EDR, EDNO, and acetylcholine-stimulated aortic NOx and cGMP levels. More O2*- production (measured by lucigenin-enhanced chemiluminescence) was noted in carotid arteries from CLP vs. sham rats (p < .001). Nicotinamide adenine dinucleotide (NADH; 1 mM) stimulated O2*- production in all rings, with significantly more increase in CLP vs. sham (p < .001). Propofol attenuated the excessive increase in O2*- production of CLP rings. CONCLUSIONS Propofol treatment attenuated the overproduction of NO and O2*-, thus restoring the acetylcholine-responsive NO-cGMP pathway in CLP-induced sepsis. It also significantly improved the CLP-impaired EDR and EDNO in a parallel manner. These beneficial effects of propofol could be accounted for by improvement of the disturbed NO/O2*- balance in sepsis.
Collapse
Affiliation(s)
- Huang-Ping Yu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | | | | | | | | |
Collapse
|
36
|
Devi Ramnath R, Weing S, He M, Sun J, Zhang H, Singh Bawa M, Bhatia M. Inflammatory mediators in sepsis: Cytokines, chemokines, adhesion molecules and gases. JOURNAL OF ORGAN DYSFUNCTION 2006; 2:80-92. [DOI: 10.1080/17471060500435662] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Dhillon SS, Mahadevan K, Bandi V, Zheng Z, Smith CW, Rumbaut RE. Neutrophils, nitric oxide, and microvascular permeability in severe sepsis. Chest 2005; 128:1706-12. [PMID: 16162778 DOI: 10.1378/chest.128.3.1706] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
STUDY OBJECTIVES Alterations in microvascular permeability are prevalent in patients with sepsis; a recent study reported that patients with septic shock had increased capillary filtration coefficient (Kf), a noninvasive index of microvascular permeability. We aimed to determine whether patients with severe sepsis had increased Kf, and whether the magnitude of Kf correlated with indexes of nitric oxide activity and neutrophil activation. DESIGN Single-center, prospective study. SETTING Twenty-five-bed ICU of a medical college-affiliated teaching hospital. PATIENTS Fifteen ICU patients with severe sepsis based on the American College of Chest Physicians/Society of Critical Care Medicine consensus criteria of 1992, and 10 nonseptic ICU patients as control subjects. INTERVENTIONS Kf was measured by venous congestion plethysmography, plasma nitrate/nitrite (NOx) by chemiluminescence, and neutrophil expression of alpha4-integrin (an index of neutrophil activation) by flow cytometry. MEASUREMENTS AND RESULTS Septic patients had higher Kf than nonseptic control subjects. Kf of septic patients was 5.6 +/- 0.6 x 10(-3) mL.min(-1).100 mL tissue(-1).mm Hg(-1) (mean +/- SEM, mL.min(-1).100 mL tissue(-1).mm Hg(-1) = Kf units [KfU]) as compared to 3.9 +/- 0.5 x 10(-3) KfU in nonseptic ICU patients (p < 0.05). There was no correlation between plasma NOx and Kf, or between neutrophil alpha4-integrin expression and Kf in patients with sepsis. Septic patients with clinical evidence of edema had significantly higher Kf (p < 0.05) than nonedematous septic patients. CONCLUSIONS ICU patients with severe sepsis have increased Kf, a noninvasive index of microvascular water permeability. The magnitude of hyperpermeability did not correlate with NOx levels or one index of neutrophil activation (alpha4-integrin expression). Presence of peripheral edema in these patients was associated with increased Kf, and may represent a simple, clinical indicator of altered microvascular permeability in sepsis.
Collapse
Affiliation(s)
- Samjot S Dhillon
- Department of Medicine, Baylor College of Medicine, CNRC Building, Room 6014, 1100 Bates St, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
38
|
Hall E, Brookes ZL. Angiopoietin-1 increases arteriolar vasoconstriction to phenylephrine during sepsis. ACTA ACUST UNITED AC 2005; 131:34-7. [PMID: 16005988 DOI: 10.1016/j.regpep.2005.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Revised: 05/27/2005] [Accepted: 06/07/2005] [Indexed: 11/19/2022]
Abstract
Sepsis leads to a reduction in vascular tone and a loss of vasoconstriction in response to catecholamines. We propose that angiopoietin-1 (Ang-1), which is known to modulate vascular inflammation and nitric oxide (NO), could improve responsiveness to vasopressor agents during sepsis. Mesenteric arterioles (300-400 microm) from rats (n=19) were mounted in a pressurized myograph and incubated with lipopolysaccharide (LPS, 50 microg/mL) for up to 4 h to model sepsis. Vasoconstriction (mean+/-SD) to phenylephrine (10(-8)-10(-3) M) was reduced in the presence of LPS (4 h, pD2: 5.8+/-0.2 (controls, n=6), 1.4+/-2.2 (LPS, n=6); maximal constriction: 48.2+/-4.8% (controls), 2.6+/-5.8% (LPS), P<0.05). However, in the presence of Ang-1 (250 ng/mL) phenylephrine caused greater vasoconstriction compared to LPS alone (4 h, pD2: 4.5+/-2.1; maximal constriction: 12.6+/-4.0% (n=7), P<0.05). In conclusion, Ang-1 increases vasoconstriction to phenylephrine in the presence of LPS. During sepsis therefore, Ang-1 increases vascular reactivity and has the potential to increase blood pressure and decrease vasopressor requirements in vivo.
Collapse
Affiliation(s)
- Emma Hall
- University of Sheffield, Academic Anaesthesia Unit, Microcirculation Research Group, K Floor, Royal Hallamshire Hospital, Sheffield, UK
| | | |
Collapse
|
39
|
Mehta S. The effects of nitric oxide in acute lung injury. Vascul Pharmacol 2005; 43:390-403. [PMID: 16256443 DOI: 10.1016/j.vph.2005.08.013] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Accepted: 08/03/2005] [Indexed: 10/25/2022]
Abstract
Acute lung injury (ALI) is a common clinical problem associated with significant morbidity and mortality. Ongoing clinical and basic research and a greater understanding of the pathophysiology of ALI have not been translated into new anti-inflammatory therapeutic options for patients with ALI, or into a significant improvement in the outcome of ALI. In both animal models and humans with ALI, there is increased endogenous production of nitric oxide (NO) due to enhanced expression and activity of inducible NO synthase (iNOS). This increased presence of iNOS and NO in ALI contributes importantly to the pathophysiology of ALI. However, inhibition of total NO production or selective inhibition of iNOS has not been effective in the treatment of ALI. We have recently suggested that there may be differential effects of NO derived from different cell populations in ALI. This concept of cell-source-specific effects of NO in ALI has potential therapeutic relevance, as targeted iNOS inhibition specifically to key individual cells may be an effective therapeutic approach in patients with ALI. In this paper, we will explore the potential role for endogenous iNOS-derived NO in ALI. We will review the evidence for increased iNOS expression and NO production, the effects of non-selective NOS inhibition, the effects of selective inhibition or deficiency of iNOS, and this concept of cell-source-specific effects of iNOS in both animal models and human ALI.
Collapse
Affiliation(s)
- Sanjay Mehta
- Centre for Critical Illness Research, Lawson Health Research Institute, Division of Respirology, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
40
|
Luiking YC, Poeze M, Ramsay G, Deutz NEP. The role of arginine in infection and sepsis. JPEN J Parenter Enteral Nutr 2005; 29:S70-4. [PMID: 15709548 DOI: 10.1177/01486071050290s1s70] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Sepsis is a systemic response to an infection, with high morbidity and mortality rates. Metabolic changes during infection and sepsis could be related to changes in metabolism of the amino acid L-arginine. In sepsis, protein breakdown is increased, which is a key process to maintain arginine delivery because both endogenous de novo arginine production from citrulline and food intake are reduced. Arginine catabolism, on the other hand, is markedly increased by enhanced use of arginine via the arginase and nitric oxide pathways. As a result, lowered plasma arginine levels are usually found. Arginine may therefore be considered as an essential amino acid in sepsis, and supplementation could be beneficial in sepsis by improving microcirculation and protein anabolism. L-Arginine supplementation in a hyperdynamic pig model of sepsis prohibits the increase in pulmonary arterial blood pressure, improves muscle and liver protein metabolism, and restores the intestinal motility pattern. Arguments raised against arginine supplementation are mainly pointed at stimulating nitric oxide (NO) production, with concerns about toxicity of increased NO and hemodynamic instability with refractory hypotension. NO synthase inhibition, however, increased mortality. Arginine supplementation in septic patients has transient effects on hemodynamics when supplied as a bolus but seems without hemodynamic side effects when supplied continuously. In conclusion, arginine could have an essential role in infection and sepsis.
Collapse
Affiliation(s)
- Yvette C Luiking
- Maastricht University, Department of Surgery, Nutrition and Toxicology Research Institute Maastricht, Maastricht, The Netherlands
| | | | | | | |
Collapse
|
41
|
Razavi HM, Wang L, Weicker S, Quinlan GJ, Mumby S, McCormack DG, Mehta S. Pulmonary oxidant stress in murine sepsis is due to inflammatory cell nitric oxide. Crit Care Med 2005; 33:1333-9. [PMID: 15942352 DOI: 10.1097/01.ccm.0000165445.48350.4f] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Pulmonary oxidant stress is an important pathophysiologic feature of acute lung injury. It is unclear whether nitric oxide contributes to this oxidant stress. Thus, we examined the role of inducible nitric oxide synthase (iNOS) in pulmonary oxidant stress in murine sepsis and the differential contribution of different cellular sources of iNOS. DESIGN Randomized, controlled animal study. SETTING Research laboratory of an academic institution. SUBJECTS Male iNOS+/+, iNOS-/- C57Bl/6 mice, and bone-marrow transplanted iNOS chimeric mice: +to- (wild-type iNOS+/+ donor bone-marrow transplanted into iNOS-/- recipient mice) and the reciprocal -to+ chimeras. INTERVENTIONS Animals were randomized to sepsis (n = 264), induced by cecal ligation and perforation, vs. naive groups (n = 138). MEASUREMENTS AND MAIN RESULTS In septic iNOS-/- vs. wild-type iNOS+/+ mice, sepsis-induced pulmonary oxidant stress (33 +/- 11 [mean +/- sem] vs. 365 +/- 48 pg 8-isoprostane/mg protein, p < .01) and nitrosative stress (0.0 +/- 0.0 vs. 0.9 +/- 0.4 micromol 3-nitrotyrosine/mmol para-tyrosine, p < .05) were abolished, despite similar septic increases in pulmonary myeloperoxidase activity in both (86 +/- 20 vs. 83 +/- 12 mU/mg protein, p = .78). In +to- iNOS chimeric mice (iNOS localized only to donor bone-marrow-derived inflammatory cells), cecal ligation and perforation resulted in significant pulmonary oxidant stress (368 +/- 81 pg 8-isoprostane/mg protein) and nitrosative stress (0.6 +/- 0.2 micromol 3-nitrotyrosine/mmol para-tyrosine), similar in degree to septic wild-type mice. In contrast, pulmonary oxidant and nitrosative stresses were absent in septic -to+ iNOS chimeras (iNOS localized only to recipient parenchymal cells), similar to iNOS-/- mice. CONCLUSIONS In murine sepsis-induced acute lung injury, pulmonary oxidant stress is completely iNOS dependent and is associated with tyrosine nitration. Moreover, pulmonary oxidant stress and nitrosative stress were uniquely dependent on the presence of iNOS in inflammatory cells (e.g., macrophages and neutrophils), with no apparent contribution of iNOS in pulmonary parenchymal cells. iNOS inhibition targeted specifically to inflammatory cells may be an effective therapeutic approach in sepsis and acute lung injury.
Collapse
Affiliation(s)
- Habib M Razavi
- Centre for Critical Illness Research, Lawson Health Research Institute, Division of Respirology, London Health Sciences Center and Department of Medicine, University of Western Ontario, London, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
42
|
Luiking YC, Hallemeesch MM, Lamers WH, Deutz NEP. NOS3 is involved in the increased protein and arginine metabolic response in muscle during early endotoxemia in mice. Am J Physiol Endocrinol Metab 2005; 288:E1258-64. [PMID: 15644457 DOI: 10.1152/ajpendo.00485.2004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sepsis is a severe catabolic condition. The loss of skeletal muscle protein mass is characterized by enhanced release of the amino acids glutamine and arginine, which (in)directly affects interorgan arginine and the related nitric oxide (NO) synthesis. To establish whether changes in muscle amino acid and protein kinetics are regulated by NO synthesized by nitric oxide synthase-2 or -3 (NOS2 or NOS3), we studied C57BL6/J wild-type (WT), NOS2-deficient (NOS2-/-), and NOS3-deficient (NOS3-/-) mice under control (unstimulated) and lipopolysaccharide (LPS)-treated conditions. Muscle amino acid metabolism was studied across the hindquarter by infusing the stable isotopes L-[ring-2H5]phenylalanine, L-[ring-2H2]tyrosine, L-[guanidino-15N2]arginine, and L-[ureido-13C,2H2]citrulline. Muscle blood flow was measured using radioactive p-aminohippuric acid dilution. Under baseline conditions, muscle blood flow was halved in NOS2-/- mice (P < 0.1), with simultaneous reductions in muscle glutamine, glycine, alanine, arginine release and glutamic acid, citrulline, valine, and leucine uptake (P < 0.1). After LPS treatment, (net) muscle protein synthesis increased in WT and NOS2-/- mice [LPS vs. control: 13 +/- 3 vs. 8 +/- 1 (SE) nmol.10 g(-1).min(-1) (WT), 18 +/- 5 vs. 7 +/- 2 nmol.10 g(-1).min(-1) (NOS2-/-); P < 0.05 for LPS vs. control]. This response was absent in NOS3-/- mice (LPS vs. control: 11 +/- 4 vs. 10 +/- 2 nmol.10 g(-1).min(-1)). In agreement, the increase in muscle arginine turnover after LPS was also absent in NOS3-/- mice. In conclusion, disruption of the NOS2 gene compromises muscle glutamine release and muscle blood flow in control mice, but had only minor effects after LPS. NOS3 activity is crucial for the increase in muscle arginine and protein turnover during early endotoxemia.
Collapse
|
43
|
Abstract
OBJECTIVE Sepsis is a major health problem considering its significant morbidity and mortality rate. The amino acid L-arginine has recently received substantial attention in relation to human sepsis. However, knowledge of arginine metabolism during sepsis is limited. Therefore, we reviewed the current knowledge about arginine metabolism in sepsis. DATA SOURCE This review summarizes the literature on arginine metabolism both in general and in relation to sepsis. Moreover, arginine-related therapies are reviewed and discussed, which includes therapies of both nitric oxide (NO) and arginine administration and therapies directed toward inhibition of NO. DATA In sepsis, protein breakdown is increased, which is a key process to maintain arginine delivery, because both endogenous de novo production from citrulline and food intake are reduced. Arginine catabolism, on the other hand, is markedly increased by enhanced use of arginine in the arginase and NO pathways. As a result, lowered plasma arginine levels are usually found. Clinical symptoms of sepsis that are related to changes in arginine metabolism are mainly related to hemodynamic alterations and diminished microcirculation. NO administration and arginine supplementation as a monotherapy demonstrated beneficial effects, whereas nonselective NO synthase inhibition seemed not to be beneficial, and selective NO synthase 2 inhibition was not beneficial overall. CONCLUSIONS Because sepsis has all the characteristics of an arginine-deficiency state, we hypothesise that arginine supplementation is a logical option in the treatment of sepsis. This is supported by substantial experimental and clinical data on NO donors and NO inhibitors. However, further evidence is required to prove our hypothesis.
Collapse
Affiliation(s)
- Yvette C Luiking
- Maastricht University/Hospital, Department of Surgery, Nutrition and Toxicology Research Institute, Maastricht, The Netherlands
| | | | | | | | | |
Collapse
|
44
|
Fischer LG, Hilpert JH, Freise H, Wendholt D, Van Aken H, Sielenkämper AW. Bradykinin-Induced Pulmonary Vasoconstriction Is Time and Inducible Nitric Oxide Synthase Dependent in a Peritonitis Sepsis Model. Anesth Analg 2004; 99:864-871. [PMID: 15333423 DOI: 10.1213/01.ane.0000133000.65613.f5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In an isolated perfused lung model, bradykinin induced pulmonary vasoconstriction in rats made septic by the injection of lipopolysaccharide (LPS). To mimic the pathophysiology of sepsis in humans more closely, we investigated pulmonary endothelial injury in a peritonitis model (cecal ligation and perforation; CLP). Male Sprague-Dawley rats were randomly divided into nine groups (n = 6-8). LPS and CLP rats were compared after 6 h with and without treatment with a selective inhibitor of inducible nitric oxide synthase (iNOS), L-N(6)-(1-iminoethyl)-lysine. Time dependency was investigated in CLP-treated rats at 24 h. The pulmonary circulation was isolated and perfused with a constant flow after the rats' tracheas were intubated and ventilated. Bradykinin (1, 3, and 6 microg) was injected, and changes in perfusion pressure were measured. Lungs were harvested for Western blot analysis to determine the role of iNOS in pulmonary endothelial dysfunction. In contrast to CLP 24 h rats, dose-dependent bradykinin-induced pulmonary vasoconstriction was observed in LPS and CLP 6 h rats. Concomitant administration of L-N(6)-(1-iminoethyl)-lysine significantly attenuated this vasoconstriction in both groups. The iNOS protein was expressed in lung homogenates from LPS 6 h and CLP 6 h but not from CLP 24 h rats. Both sepsis models caused bradykinin-induced pulmonary vasoconstriction, with the CLP groups demonstrating a time dependency of this effect. In conjunction with the time-dependent decrease in iNOS protein, the attenuated bradykinin-induced vasoconstriction due to selective iNOS inhibition suggests an important role for iNOS in pulmonary endothelial injury for both sepsis models.
Collapse
Affiliation(s)
- Lars G Fischer
- Department of Anesthesiology and Intensive Care, University of Münster, Münster, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Fischer LG, Freise H, Hilpert JH, Wendholt D, Lauer S, Van Aken H, Sielenkämper AW. Modulation of hypoxic pulmonary vasoconstriction is time and nitric oxide dependent in a peritonitis model of sepsis. Intensive Care Med 2004; 30:1821-8. [PMID: 15375651 DOI: 10.1007/s00134-004-2351-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2003] [Accepted: 05/19/2004] [Indexed: 10/26/2022]
Abstract
OBJECTIVE This study assessed modulation of hypoxic pulmonary vasoconstriction (HPV) in isolated perfused rat lungs during sepsis induced by cecal ligation and perforation (CLP) at different times and its relationship to nitric oxide synthases (NOS). DESIGN AND SETTING Prospective controlled trial in a university research laboratory. SUBJECTS 102 male Sprague-Dawley rats. INTERVENTIONS Groups 1-3 received sham laparotomy 6 h before lung isolation: group 1, only laparotomy; group 2, concurrently L- N6-(1-iminoethyl)-lysine (L-NIL, 3 mg/kg); group 3, concurrently N(Omega)-nitro-L-arginine methylester (L-NAME, 5 mg/kg). Groups 4-6 received CLP 6 h before lung isolation: group 4, only CLP; group 5, concurrently L-NIL; group 6, concurrently L-NAME. The same experiments were carried out with sham and CLP treatment for 24 h (groups 7-12). Exhaled NO from rats' lungs was measured after anesthesia and tracheostomy. After the pulmonary circuit was isolated and perfused, angiotensin II (0.1 microg) was injected into the inflow tract. The lungs were ventilated with the hypoxic mixture (HPV, 3% O2) for 10 min and then again with the normoxic mixture (21% O2) for an equal period. Changes in perfusion pressure were measured. Endothelial (eNOS) and inducible NOS (iNOS) expression of the lungs was determined. MEASUREMENTS AND RESULTS Treatment with L-NAME but not L-NIL increased HPV in sham lungs. HPV was unaltered after CLP 6 h and decreased after CLP 24 h compared to sham. In CLP animals eNOS protein expression was reduced whereas iNOS expression was increased compared to sham animals. Exhaled NO, reflecting NOS activity was twice as high in the CLP 24 h group than in the CLP 6 h group. CONCLUSIONS In the CLP sepsis model modulation of HPV was time-dependent. In addition, vasoconstriction to hypoxic stimuli was dependent on NOS activity.
Collapse
Affiliation(s)
- L G Fischer
- Department of Anesthesiology and Intensive Care, University of Münster, 48149 Münster, Germany.
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Severe sepsis, defined as sepsis with acute organ dysfunction, is associated with high morbidity and mortality rates. The development of novel therapies for sepsis is critically dependent on an understanding of the basic mechanisms of the disease. The pathophysiology of severe sepsis involves a highly complex, integrated response that includes the activation of a number of cell types, inflammatory mediators, and the hemostatic system. Central to this process is an alteration of endothelial cell function. The goals of this article are to (1) provide an overview of sepsis and its complications, (2) discuss the role of the endothelium in orchestrating the host response in sepsis, and (3) emphasize the potential value of the endothelium as a target for sepsis therapy.
Collapse
Affiliation(s)
- William C Aird
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
47
|
Affiliation(s)
- Martin J Tobin
- Division of Pulmonary and Critical Care Medicine, Loyola University of Chicago Stritch School of Medicine and Hines Veterans Affairs Hospital, Hines, Illinois 60141, USA.
| |
Collapse
|
48
|
Bateman RM, Sharpe MD, Ellis CG. Bench-to-bedside review: microvascular dysfunction in sepsis--hemodynamics, oxygen transport, and nitric oxide. Crit Care 2003; 7:359-73. [PMID: 12974969 PMCID: PMC270719 DOI: 10.1186/cc2353] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The microcirculation is a complex and integrated system that supplies and distributes oxygen throughout the tissues. The red blood cell (RBC) facilitates convective oxygen transport via co-operative binding with hemoglobin. In the microcirculation oxygen diffuses from the RBC into neighboring tissues, where it is consumed by mitochondria. Evidence suggests that the RBC acts as deliverer of oxygen and 'sensor' of local oxygen gradients. Within vascular beds RBCs are distributed actively by arteriolar tone and passively by rheologic factors, including vessel geometry and RBC deformability. Microvascular oxygen transport is determined by microvascular geometry, hemodynamics, and RBC hemoglobin oxygen saturation. Sepsis causes abnormal microvascular oxygen transport as significant numbers of capillaries stop flowing and the microcirculation fails to compensate for decreased functional capillary density. The resulting maldistribution of RBC flow results in a mismatch of oxygen delivery with oxygen demand that affects both critical oxygen delivery and oxygen extraction ratio. Nitric oxide (NO) maintains microvascular homeostasis by regulating arteriolar tone, RBC deformability, leukocyte and platelet adhesion to endothelial cells, and blood volume. NO also regulates mitochondrial respiration. During sepsis, NO over-production mediates systemic hypotension and microvascular reactivity, and is seemingly protective of microvascular blood flow.
Collapse
Affiliation(s)
- Ryon M Bateman
- Vascular Biology Program, Lawson Health Research Institute, The University of Western Ontario, London, Ontario, Canada.
| | | | | |
Collapse
|