1
|
Zhang R, Liu Z, Li R, Ai L, Li Y. Construction and Validation of a Nomogram Model for Predicting Pulmonary Hypertension in Patients with Obstructive Sleep Apnea. Nat Sci Sleep 2025; 17:1049-1066. [PMID: 40438636 PMCID: PMC12118492 DOI: 10.2147/nss.s520758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 04/23/2025] [Indexed: 06/01/2025] Open
Abstract
Purpose Pulmonary hypertension (PH) is a common cardiovascular complication of obstructive sleep apnea (OSA), posing a significant threat to the health and life of patients with OSA. However, no clinical prediction model is currently available to evaluate the risk of PH in OSA patients. This study aimed to develop and validate a nomogram for predicting PH risk in OSA patients. Patients and Methods We collected medical records of OSA patients diagnosed by polysomnography (PSG) from January 2016 to June 2024. Transthoracic echocardiography (TTE) was performed to evaluate PH. A total of 511 OSA patients were randomly divided into training and validation sets for model development and validation. Potential predictive factors were initially screened using univariate logistic regression and Lasso regression. Independent predictive factors for PH risk were identified via multivariate logistic regression, and a nomogram model was constructed. Model performance was assessed in terms of discrimination, calibration, and clinical applicability. Results Eight independent predictive factors were identified: age, recent pulmonary infection, coronary atherosclerotic heart disease (CHD), apnea-hypopnea index (AHI), mean arterial oxygen saturation (MSaO2), lowest arterial oxygen saturation (LSaO2), alpha-hydroxybutyrate dehydrogenase (α-HBDH), and fibrinogen (FIB). The nomogram model demonstrated good discriminative ability (AUC = 0.867 in the training set, AUC = 0.849 in the validation set). Calibration curves and decision curve analysis (DCA) also indicated good performance. Based on this model, a web-based nomogram tool was developed. Conclusion We developed and validated a stable and practical web-based nomogram for predicting the probability of PH in OSA patients, aiding clinicians in identifying high-risk patients for early diagnosis and treatment.
Collapse
Affiliation(s)
- Rou Zhang
- Department of Respiratory Medicine and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Zhijuan Liu
- Department of Respiratory Medicine and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Ran Li
- Department of Respiratory Medicine and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Li Ai
- Department of Respiratory Medicine and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Yongxia Li
- Department of Respiratory Medicine and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| |
Collapse
|
2
|
Lee MH, Menezes TCF, Reisz JA, Cendali FI, Ferreira EVM, Ota-Arakaki JS, Sperandio PA, Kumar R, Mickael C, Ieong MM, Santos JL, Duarte ACB, Fonseca Balladares DC, Nolan K, Tuder RM, Hassoun PM, D’Alessandro A, Oliveira RKF, Graham BB. Physiologic relevance of the transpulmonary metabolome in connective tissue disease-associated pulmonary vascular disease. JCI Insight 2025; 10:e187911. [PMID: 40337861 PMCID: PMC12070491 DOI: 10.1172/jci.insight.187911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 03/19/2025] [Indexed: 05/09/2025] Open
Abstract
Pathologic implications of dysregulated pulmonary vascular metabolism to pulmonary arterial hypertension (PAH) are increasingly recognized, but their clinical applications have been limited. We hypothesized that metabolite quantification across the pulmonary vascular bed in connective tissue disease-associated (CTD-associated) PAH would identify transpulmonary gradients of pathobiologically relevant metabolites, in an exercise stage-specific manner. Sixty-three CTD patients with established or suspected PAH underwent exercise right heart catheterization. Using mass spectrometry-based metabolomics, metabolites were quantified in plasma samples simultaneously collected from the pulmonary and radial arteries at baseline and during resistance-free wheeling, peak exercise, and recovery. We identified uptake and excretion of metabolites across the pulmonary vascular bed, unique and distinct from single vascular site analysis. We demonstrated the physiological relevance of metabolites previously shown to promote disease in animal models and end-stage human lung tissues, including acylcarnitines, glycolytic intermediates, and tryptophan catabolites. Notably, pulmonary vascular metabolite handling was exercise stage specific. Transpulmonary metabolite gradients correlated with hemodynamic endpoints largely during free-wheeling. Glycolytic intermediates demonstrated physiologic significance at peak exercise, including net uptake of lactate in those with more advanced disease. Contribution of pulmonary vascular metabolism to CTD-PAH pathogenesis and therapeutic candidacy of metabolism modulation must be considered in the context of physiologic stress.
Collapse
Affiliation(s)
- Michael H. Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, UCSF, San Francisco, California, USA
- Lung Biology Center, Department of Medicine, Zuckerberg San Francisco General Hospital, San Francisco, California, USA
| | - Thaís C. F. Menezes
- Division of Respiratory Diseases, Department of Medicine, Federal University of São Paulo (UNIFESP), Hospital São Paulo, São Paulo, Brazil
| | | | | | - Eloara V. M. Ferreira
- Division of Respiratory Diseases, Department of Medicine, Federal University of São Paulo (UNIFESP), Hospital São Paulo, São Paulo, Brazil
| | - Jaquelina S. Ota-Arakaki
- Division of Respiratory Diseases, Department of Medicine, Federal University of São Paulo (UNIFESP), Hospital São Paulo, São Paulo, Brazil
| | - Priscila A. Sperandio
- Division of Respiratory Diseases, Department of Medicine, Federal University of São Paulo (UNIFESP), Hospital São Paulo, São Paulo, Brazil
| | - Rahul Kumar
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, UCSF, San Francisco, California, USA
- Lung Biology Center, Department of Medicine, Zuckerberg San Francisco General Hospital, San Francisco, California, USA
| | - Claudia Mickael
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Martin M. Ieong
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, UCSF, San Francisco, California, USA
- Lung Biology Center, Department of Medicine, Zuckerberg San Francisco General Hospital, San Francisco, California, USA
| | - Juliana Lucena Santos
- Division of Respiratory Diseases, Department of Medicine, Federal University of São Paulo (UNIFESP), Hospital São Paulo, São Paulo, Brazil
| | - Ana Carolina B. Duarte
- Division of Respiratory Diseases, Department of Medicine, Federal University of São Paulo (UNIFESP), Hospital São Paulo, São Paulo, Brazil
| | - Dara C. Fonseca Balladares
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, UCSF, San Francisco, California, USA
- Lung Biology Center, Department of Medicine, Zuckerberg San Francisco General Hospital, San Francisco, California, USA
| | - Kevin Nolan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, UCSF, San Francisco, California, USA
- Lung Biology Center, Department of Medicine, Zuckerberg San Francisco General Hospital, San Francisco, California, USA
| | - Rubin M. Tuder
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Paul M. Hassoun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Rudolf K. F. Oliveira
- Division of Respiratory Diseases, Department of Medicine, Federal University of São Paulo (UNIFESP), Hospital São Paulo, São Paulo, Brazil
| | - Brian B. Graham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, UCSF, San Francisco, California, USA
- Lung Biology Center, Department of Medicine, Zuckerberg San Francisco General Hospital, San Francisco, California, USA
| |
Collapse
|
3
|
De Rudder M, Manco R, Coubeau L, Fontaine A, Bertrand C, Leclercq IA, Dili A. Vascular damage and excessive proliferation compromise liver function after extended hepatectomy in mice. Hepatology 2025; 81:1468-1484. [PMID: 38661628 DOI: 10.1097/hep.0000000000000900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/27/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND AND AIMS Surgical resection remains the gold standard for liver tumor treatment, yet the emergence of postoperative liver failure, known as the small-for-size syndrome (SFSS), poses a significant challenge. The activation of hypoxia sensors in an SFSS liver remnant initiated early angiogenesis, improving the vascular architecture, safeguarding against liver failure, and reducing mortality. The study aimed to elucidate vascular remodeling mechanisms in SFSS and their impact on hepatocyte function and subsequent liver failure. APPROACH AND RESULTS Mice underwent extended partial hepatectomy to induce SFSS, with a subset exposed to hypoxia immediately after surgery. Hypoxia bolstered posthepatectomy survival rates. The early proliferation of liver sinusoidal cells, coupled with recruitment of putative endothelial progenitor cells, increased vascular density, improved lobular perfusion, and limited hemorrhagic events in the regenerating liver under hypoxia. Administration of granulocyte colony-stimulating factor in hepatectomized mice mimicked the effects of hypoxia on vascular remodeling and endothelial progenitor cell recruitment but failed to rescue survival. Compared to normoxia, hypoxia favored hepatocyte function over proliferation, promoting functional preservation in the regenerating remnant. Injection of Adeno-associated virus serotype 8-thyroxine-binding globulin-hepatocyte nuclear factor 4 alpha virus for hepatocyte-specific overexpression of hepatocyte nuclear factor 4 alpha, the master regulator of hepatocyte function, enforced functionality in proliferating hepatocytes but did not rescue survival. The combination of hepatocyte nuclear factor 4 alpha overexpression and granulocyte colony-stimulating factor treatment rescued survival after SFSS-setting hepatectomy. CONCLUSIONS In summary, SFSS arises from an imbalance and desynchronized interplay between functional regeneration and vascular restructuring. To improve survival following SFSS hepatectomy, it is essential to adopt a 2-pronged strategy aimed at preserving the function of proliferating parenchymal cells and simultaneously attenuating vascular damage.
Collapse
Affiliation(s)
- Maxime De Rudder
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Rita Manco
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Laurent Coubeau
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
- Department of Surgery, University Clinics of St Luc, UCLouvain, Brussels, Belgium
| | - Alix Fontaine
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Claude Bertrand
- Department of Surgery, University Hospital of UCLouvain-Namur, Site of Godinne, Yvoir, Belgium
| | - Isabelle A Leclercq
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Alexandra Dili
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
- Department of Surgery, University Hospital of UCLouvain-Namur, Site of Godinne, Yvoir, Belgium
| |
Collapse
|
4
|
Seidel LM, Thudium J, Smith C, Sapehia V, Sommer N, Wujak M, Weissmann N, Seeger W, Schermuly RT, Novoyatleva T. Death-associated protein kinase 1 prevents hypoxia-induced metabolic shift and pulmonary arterial smooth muscle cell proliferation in PAH. Cell Signal 2025; 127:111527. [PMID: 39622428 DOI: 10.1016/j.cellsig.2024.111527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 10/31/2024] [Accepted: 11/20/2024] [Indexed: 12/08/2024]
Abstract
Pulmonary hypertension (PH) is a general term used to describe high blood pressure in the lungs from any cause. Pulmonary arterial hypertension (PAH) is a progressive, and fatal disease that causes the walls of the pulmonary arteries to tighten and stiffen. One of the major characteristics of PAH is the hyperproliferation and resistance to apoptosis of vascular cells, which trigger excessive pulmonary vascular remodeling and vasoconstriction. The death-associated protein DAP-kinase (DAPK) is a tumor suppressor and Ser/Thr protein kinase, which was previously shown to regulate the hypoxia inducible factor (HIF)-1α. Against this background, we now show that DAPK1 regulates human pulmonary arterial smooth muscle cell (hPASMC) proliferation and energy metabolism in a HIF-dependent manner. DAPK1 expression is downregulated in pulmonary vessels and PASMCs of human and experimental PH lungs. Reduced expression of DAPK1 in hypoxia and non-hypoxia PAH-PASMCs correlates with increased expression of HIF-1/2α. RNA interference-mediated depletion of DAPK1 leads to fundamental metabolic changes, including a significantly decreased rate of oxidative phosphorylation associated with enhanced expression of both HIF-1α and HIF-2α and glycolytic enzymes, as hexokinase 2 (HK2), lactate dehydrogenase A (LDHA), and an integrator between the glycolysis and citric acid cycle, pyruvate dehydrogenase kinase 1 (PDK1). DAPK1 ablation in healthy donor hPASMCs leads to an increase in proliferation, while its overexpression provides the opposite effects. Together our data indicate that DAPK1 serves as a new inhibitor of the pro-proliferative and glycolytic phenotype of PH in PASMCs acting via HIF-signaling pathway.
Collapse
MESH Headings
- Death-Associated Protein Kinases/metabolism
- Death-Associated Protein Kinases/genetics
- Death-Associated Protein Kinases/antagonists & inhibitors
- Humans
- Cell Proliferation
- Pulmonary Artery/pathology
- Pulmonary Artery/metabolism
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Cell Hypoxia
- Animals
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/metabolism
- Glycolysis
- Cells, Cultured
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Hexokinase/metabolism
- Pyruvate Dehydrogenase Acetyl-Transferring Kinase
Collapse
Affiliation(s)
- Laura-Marie Seidel
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - Jana Thudium
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - Caroline Smith
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - Vandna Sapehia
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - Natascha Sommer
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - Magdalena Wujak
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany; Department of Medicinal Chemistry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Poland
| | - Norbert Weissmann
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - Werner Seeger
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Institute for Lung Health, Giessen, Germany
| | - Ralph T Schermuly
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - Tatyana Novoyatleva
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany.
| |
Collapse
|
5
|
Cao X, Ma J, He X, Liu Y, Yang Y, Wang Y, Zhang C. Unlocking the link: predicting cardiovascular disease risk with a focus on airflow obstruction using machine learning. BMC Med Inform Decis Mak 2025; 25:50. [PMID: 39901185 PMCID: PMC11792416 DOI: 10.1186/s12911-025-02885-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 01/20/2025] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Respiratory diseases and Cardiovascular Diseases (CVD) often coexist, with airflow obstruction (AO) severity closely linked to CVD incidence and mortality. As both conditions rise, early identification and intervention in risk populations are crucial. However, current CVD risk models inadequately consider AO as an independent risk factor. Therefore, developing an accurate risk prediction model can help identify and intervene early. METHODS This study used the National Health and Nutrition Examination Survey (NHANES) III (1988-1994) and NHANES 2007-2012 datasets. Inclusion criteria were participants aged over 40 with complete AO and CVD data; exclusions were those with missing key data. Analysis included 12 variables: age, gender, race, PIR, education, smoking, alcohol, BMI, hyperlipidemia, hypertension, diabetes, and AO. Logistic regression analyzed the association between AO and CVD, with sensitivity and subgroup analyses. Six ML models predicted CVD risk for the general population, using AO as a predictor. RandomizedSearchCV with 5-fold cross-validation was used for hyperparameter optimization. Models were evaluated by AUC, accuracy, precision, recall, F1 score, and Brier score, with the SHapley Additive exPlanations (SHAP) enhancing explainability. A separate ML model was built for the subpopulation with AO, evaluated similarly. RESULTS The cross-sectional analysis showed that there was a significant positive correlation between AO occurrence and CVD prevalence, indicating that AO is an important risk factor for CVD (all P < 0.05). For the general population, the XGBoost model was selected as the optimal model for predicting CVD risk (AUC = 0.7508, AP = 0.3186). The top three features in terms of importance were age, hypertension, and PIR. For the subpopulation with airflow obstruction, the XGBoost model was also selected as the optimal model for predicting CVD risk (AUC = 0.6645, AP = 0.3545). SHAP shows that education level has the greatest impact on predicting CVD risk, followed by gender and race. CONCLUSION AO correlates positively with CVD. Age, hypertension, PIR affect CVD risk most in general. For AO patients, education, gender, ethnicity are key CVD risk factors.
Collapse
Affiliation(s)
- Xiyu Cao
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jianli Ma
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaoyi He
- Columbia University, New York, NY, USA
| | - Yufei Liu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yang Yang
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yaqi Wang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Chuantao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| |
Collapse
|
6
|
Philip JL, Caneba CA, Caggiano LR, Prakash N, Cheng TC, Barlow KA, Mustafa T, Tabima DM, Hacker TA, Masters KS, Chesler NC. Hypoxia modulates human pulmonary arterial adventitial fibroblast phenotype through HIF-1α activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.635152. [PMID: 39975245 PMCID: PMC11838261 DOI: 10.1101/2025.01.27.635152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Hypoxic pulmonary hypertension (HPH) develops in association with diseases characterized by low oxygen levels leading to pulmonary artery (PA) narrowing and death. Hypoxia has been linked to increased PA collagen and changes in PA adventitial fibroblast (PAAF) metabolism. However, the mechanisms by which hypoxia regulates PAAF function are unknown. Hypoxia-inducible factor-1α (HIF-1α) is a subunit of a transcription factor that is degraded in normoxia but stabilized in hypoxia and is involved in extracellular matrix remodeling by fibroblasts. We examined the role of hypoxia and HIF-1α in regulating PAAF function. Human PAAF (HPAAF) were cultured in normoxic and hypoxic conditions. Cells were further treated with HIF1-α inhibitor or no drug. Protein expression, mRNA expression, enzyme activity, and metabolite concentration were examined. Male C57BL6/J mice were exposed to 0 or 10 days of hypoxia after which right ventricular hemodynamics and tissue metabolism were assessed. Hypoxia led to an increase in collagen content and decrease in matrix metalloproteinase-2 (MMP2) activity. HIF-1α inhibition limited collagen accumulation and restored MMP2 activity. HPAAF demonstrated elevated lactic acid concentration and decreased ATP in hypoxia. HIF-1α inhibition blunted these effects. Mice exposed to hypoxia developed significant elevation in right ventricle systolic pressures and had decreased ATP levels in pulmonary tissue. This study investigated the mechanisms by which hypoxia drives HPAAF-mediated collagen accumulation and metabolic changes. We identify the key role of HIF-1α in regulating changes. These findings provide important insights into understanding HPAAF-mediated PA remodeling and help identify possible novel therapeutic targets.
Collapse
|
7
|
Xiong P, Huang Q, Mao Y, Qian H, Yang Y, Mou Z, Deng X, Wang G, He B, You Z. Identification of an immune-related gene panel for the diagnosis of pulmonary arterial hypertension using bioinformatics and machine learning. Int Immunopharmacol 2025; 144:113694. [PMID: 39616855 DOI: 10.1016/j.intimp.2024.113694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 11/03/2024] [Accepted: 11/20/2024] [Indexed: 12/15/2024]
Abstract
OBJECTIVE This study aimed to screen an immune-related gene (IRG) panel and develop a novel approach for diagnosing pulmonary arterial hypertension (PAH) utilizing bioinformatics and machine learning (ML). METHODS Gene expression profiles were retrieved from the Gene Expression Omnibus (GEO) database to identify differentially expressed immune-related genes (IRG-DEGs). We employed five machine learning algorithms-LASSO, random forest (RF), boosted regression trees (BRT), XGBoost, and support vector machine recursive feature elimination (SVM-RFE) to identify biomarkers derived from IRG-DEGs associated with the diagnosis of PAH, incorporating them into the IRG-DEGs panel. Validation of these biomarker levels in lung tissue was conducted in a hypoxia-induced mouse model of PAH, investigating the correlation between AIMP1, IL-15, GLRX, SOD1, Fulton's index (RVHI), and the ratio of pulmonary artery medial thickness to external diameter (MT%). Subsequently, we developed a nomogram model based on the IRG-DEGs panel in lung tissue for diagnosing PAH. The expression, distribution, and pseudotime analysis of these biomarkers across various immune cell types were assessed using single-cell sequencing datasets. Finally, we evaluated the diagnostic utility of the nomogram model based on the IRG-DEGs panel in peripheral blood mononuclear cells (PBMCs) for diagnosing PAH. RESULTS A total of 36 upregulated and 17 downregulated IRG-DEGs were identified in lung tissue from patients with PAH. AIMP1, IL-15, GLRX, and SOD1 were subsequently selected as novel immune-related biomarkers for PAH through the aforementioned machine learning algorithms and incorporated into the IRG-DEGs panel. Experimental results from mice with PAH validated that the expression levels of AIMP1, IL-15, and GLRX in lung tissue were elevated, while SOD1 expression was significantly reduced. Additionally, GLRX and AIMP1 exhibited positive correlations with Fulton's index (RVHI). The expression levels of GLRX, IL-15, and AIMP1 showed positive correlations with MT%, whereas SOD1 exhibited negative correlations with MT%. Analysis of single-cell sequencing data further revealed that the levels of IRG-DEG panel members gradually increased during the pseudotime trajectory from PBMCs to macrophages, correlating with macrophage activation. The area under the curve (AUC) for diagnosing PAH using a nomogram model based on the IRG-DEGs panel derived from lung tissue samples and PBMCs was ≥0.969 and 0.900, respectively. CONCLUSIONS We developed an IRG-DEGs panel containing AIMP1, IL-15, GLRX, and SOD1, which may facilitate the diagnosis of pulmonary arterial hypertension (PAH). These findings provide novel insights that may enhance diagnostic and therapeutic approaches for PAH.
Collapse
Affiliation(s)
- Pan Xiong
- Department of General Practice, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Qiuhong Huang
- Department of General Practice, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Yang Mao
- Department of General Practice, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Hang Qian
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Yi Yang
- Department of General Practice, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Ziye Mou
- Department of General Practice, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Xiaohui Deng
- Department of General Practice, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Guansong Wang
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China.
| | - Binfeng He
- Department of General Practice, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China.
| | - Zaichun You
- Department of General Practice, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China.
| |
Collapse
|
8
|
Poojary G, Vasishta S, Thomas RH, Satyamoorthy K, Padmakumar R, Joshi MB, Babu AS. Exercise improves systemic metabolism in a monocrotaline model of pulmonary hypertension. SPORTS MEDICINE AND HEALTH SCIENCE 2025; 7:37-47. [PMID: 39649790 PMCID: PMC11624410 DOI: 10.1016/j.smhs.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/04/2024] [Accepted: 03/04/2024] [Indexed: 12/11/2024] Open
Abstract
Exercise training in pulmonary arterial hypertension (PAH) has been gaining popularity with guidelines now recommending it as an important adjunct to medical therapy. Despite improvements in function and quality of life, an understanding of metabolic changes and their mechanisms remain unexplored. The objective of this study was therefore to understand the metabolic basis of exercise in a monocrotaline model of PAH. 24 male Wistar rats (age: 8-12 weeks and mean body weight: [262.16 ± 24.49] gms) were assigned to one of the four groups (i.e., Control, PAH, Exercise and PAH + Exercise). The exercise groups participated in treadmill running at 13.3 m/min, five days a week for five weeks. Demographic and clinical characteristics were monitored regularly. Following the intervention, LC-MS based metabolomics were performed on blood samples from all groups at the end of five weeks. Metabolite profiling, peak identification, alignment and isotope annotation were also performed. Statistical inference was carried out using dimensionality reducing techniques and analysis of variance. Partial-least-squares discrimination analysis and variable importance in the projection scores showed that the model was reliable, and not over lifting. The analysis demonstrated significant perturbations to lipid and amino acid metabolism, arginine and homocysteine pathways, sphingolipid (p < 0.05), glycerophospholipid (p < 0.05) and nucleotide metabolism in PAH. Exercise, however, was seen to restore arginine (p < 0.05) and homocysteine(p < 0.000 1) levels which were independent effects, irrespective of PAH. Dysregulated arginine and homocysteine pathways are seen in PAH. Exercise restores these dysregulated pathways and could potentially impact severity and outcome in PAH.
Collapse
Affiliation(s)
- Ganesha Poojary
- Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sampara Vasishta
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - R. Huban Thomas
- Department of Anatomy, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kapaettu Satyamoorthy
- SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara (SDM) University, Manjushree Nagar, Sattur, Dharwad, Karnataka, 580009, India
| | - Ramachandran Padmakumar
- Department of Cardiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Manjunath B. Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Abraham Samuel Babu
- Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
9
|
Fang W, Wang E, Liu P, Gao X, Hou X, Hu G, Li G, Cheng J, Jiang C, Yan L, Wu C, Xu Z, Liu P. The relativity analysis of hypoxia inducible factor-1α in pulmonary arterial hypertension (ascites syndrome) in broilers: a review. Avian Pathol 2024; 53:441-450. [PMID: 38887084 DOI: 10.1080/03079457.2024.2358882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/21/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024]
Abstract
Ascites syndrome (AS) in broiler chickens, also known as pulmonary arterial hypertension (PAH), is a significant disease in the poultry industry. It is a nutritional metabolic disease that is closely associated with hypoxia-inducible factors and rapid growth. The rise in pulmonary artery pressure is a crucial characteristic of AS and is instrumental in its development. Hypoxia-inducible factor 1α (HIF-1α) is an active subunit of a key transcription factor in the oxygen-sensing pathway. HIF-1α plays a vital role in oxygen homeostasis and the development of pulmonary hypertension. Studying the effects of HIF-1α on pulmonary hypertension in humans or mammals, as well as ascites in broilers, can help us understand the pathogenesis of AS. Therefore, this review aims to (1) summarize the mechanism of HIF-1α in the development of pulmonary hypertension, (2) provide theoretical significance in explaining the mechanism of HIF-1α in the development of pulmonary arterial hypertension (ascites syndrome) in broilers, and (3) establish the correlation between HIF-1α and pulmonary arterial hypertension (ascites syndrome) in broilers. HIGHLIGHTSExplains the hypoxic mechanism of HIF-1α.Linking HIF-1α to pulmonary hypertension in broilers.Explains the role of microRNAs in pulmonary arterial hypertension in broilers.
Collapse
Affiliation(s)
- Weile Fang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Enqi Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Pei Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Xiaona Gao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Xiaolu Hou
- Guangxi Vocational University of Agriculture, Nanning, People's Republic of China
| | - Guoliang Hu
- Guangxi Vocational University of Agriculture, Nanning, People's Republic of China
| | - Guyue Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Juan Cheng
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Chenxi Jiang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Linjie Yan
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Cong Wu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Zheng Xu
- Department of Mathematics and Statistics, Wright State University, Dayton, OH, USA
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| |
Collapse
|
10
|
Chen M, Li H, Li Y, Luo Y, He Y, Shui X, Lei W. Glycolysis modulation: New therapeutic strategies to improve pulmonary hypertension (Review). Int J Mol Med 2024; 54:115. [PMID: 39422043 PMCID: PMC11518579 DOI: 10.3892/ijmm.2024.5439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/06/2024] [Indexed: 10/19/2024] Open
Abstract
Pulmonary hypertension (PH) is a progressive life‑threatening cardiopulmonary vascular disease involving various pathological mechanisms, including hypoxia, cellular metabolism, inflammation, abnormal proliferation and apoptosis. Specifically, metabolism has attracted the most attention. Glucose metabolism is essential to maintain the cardiopulmonary vascular function. However, once exposed to a noxious stimulus, intracellular glucose metabolism changes or switches to an alternative pathway more suitable for adaptation, which is known as metabolic reprogramming. By promoting the switch from oxidative phosphorylation to glycolysis, cellular metabolic reprogramming plays an important role in PH development. Suppression of glucose oxidation and secondary upregulation of glycolysis are responsible for various features of PH, including the proliferation and apoptosis resistance of pulmonary artery endothelial and smooth muscle cells. In the present review, the roles and importance of the glucose metabolism shift were discussed to aid in the development of new treatment approaches for PH.
Collapse
Affiliation(s)
- Meihong Chen
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Hui Li
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Yun Li
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Yangui Luo
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Yuan He
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Xiaorong Shui
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
- Laboratory of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Wei Lei
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
- Precision Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| |
Collapse
|
11
|
Suzuki Y, Kawasaki T, Tatsumi K, Okaya T, Sato S, Shimada A, Misawa T, Hatano R, Morimoto C, Kasuya Y, Hasegawa Y, Ohara O, Suzuki T. Transcriptome Analysis of Fibroblasts in Hypoxia-Induced Vascular Remodeling: Functional Roles of CD26/DPP4. Int J Mol Sci 2024; 25:12599. [PMID: 39684311 DOI: 10.3390/ijms252312599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/13/2024] [Accepted: 11/17/2024] [Indexed: 12/18/2024] Open
Abstract
In hypoxic pulmonary hypertension (PH), pulmonary vascular remodeling is characterized by the emergence of activated adventitial fibroblasts, leading to medial smooth muscle hyperplasia. Previous studies have suggested that CD26/dipeptidyl peptidase-4 (DPP4) plays a crucial role in the pathobiological processes in lung diseases. However, its role in pulmonary fibroblasts in hypoxic PH remains unknown. Therefore, we aimed to clarify the mechanistic role of CD26/DPP4 in lung fibroblasts in hypoxic PH. Dpp4 knockout (Dpp4 KO) and wild-type (WT) mice were exposed to hypoxia for 4 weeks. The degree of PH severity and medial wall thickness was augmented in Dpp4 KO mice compared with that in WT mice, suggesting that CD26/DPP4 plays a suppressive role in the development of hypoxic PH. Transcriptome analysis of human lung fibroblasts cultured under hypoxic conditions revealed that TGFB2, TGFB3, and TGFA were all upregulated as differentially expressed genes after DPP4 knockdown with small interfering RNA treatment. These results suggest that CD26/DPP4 plays a suppressive role in TGFβ signal-regulated fibroblast activation under hypoxic conditions. Therefore, CD26/DPP4 may be a potential therapeutic target in patients with PH associated with chronic hypoxia.
Collapse
Affiliation(s)
- Yuri Suzuki
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Takeshi Kawasaki
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Tadasu Okaya
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Shun Sato
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Ayako Shimada
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Tomoko Misawa
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Synergy Institute for Futuristic Mucosal Vaccine Research and Development, Chiba University, Chiba 260-8670, Japan
| | - Ryo Hatano
- Department of Therapy Development and Innovation for Immune disorders and Cancers, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Chikao Morimoto
- Department of Therapy Development and Innovation for Immune disorders and Cancers, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Yoshitoshi Kasuya
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Department of Pharmacology, Faculty of Pharmacy, Juntendo University, Chiba 279-0013, Japan
| | - Yoshinori Hasegawa
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba 292-0818, Japan
| | - Osamu Ohara
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba 292-0818, Japan
| | - Takuji Suzuki
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Synergy Institute for Futuristic Mucosal Vaccine Research and Development, Chiba University, Chiba 260-8670, Japan
| |
Collapse
|
12
|
Nisar A, Khan S, Li W, Hu L, Samarawickrama PN, Gold NM, Zi M, Mehmood SA, Miao J, He Y. Hypoxia and aging: molecular mechanisms, diseases, and therapeutic targets. MedComm (Beijing) 2024; 5:e786. [PMID: 39415849 PMCID: PMC11480526 DOI: 10.1002/mco2.786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
Aging is a complex biological process characterized by the gradual decline of cellular functions, increased susceptibility to diseases, and impaired stress responses. Hypoxia, defined as reduced oxygen availability, is a critical factor that influences aging through molecular pathways involving hypoxia-inducible factors (HIFs), oxidative stress, inflammation, and epigenetic modifications. This review explores the interconnected roles of hypoxia in aging, highlighting how hypoxic conditions exacerbate cellular damage, promote senescence, and contribute to age-related pathologies, including cardiovascular diseases, neurodegenerative disorders, cancer, metabolic dysfunctions, and pulmonary conditions. By examining the molecular mechanisms linking hypoxia to aging, we identify key pathways that serve as potential therapeutic targets. Emerging interventions such as HIF modulators, antioxidants, senolytics, and lifestyle modifications hold promise in mitigating the adverse effects of hypoxia on aging tissues. However, challenges such as the heterogeneity of aging, lack of reliable biomarkers, and safety concerns regarding hypoxia-targeted therapies remain. This review emphasizes the need for personalized approaches and advanced technologies to develop effective antiaging interventions. By integrating current knowledge, this review provides a comprehensive framework that underscores the importance of targeting hypoxia-induced pathways to enhance healthy aging and reduce the burden of age-related diseases.
Collapse
Affiliation(s)
- Ayesha Nisar
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Sawar Khan
- Department of Cell Biology, School of Life SciencesCentral South UniversityChangshaHunanChina
- Institute of Molecular Biology and BiotechnologyThe University of LahoreLahorePakistan
| | - Wen Li
- Department of EndocrinologyThe Second Affiliated Hospital of Dali University (the Third People's Hospital of Yunnan Province)KunmingYunnanChina
| | - Li Hu
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Priyadarshani Nadeeshika Samarawickrama
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Naheemat Modupeola Gold
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Meiting Zi
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | | | - Jiarong Miao
- Department of GastroenterologyThe First Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
| | - Yonghan He
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| |
Collapse
|
13
|
Xiao W, Shrimali N, Vigder N, Oldham WM, Clish CB, He H, Wong SJ, Wertheim BM, Arons E, Haigis MC, Leopold JA, Loscalzo J. Branched-chain α-ketoacids aerobically activate HIF1α signalling in vascular cells. Nat Metab 2024; 6:2138-2156. [PMID: 39472756 PMCID: PMC11786732 DOI: 10.1038/s42255-024-01150-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/25/2024] [Indexed: 11/06/2024]
Abstract
Hypoxia-inducible factor 1α (HIF1α) is a master regulator of biological processes in hypoxia. Yet, the mechanisms and biological consequences of aerobic HIF1α activation by intrinsic factors, particularly in normal (primary) cells, remain elusive. Here we show that HIF1α signalling is activated in several human primary vascular cells in normoxia and in vascular smooth muscle cells of normal human lungs. Mechanistically, aerobic HIF1α activation is mediated by paracrine secretion of three branched-chain α-ketoacids (BCKAs), which suppress PHD2 activity via direct inhibition and via LDHA-mediated generation of L-2-hydroxyglutarate. BCKA-mediated HIF1α signalling activation stimulated glycolytic activity and governed a phenotypic switch of pulmonary artery smooth muscle cells, which correlated with BCKA metabolic dysregulation and pathophenotypic changes in pulmonary arterial hypertension patients and male rat models. We thus identify BCKAs as previously unrecognized signalling metabolites that aerobically activate HIF1α and that the BCKA-HIF1α pathway modulates vascular smooth muscle cell function, an effect that may be relevant to pulmonary vascular pathobiology.
Collapse
Affiliation(s)
- Wusheng Xiao
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, China
- Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, School of Public Health, Peking University, Beijing, China
| | - Nishith Shrimali
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Niv Vigder
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - William M Oldham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Clary B Clish
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Huamei He
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Samantha J Wong
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Bradley M Wertheim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Elena Arons
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jane A Leopold
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Mitra A, Yi D, Dai Z, de Jesus Perez V. Unraveling the role of HIF and epigenetic regulation in pulmonary arterial hypertension: implications for clinical research and its therapeutic approach. Front Med (Lausanne) 2024; 11:1460376. [PMID: 39450110 PMCID: PMC11499164 DOI: 10.3389/fmed.2024.1460376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/12/2024] [Indexed: 10/26/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by pulmonary vascular remodeling with high pulmonary pressure, which ultimately leads to right heart failure and premature death. Emerging evidence suggests that both hypoxia and epigenetics play a pivotal role in the pathogenesis of PAH development. In this review article, we summarize the current developments in regulation of hypoxia inducible factor (HIF) isoforms in PAH vascular remodeling and the development of suitable animal models for discovery and testing of HIF pathway-targeting PAH therapeutics. In addition, we also discuss the epigenetic regulation of HIF-dependent isoforms in PAH and its therapeutic potential from a new perspective which highlights the importance of HIF isoform-specific targeting as a novel salutary strategy for PAH treatment.
Collapse
Affiliation(s)
- Ankita Mitra
- Division of Pulmonary and Critical Care, Stanford University, Palo Alto, CA, United States
| | - Dan Yi
- Department of Internal Medicine, University of Arizona College of Medicine Phoenix, Phoenix, AZ, United States
| | - Zhiyu Dai
- Department of Internal Medicine, University of Arizona College of Medicine Phoenix, Phoenix, AZ, United States
- Department of Medicine, Washington University School of Medicine in St. Louis (WashU), St. Louis, MO, United States
| | - Vinicio de Jesus Perez
- Division of Pulmonary and Critical Care, Stanford University, Palo Alto, CA, United States
| |
Collapse
|
15
|
Tuineau MN, Herbert LM, Garcia SM, Resta TC, Jernigan NL. Enhanced glycolysis causes extracellular acidification and activates acid-sensing ion channel 1a in hypoxic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2024; 327:L439-L451. [PMID: 39104320 PMCID: PMC11482464 DOI: 10.1152/ajplung.00083.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/07/2024] Open
Abstract
In pulmonary hypertension (PHTN), a metabolic shift to aerobic glycolysis promotes a hyperproliferative, apoptosis-resistant phenotype in pulmonary arterial smooth muscle cells (PASMCs). Enhanced glycolysis induces extracellular acidosis, which can activate proton-sensing membrane receptors and ion channels. We previously reported that activation of the proton-gated cation channel acid-sensing ion channel 1a (ASIC1a) contributes to the development of hypoxic PHTN. Therefore, we hypothesize that enhanced glycolysis and subsequent acidification of the PASMC extracellular microenvironment activate ASIC1a in hypoxic PHTN. We observed decreased oxygen consumption rate and increased extracellular acidification rate in PASMCs from chronic hypoxia (CH)-induced PHTN rats, indicating a shift to aerobic glycolysis. In addition, we found that intracellular alkalization and extracellular acidification occur in PASMCs following CH and in vitro hypoxia, which were prevented by the inhibition of glycolysis with 2-deoxy-d-glucose (2-DG). Inhibiting H+ transport/secretion through carbonic anhydrases, Na+/H+ exchanger 1, or vacuolar-type H+-ATPase did not prevent this pH shift following hypoxia. Although the putative monocarboxylate transporter 1 (MCT1) and -4 (MCT4) inhibitor syrosingopine prevented the pH shift, the specific MCT1 inhibitor AZD3965 and/or the MCT4 inhibitor VB124 were without effect, suggesting that syrosingopine targets the glycolytic pathway independent of H+ export. Furthermore, 2-DG and syrosingopine prevented enhanced ASIC1a-mediated store-operated Ca2+ entry in PASMCs from CH rats. These data suggest that multiple H+ transport mechanisms contribute to extracellular acidosis and that inhibiting glycolysis-rather than specific H+ transporters-more effectively prevents extracellular acidification and ASIC1a activation. Together, these data reveal a novel pathological relationship between glycolysis and ASIC1a activation in hypoxic PHTN.NEW & NOTEWORTHY In pulmonary hypertension, a metabolic shift to aerobic glycolysis drives a hyperproliferative, apoptosis-resistant phenotype in pulmonary arterial smooth muscle cells. We demonstrate that this enhanced glycolysis induces extracellular acidosis and activates the proton-gated ion channel, acid-sensing ion channel 1a (ASIC1a). Although multiple H+ transport/secretion mechanisms are upregulated in PHTN and likely contribute to extracellular acidosis, inhibiting glycolysis with 2-deoxy-d-glucose or syrosingopine effectively prevents extracellular acidification and ASIC1a activation, revealing a promising therapeutic avenue.
Collapse
Affiliation(s)
- Megan N Tuineau
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States
| | - Lindsay M Herbert
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States
| | - Selina M Garcia
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States
| | - Thomas C Resta
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States
| | - Nikki L Jernigan
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States
| |
Collapse
|
16
|
Namazi M, Eftekhar SP, Mosaed R, Shiralizadeh Dini S, Hazrati E. Pulmonary Hypertension and Right Ventricle: A Pathophysiological Insight. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2024; 18:11795468241274744. [PMID: 39257563 PMCID: PMC11384539 DOI: 10.1177/11795468241274744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/21/2024] [Indexed: 09/12/2024]
Abstract
Background Pulmonary hypertension (PH) is a pulmonary vascular disease characterized by elevated pulmonary vascular pressure. Long-term PH, irrespective of its etiology, leads to increased right ventricular (RV) pressure, RV hypertrophy, and ultimately, RV failure. Main body Research indicates that RV failure secondary to hypertrophy remains the primary cause of mortality in pulmonary arterial hypertension (PAH). However, the impact of PH on RV structure and function under increased overload remains incompletely understood. Several mechanisms have been proposed, including extracellular remodeling, RV hypertrophy, metabolic disturbances, inflammation, apoptosis, autophagy, endothelial-to-mesenchymal transition, neurohormonal dysregulation, capillary rarefaction, and ischemia. Conclusions Studies have demonstrated the significant role of oxidative stress in the development of RV failure. Understanding the interplay among these mechanisms is crucial for the prevention and management of RV failure in patients with PH.
Collapse
Affiliation(s)
- Mehrshad Namazi
- Trauma and Surgery Research Center, AJA University of Medical Sciences, Tehran, Iran
- Clinical Biomechanics and Ergonomics Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Seyed Parsa Eftekhar
- Trauma and Surgery Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Reza Mosaed
- Trauma and Surgery Research Center, AJA University of Medical Sciences, Tehran, Iran
| | | | - Ebrahim Hazrati
- Trauma and Surgery Research Center, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Ahmed ASI, Blood AB, Zhang L. MicroRNA-210 mediates hypoxia-induced pulmonary hypertension by targeting mitochondrial bioenergetics and mtROS flux. Acta Physiol (Oxf) 2024; 240:e14212. [PMID: 39073309 PMCID: PMC11934933 DOI: 10.1111/apha.14212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
AIM Chronic hypoxia is a common cause of pulmonary hypertension (PH). We test the hypothesis that microRNA-210 (miR-210) mediates hypoxia-induced PH by targeting mitochondrial metabolism and increasing reactive oxygen species (mtROS) production in the lungs. METHODS Adult wildtype (WT) or miR-210 knockout (KO) mice were exposed to hypoxia (10.5% O2) or normoxia for 4 weeks. We measured miR-210 levels, right ventricular systolic pressure (RVSP), and histological changes in heart and lung tissues. Mitochondrial bioenergetics and mtROS production were assessed in isolated lung mitochondria. RESULTS Hypoxia increased right ventricular wall thickness and pulmonary vessel wall muscularization in WT, but not miR-210 KO mice. No sex differences were observed. In male mice, hypoxia increased miR-210 levels in the lung and RVSP, which were abrogated by miR-210 deficiency. Hypoxia upregulated mitochondrial oxygen consumption rate and mtROS flux, which were negated in miR-210 KO animals. In addition, chronic hypoxia increased macrophage accumulation in lungs of WT, but not miR-210 KO mice. Moreover, miR-210 overexpression in lungs of WT animals recapitulated the effects of hypoxia and increased mitochondrial oxygen consumption rate, mtROS flux, right ventricular wall thickness, pulmonary vessel wall muscularization and RVSP. MitoQ revoked the effects of miR-210 on lung mitochondrial bioenergetics, right ventricular and pulmonary vessel remodeling and RVSP. CONCLUSION Our findings with loss-of-function and gain-of-function approaches provide explicit evidence that miR-210 mediates hypoxia-induced PH by upregulating mitochondrial bioenergetics and mtROS production in a murine model, revealing new insights into the mechanisms and therapeutic targets for treatment of PH.
Collapse
Affiliation(s)
- Abu Shufian Ishtiaq Ahmed
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Arlin B Blood
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| |
Collapse
|
18
|
Yang H, Cao J, Li JM, Li C, Zhou WW, Luo JW. Exploration of the molecular mechanism of tea polyphenols against pulmonary hypertension by integrative approach of network pharmacology, molecular docking, and experimental verification. Mol Divers 2024; 28:2603-2616. [PMID: 37486473 DOI: 10.1007/s11030-023-10700-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023]
Abstract
Pulmonary hypertension, a common complication of chronic obstructive pulmonary disease, is a major global health concern. Green tea is a popular beverage that is consumed all over the world. Green tea's active ingredients are epicatechin derivatives, also known as "polyphenols," which have anti-carcinogenic, anti-inflammatory, and antioxidant properties. This study aimed to explore the possible mechanism of green tea polyphenols in the treatment of pulmonary hypertension using network pharmacology, molecular docking, and experimental verification. A total of 316 potential green tea polyphenols-related targets were obtained from the PharmMapper, SwissTargetPrediction, and TargetNet databases. A total of 410 pulmonary hypertension-related targets were predicted by the CTD, DisGeNET, pharmkb, and GeneCards databases. Green tea polyphenols-related targets were hit by the 49 targets associated with pulmonary hypertension. AKT1 and HIF1-α were identified through the FDA drugs-target network and PPI network combined with GO functional annotation and KEGG pathway enrichment. Molecular docking results showed that green tea polyphenols had strong binding abilities to AKT1 and HIF1-α. In vitro experiments showed that green tea polyphenols inhibited the proliferation and migration of hypoxia stimulated pulmonary artery smooth muscle cells by decreasing AKT1 phosphorylation and downregulating HIF1α expression. Collectively, green tea polyphenols are promising phytochemicals against pulmonary hypertension.
Collapse
Affiliation(s)
- Huan Yang
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, China
| | - Jun Cao
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, China
| | - Jian-Min Li
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, China
| | - Cheng Li
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, China
| | - Wen-Wu Zhou
- Department of Cardiovascular Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, China
| | - Jin-Wen Luo
- Department of Cardio-Thoracic Surgery, Hunan Children's Hospital, Changsha, 410007, Hunan, China.
| |
Collapse
|
19
|
Dang P, Wang F, Yu H. Prognostic potential of neutrophil-to-lymphocyte ratio, platelet to lymphocyte ratio, and monocyte to lymphocyte ratio in acute myocardial infarction patients combined with chronic obstructive pulmonary disease. Front Cardiovasc Med 2024; 11:1401634. [PMID: 39070559 PMCID: PMC11272454 DOI: 10.3389/fcvm.2024.1401634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024] Open
Abstract
Background Inflammation is considered to play an important role in chronic obstructive pulmonary disease (COPD) and acute myocardial infarction (AMI), but the relationship between inflammation and poor prognosis in these patients has not yet been studied. Methods We enrolled AMI patients combined with COPD and divided them into three groups according to the tertiles of neutrophil-to-lymphocyte ratio (NLR), platelet to lymphocyte ratio (PLR) and monocyte to lymphocyte ratio (MLR) respectively. Logistic regression analyses were used to identify risk factors for in-hospital all-cause death in these patients. Covariates were adjusted stepwise to determine the association between inflammatory markers and poor prognosis. Also, the receiver operating characteristic (ROC) curve was used to evaluate the greatest predictive indicator for all-cause death. Results A total of 281 AMI patients combined with COPD were enrolled, of which 31 experienced in-hospital mortality. The risk of all-cause death was significantly higher among those with higher NLR. The highest tertile of NLR was significantly associated with an increased risk of all-cause death (all P < 0.05). This association remained significant after adjusting for confounding factors [Odds Ratio (OR): 10.571, 95% confidence interval (CI): 2.307-48.442, P = 0.002]. Moreover, compared to MLR and PLR, NLR had the highest predictive value for all-cause death [area under the curve (AUC): 0.764, 95% CI: 0.681-0.847]. Conclusion In AMI patients combined with COPD, elevated levels of inflammation were associated with increased all-cause mortality. Compared to other inflammatory indicators, NLR may provide a more superior predictive value.
Collapse
Affiliation(s)
- Peizhu Dang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Feiyang Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Hang Yu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
20
|
Qiyan Zheng, Zhang X, Guo J, Wang Y, Jiang Y, Li S, Liu YN, Liu WJ. JinChan YiShen TongLuo Formula ameliorate mitochondrial dysfunction and apoptosis in diabetic nephropathy through the HIF-1α-PINK1-Parkin pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:117863. [PMID: 38325670 DOI: 10.1016/j.jep.2024.117863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/19/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The JinChan YiShen TongLuo (JCYSTL) formula, a traditional Chinese medicine (TCM), has been used clinically for decades to treat diabetic nephropathy (DN). TCM believes that the core pathogenesis of DN is "kidney deficiency and collateral obstruction," and JCYSTL has the effect of "tonifying kidney and clearing collateral," thus alleviating the damage to kidney structure and function caused by diabetes. From the perspective of modern medicine, mitochondrial damage is an important factor in DN pathogenesis. Our study suggests that the regulation of mitophagy and mitochondrial function by JCYSTL may be one of the internal mechanisms underlying its good clinical efficacy. AIM OF THE STUDY This study aimed to investigate the mechanisms underlying the renoprotective effects of JCYSTL. MATERIALS AND METHODS Unilateral nephrectomy combined with low-dose streptozotocin intraperitoneally injected in a DN rat model and high glucose (HG) plus hypoxia-induced HK-2 cells were used to explore the effects of JCYSTL on the HIF-1α/mitophagy pathway, mitochondrial function and apoptosis. RESULTS JCYSTL treatment significantly decreased albuminuria, serum creatinine, blood urea nitrogen, and uric acid levels and increased creatinine clearance levels in DN rats. In vitro, medicated serum containing JCYSTL formula increased mitochondrial membrane potential (MMP); improved activities of mitochondrial respiratory chain complexes I, III, and IV; decreased the apoptotic cell percentage and apoptotic protein Bax expression; and increased anti-apoptotic protein Bcl-2 expression in HG/hypoxia-induced HK-2 cells. The treatment group exhibited increased accumulation of PINK1, Parkin, and LC3-II and reduced P62 levels in HG/hypoxia-induced HK-2 cells, whereas in PINK1 knockdown HK-2 cells, JCYSTL did not improve the HG/hypoxia-induced changes in Parkin, LC3-II, and P62. When mitophagy was impaired by PINK1 knockdown, the inhibitory effect of JCYSTL on Bax and its promoting effect on MMP and Bcl-2 disappeared. The JCYSTL-treated group displayed significantly higher HIF-1α expression than the model group in vivo, which was comparable to the effects of FG-4592 in DN rats. PINK1 knockdown did not affect HIF-1α accumulation in JCYSTL-treated HK-2 cells exposed to HG/hypoxia. Both JCYSTL and FG-4592 ameliorated mitochondrial morphological abnormalities and reduced the mitochondrial respiratory chain complex activity in the renal tubules of DN rats. Mitochondrial apoptosis signals in DN rats, such as increased Bax and Caspase-3 expression and apoptosis ratio, were weakened by JCYSTL or FG-4592 administration. CONCLUSION This study demonstrates that the JCYSTL formula activates PINK1/Parkin-mediated mitophagy by stabilizing HIF-1α to protect renal tubules from mitochondrial dysfunction and apoptosis in diabetic conditions, presenting a promising therapy for the treatment of DN.
Collapse
Affiliation(s)
- Qiyan Zheng
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518000, China; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China; Renal Research Institution of Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Xueqin Zhang
- Hebei University of Chinese Medicine, Hebei, 050020, China
| | - Jing Guo
- China Academy of Chinese Medicine Science, Beijing, 100700, China
| | - Yahui Wang
- Fangshan Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Yuhua Jiang
- China Academy of Chinese Medicine Science, Beijing, 100700, China
| | - Shunmin Li
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518000, China.
| | - Yu Ning Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China; Renal Research Institution of Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Wei Jing Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China; Renal Research Institution of Beijing University of Chinese Medicine, Beijing, 100700, China.
| |
Collapse
|
21
|
Ahmed ASI, Blood AB, Zhang L. Hypoxia-induced pulmonary hypertension in adults and newborns: implications for drug development. Drug Discov Today 2024; 29:104015. [PMID: 38719143 PMCID: PMC11936511 DOI: 10.1016/j.drudis.2024.104015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
Chronic hypoxia-induced pulmonary hypertension (CHPH) presents a complex challenge, characterized by escalating pulmonary vascular resistance and remodeling, threatening both newborns and adults with right heart failure. Despite advances in understanding the pathobiology of CHPH, its molecular intricacies remain elusive, particularly because of the multifaceted nature of arterial remodeling involving the adventitia, media, and intima. Cellular imbalance arises from hypoxia-induced mitochondrial disturbances and oxidative stress, reflecting the diversity in pulmonary hypertension (PH) pathology. In this review, we highlight prominent mechanisms causing CHPH in adults and newborns, and emerging therapeutic targets of potential pharmaceuticals.
Collapse
Affiliation(s)
- Abu Shufian Ishtiaq Ahmed
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| | - Arlin B Blood
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
22
|
Xiao W, Shrimali N, Oldham WM, Clish CB, He H, Wong SJ, Wertheim BM, Arons E, Haigis MC, Leopold JA, Loscalzo J. Branched chain α-ketoacids aerobically activate HIF1α signaling in vascular cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.595538. [PMID: 38853866 PMCID: PMC11160772 DOI: 10.1101/2024.05.29.595538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Hypoxia-inducible factor 1α (HIF1α) is a master regulator of numerous biological processes under low oxygen tensions. Yet, the mechanisms and biological consequences of aerobic HIF1α activation by intrinsic factors, particularly in primary cells remain elusive. Here, we show that HIF1α signaling is activated in several human primary vascular cells under ambient oxygen tensions, and in vascular smooth muscle cells (VSMCs) of normal human lung tissue, which contributed to a relative resistance to further enhancement of glycolytic activity in hypoxia. Mechanistically, aerobic HIFα activation is mediated by paracrine secretion of three branched chain α-ketoacids (BCKAs), which suppress prolyl hydroxylase domain-containing protein 2 (PHD2) activity via direct inhibition and via lactate dehydrogenase A (LDHA)-mediated generation of L-2-hydroxyglutarate (L2HG). Metabolic dysfunction induced by BCKAs was observed in the lungs of rats with pulmonary arterial hypertension (PAH) and in pulmonary artery smooth muscle cells (PASMCs) from idiopathic PAH patients. BCKA supplementation stimulated glycolytic activity and promoted a phenotypic switch to the synthetic phenotype in PASMCs of normal and PAH subjects. In summary, we identify BCKAs as novel signaling metabolites that activate HIF1α signaling in normoxia and that the BCKA-HIF1α pathway modulates VSMC function and may be relevant to pulmonary vascular pathobiology.
Collapse
Affiliation(s)
- Wusheng Xiao
- Divisions of Cardiovascular Medicine and Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100191, China
- Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, School of Public Health, Peking University, Beijing 100191, China
| | - Nishith Shrimali
- Divisions of Cardiovascular Medicine and Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - William M. Oldham
- Divisions of Cardiovascular Medicine and Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Clary B. Clish
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Huamei He
- Divisions of Cardiovascular Medicine and Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Samantha J. Wong
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Bradley M. Wertheim
- Divisions of Cardiovascular Medicine and Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Elena Arons
- Divisions of Cardiovascular Medicine and Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Marcia C. Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jane A. Leopold
- Divisions of Cardiovascular Medicine and Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Joseph Loscalzo
- Divisions of Cardiovascular Medicine and Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
23
|
Ba H, Guo Y, Jiang Y, Li Y, Dai X, Liu Y, Li X. Unveiling the metabolic landscape of pulmonary hypertension: insights from metabolomics. Respir Res 2024; 25:221. [PMID: 38807129 PMCID: PMC11131231 DOI: 10.1186/s12931-024-02775-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/14/2024] [Indexed: 05/30/2024] Open
Abstract
Pulmonary hypertension (PH) is regarded as cardiovascular disease with an extremely poor prognosis, primarily due to irreversible vascular remodeling. Despite decades of research progress, the absence of definitive curative therapies remains a critical challenge, leading to high mortality rates. Recent studies have shown that serious metabolic disorders generally exist in PH animal models and patients of PH, which may be the cause or results of the disease. It is imperative for future research to identify critical biomarkers of metabolic dysfunction in PH pathophysiology and to uncover metabolic targets that could enhance diagnostic and therapeutic strategies. Metabolomics offers a powerful tool for the comprehensive qualitative and quantitative analysis of metabolites within specific organisms or cells. On the basis of the findings of the metabolomics research on PH, this review summarizes the latest research progress on metabolic pathways involved in processes such as amino acid metabolism, carbohydrate metabolism, lipid metabolism, and nucleotide metabolism in the context of PH.
Collapse
Affiliation(s)
- Huixue Ba
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Department of Pharmacy, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Yingfan Guo
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yujie Jiang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Ying Li
- Department of Health Management, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xuejing Dai
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, China
| | - Yuan Liu
- Department of Anesthesiology, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Xiaohui Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, China.
| |
Collapse
|
24
|
Saddouk FZ, Kuzemczak A, Saito J, Greif DM. Endothelial HIFα/PDGF-B to smooth muscle Beclin1 signaling sustains pathological muscularization in pulmonary hypertension. JCI Insight 2024; 9:e162449. [PMID: 38652543 PMCID: PMC11141934 DOI: 10.1172/jci.insight.162449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
Mechanisms underlying maintenance of pathological vascular hypermuscularization are poorly delineated. Herein, we investigated retention of smooth muscle cells (SMCs) coating normally unmuscularized distal pulmonary arterioles in pulmonary hypertension (PH) mediated by chronic hypoxia with or without Sugen 5416, and reversal of this pathology. With hypoxia in mice or culture, lung endothelial cells (ECs) upregulated hypoxia-inducible factor 1α (HIF1-α) and HIF2-α, which induce platelet-derived growth factor B (PDGF-B), and these factors were reduced to normoxic levels with re-normoxia. Re-normoxia reversed hypoxia-induced pulmonary vascular remodeling, but with EC HIFα overexpression during re-normoxia, pathological changes persisted. Conversely, after establishment of distal muscularization and PH, EC-specific deletion of Hif1a, Hif2a, or Pdgfb induced reversal. In human idiopathic pulmonary artery hypertension, HIF1-α, HIF2-α, PDGF-B, and autophagy-mediating gene products, including Beclin1, were upregulated in pulmonary artery SMCs and/or lung lysates. Furthermore, in mice, hypoxia-induced EC-derived PDGF-B upregulated Beclin1 in distal arteriole SMCs, and after distal muscularization was established, re-normoxia, EC Pdgfb deletion, or treatment with STI571 (which inhibits PDGF receptors) downregulated SMC Beclin1 and other autophagy products. Finally, SMC-specific Becn1 deletion induced apoptosis, reversing distal muscularization and PH mediated by hypoxia with or without Sugen 5416. Thus, chronic hypoxia induction of the HIFα/PDGF-B axis in ECs is required for non-cell-autonomous Beclin1-mediated survival of pathological distal arteriole SMCs.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Mice
- Arterioles/metabolism
- Arterioles/pathology
- Autophagy
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Beclin-1/metabolism
- Beclin-1/genetics
- Disease Models, Animal
- Endothelial Cells/metabolism
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/genetics
- Hypoxia/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Indoles
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Proto-Oncogene Proteins c-sis/metabolism
- Proto-Oncogene Proteins c-sis/genetics
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pyrroles
- Signal Transduction
- Vascular Remodeling
Collapse
Affiliation(s)
- Fatima Z. Saddouk
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, and
- Department of Genetics, Yale University, New Haven, Connecticut, USA
| | - Andrew Kuzemczak
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, and
- Department of Genetics, Yale University, New Haven, Connecticut, USA
| | - Junichi Saito
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, and
- Department of Genetics, Yale University, New Haven, Connecticut, USA
| | - Daniel M. Greif
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, and
- Department of Genetics, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
25
|
Dai ZK, Chen YC, Hsieh SL, Yeh JL, Hsu JH, Wu BN. The Xanthine Derivative KMUP-1 Inhibits Hypoxia-Induced TRPC1 Expression and Store-Operated Ca 2+ Entry in Pulmonary Arterial Smooth Muscle Cells. Pharmaceuticals (Basel) 2024; 17:440. [PMID: 38675401 PMCID: PMC11053947 DOI: 10.3390/ph17040440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/17/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Exposure to hypoxia results in the development of pulmonary arterial hypertension (PAH). An increase in the intracellular Ca2+ concentration ([Ca2+]i) in pulmonary artery smooth muscle cells (PASMCs) is a major trigger for pulmonary vasoconstriction and proliferation. This study investigated the mechanism by which KMUP-1, a xanthine derivative with phosphodiesterase inhibitory activity, inhibits hypoxia-induced canonical transient receptor potential channel 1 (TRPC1) protein overexpression and regulates [Ca2+]i through store-operated calcium channels (SOCs). Ex vivo PASMCs were cultured from Sprague-Dawley rats in a modular incubator chamber under 1% O2/5% CO2 for 24 h to elucidate TRPC1 overexpression and observe the Ca2+ release and entry. KMUP-1 (1 μM) inhibited hypoxia-induced TRPC family protein encoded for SOC overexpression, particularly TRPC1. KMUP-1 inhibition of TRPC1 protein was restored by the protein kinase G (PKG) inhibitor KT5823 (1 μM) and the protein kinase A (PKA) inhibitor KT5720 (1 μM). KMUP-1 attenuated protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA, 1 μM)-upregulated TRPC1. We suggest that the effects of KMUP-1 on TRPC1 might involve activating the cyclic guanosine monophosphate (cGMP)/PKG and cyclic adenosine monophosphate (cAMP)/PKA pathways and inhibiting the PKC pathway. We also used Fura 2-acetoxymethyl ester (Fura 2-AM, 5 μM) to measure the stored calcium release from the sarcoplasmic reticulum (SR) and calcium entry through SOCs in hypoxic PASMCs under treatment with thapsigargin (1 μM) and nifedipine (5 μM). In hypoxic conditions, store-operated calcium entry (SOCE) activity was enhanced in PASMCs, and KMUP-1 diminished this activity. In conclusion, KMUP-1 inhibited the expression of TRPC1 protein and the activity of SOC-mediated Ca2+ entry upon SR Ca2+ depletion in hypoxic PASMCs.
Collapse
Affiliation(s)
- Zen-Kong Dai
- Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Z.-K.D.); (J.-H.H.)
- Division of Pediatric Cardiology and Pulmonology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Yi-Chen Chen
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.C.); (J.-L.Y.)
| | - Su-Ling Hsieh
- Department of Pharmacy, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
| | - Jwu-Lai Yeh
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.C.); (J.-L.Y.)
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Jong-Hau Hsu
- Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Z.-K.D.); (J.-H.H.)
- Division of Pediatric Cardiology and Pulmonology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Bin-Nan Wu
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.C.); (J.-L.Y.)
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
26
|
Chen J, Song M, Qian D, Liu L, Yang K, Shou Y, Zhao H, Zhang L. Atorvastatin rescues pulmonary artery hypertension by inhibiting the AKT/ERK-dependent PDGF-BB/HIF-1α axis. Panminerva Med 2024; 66:4-9. [PMID: 33908728 DOI: 10.23736/s0031-0808.20.03910-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The aim of this study is to explore the role of atorvastatin in rescuing pulmonary artery hypertension (PAH) by inhibiting the AKT/ERK-dependent PDGF-BB/HIF-1α axis. METHODS PAH model in rats was established by MCT induction, followed by Atorvastatin intervention. Pulmonary hemodynamic measurement and pulmonary morphological evaluation in rats were conducted. Human pulmonary artery smooth muscle cells (hPASMCs) were subjected to hypoxic exposure or PDGF-BB treatment, followed by atorvastatin induction. Relative levels of HIF-1α, p-ERK and p-Akt were detected. Viability and apoptosis were respectively determined by cell counting kit-8 (CCK-8) assay and flow cytometry. RESULTS Atorvastatin protected PAH-induced increases in RVSP and Fulton's index in rats. Meanwhile, it inhibited vascular remodeling following PAH by downregulating HIF-1α and PDGF-BB. Hypoxia or PDGF-BB treatment in hPASMCs resulted in upregulation of p-ERK and p-Akt, and viability increase, which were partially abolished by Atorvastatin intervention. In addition, atorvastatin triggered apoptosis in hypoxia or PDGF-BB-induced hPASMCs. CONCLUSIONS Atorvastatin inhibits the activation of HIF-1α and proliferative ability, and triggers apoptosis in hPASMCs exposed to hypoxia or PDGF-BB treatment through inactivating the AKT/ERK pathway.
Collapse
Affiliation(s)
- Jianfei Chen
- Department of Cardiology, Banan People's Hospital of Chongqing, Chongqing, China
| | - Mingbao Song
- Department of Cardiology, Kangxin Hospital of Chongqing, Chongqing, China
| | - Dehui Qian
- Department of Cardiology, Xingqiao Hospital, Chongqing, China
| | - Linqiong Liu
- Department of Cardiology, Banan People's Hospital of Chongqing, Chongqing, China
| | - Kun Yang
- Department of Cardiology, Banan People's Hospital of Chongqing, Chongqing, China
| | - Yunfeng Shou
- Department of Cardiology, Banan People's Hospital of Chongqing, Chongqing, China
| | - Hanru Zhao
- Department of Cardiology, Banan People's Hospital of Chongqing, Chongqing, China
| | - Li Zhang
- Department of Pathology, Southwest Hospital, Chongqing, China -
| |
Collapse
|
27
|
Miao H, Hui H, Fan W, Lin Y, Li H, Li D, Luo M, Qiu F, Jiang B, Zhang Y. Overexpressed pigment epithelium-derived factor alleviates pulmonary hypertension in two rat models induced by monocrotaline and SU5416/hypoxia. Biomed Pharmacother 2024; 172:116303. [PMID: 38377738 DOI: 10.1016/j.biopha.2024.116303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) is a progressive and fatal cardiopulmonary disease characterized by vascular remodeling and is associated with endothelial-to-mesenchymal transition (EndoMT). The pigment epithelium-derived factor (PEDF), a secretory protein widely distributed in multiple organs, has been shown to demonstrate anti-EndoMT activity in cardiovascular diseases. In the present study, the role of PEDF in PH was investigated. METHODS For PEDF overexpression, Sprague Dawley rats were infected with an adeno-associated virus through injection via the internal jugular vein. To establish PH models, the animals were subjected to monocrotaline or Sugen/hypoxia. Four weeks later, pulmonary artery angiography was performed, and hemodynamic parameters, right ventricular function, and vascular remodeling were evaluated. EndoMT and cell proliferation in the pulmonary arteries were assessed via immunofluorescence staining. Moreover, pulmonary artery endothelial cells (PAECs) isolated from experimental PH rats were cultured to investigate the underlying molecular mechanisms involved. RESULTS PEDF expression was significantly downregulated in PAECs from PH patients and PH model rats. Overexpressed PEDF alleviated the development of PH by improving pulmonary artery morphology and perfusion, reducing pulmonary artery pressure, improving right ventricular function, and alleviating vascular remodeling. PEDF inhibits EndoMT and reduces excessive PAEC proliferation. Moreover, PEDF overexpression reduced EndoMT in cultured PAECs by competitively inhibiting the binding of wnt to LRP6 and downregulating phosphorylation at the 1490 site of LRP6. CONCLUSIONS Our findings suggest that PEDF may be a potential therapeutic target for PH. We also found that PEDF can inhibit EndoMT in PAECs and may exert these effects by inhibiting the Wnt/LRP6/β-catenin pathway.
Collapse
Affiliation(s)
- Haoran Miao
- Department of Thoracic Cardiovascular Surgery, China
| | - Hongliang Hui
- Department of Thoracic Cardiovascular Surgery, China
| | - Wenbin Fan
- Department of Thoracic Cardiovascular Surgery, China
| | - Yangui Lin
- Department of Thoracic Cardiovascular Surgery, China
| | - Huaming Li
- Department of Thoracic Cardiovascular Surgery, China
| | - Dan Li
- Community Health Center, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Min Luo
- Department of Thoracic Cardiovascular Surgery, China
| | - Fan Qiu
- Department of Thoracic Cardiovascular Surgery, China.
| | - Bo Jiang
- Department of Thoracic Cardiovascular Surgery, China.
| | - Yiqian Zhang
- Department of Thoracic Cardiovascular Surgery, China.
| |
Collapse
|
28
|
Marriott E, Singanayagam A, El-Awaisi J. Inflammation as the nexus: exploring the link between acute myocardial infarction and chronic obstructive pulmonary disease. Front Cardiovasc Med 2024; 11:1362564. [PMID: 38450367 PMCID: PMC10915015 DOI: 10.3389/fcvm.2024.1362564] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/01/2024] [Indexed: 03/08/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD), particularly following acute exacerbations (AE-COPD), significantly heightens the risks and mortality associated with acute myocardial infarction (AMI). The intersection of COPD and AMI is characterised by a considerable overlap in inflammatory mechanisms, which play a crucial role in the development of both conditions. Although extensive research has been conducted on individual inflammatory pathways in AMI and COPD, the understanding of thrombo-inflammatory crosstalk in comorbid settings remains limited. The effectiveness of various inflammatory components in reducing AMI infarct size or slowing COPD progression has shown promise, yet their efficacy in the context of comorbidity with COPD and AMI is not established. This review focuses on the critical importance of both local and systemic inflammation, highlighting it as a key pathophysiological connection between AMI and COPD/AE-COPD.
Collapse
Affiliation(s)
- Eloise Marriott
- Microcirculation Research Group, Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Aran Singanayagam
- MRC Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Juma El-Awaisi
- Microcirculation Research Group, Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
29
|
Robinson G, Zielstorff M, Sevilla R, Vanko A, Sinz C, Cicmil M, Zhang W, Bettano K. Multimodal Imaging Reveals that Sustained Inhibition of HIF-Prolyl Hydroxylases Induces Opposing Effects on Right and Left Ventricular Function in Healthy Rats. Mol Imaging Biol 2024; 26:179-187. [PMID: 38057646 DOI: 10.1007/s11307-023-01876-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/17/2023] [Accepted: 11/02/2023] [Indexed: 12/08/2023]
Abstract
PURPOSE Hypoxia-inducible factor (HIF) drives transcription of critical hypoxia response genes, increasing the production of red blood cells in low oxygen conditions. In the absence of hypoxia, HIF is degraded by prolyl hydroxylases (HIF-PHs). Pharmacological HIF-PH inhibition stabilizes HIF and is being studied as a treatment for anemia. However, like sustained hypoxia, HIF-PH inhibition may increase pulmonary arterial pressure leading to right ventricular hypertrophy. The aim of this study was to assess the cardiac effects of sustained pharmacological HIF-PH inhibition using multimodal imaging, blood analysis, and histology. METHODS Rats were dosed daily with a pan HIF-PH inhibitor or vehicle for 4 weeks followed by a 2-week washout period and underwent longitudinal magnetic resonance imaging (MRI) and echocardiography to simultaneously assess RV and LV function. Blood samples from weeks four and six were analyzed to determine red blood cell composition. Histology was performed on the cardiac tissue from a subset of rats at weeks four and six to assess structural effects. RESULTS Imaging revealed that RV ejection fraction was reduced in animals receiving HIF-PH inhibitor and resulted in RV hypertrophy. Interestingly, HIF-PH inhibition had the opposite effect on the left ventricle (LV), increasing contractility measured by LV ejection fraction. LV effects were reversed by week six, while RV effects (functional and structural) were sustained. CONCLUSION These opposing cardiac effects of HIF-PH inhibition warrant further study to both understand the potential negative effects on RV structure and function and investigate the therapeutic potential of increased LV contractility for conditions like heart failure.
Collapse
Affiliation(s)
- Gain Robinson
- Translational Imaging, Merck & Co., Inc., Rahway, NJ, USA.
| | - Mark Zielstorff
- Quantitative Biosciences, Merck & Co., Inc., Rahway, NJ, USA
| | - Raquel Sevilla
- Translational Imaging, Merck & Co., Inc., Rahway, NJ, USA
| | - Amy Vanko
- Translational Imaging, Merck & Co., Inc., Rahway, NJ, USA
- Moderna, Inc., Cambridge, MA, USA
| | - Christopher Sinz
- Discovery Chemistry, Merck & Co., Inc., Rahway, NJ, USA
- Octant, Inc., Emeryville, CA, USA
| | - Milenko Cicmil
- Quantitative Biosciences, Merck & Co., Inc., Rahway, NJ, USA
- Cure Ventures Management, L.P., Newport Beach, CA, USA
| | - Weisheng Zhang
- Translational Imaging, Merck & Co., Inc., Rahway, NJ, USA
- Takeda Oncology, Cambridge, MA, USA
| | | |
Collapse
|
30
|
Acharya A, Bian F, Gomez-Arroyo J, Wagner KA, Kalinichenko VV, Kalin TV. Hypoxia represses FOXF1 in lung endothelial cells through HIF-1α. Front Physiol 2024; 14:1309155. [PMID: 38274049 PMCID: PMC10809398 DOI: 10.3389/fphys.2023.1309155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/28/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction: Forkhead Box F1 (FOXF1) transcription factor plays a critical role in lung angiogenesis during embryonic development and lung repair after injury. FOXF1 expression is decreased in endothelial cells after lung injury; however, molecular mechanisms responsible for the FOXF1 transcript changes in injured lung endothelium remain unknown. Methods: We used immunostaining of injured mouse lung tissues, FACS-sorted lung endothelial cells from hypoxia-treated mice, and data from patients diagnosed with hypoxemic respiratory failure to demonstrate that hypoxia is associated with decreased FOXF1 expression. Endothelial cell cultures were used to induce hypoxia in vitro and identify the upstream molecular mechanism through which hypoxia inhibits FOXF1 gene expression. Results: Bleomycin-induced lung injury induced hypoxia in the mouse lung tissue which was associated with decreased Foxf1 expression. Human FOXF1 mRNA was decreased in the lungs of patients diagnosed with hypoxemic respiratory failure. Mice exposed to hypoxia exhibited reduced Foxf1 expression in the lung tissue and FACS-sorted lung endothelial cells. In vitro, hypoxia (1% of O2) or treatment with cobalt (II) chloride increased HIF-1α protein levels but inhibited FOXF1 expression in three endothelial cell lines. Overexpression of HIF-1α in cultured endothelial cells was sufficient to inhibit Foxf1 expression. siRNA-mediated depletion of HIF-1α prevented the downregulation of Foxf1 gene expression after hypoxia or cobalt (II) chloride treatment. Conclusion: Hypoxia inhibits FOXF1 expression in endothelial cells in a HIF-1α dependent manner. Our data suggest that endothelial cell-specific inhibition of HIF-1α via gene therapy can be considered to restore FOXF1 and improve lung repair in patients with severe lung injury.
Collapse
Affiliation(s)
- Anusha Acharya
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Fenghua Bian
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Jose Gomez-Arroyo
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Division of Pulmonary and Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Kimberly A. Wagner
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Vladimir V. Kalinichenko
- Phoenix Children’s Health Research Institute, University of Arizona College of Medicine—Phoenix, Phoenix, AZ, United States
- Division of Neonatology, Phoenix Children’s Hospital, Phoenix, AZ, United States
| | - Tanya V. Kalin
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Phoenix Children’s Health Research Institute, University of Arizona College of Medicine—Phoenix, Phoenix, AZ, United States
| |
Collapse
|
31
|
Barnes EA, Ito R, Che X, Alvira CM, Cornfield DN. Loss of prolyl hydroxylase 1 and 2 in SM22α-expressing cells prevents Hypoxia-Induced pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2023; 325:L741-L755. [PMID: 37847687 PMCID: PMC11068430 DOI: 10.1152/ajplung.00428.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 09/21/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a disease characterized by increased vasoconstriction and vascular remodeling. Pulmonary artery smooth muscle cells (PASMCs) highly express the transcription factor hypoxia-inducible factor-1α (HIF-1α), yet the role of PASMC HIF-1α in the development of PAH remains controversial. To study the role of SMC HIF-1α in the pulmonary vascular response to acute and chronic hypoxia, we used a gain-of-function strategy to stabilize HIF-1α in PASMC by generating mice lacking prolyl hydroxylase domain (PHD) 1 and 2 in SM22α-expressing cells. This strategy increased HIF-1α expression and transcriptional activity under conditions of normoxia and hypoxia. Acute hypoxia increased right ventricular systolic pressure (RVSP) in control, but not in SM22α-PHD1/2-/- mice. Chronic hypoxia increased RVSP and vascular remodeling more in control SM22α-PHD1/2+/+ than in SM22α-PHD1/2-/- mice. In vitro studies demonstrated increased contractility and myosin light chain phosphorylation in isolated PHD1/2+/+ compared with PHD1/2-/- PASMC under both normoxic and hypoxic conditions. After chronic hypoxia, there was more p27 and less vascular remodeling in SM22α-PHD1/2-/- compared with SM22α-PHD1/2+/+ mice. Hypoxia increased p27 in PASMC isolated from control patients, but not in cells from patients with idiopathic pulmonary arterial hypertension (IPAH). These findings highlight an SM22α-expressing cell-specific role for HIF-1α in the inhibition of pulmonary vasoconstriction and vascular remodeling. Modulating HIF-1α expression in PASMC may represent a promising preventative and therapeutic strategy for patients with PAH.NEW & NOTEWORTHY In a mouse model wherein hypoxia-inducible factor 1 alpha (HIF-1α) is stabilized in vascular smooth muscle cells, we found that HIF-1α regulates vasoconstriction by limiting phosphorylation of myosin light chain and regulates vascular remodeling through p27 induction. These findings highlight a cell-specific role for HIF-1α in the inhibition of pulmonary vasoconstriction and vascular remodeling.
Collapse
Affiliation(s)
- Elizabeth A Barnes
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University, School of Medicine, Stanford, California, United States
| | - Reiji Ito
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University, School of Medicine, Stanford, California, United States
| | - Xibing Che
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University, School of Medicine, Stanford, California, United States
| | - Cristina M Alvira
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University, School of Medicine, Stanford, California, United States
| | - David N Cornfield
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University, School of Medicine, Stanford, California, United States
| |
Collapse
|
32
|
Desai R, Gandhi Z, Shiza ST, Jain A, Koshiya H, Alli-Ramsaroop B, Akinsete AO, Wilson E, Rudra P, Sunith Vegesna MS, Bari M, Vyas A, Rizvi B, Surani S. Prevalence and impact of tobacco use disorder on in-hospital mortality in patients hospitalized with non-group 1 pulmonary hypertension: a nationwide propensity score-matched analysis, 2019. EXCLI JOURNAL 2023; 22:1200-1210. [PMID: 38204965 PMCID: PMC10776876 DOI: 10.17179/excli2023-6409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/20/2023] [Indexed: 01/12/2024]
Abstract
Numerous studies indicated that patients with tobacco use disorder (TUD) are inversely associated with mortality in what is known as the smoker's paradox. However, limited studies have been conducted on the impact of TUD on the in-hospital mortality rates of patients with secondary pulmonary hypertension (PH, Non-Group 1 PH). Using the 2019 National Inpatient Sample, we identified PH and divided it into TUD and non-TUD to compare the comorbidities and in-hospital mortality between the two after 1:1 propensity-score matching. Of 1,129,440 PH hospitalizations, 12.1 % had TUD. After matching (n=133545, each group), TUD had lower median age (62 vs. 63), higher females (49 vs. 46.6 %), blacks (25.9 vs. 25.3 %), lower household income (40.8 vs. 32.7 %), Medicaid (22.4 vs. 14.8 %), non-elective (93.5 vs. 89.8 %), rural (9.3 vs. 6.7 %), urban non-teaching (17.2 vs 15.8 %) admissions. All CV comorbidities and other substance use were higher in TUD except CHF and valvular heart disease, TUD+ cohort and lower mortality (3.3 vs. 4.2 %, OR 0.78, p<0.001), higher routine discharges (53.8 vs. 51.3 %, p<0.001) and lower total charges ($47155 vs. 51909, p<0.001) than non-TUD. Although PH patients with TUD had a higher comorbidity burden, they had lower in-hospital mortality rates along with lower total charges of hospitalization, mandating real-world data to validate these results. See also the Graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Rupak Desai
- Department of Cardiology, VA Medical Center, Atlanta, GA
| | - Zainab Gandhi
- Department of Internal Medicine, Geisinger Wyoming Valley Medical Center, Wilkes Barre, PA/USA
| | - Saher taj Shiza
- Department of Internal Medicine, Lincoln Hospital, Bronx, NY/USA
| | - Akhil Jain
- Department of Internal Medicine, Mercy Catholic Medical Center, Philadelphia, PA/USA
| | - Hiren Koshiya
- Department of Hematology/Oncology, Mayo Clinic, Jacksonville, FL/USA
| | | | | | - Eko Wilson
- Department of Cardiology, Georgetown Public Hospital Corporation, Guyana
| | - Pranathi Rudra
- Department of Medicine, Gandhi Medical College, Secunderabad, Telangana, India
| | | | - Madiha Bari
- Department of Medicine, Nazareth Hospital, Philadelphia, PA, USA
| | - Ankit Vyas
- Department of Internal Medicine, Baptist Hospital of Southeast Texas, Beaumont, TX, USA
| | - Bisharah Rizvi
- Department of Pulmonary Medicine, UHS Southern California Medical Education Center, Temecula, CA/USA
| | - Salim Surani
- Department of Pulmonary and Critical Care, Texas A&M University, College Station, TX, USA
| |
Collapse
|
33
|
Hu Y, Zhao Y, Li P, Lu H, Li H, Ge J. Hypoxia and panvascular diseases: exploring the role of hypoxia-inducible factors in vascular smooth muscle cells under panvascular pathologies. Sci Bull (Beijing) 2023; 68:1954-1974. [PMID: 37541793 DOI: 10.1016/j.scib.2023.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/13/2023] [Accepted: 07/10/2023] [Indexed: 08/06/2023]
Abstract
As an emerging discipline, panvascular diseases are a set of vascular diseases with atherosclerosis as the common pathogenic hallmark, which mostly affect vital organs like the heart, brain, kidney, and limbs. As the major responser to the most common stressor in the vasculature (hypoxia)-hypoxia-inducible factors (HIFs), and the primary regulator of pressure and oxygen delivery in the vasculature-vascular smooth muscle cells (VSMCs), their own multifaceted nature and their interactions with each other are fascinating. Abnormally active VSMCs (e.g., atherosclerosis, pulmonary hypertension) or abnormally dysfunctional VSMCs (e.g., aneurysms, vascular calcification) are associated with HIFs. These widespread systemic diseases also reflect the interdisciplinary nature of panvascular medicine. Moreover, given the comparable proliferative characteristics exhibited by VSMCs and cancer cells, and the delicate equilibrium between angiogenesis and cancer progression, there is a pressing need for more accurate modulation targets or combination approaches to bolster the effectiveness of HIF targeting therapies. Based on the aforementioned content, this review primarily focused on the significance of integrating the overall and local perspectives, as well as temporal and spatial balance, in the context of the HIF signaling pathway in VSMC-related panvascular diseases. Furthermore, the review discussed the implications of HIF-targeting drugs on panvascular disorders, while considering the trade-offs involved.
Collapse
Affiliation(s)
- Yiqing Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Yongchao Zhao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Peng Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China; Shanghai Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| | - Hua Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China; Shanghai Clinical Research Center for Interventional Medicine, Shanghai 200032, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai 200032, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
34
|
Ma J, Li D, Liu Z, Zang Y, Zhang W, Liu X, Zhang B, Sun J, Shen C. Effects and Mechanisms of Peritoneal Resuscitation on Acute Kidney Injury After Severe Burns in Rats. Mil Med 2023; 188:2951-2959. [PMID: 35446422 DOI: 10.1093/milmed/usac112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/28/2022] [Accepted: 04/11/2022] [Indexed: 11/14/2022] Open
Abstract
INTRODUCTION Acute kidney injury (AKI) is a common complication in severe burn patients with poor prognosis and high mortality. Reduced kidney perfusion induced by the decreased effective circulating blood volume after severe burn is a common cause of AKI. Routine intravenous resuscitation (IR) is difficult or delayed in extreme conditions such as war and disaster sites. Peritoneal resuscitation (PR) is a simple, rapid resuscitation strategy via a puncture in the abdominal wall. This study investigated whether PR is a validated resuscitation strategy for AKI after severe burns in rats and explored its mechanisms. MATERIALS AND METHODS Eighty Sprague-Dawley rats were randomized into four groups: (1) sham group; (2) IR group, which was characterized by the full thickness burn of 50% of the total body surface area received IR immediately post-injury; (3) early PR group, in which rats with the same burn model received PR immediately post-injury; and (4) delayed resuscitation (DR) group, in which rats with the same burn model received no resuscitation within 3-hour post-injury. PR and DR groups animals received IR after 3-hour post-injury. The survival rate, mean arterial pressure, renal histopathology, renal function, indicators of renal injury, and renal hypoxia-inducible factor-1α and NADPH oxidase 4 (NOX4) proteins of rats were measured at 3 h, 12 h, and 24 h post-injury. RESULTS Compared with rats in the DR group, rats in the PR group had a significantly improved survival rate (100% vs. 58.3% at 24 h, P = 0.0087), an increased mean arterial pressure (92.6 ± 6.6 vs. 65.3 ± 10.7, 85.1 ± 5.7 vs. 61.1 ± 6.9, 90.1 ± 8.7 vs. 74.9 ± 7.4 mmHg, at 3 h, 12 h, and 24 h, P < 0.01), a reduced renal water content rate (51.6% ± 5.0% vs. 70.1% ± 6.8%, 57.6% ± 7.7% vs. 69.5% ± 8.7%, at 12 h and 24 h, P < 0.01), attenuated histopathological damage, reduced serum creatinine expression (36.36 ± 4.27 vs. 49.98 ± 2.42, 52.29 ± 4.31 vs. 71.32 ± 5.2, 45.25 ± 2.55 vs. 81.15 ± 6.44 μmol/L, at 3 h, 12 h, and 24 h, P < 0.01) and BUN expression (7.62 ± 0.30 vs. 10.80 ± 0.58, 8.61 ± 0.32 vs. 28.58 ± 1.99, 8.09 ± 0.99 vs. 20.95 ± 1.02 mmol/L, at 3 h, 12 h, and 24 h, P < 0.01), increased kidney injury markers neutrophil gelatinase-associated lipocalin expression (95.09 ± 7.02 vs. 101.75 ± 6.23, 146.77 ± 11.54 vs. 190.03 ± 9.87, 112.79 ± 15.8 vs. 194.43 ± 11.47 ng/mL, at 3 h, 12 h, and 24 h, P < 0.01) and cystatin C expression (0.185 ± 0.006 vs. 0.197 ± 0.006, 0.345 ± 0.036 vs. 0.382 ± 0.013, 0.297 ± 0.012 vs. 0.371 ± 0.028 ng/mL, at 3 h, 12 h, and 24 h, P < 0.01), and reduced renal hypoxia-inducible factor-1α and NADPH oxidase 4 protein expression (P < 0.01). There was no significant difference between rats in the PR group and the IR group in the above indicators. CONCLUSIONS Early PR could protect severe burn injury rats from AKI. It may be an alternative resuscitation strategy in severe burn injury when IR cannot be achieved.
Collapse
Affiliation(s)
- Jinglong Ma
- Graduate School, Medical School of Chinese PLA, Beijing 100048, China
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Dawei Li
- Graduate School, Medical School of Chinese PLA, Beijing 100048, China
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Zhaoxing Liu
- Graduate School, Medical School of Chinese PLA, Beijing 100048, China
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Yu Zang
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
- Department of General Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Wen Zhang
- Graduate School, Medical School of Chinese PLA, Beijing 100048, China
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Xinzhu Liu
- Graduate School, Medical School of Chinese PLA, Beijing 100048, China
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Bohan Zhang
- Graduate School, Medical School of Chinese PLA, Beijing 100048, China
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Jiachen Sun
- Graduate School, Medical School of Chinese PLA, Beijing 100048, China
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Chuan'an Shen
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| |
Collapse
|
35
|
Hu J, Singh P, Li J, Zhang J, Li F, Zhang H, Xie J. Persistent Hypoxia with Intermittent Aggravation Causes Imbalance in Smad3/Myocardin-Related Transcription Factor Signaling with Consequent Endothelial Senescence and Pulmonary Arterial Remodeling. Biomedicines 2023; 11:2351. [PMID: 37760802 PMCID: PMC10526072 DOI: 10.3390/biomedicines11092351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Loss of Smad3 and the consequent activation of myocardin-related transcription factor (MRTF) are associated with vascular pathologies. This study aimed to examine the impact of persistent hypoxia with intermittent aggravation (PI hypoxia) on cellular senescence and pulmonary arterial remodeling mediated by the Smad3/MRTF imbalance. We examined the effects of PI hypoxia on the Smad3/MRTF pathway and cellular senescence using human pulmonary artery endothelial cells (HPAECs) and in vivo studies in rats. The senescent degree was evaluated using β-galactosidase staining, p16 quantitation and the measurement of senescence-associated secretory phenotype. Structural data in the pathological analysis of pulmonary artery remodeling were collected. Compared to the control, HPAECs and pulmonary tissue from rats exposed to PI hypoxia showed a significantly higher senescent degree, lower expression of Smad3, and higher MRTF levels. The overexpression of Smad3 significantly mitigated HPAECs senescence in vitro. Further, treatment with CCG-203971, which inhibits MRTF, increased Smad3 levels and reduced β-galactosidase positive cells in rat lung tissue. This intervention also alleviated PI hypoxia-induced pathological changes, including remodeling indices of pulmonary arterial thickening, muscularization, and collagen formation. In conclusion, imbalanced Smad3/MRTF signaling is linked to PI hypoxia-induced senescence and pulmonary arterial remodeling, making it a potential therapeutic target for patients with sleep apnea and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Jiaxin Hu
- Department of Respiratory and Critical Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China; (J.H.); (F.L.); (H.Z.)
| | - Prachi Singh
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA;
| | - Jingrui Li
- First Hospital of Lanzhou University, Lanzhou 730009, China;
| | - Jing Zhang
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China;
| | - Fei Li
- Department of Respiratory and Critical Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China; (J.H.); (F.L.); (H.Z.)
| | - Hehe Zhang
- Department of Respiratory and Critical Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China; (J.H.); (F.L.); (H.Z.)
- Beijing Anzhen Hospital Centre for Sleep Medicine and Science, Capital Medical University, Beijing 100029, China
| | - Jiang Xie
- Department of Respiratory and Critical Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China; (J.H.); (F.L.); (H.Z.)
- Beijing Anzhen Hospital Centre for Sleep Medicine and Science, Capital Medical University, Beijing 100029, China
| |
Collapse
|
36
|
Chen R, Wang H, Zheng C, Zhang X, Li L, Wang S, Chen H, Duan J, Zhou X, Peng H, Guo J, Zhang A, Li F, Wang W, Zhang Y, Wang J, Wang C, Meng Y, Du X, Zhang H. Polo-like kinase 1 promotes pulmonary hypertension. Respir Res 2023; 24:204. [PMID: 37598171 PMCID: PMC10440037 DOI: 10.1186/s12931-023-02498-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/22/2023] [Indexed: 08/21/2023] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) is a lethal vascular disease with limited therapeutic options. The mechanistic connections between alveolar hypoxia and PH are not well understood. The aim of this study was to investigate the role of mitotic regulator Polo-like kinase 1 (PLK1) in PH development. METHODS Mouse lungs along with human pulmonary arterial smooth muscle cells and endothelial cells were used to investigate the effects of hypoxia on PLK1. Hypoxia- or Sugen5416/hypoxia was applied to induce PH in mice. Plk1 heterozygous knockout mice and PLK1 inhibitors (BI 2536 and BI 6727)-treated mice were checked for the significance of PLK1 in the development of PH. RESULTS Hypoxia stimulated PLK1 expression through induction of HIF1α and RELA. Mice with heterozygous deletion of Plk1 were partially resistant to hypoxia-induced PH. PLK1 inhibitors ameliorated PH in mice. CONCLUSIONS Augmented PLK1 is essential for the development of PH and is a druggable target for PH.
Collapse
Affiliation(s)
- Rongrong Chen
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Hongfei Wang
- Department of Cardiac Surgery, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cuiting Zheng
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Department of Pathology, Beijing Lab for Cardiovascular Precision Medicine, Key Laboratory of Medical Engineering for Cardiovascular Disease, Capital Medical University, Beijing, China
| | - Xiyu Zhang
- Department of Pathology, Beijing Lab for Cardiovascular Precision Medicine, Key Laboratory of Medical Engineering for Cardiovascular Disease, Capital Medical University, Beijing, China
| | - Li Li
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Shengwei Wang
- Department of Cardiac Surgery, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongyu Chen
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Duan
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xian Zhou
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Haiyong Peng
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Guo
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Anchen Zhang
- Department of Cardiac Surgery, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feifei Li
- Department of Cardiac Surgery, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wang Wang
- Department of Physiology, Capital Medical University, Beijing, China
| | - Yu Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Wang
- Department of Physiology, Capital Medical University, Beijing, China
| | - Chen Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Meng
- Department of Pathology, Beijing Lab for Cardiovascular Precision Medicine, Key Laboratory of Medical Engineering for Cardiovascular Disease, Capital Medical University, Beijing, China.
| | - Xinling Du
- Department of Cardiac Surgery, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Hongbing Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
37
|
Arriaza K, Brito J, Siques P, Flores K, Ordenes S, Aguayo D, López MDR, Arribas SM. Effects of Zinc on the Right Cardiovascular Circuit in Long-Term Hypobaric Hypoxia in Wistar Rats. Int J Mol Sci 2023; 24:ijms24119567. [PMID: 37298516 DOI: 10.3390/ijms24119567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Hypobaric hypoxia under chromic conditions triggers hypoxic pulmonary vasoconstriction (HPV) and right ventricular hypertrophy (RVH). The role of zinc (Zn) under hypoxia is controversial and remains unclear. We evaluated the effect of Zn supplementation in prolonged hypobaric hypoxia on HIF2α/MTF-1/MT/ZIP12/PKCε pathway in the lung and RVH. Wistar rats were exposed to hypobaric hypoxia for 30 days and randomly allocated into three groups: chronic hypoxia (CH); intermittent hypoxia (2 days hypoxia/2 days normoxia; CIH); and normoxia (sea level control; NX). Each group was subdivided (n = 8) to receive either 1% Zn sulfate solution (z) or saline (s) intraperitoneally. Body weight, hemoglobin, and RVH were measured. Zn levels were evaluated in plasma and lung tissue. Additionally, the lipid peroxidation levels, HIF2α/MTF-1/MT/ZIP12/PKCε protein expression and pulmonary artery remodeling were measured in the lung. The CIH and CH groups showed decreased plasma Zn and body weight and increased hemoglobin, RVH, and vascular remodeling; the CH group also showed increased lipid peroxidation. Zn administration under hypobaric hypoxia upregulated the HIF2α/MTF-1/MT/ZIP12/PKCε pathway and increased RVH in the intermittent zinc group. Under intermittent hypobaric hypoxia, Zn dysregulation could participate in RVH development through alterations in the pulmonary HIF2α/MTF1/MT/ZIP12/PKCε pathway.
Collapse
Affiliation(s)
- Karem Arriaza
- Institute of Health Studies, University Arturo Prat, Av. Arturo Prat 2120, Iquique 1110939, Chile
- Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae, Hamburg (Germany) and Iquique (Chile), Avenida Arturo Prat 2120, Iquique 1110939, Chile
| | - Julio Brito
- Institute of Health Studies, University Arturo Prat, Av. Arturo Prat 2120, Iquique 1110939, Chile
- Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae, Hamburg (Germany) and Iquique (Chile), Avenida Arturo Prat 2120, Iquique 1110939, Chile
| | - Patricia Siques
- Institute of Health Studies, University Arturo Prat, Av. Arturo Prat 2120, Iquique 1110939, Chile
- Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae, Hamburg (Germany) and Iquique (Chile), Avenida Arturo Prat 2120, Iquique 1110939, Chile
| | - Karen Flores
- Institute of Health Studies, University Arturo Prat, Av. Arturo Prat 2120, Iquique 1110939, Chile
- Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae, Hamburg (Germany) and Iquique (Chile), Avenida Arturo Prat 2120, Iquique 1110939, Chile
| | - Stefany Ordenes
- Institute of Health Studies, University Arturo Prat, Av. Arturo Prat 2120, Iquique 1110939, Chile
- Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae, Hamburg (Germany) and Iquique (Chile), Avenida Arturo Prat 2120, Iquique 1110939, Chile
| | - Daniel Aguayo
- Institute of Health Studies, University Arturo Prat, Av. Arturo Prat 2120, Iquique 1110939, Chile
- Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae, Hamburg (Germany) and Iquique (Chile), Avenida Arturo Prat 2120, Iquique 1110939, Chile
| | - María Del Rosario López
- Department of Physiology, Faculty of Medicine, University Autónoma of Madrid, 28029 Madrid, Spain
| | - Silvia M Arribas
- Department of Physiology, Faculty of Medicine, University Autónoma of Madrid, 28029 Madrid, Spain
| |
Collapse
|
38
|
Kumar M, Zaman MK, Das S, Goyary D, Pathak MP, Chattopadhyay P. Transient Receptor Potential Vanilloid (TRPV4) channel inhibition: A novel promising approach for the treatment of lung diseases. Biomed Pharmacother 2023; 163:114861. [PMID: 37178575 DOI: 10.1016/j.biopha.2023.114861] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023] Open
Abstract
Research on transient receptor potential vanilloid-4 (TRPV4) can provide a promising potential therapeutic target in the development of novel medicines for lung disorders. TRPV4 expresses in lung tissue and plays an important role in the maintenance of respiratory homeostatic function. TRPV4 is upregulated in life-threatening respiratory diseases like pulmonary hypertension, asthma, cystic fibrosis, and chronic obstructive pulmonary diseases. TRPV4 is linked to several proteins that have physiological functions and are sensitive to a wide variety of stimuli, such as mechanical stimulation, changes in temperature, and hypotonicity, and responds to a variety of proteins and lipid mediators, including anandamide (AA), the arachidonic acid metabolite, 5,6-epoxyeicosatrienoic acid (5,6-EET), a plant dimeric diterpenoid called bisandrographolide A (BAA), and the phorbol ester 4-alpha-phorbol-12,13-didecanoate (4α-PDD). This study focused on relevant research evidence of TRPV4 in lung disorders and its agonist and antagonist effects. TRPV4 can be a possible target of discovered molecules that exerts high therapeutic potential in the treatment of respiratory diseases by inhibiting TRPV4.
Collapse
Affiliation(s)
- Mohit Kumar
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, Assam 784001, India; Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004, India
| | - Md Kamaruz Zaman
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004, India
| | - Sanghita Das
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, Assam 784001, India; Pharmaceutical & Fine Chemical Division, Department of Chemical Technology, University of Calcutta, Kolkata, West Bengal 700073, India
| | - Danswrang Goyary
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, Assam 784001, India
| | - Manash Pratim Pathak
- Faculty of Pharmaceutical Science, Assam down town University, Guwahati, Assam 781026, India.
| | - Pronobesh Chattopadhyay
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, Assam 784001, India.
| |
Collapse
|
39
|
Ye Y, Xu Q, Wuren T. Inflammation and immunity in the pathogenesis of hypoxic pulmonary hypertension. Front Immunol 2023; 14:1162556. [PMID: 37215139 PMCID: PMC10196112 DOI: 10.3389/fimmu.2023.1162556] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
Hypoxic pulmonary hypertension (HPH) is a complicated vascular disorder characterized by diverse mechanisms that lead to elevated blood pressure in pulmonary circulation. Recent evidence indicates that HPH is not simply a pathological syndrome but is instead a complex lesion of cellular metabolism, inflammation, and proliferation driven by the reprogramming of gene expression patterns. One of the key mechanisms underlying HPH is hypoxia, which drives immune/inflammation to mediate complex vascular homeostasis that collaboratively controls vascular remodeling in the lungs. This is caused by the prolonged infiltration of immune cells and an increase in several pro-inflammatory factors, which ultimately leads to immune dysregulation. Hypoxia has been associated with metabolic reprogramming, immunological dysregulation, and adverse pulmonary vascular remodeling in preclinical studies. Many animal models have been developed to mimic HPH; however, many of them do not accurately represent the human disease state and may not be suitable for testing new therapeutic strategies. The scientific understanding of HPH is rapidly evolving, and recent efforts have focused on understanding the complex interplay among hypoxia, inflammation, and cellular metabolism in the development of this disease. Through continued research and the development of more sophisticated animal models, it is hoped that we will be able to gain a deeper understanding of the underlying mechanisms of HPH and implement more effective therapies for this debilitating disease.
Collapse
Affiliation(s)
- Yi Ye
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
- High-Altitude Medicine Key Laboratory of the Ministry of Education, Xining, China
- Qinghai Provincial Key Laboratory for Application of High-Altitude Medicine, Xining, China
- Qinghai-Utah Key Laboratory of High-Altitude Medicine, Xining, China
| | - Qiying Xu
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
- High-Altitude Medicine Key Laboratory of the Ministry of Education, Xining, China
- Qinghai Provincial Key Laboratory for Application of High-Altitude Medicine, Xining, China
- Qinghai-Utah Key Laboratory of High-Altitude Medicine, Xining, China
| | - Tana Wuren
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
- High-Altitude Medicine Key Laboratory of the Ministry of Education, Xining, China
- Qinghai Provincial Key Laboratory for Application of High-Altitude Medicine, Xining, China
- Qinghai-Utah Key Laboratory of High-Altitude Medicine, Xining, China
| |
Collapse
|
40
|
Gallardo-Vara E, Ntokou A, Dave JM, Jovin DG, Saddouk FZ, Greif DM. Vascular pathobiology of pulmonary hypertension. J Heart Lung Transplant 2023; 42:544-552. [PMID: 36604291 PMCID: PMC10121751 DOI: 10.1016/j.healun.2022.12.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/31/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022] Open
Abstract
Pulmonary hypertension (PH), increased blood pressure in the pulmonary arteries, is a morbid and lethal disease. PH is classified into several groups based on etiology, but pathological remodeling of the pulmonary vasculature is a common feature. Endothelial cell dysfunction and excess smooth muscle cell proliferation and migration are central to the vascular pathogenesis. In addition, other cell types, including fibroblasts, pericytes, inflammatory cells and platelets contribute as well. Herein, we briefly note most of the main cell types active in PH and for each cell type, highlight select signaling pathway(s) highly implicated in that cell type in this disease. Among others, the role of hypoxia-inducible factors, growth factors (e.g., vascular endothelial growth factor, platelet-derived growth factor, transforming growth factor-β and bone morphogenetic protein), vasoactive molecules, NOTCH3, Kruppel-like factor 4 and forkhead box proteins are discussed. Additionally, deregulated processes of endothelial-to-mesenchymal transition, extracellular matrix remodeling and intercellular crosstalk are noted. This brief review touches upon select critical facets of PH pathobiology and aims to incite further investigation that will result in discoveries with much-needed clinical impact for this devastating disease.
Collapse
Affiliation(s)
- Eunate Gallardo-Vara
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut; Department of Genetics, Yale University, New Haven, Connecticut
| | - Aglaia Ntokou
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut; Department of Genetics, Yale University, New Haven, Connecticut
| | - Jui M Dave
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut; Department of Genetics, Yale University, New Haven, Connecticut
| | - Daniel G Jovin
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut; Department of Genetics, Yale University, New Haven, Connecticut
| | - Fatima Z Saddouk
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut; Department of Genetics, Yale University, New Haven, Connecticut
| | - Daniel M Greif
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut; Department of Genetics, Yale University, New Haven, Connecticut.
| |
Collapse
|
41
|
Steppan J, Nandakumar K, Wang H, Jang R, Smith L, Kang S, Savage W, Bauer M, Choi R, Brady T, Wodu BP, Scafidi S, Scafidi J, Santhanam L. Neonatal exposure to hypoxia induces early arterial stiffening via activation of lysyl oxidases. Physiol Rep 2023; 11:e15656. [PMID: 37038896 PMCID: PMC10086679 DOI: 10.14814/phy2.15656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 04/12/2023] Open
Abstract
Hypoxia in the neonatal period is associated with early manifestations of adverse cardiovascular health in adulthood including higher risk of hypertension and atherosclerosis. We hypothesize that this occurs due to activation of lysyl oxidases (LOXs) and the remodeling of the large conduit vessels, leading to early arterial stiffening. Newborn C57Bl/6 mice were exposed to hypoxia (FiO2 = 11.5%) from postnatal day 1 (P1) to postnatal day 11 (P11), followed by resumption of normoxia. Controls were maintained in normoxia. Using in vivo (pulse wave velocity; PWV) and ex vivo (tensile testing) arterial stiffness indexes, we determined that mice exposed to neonatal hypoxia had significantly higher arterial stiffness compared with normoxia controls by young adulthood (P60), and it increased further by P120. Echocardiography performed at P60 showed that mice exposed to hypoxia displayed a compensated dilated cardiomyopathy. Western blotting revelated that neonatal hypoxia accelerated age-related increase in LOXL2 protein expression in the aorta and elevated LOXL2 expression in the PA at P11 with a delayed decay toward normoxic controls. In the heart and lung, gene and protein expression of LOX/LOXL2 were upregulated at P11, with a delayed decay when compared to normoxic controls. Neonatal hypoxia results in a significant increase in arterial stiffness in early adulthood due to aberrant LOX/LOXL2 expression. This suggests an acceleration in the mechanical decline of the cardiovascular system, that contributes to increased risk of hypertension in young adults exposed to neonatal hypoxia that may increase susceptibility to further insults.
Collapse
Affiliation(s)
- Jochen Steppan
- Department of Anesthesiology and Critical Care MedicineJohns Hopkins University School of Medicine, Kennedy Krieger InstituteBaltimoreMarylandUSA
| | - Kavitha Nandakumar
- Department of Anesthesiology and Critical Care MedicineJohns Hopkins University School of Medicine, Kennedy Krieger InstituteBaltimoreMarylandUSA
| | - Huilei Wang
- Department of Biomedical EngineeringJohns Hopkins University School of Medicine, Kennedy Krieger InstituteBaltimoreMarylandUSA
| | - Rosie Jang
- Department of Biomedical EngineeringJohns Hopkins University School of Medicine, Kennedy Krieger InstituteBaltimoreMarylandUSA
| | - Logan Smith
- Department of Biomedical EngineeringJohns Hopkins University School of Medicine, Kennedy Krieger InstituteBaltimoreMarylandUSA
| | - Sara Kang
- Department of Anesthesiology and Critical Care MedicineJohns Hopkins University School of Medicine, Kennedy Krieger InstituteBaltimoreMarylandUSA
| | - William Savage
- Department of Chemical and Biomolecular EngineeringJohns Hopkins University School of Medicine, Kennedy Krieger InstituteBaltimoreMarylandUSA
| | - Maria Bauer
- Department of Anesthesiology and Critical Care MedicineJohns Hopkins University School of Medicine, Kennedy Krieger InstituteBaltimoreMarylandUSA
| | - Rira Choi
- Department of Anesthesiology and Critical Care MedicineJohns Hopkins University School of Medicine, Kennedy Krieger InstituteBaltimoreMarylandUSA
| | - Travis Brady
- Department of Biomedical EngineeringJohns Hopkins University School of Medicine, Kennedy Krieger InstituteBaltimoreMarylandUSA
| | - Bulouere Princess Wodu
- Department of Anesthesiology and Critical Care MedicineJohns Hopkins University School of Medicine, Kennedy Krieger InstituteBaltimoreMarylandUSA
| | - Susanna Scafidi
- Department of Anesthesiology and Critical Care MedicineJohns Hopkins University School of Medicine, Kennedy Krieger InstituteBaltimoreMarylandUSA
| | - Joseph Scafidi
- Department of Anesthesiology and Critical Care MedicineJohns Hopkins University School of Medicine, Kennedy Krieger InstituteBaltimoreMarylandUSA
- Department of NeurologyJohns Hopkins University School of Medicine, Kennedy Krieger InstituteBaltimoreMarylandUSA
- Department of PediatricsJohns Hopkins University School of Medicine, Kennedy Krieger InstituteBaltimoreMarylandUSA
- Michael V. Johnston Center for Developmental NeuroscienceKennedy Krieger InstituteBaltimoreMarylandUSA
| | - Lakshmi Santhanam
- Department of Anesthesiology and Critical Care MedicineJohns Hopkins University School of Medicine, Kennedy Krieger InstituteBaltimoreMarylandUSA
- Department of Biomedical EngineeringJohns Hopkins University School of Medicine, Kennedy Krieger InstituteBaltimoreMarylandUSA
- Department of Chemical and Biomolecular EngineeringJohns Hopkins University School of Medicine, Kennedy Krieger InstituteBaltimoreMarylandUSA
| |
Collapse
|
42
|
Ma B, Cao Y, Qin J, Chen Z, Hu G, Li Q. Pulmonary artery smooth muscle cell phenotypic switching: A key event in the early stage of pulmonary artery hypertension. Drug Discov Today 2023; 28:103559. [PMID: 36958640 DOI: 10.1016/j.drudis.2023.103559] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a currently incurable pulmonary vascular disease. Since current research on PAH is mainly aimed at the middle and late stages of disease progression, no satisfactory results have been achieved. This has led researchers to focus on the early stages of PAH. This review highlights for the first time a key event in the early stages of PAH progression, namely, the occurrence of pulmonary arterial smooth muscle cell (PASMC) phenotypic switching. Summarizing the related reports of performance conversion provides new perspectives and directions for the early pathological progression and treatment strategies for PAH.
Collapse
Affiliation(s)
- Binghao Ma
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Hunan Key Laboratory of Small Molecules for Diagnosis and Treatment of Chronic Disease, Changsha 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, Hunan, China
| | - Yuanyuan Cao
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Hunan Key Laboratory of Small Molecules for Diagnosis and Treatment of Chronic Disease, Changsha 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, Hunan, China
| | - Jia Qin
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Hunan Key Laboratory of Small Molecules for Diagnosis and Treatment of Chronic Disease, Changsha 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, Hunan, China
| | - Zhuo Chen
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Hunan Key Laboratory of Small Molecules for Diagnosis and Treatment of Chronic Disease, Changsha 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, Hunan, China
| | - Gaoyun Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Hunan Key Laboratory of Small Molecules for Diagnosis and Treatment of Chronic Disease, Changsha 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, Hunan, China
| | - Qianbin Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Hunan Key Laboratory of Small Molecules for Diagnosis and Treatment of Chronic Disease, Changsha 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, Hunan, China.
| |
Collapse
|
43
|
Zhang C, Sun Y, Guo Y, Xu J, Zhao H. JMJD1C promotes smooth muscle cell proliferation by activating glycolysis in pulmonary arterial hypertension. Cell Death Discov 2023; 9:98. [PMID: 36934091 PMCID: PMC10024756 DOI: 10.1038/s41420-023-01390-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/20/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a chronic disorder characterized by hyperproliferation of pulmonary arterial smooth muscle cells (PASMCs). JMJD1C, a member of the Jumonji domain containing C (JMJC) histone demethylase family, contributes to cardiovascular dysfunction. However, the role of JMJD1C in PAH remains unknown. Mice were exposed to hypoxia to mimic several features associated with PAH clinically. We found that JMJD1C was highly expressed in the lungs of mice after hypoxia exposure. JMJD1C knockdown ameliorated hypoxia-induced right ventricular remodeling and thickening of the pulmonary arterial wall. PASMC hyperproliferation and resistance to apoptosis in mice exposed to hypoxia were suppressed by JMJD1C inhibition. We demonstrated that JMJD1C silencing reduced glycolytic enzymes (HK2, PGK1 and LDHA) and lactate overaccumulation in the lungs of mice exposed to hypoxia. In vitro, hypoxia-induced hyperproliferation and activated glycolytic processes in mouse PASMCs were impaired by JMJD1C knockdown. In addition, the activation of STAT3 signaling by hypoxia was suppressed by JMJD1C silencing both in vivo and in vitro. The overexpression of STAT3 reversed the inhibitory effect of JMJD1C depletion on proliferation and glycolysis in PASMCs under hypoxia. Thus, JMJD1C induces glycolytic processes by activating STAT3 signaling to promote PASMC proliferation and pulmonary vascular remodeling, suggesting the potential role of JMJD1C in regulating the metabolic program and vascular remodeling in PAH.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yue Sun
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yingying Guo
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jingjing Xu
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Haiyan Zhao
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
44
|
Tambuzzi S, Gentile G, Boracchi M, Marasciuolo L, Zoja R. Post-Mortem Diagnosis of a Rare Case of Massive Nodular Pulmonary Amyloidosis in a Forensic Setting. Acad Forensic Pathol 2023; 13:41-47. [PMID: 37091197 PMCID: PMC10119865 DOI: 10.1177/19253621231164023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/24/2023] [Indexed: 04/25/2023]
Affiliation(s)
| | - Guendalina Gentile
- Guendalina Gentile BSc, Sezione di Medicina
Legale—Dipartimento di Scienze Biomediche per la Salute—Università degli Studi, via Luigi
Mangiagalli, 37, 20133 Milano, Italy;
| | | | | | | |
Collapse
|
45
|
Xia X, Huang L, Zhou S, Han R, Li P, Wang E, Xia W, Fei G, Zeng D, Wang R. Hypoxia-induced long non-coding RNA plasmacytoma variant translocation 1 upregulation aggravates pulmonary arterial smooth muscle cell proliferation by regulating autophagy via miR-186/Srf/Ctgf and miR-26b/Ctgf signaling pathways. Int J Cardiol 2023; 370:368-377. [PMID: 36174828 DOI: 10.1016/j.ijcard.2022.09.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/11/2022] [Accepted: 09/22/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND The lncRNA PVT1 reportedly functions as a competing endogenous RNA (ceRNA) of miR-186 and miR-26b in different tissue types. In this study, we investigated the possible involvement of the miR-186/Srf/Ctgf and miR-26b/Ctgf signaling pathways in the pathogenesis of hypoxia-induced PAH. METHODS Expression of PVT1, miR-186, miR-26b, and Srf and Ctgf mRNAs were evaluated by real-time polymerase chain reaction. Protein expression of SRF, CTGF, LC3B-I, LC3B-II, and Beclin-I was evaluated using western blotting. The regulatory relationship between the lncRNA, miRNAs, and target mRNAs was explored using luciferase assays. Immunohistochemistry was used to evaluate the expression of SRF and CTGF in situ. MTT assay was performed to assess the proliferation of PASMCs. RESULTS Exposure to hypoxia markedly altered the expression of PVT1, Srf, Ctgf, miR-186, and miR-26b in a rat model. MiR-186 binding sites in the sequences of Srf mRNA and PVT1 were confirmed by luciferase assays, indicating that miR-186 may interact with both PVT1 and Srf mRNA. Additionally, miR-26b binding sites were identified in the sequences of Ctgf mRNA and PVT1, suggesting that miR-26b may interact with both PVT1 and Ctgf mRNA. In line with this, we found that overexpression of PVT1 reduced expression of miR-26b and miR-186 but activated expression of Srf, Ctgf, LC3B-II, and Beclin-I. CONCLUSIONS Upregulation of PVT1 by exposure to hypoxia promoted the expression of CTGF, leading to deregulation of autophagy and abnormal proliferation of PASMCs. Dysregulation of the miR-186/Srf/Ctgf and miR-26b/Ctgf signaling pathways may be involved in the pathogenesis of hypoxia-induced PASMCs.
Collapse
Affiliation(s)
- Xingyuan Xia
- Department of respiratory and critical care medicine, the first affiliated hospital of Anhui medical university, Hefei 230022, China
| | - Ling Huang
- Department of Infectious Diseases, Hefei second people's hospital, Hefei 230001, China
| | - Sijing Zhou
- Department of Occupational Diseases, Hefei third clinical college of Anhui Medical University, Hefei 230022, China
| | - Rui Han
- Department of respiratory and critical care medicine, the first affiliated hospital of Anhui medical university, Hefei 230022, China
| | - Pulin Li
- Department of respiratory and critical care medicine, the first affiliated hospital of Anhui medical university, Hefei 230022, China
| | - Enze Wang
- Department of respiratory and critical care medicine, the first affiliated hospital of Anhui medical university, Hefei 230022, China
| | - Wanli Xia
- Department of thoracic surgery, the first affiliated hospital of Anhui medical university, Hefei 230022, China
| | - Guanghe Fei
- Department of respiratory and critical care medicine, the first affiliated hospital of Anhui medical university, Hefei 230022, China.
| | - Daxiong Zeng
- Department of pulmonary and critical care medicine, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou 215006, China.
| | - Ran Wang
- Department of respiratory and critical care medicine, the first affiliated hospital of Anhui medical university, Hefei 230022, China.
| |
Collapse
|
46
|
Norda S, Papadantonaki R. Regulation of cells of the arterial wall by hypoxia and its role in the development of atherosclerosis. VASA 2023; 52:6-21. [PMID: 36484144 DOI: 10.1024/0301-1526/a001044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The cell's response to hypoxia depends on stabilization of the hypoxia-inducible factor 1 complex and transactivation of nuclear factor kappa-B (NF-κB). HIF target gene transcription in cells resident to atherosclerotic lesions adjoins a complex interplay of cytokines and mediators of inflammation affecting cholesterol uptake, migration, and inflammation. Maladaptive activation of the HIF-pathway and transactivation of nuclear factor kappa-B causes monocytes to invade early atherosclerotic lesions, maintaining inflammation and aggravating a low-oxygen environment. Meanwhile HIF-dependent upregulation of the ATP-binding cassette transporter ABCA1 causes attenuation of cholesterol efflux and ultimately macrophages becoming foam cells. Hypoxia facilitates neovascularization by upregulation of vascular endothelial growth factor (VEGF) secreted by endothelial cells and vascular smooth muscle cells lining the arterial wall destabilizing the plaque. HIF-knockout animal models and inhibitor studies were able to show beneficial effects on atherogenesis by counteracting the HIF-pathway in the cell wall. In this review the authors elaborate on the up-to-date literature on regulation of cells of the arterial wall through activation of HIF-1α and its effect on atherosclerotic plaque formation.
Collapse
Affiliation(s)
- Stephen Norda
- Department of Cardiovascular Medicine, University Hospital Münster, Germany
| | - Rosa Papadantonaki
- Emergency Department, West Middlesex University Hospital, Chelsea and Westminster NHS Trust, London, United Kingdom
| |
Collapse
|
47
|
Sulforaphane alleviated vascular remodeling in hypoxic pulmonary hypertension via inhibiting inflammation and oxidative stress. J Nutr Biochem 2023; 111:109182. [PMID: 36220525 DOI: 10.1016/j.jnutbio.2022.109182] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/05/2022]
Abstract
Hypoxic pulmonary hypertension (HPH) is a cardiopulmonary disease featured by pulmonary vascular remodeling, which is due to abnormal proliferation of pulmonary artery smooth muscle cells (PASMCs) and dysfunction of endothelial cells (ECs). Sulforaphane (SFN) is a natural isothiocyanate extracted from cruciferous vegetables with promising anti-inflammatory and anti-oxidative activities. This study aimed to explore the effect and mechanism of SFN on HPH. Male mice were exposed to persistent chronic hypoxia for 4 weeks to induce HPH. The results demonstrated that SFN repressed the increased right ventricular systolic pressure (RVSP) and attenuated the right ventricular hypertrophy and pulmonary arteries remodeling in HPH mice. In particular, after SFN treatment, the CD68 positive cells in lung sections were reduced; TNF-α and IL-6 levels in lungs and serum declined; activation of NF-κB in PASMCs was inhibited in response to hypoxia. Besides, SFN enhanced the superoxide dismutase (SOD) activity in serum, SOD2 expression, total glutathione levels, and GSH/GSSG ratio in PASMCs, along with a decrease in malondialdehyde (MDA) contents in serum and ROS production in PASMCs after hypoxia exposure. Notably, SFN, as an Nrf2 activator, reversed the reduction in Nrf2 expression in hypoxic PASMCs. In vitro, SFN treatment inhibited hyperproliferation and promoted apoptosis of PASMCs under hypoxia conditions. SFN also prevented the apoptosis of pulmonary microvascular ECs caused by hypoxia. Therefore, these data suggested that SFN could significantly restrain the inflammation and oxidative stress, thereby inhibiting PASMCs proliferation, promoting PASMCs apoptosis, and reversing hypoxia injury in ECs to improve pulmonary vascular remodeling.
Collapse
|
48
|
Krása K, Vajnerová O, Ďurišová J, Minaříková M, Miková D, Srbová M, Chalupský K, Kaftanová B, Hampl V. Simvastatin and dehydroepiandrosterone sulfate effects against hypoxic pulmonary hypertension are not additive. Physiol Res 2022. [DOI: 10.33549/physiolres.934913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Pulmonary hypertension is a group of disorders characterized by elevated mean pulmonary artery pressure (mPAP) and pulmonary vascular resistance. To test our hypothesis that combining two drugs useful in experimental pulmonary hypertension, statins and dehydroepiandrosterone sulfate (DHEA S), is more effective than either agent alone, we induced pulmonary hypertension in adult male rats by exposing them to hypoxia (10%O2) for 3 weeks. We treated them with simvastatin (60 mg/l) and DHEA S (100 mg/l) in drinking water, either alone or in combination. Both simvastatin and DHEA S reduced mPAP (froma mean±s.d. of 34.4±4.4 to 27.6±5.9 and 26.7±4.8 mmHg, respectively), yet their combination was not more effective (26.7±7.9 mmHg). Differences in the degree of oxidative stress (indicated by malondialdehydeplasma concentration),the rate of superoxide production (electron paramagnetic resonance), or blood nitric oxide levels (chemiluminescence) did not explain the lack of additivity of the effect of DHEA S and simvastatin on pulmonary hypertension. We propose that the main mechanism of both drugs on pulmonary hypertension could be their inhibitory effect on 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase, which could explain their lack of additivity.
Collapse
Affiliation(s)
- K Krása
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Astragaloside IV in Hypoxic Pulmonary Hypertension: an In Vivo and In Vitro Experiments. Appl Biochem Biotechnol 2022; 194:6319-6334. [PMID: 35917100 DOI: 10.1007/s12010-022-04027-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2022] [Indexed: 01/20/2023]
Abstract
The objective of study was to find the actions of astragaloside IV (ASIV) on PAH due to monocrotaline (MCT) in rats. Intraperitoneal injection of 60 mg/ kg MCT was injected to rats, come after by ASIV treatment with doses of 10 mg/kg daily once or 30 mg/kg of dose for twenty one days once daily. RVSP, serum inflammatory cytokines, RVH, and the other pathological parameters of the pulmonary arteries were evaluated. ASIV attenuated the increased pulmonary artery pressure and its structure in rat modification due to MCT. Additionally, ASIV avoided the rise in tumor necrosis factor (TNF)-α and interleukin (IL)-1β levels in the blood serum, and their expression of gene in the pleural parts, which was caused by MCT. ASIV promoted apoptotic resistance of HPASMCs and weakened the hypoxia-induced proliferation. ASIV shows over expression of caspase-3, caspase-9, p21, p27, and Bax, while ASIV downregulated Bcl-2, phospho-ERK, HIF-1α, and protein appearance in HPASMCs. These findings of the in vitro and the in vivo experiment indicate that astragaloside IV exerts protective effects against pulmonary arterial pressure, and may have action to be improved into pharmacological drug for pulmonary arterial pressure treatment.
Collapse
|
50
|
KRÁSA K, VAJNEROVÁ O, ĎURIŠOVÁ J, MINAŘÍKOVÁ M, MIKOVÁ D, SRBOVÁ M, CHALUPSKÝ K, KAFTANOVÁ B, HAMPL V. Simvastatin and dehydroepiandrosterone sulfate effects against hypoxic pulmonary hypertension are not additive. Physiol Res 2022; 71:801-810. [PMID: 36426885 PMCID: PMC9814989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pulmonary hypertension is a group of disorders characterized by elevated mean pulmonary artery pressure (mPAP) and pulmonary vascular resistance. To test our hypothesis that combining two drugs useful in experimental pulmonary hypertension, statins and dehydroepiandrosterone sulfate (DHEA S), is more effective than either agent alone, we induced pulmonary hypertension in adult male rats by exposing them to hypoxia (10%O2) for 3 weeks. We treated them with simvastatin (60 mg/l) and DHEA S (100 mg/l) in drinking water, either alone or in combination. Both simvastatin and DHEA S reduced mPAP (froma mean±s.d. of 34.4±4.4 to 27.6±5.9 and 26.7±4.8 mmHg, respectively), yet their combination was not more effective (26.7±7.9 mmHg). Differences in the degree of oxidative stress (indicated by malondialdehydeplasma concentration),the rate of superoxide production (electron paramagnetic resonance), or blood nitric oxide levels (chemiluminescence) did not explain the lack of additivity of the effect of DHEA S and simvastatin on pulmonary hypertension. We propose that the main mechanism of both drugs on pulmonary hypertension could be their inhibitory effect on 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase, which could explain their lack of additivity.
Collapse
Affiliation(s)
- Kryštof KRÁSA
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic,Military University Hospital Prague, Department of Internal Medicine, First Faculty of Medicine, Charles University and Military University Hospital, Prague, Czech Republic
| | - Olga VAJNEROVÁ
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jana ĎURIŠOVÁ
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marcela MINAŘÍKOVÁ
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Dana MIKOVÁ
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martina SRBOVÁ
- Department of Medical Chemistry and Clinical Biochemistry, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Karel CHALUPSKÝ
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Barbora KAFTANOVÁ
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Václav HAMPL
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|