1
|
Jiang M, Li P, Han X, Jiang L, Han L, He Q, Yang C, Sun Z, Wang Y, Cao Y, Liu X, Wu W. Marine-Derived Bioactive Compounds: A Promising Strategy for Ameliorating Skeletal Muscle Dysfunction in COPD. Mar Drugs 2025; 23:158. [PMID: 40278279 PMCID: PMC12028452 DOI: 10.3390/md23040158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is frequently accompanied by skeletal muscle dysfunction, a critical and severe extrapulmonary complication. This dysfunction contributes to reduced exercise capacity, increased frequency of acute exacerbations, and elevated mortality, serving as an independent risk factor for poor prognosis in COPD patients. Owing to the unique physicochemical conditions of the marine environment, marine-derived bioactive compounds exhibit potent anti-inflammatory and antioxidant properties, demonstrating therapeutic potential for ameliorating COPD skeletal muscle dysfunction. This review summarizes marine-derived bioactive compounds with promising efficacy against skeletal muscle dysfunction in COPD, including polysaccharides, lipids, polyphenols, peptides, and carotenoids. The discussed compounds have shown bioactivities in promoting skeletal muscle health and suppressing muscle atrophy, thereby providing potential strategies for the prevention and treatment of COPD skeletal muscle dysfunction. These findings may expand the therapeutic strategies for managing COPD skeletal muscle dysfunction.
Collapse
Affiliation(s)
- Meiling Jiang
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai 200438, China; (M.J.); (X.H.); (L.H.); (Q.H.); (C.Y.); (Z.S.); (Y.C.)
| | - Peijun Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (P.L.); (L.J.); (Y.W.)
| | - Xiaoyu Han
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai 200438, China; (M.J.); (X.H.); (L.H.); (Q.H.); (C.Y.); (Z.S.); (Y.C.)
| | - Linhong Jiang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (P.L.); (L.J.); (Y.W.)
| | - Lihua Han
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai 200438, China; (M.J.); (X.H.); (L.H.); (Q.H.); (C.Y.); (Z.S.); (Y.C.)
| | - Qinglan He
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai 200438, China; (M.J.); (X.H.); (L.H.); (Q.H.); (C.Y.); (Z.S.); (Y.C.)
| | - Chen Yang
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai 200438, China; (M.J.); (X.H.); (L.H.); (Q.H.); (C.Y.); (Z.S.); (Y.C.)
| | - Zhichao Sun
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai 200438, China; (M.J.); (X.H.); (L.H.); (Q.H.); (C.Y.); (Z.S.); (Y.C.)
| | - Yingqi Wang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (P.L.); (L.J.); (Y.W.)
| | - Yuanyuan Cao
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai 200438, China; (M.J.); (X.H.); (L.H.); (Q.H.); (C.Y.); (Z.S.); (Y.C.)
| | - Xiaodan Liu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (P.L.); (L.J.); (Y.W.)
| | - Weibing Wu
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai 200438, China; (M.J.); (X.H.); (L.H.); (Q.H.); (C.Y.); (Z.S.); (Y.C.)
| |
Collapse
|
2
|
Han X, Li P, Jiang M, Cao Y, Wang Y, Jiang L, Liu X, Wu W. Autophagy in skeletal muscle dysfunction of chronic obstructive pulmonary disease: implications, mechanisms, and perspectives. J Zhejiang Univ Sci B 2025; 26:227-239. [PMID: 40082202 PMCID: PMC11906388 DOI: 10.1631/jzus.b2300680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/22/2023] [Indexed: 03/16/2025]
Abstract
Skeletal muscle dysfunction is a common extrapulmonary comorbidity of chronic obstructive pulmonary disease (COPD) and is associated with decreased quality-of-life and survival in patients. The autophagy lysosome pathway is one of the proteolytic systems that significantly affect skeletal muscle structure and function. Intriguingly, both promoting and inhibiting autophagy have been observed to improve COPD skeletal muscle dysfunction, yet the mechanism is unclear. This paper first reviewed the effects of macroautophagy and mitophagy on the structure and function of skeletal muscle in COPD, and then explored the mechanism of autophagy mediating the dysfunction of skeletal muscle in COPD. The results showed that macroautophagy- and mitophagy-related proteins were significantly increased in COPD skeletal muscle. Promoting macroautophagy in COPD improves myogenesis and replication capacity of muscle satellite cells, while inhibiting macroautophagy in COPD myotubes increases their diameters. Mitophagy helps to maintain mitochondrial homeostasis by removing impaired mitochondria in COPD. Autophagy is a promising target for improving COPD skeletal muscle dysfunction, and further research should be conducted to elucidate the specific mechanisms by which autophagy mediates COPD skeletal muscle dysfunction, with the aim of enhancing our understanding in this field.
Collapse
Affiliation(s)
- Xiaoyu Han
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai 200438, China
| | - Peijun Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Meiling Jiang
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai 200438, China
| | - Yuanyuan Cao
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai 200438, China
| | - Yingqi Wang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Linhong Jiang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaodan Liu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
- Institute of Rehabilitation Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China.
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai 201203, China.
| | - Weibing Wu
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
3
|
Rahman FA, Baechler BL, Quadrilatero J. Key considerations for investigating and interpreting autophagy in skeletal muscle. Autophagy 2024; 20:2121-2132. [PMID: 39007805 PMCID: PMC11423691 DOI: 10.1080/15548627.2024.2373676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Skeletal muscle plays a crucial role in generating force to facilitate movement. Skeletal muscle is a heterogenous tissue composed of diverse fibers with distinct contractile and metabolic profiles. The intricate classification of skeletal muscle fibers exists on a continuum ranging from type I (slow-twitch, oxidative) to type II (fast-twitch, glycolytic). The heterogenous distribution and characteristics of fibers within and between skeletal muscles profoundly influences cellular signaling; however, this has not been broadly discussed as it relates to macroautophagy/autophagy. The growing interest in skeletal muscle autophagy research underscores the necessity of comprehending the interplay between autophagic responses among skeletal muscles and fibers with different contractile properties, metabolic profiles, and other related signaling processes. We recommend approaching the interpretation of autophagy findings with careful consideration for two key reasons: 1) the distinct behaviors and responses of different skeletal muscles or fibers to various perturbations, and 2) the potential impact of alterations in skeletal muscle fiber type or metabolic profile on observed autophagic outcomes. This review provides an overview of the autophagic profile and response in skeletal muscles/fibers of different types and metabolic profiles. Further, this review discusses autophagic findings in various conditions and diseases that may differentially affect skeletal muscle. Finally, we provide key points of consideration to better enable researchers to fine-tune the design and interpretation of skeletal muscle autophagy experiments.Abbreviation: AKT1: AKT serine/threonine kinase 1; AMPK: AMP-activated protein kinase; ATG: autophagy related; ATG4: autophagy related 4 cysteine peptidase; ATG5: autophagy related 5; ATG7: autophagy related 7; ATG12: autophagy related 12; BECN1: beclin 1; BNIP3: BCL2 interacting protein 3; CKD: chronic kidney disease; COPD: chronic obstructive pulmonary disease; CS: citrate synthase; DIA: diaphragm; EDL: extensor digitorum longus; FOXO3/FOXO3A: forkhead box O3; GAS; gastrocnemius; GP: gastrocnemius-plantaris complex; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAPK: mitogen-activated protein kinase; MYH: myosin heavy chain; PINK1: PTEN induced kinase 1; PLANT: plantaris; PRKN: parkin RBR E3 ubiquitin protein ligase; QUAD: quadriceps; RA: rectus abdominis; RG: red gastrocnemius; RQ: red quadriceps; SOL: soleus; SQSTM1: sequestosome 1; TA: tibialis anterior; WG: white gastrocnemius; WQ: white quadriceps; WVL: white vastus lateralis; VL: vastus lateralis; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Fasih A. Rahman
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Brittany L. Baechler
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Joe Quadrilatero
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
4
|
Lu H, Zhang Q, Long J. Prospective study of protein intake and mortality among US adults with chronic obstructive pulmonary disease. Front Nutr 2024; 11:1399038. [PMID: 39114119 PMCID: PMC11303319 DOI: 10.3389/fnut.2024.1399038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Background Protein is crucial for the rehabilitation of patients with chronic obstructive pulmonary disease (COPD), and appropriate daily protein intake is essential for COPD patients. However, the specific role of protein intake in COPD and its impact on mortality remain uncertain. This study aims to ascertain the relationship between protein intake and mortality in COPD patients. Methods This investigation included 522 adult COPD patients from the National Health and Nutrition Examination Survey (NHANES) between 2013 and 2018, with a focus on evaluating protein intake. Multivariate Cox proportional hazard models were constructed to analyze the correlation between protein intake and the prognosis of COPD patients. Additionally, the restricted cubic spline (RCS) was employed to investigate the potential non-linear association between protein intake and mortality. Results A total of 522 patients with COPD were categorized into 4 groups based on the quartiles of protein intake: Q1 (< 25th percentile, 11.7-48.5 gm), Q2 (25-50th percentile, 48.5-67.7 gm), Q3 (50-75th percentile, 67.7-94.3 gm), and Q4 (≥ 75th percentile, 94.3-266.6 gm). Cox regression analysis revealed a significant trend in the p value of the Q3 group compared to the Q1 group when adjusting for other variables. The RCS-fitted Cox regression model indicated no non-linear relationship between protein intake levels and COPD mortality. Conclusion There is no evidence of a non-linear relationship between protein intake and all-cause mortality in COPD patients. Further investigation is warranted to comprehend the intricate relationship between protein intake and COPD outcomes.
Collapse
Affiliation(s)
- HuiLun Lu
- The Department of Respiratory Medicine, Shenzhen Longgang Second People’s Hospital, Shenzhen, Guangdong, China
| | - Qi Zhang
- Department of Anesthesiology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jiao Long
- Department of Anesthesiology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
5
|
Zhang J, Xu S, Liu J, Liu T, Fan Z, Zhou Y, Basnet J, Zhang L, Li X, Yang J, Xing X. Construction of a ceRNA network and screening of potential biomarkers and molecular targets in male smokers with chronic obstructive pulmonary disease. Front Genet 2024; 15:1376721. [PMID: 38933922 PMCID: PMC11199688 DOI: 10.3389/fgene.2024.1376721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) play an important role in the occurrence and development of diseases. However, the role of circRNAs in male smokers with chronic obstructive pulmonary disease (COPD) remains unclear. METHODS Stable COPD patients and healthy controls were recruited. Peripheral blood mononuclear cells (PBMCs) were extracted. After high-throughput RNA sequencing (RNA-Seq) of PBMCs, a bioinformatics method was used to analyse differentially expressed (DE) circRNAs (DEcircRNAs) and mRNAs (DEmRNAs). RESULTS Total of 114 DEcircRNAs and 58 DEmRNAs were identified. Functional enrichment analysis showed that processes related to COPD include the regulation of interleukin (IL)-18, IL-5 and the NLRP3 inflammasome; differentiation of T helper type 1 (Th1), Th2, and Th17 cells, and the AMPK, Wnt, JAK-STAT, and PI3K-Akt signalling pathways. In the protein-protein interaction (PPI) network, the core genes were MYO16, MYL4, SCN4A, NRCAM, HMCN1, MYOM2, and IQSEC3. Small-molecule prediction results revealed potential drugs for the COPD treatment. Additionally, the circRNA-miRNA-mRNA competitive endogenous RNA (ceRNA) regulatory network was constructed. CONCLUSION This study identified a set of dysregulated circRNAs and mRNAs and revealed potentially important genes, pathways, new small-molecule drugs and ceRNA regulatory networks in male smokers with COPD. These circRNAs might be prospective biomarkers or potential molecular targets of the ceRNA mechanism for COPD.
Collapse
Affiliation(s)
- Jihua Zhang
- Department of Respiratory Medicine, The People’s Hospital of Yuxi City, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan, China
| | - Shuanglan Xu
- Key Laboratory of Respiratory Disease Research of Department of Education of Yunnan Province, Department of Respiratory Medicine, The Affiliated Hospital of Yunnan University, The Second People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Jie Liu
- Department of Dermatology and Venereology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ting Liu
- Key Laboratory of Respiratory Disease Research of Department of Education of Yunnan Province, Department of Respiratory Medicine, The Affiliated Hospital of Yunnan University, The Second People’s Hospital of Yunnan Province, Kunming, Yunnan, China
- Graduate School, Kunming Medical University, Kunming, Yunnan, China
| | - Zeqin Fan
- Key Laboratory of Respiratory Disease Research of Department of Education of Yunnan Province, Department of Respiratory Medicine, The Affiliated Hospital of Yunnan University, The Second People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Yunchun Zhou
- Department of Respiratory Medicine, The People’s Hospital of Yuxi City, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan, China
| | - Jorina Basnet
- Key Laboratory of Respiratory Disease Research of Department of Education of Yunnan Province, Department of Respiratory Medicine, The Affiliated Hospital of Yunnan University, The Second People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Liqiong Zhang
- Department of Respiratory Medicine, The People’s Hospital of Yuxi City, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan, China
| | - Xiao Li
- Department of Respiratory Medicine, The People’s Hospital of Yuxi City, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan, China
| | - Jiao Yang
- First Department of Respiratory Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xiqian Xing
- Key Laboratory of Respiratory Disease Research of Department of Education of Yunnan Province, Department of Respiratory Medicine, The Affiliated Hospital of Yunnan University, The Second People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| |
Collapse
|
6
|
Yu H, Zhu G, Wang D, Huang X, Han F. PI3K/AKT/FOXO3a Pathway Induces Muscle Atrophy by Ubiquitin-Proteasome System and Autophagy System in COPD Rat Model. Cell Biochem Biophys 2024; 82:805-815. [PMID: 38386223 DOI: 10.1007/s12013-024-01232-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
Muscle atrophy is a common extrapulmonary co-morbidity affecting about 20% of patients with COPD. However, the mechanism of muscle atrophy in COPD remains unclear. This study investigated the role of the ubiquitin-proteasome system (UPS) and the autophagy system in COPD muscle atrophy and its mechanism. A COPD rat model was established to evaluate the in vitro effects of the UPS and the autophagy system in muscle atrophy. In addition, the role of the UPS, autophagy systems, and the expressions of the PI3K/AKT/FOXO3a pathway were studied in the CSE-induced L6 myoblast cells. Furthermore, we evaluated the effect of FOXO3a in the CSE-induced L6 myoblast cells using siRNA-FOXO3a. The results showed that the expression of ubiquitin-related proteins and autophagy-related proteins were significantly increased in the COPD rat model and CSE-induced L6 myoblast cells. At the same time, there was a concurrent decrease in the phosphorylation protein expression of PI3K and AKT, but the transcriptional activity of FOXO3a was increased in CSE-induced L6 myoblast cells. And siRNA-FOXO3a significantly decreased the expression level of the UPS and the autophagy system in CSE-induced L6 myoblast cells. These results suggest that PI3K/AKT/FOXO3a participates in COPD muscle atrophy by regulating the UPS and the autophagy systems.
Collapse
Affiliation(s)
- Haiyang Yu
- Department of Respiratory Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guiyin Zhu
- Department of Respiratory Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongmei Wang
- Department of Respiratory Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuan Huang
- Department of Respiratory Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengfeng Han
- Department of Respiratory Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
7
|
Yuki M, Ishimori T, Kono S, Nagoshi S, Saito M, Isago H, Tamiya H, Fukuda K, Miyashita N, Ishii T, Matsuzaki H, Hiraishi Y, Saito A, Jo T, Nagase T, Mitani A. A Japanese herbal medicine (kampo), hochuekkito (TJ-41), has anti-inflammatory effects on the chronic obstructive pulmonary disease mouse model. Sci Rep 2024; 14:10361. [PMID: 38710754 PMCID: PMC11074295 DOI: 10.1038/s41598-024-60646-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive disease that is characterized by chronic airway inflammation. A Japanese herbal medicine, hochuekkito (TJ-41), is prominently used for chronic inflammatory diseases in Japan. This study aimed to analyze the anti-inflammatory effect of TJ-41 in vivo and its underlying mechanisms. We created a COPD mouse model using intratracheal administration of porcine pancreatic elastase and lipopolysaccharide (LPS) and analyzed them with and without TJ-41 administration. A TJ-41-containing diet reduced inflammatory cell infiltration of the lungs in the acute and chronic phases and body weight loss in the acute phase. In vitro experiments revealed that TJ-41 treatment suppressed the LPS-induced inflammatory cytokines in BEAS-2B cells. Furthermore, TJ-41 administration activated the AMP-activated protein kinase (AMPK) pathway and inhibited the mechanistic target of the rapamycin (mTOR) pathway, both in cellular and mouse experiments. We concluded that TJ-41 administration reduced airway inflammation in the COPD mouse model, which might be regulated by the activated AMPK pathway, and inhibited the mTOR pathway.
Collapse
Affiliation(s)
- Masaaki Yuki
- Department of Respiratory Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Taro Ishimori
- Department of Respiratory Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Shiho Kono
- Department of Respiratory Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Saki Nagoshi
- Department of Respiratory Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Minako Saito
- Department of Respiratory Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Hideaki Isago
- Department of Respiratory Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Hiroyuki Tamiya
- Department of Respiratory Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
- Division for Health Service Promotion, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Kensuke Fukuda
- Department of Respiratory Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Naoya Miyashita
- Department of Respiratory Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Takashi Ishii
- Department of Respiratory Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
- Division for Health Service Promotion, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Hirotaka Matsuzaki
- Department of Respiratory Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
- Center for Epidemiology and Preventive Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Yoshihisa Hiraishi
- Department of Respiratory Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Akira Saito
- Department of Respiratory Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Taisuke Jo
- Department of Respiratory Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
- Department of Health Services Research, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Takahide Nagase
- Department of Respiratory Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Akihisa Mitani
- Department of Respiratory Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
| |
Collapse
|
8
|
Levra S, Rosani U, Gnemmi I, Brun P, Leonardi A, Carriero V, Bertolini F, Balbi B, Profita M, Ricciardolo FLM, Di Stefano A. Impaired autophagy in the lower airways and lung parenchyma in stable COPD. ERJ Open Res 2023; 9:00423-2023. [PMID: 38111541 PMCID: PMC10726222 DOI: 10.1183/23120541.00423-2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/24/2023] [Indexed: 12/20/2023] Open
Abstract
Background There is increasing evidence of autophagy activation in COPD, but its role is complex and probably regulated through cell type-specific mechanisms. This study aims to investigate the autophagic process at multiple levels within the respiratory system, using different methods to clarify conflicting results reported so far. Methods This cross-sectional study was performed on bronchial biopsies and peripheral lung samples obtained from COPD patients (30 and 12 per sample type, respectively) and healthy controls (25 and 22 per sample type, respectively), divided by smoking history. Subjects were matched for age and smoking history. We analysed some of the most important proteins involved in autophagosome formation, such as LC3 and p62, as well as some molecules essential for lysosome function, such as lysosome-associated membrane protein 1 (LAMP1). Immunohistochemistry was used to assess the autophagic process in both sample types. ELISA and transcriptomic analysis were performed on lung samples. Results We found increased autophagic stimulus in smoking subjects, regardless of respiratory function. This was revealed by immunohistochemistry through a significant increase in LC3 (p<0.01) and LAMP1 (p<0.01) in small airway bronchiolar epithelium, alveolar septa and alveolar macrophages. Similar results were obtained in bronchial biopsy epithelium by evaluating LC3B (p<0.05), also increased in homogenate lung tissue using ELISA (p<0.05). Patients with COPD, unlike the others, showed an increase in p62 by ELISA (p<0.05). No differences were found in transcriptomics analysis. Conclusions Different techniques, applied at post-transcriptional level, confirm that cigarette smoke stimulates autophagy at multiple levels inside the respiratory system, and that autophagy failure may characterise COPD.
Collapse
Affiliation(s)
- Stefano Levra
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Umberto Rosani
- Department of Biology, University of Padova, Padua, Italy
| | - Isabella Gnemmi
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell'Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri, IRCCS, Veruno (Novara), Italy
| | - Paola Brun
- Department of Molecular Medicine, Histology Unit, University of Padova, Padua, Italy
| | - Andrea Leonardi
- Department of Neuroscience, Ophthalmology Unit, University of Padova, Padua, Italy
| | - Vitina Carriero
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Francesca Bertolini
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | | | - Mirella Profita
- Section of Palermo, Institute of Translational Pharmacology, National Research Council (IFT-CNR), Palermo, Italy
| | - Fabio Luigi Massimo Ricciardolo
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Section of Palermo, Institute of Translational Pharmacology, National Research Council (IFT-CNR), Palermo, Italy
- Severe Asthma and Rare Lung Disease Unit, San Luigi Gonzaga University Hospital, Turin, Italy
- These authors contributed equally
| | - Antonino Di Stefano
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell'Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri, IRCCS, Veruno (Novara), Italy
- These authors contributed equally
| |
Collapse
|
9
|
Vignaud J, Loiseau C, Hérault J, Mayer C, Côme M, Martin I, Ulmann L. Microalgae Produce Antioxidant Molecules with Potential Preventive Effects on Mitochondrial Functions and Skeletal Muscular Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12051050. [PMID: 37237915 DOI: 10.3390/antiox12051050] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
In recent years, microalgae have become a source of molecules for a healthy life. Their composition of carbohydrates, peptides, lipids, vitamins and carotenoids makes them a promising new source of antioxidant molecules. Skeletal muscle is a tissue that requires constant remodeling via protein turnover, and its regular functioning consumes energy in the form of adenosine triphosphate (ATP), which is produced by mitochondria. Under conditions of traumatic exercise or muscular diseases, a high production of reactive oxygen species (ROS) at the origin of oxidative stress (OS) will lead to inflammation and muscle atrophy, with life-long consequences. In this review, we describe the potential antioxidant effects of microalgae and their biomolecules on mitochondrial functions and skeletal muscular oxidative stress during exercises or in musculoskeletal diseases, as in sarcopenia, chronic obstructive pulmonary disease (COPD) and Duchenne muscular dystrophy (DMD), through the increase in and regulation of antioxidant pathways and protein synthesis.
Collapse
Affiliation(s)
- Jordi Vignaud
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Céline Loiseau
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Josiane Hérault
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Claire Mayer
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Martine Côme
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Isabelle Martin
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Lionel Ulmann
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| |
Collapse
|
10
|
Henrot P, Dupin I, Schilfarth P, Esteves P, Blervaque L, Zysman M, Gouzi F, Hayot M, Pomiès P, Berger P. Main Pathogenic Mechanisms and Recent Advances in COPD Peripheral Skeletal Muscle Wasting. Int J Mol Sci 2023; 24:ijms24076454. [PMID: 37047427 PMCID: PMC10095391 DOI: 10.3390/ijms24076454] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a worldwide prevalent respiratory disease mainly caused by tobacco smoke exposure. COPD is now considered as a systemic disease with several comorbidities. Among them, skeletal muscle dysfunction affects around 20% of COPD patients and is associated with higher morbidity and mortality. Although the histological alterations are well characterized, including myofiber atrophy, a decreased proportion of slow-twitch myofibers, and a decreased capillarization and oxidative phosphorylation capacity, the molecular basis for muscle atrophy is complex and remains partly unknown. Major difficulties lie in patient heterogeneity, accessing patients' samples, and complex multifactorial process including extrinsic mechanisms, such as tobacco smoke or disuse, and intrinsic mechanisms, such as oxidative stress, hypoxia, or systemic inflammation. Muscle wasting is also a highly dynamic process whose investigation is hampered by the differential protein regulation according to the stage of atrophy. In this review, we report and discuss recent data regarding the molecular alterations in COPD leading to impaired muscle mass, including inflammation, hypoxia and hypercapnia, mitochondrial dysfunction, diverse metabolic changes such as oxidative and nitrosative stress and genetic and epigenetic modifications, all leading to an impaired anabolic/catabolic balance in the myocyte. We recapitulate data concerning skeletal muscle dysfunction obtained in the different rodent models of COPD. Finally, we propose several pathways that should be investigated in COPD skeletal muscle dysfunction in the future.
Collapse
Affiliation(s)
- Pauline Henrot
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33604 Pessac, France
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33604 Pessac, France
- CHU de Bordeaux, Service d'Exploration Fonctionnelle Respiratoire, CIC 1401, Service de Pneumologie, F-33604 Pessac, France
| | - Isabelle Dupin
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33604 Pessac, France
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33604 Pessac, France
| | - Pierre Schilfarth
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33604 Pessac, France
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33604 Pessac, France
- CHU de Bordeaux, Service d'Exploration Fonctionnelle Respiratoire, CIC 1401, Service de Pneumologie, F-33604 Pessac, France
| | - Pauline Esteves
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33604 Pessac, France
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33604 Pessac, France
| | - Léo Blervaque
- PhyMedExp, INSERM-CNRS-Montpellier University, F-34090 Montpellier, France
| | - Maéva Zysman
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33604 Pessac, France
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33604 Pessac, France
- CHU de Bordeaux, Service d'Exploration Fonctionnelle Respiratoire, CIC 1401, Service de Pneumologie, F-33604 Pessac, France
| | - Fares Gouzi
- PhyMedExp, INSERM-CNRS-Montpellier University, CHRU Montpellier, F-34090 Montpellier, France
| | - Maurice Hayot
- PhyMedExp, INSERM-CNRS-Montpellier University, CHRU Montpellier, F-34090 Montpellier, France
| | - Pascal Pomiès
- PhyMedExp, INSERM-CNRS-Montpellier University, F-34090 Montpellier, France
| | - Patrick Berger
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33604 Pessac, France
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33604 Pessac, France
- CHU de Bordeaux, Service d'Exploration Fonctionnelle Respiratoire, CIC 1401, Service de Pneumologie, F-33604 Pessac, France
| |
Collapse
|
11
|
Impaired muscle stem cell function and abnormal myogenesis in acquired myopathies. Biosci Rep 2023; 43:232343. [PMID: 36538023 PMCID: PMC9829652 DOI: 10.1042/bsr20220284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/08/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Skeletal muscle possesses a high plasticity and a remarkable regenerative capacity that relies mainly on muscle stem cells (MuSCs). Molecular and cellular components of the MuSC niche, such as immune cells, play key roles to coordinate MuSC function and to orchestrate muscle regeneration. An abnormal infiltration of immune cells and/or imbalance of pro- and anti-inflammatory cytokines could lead to MuSC dysfunctions that could have long lasting effects on muscle function. Different genetic variants were shown to cause muscular dystrophies that intrinsically compromise MuSC function and/or disturb their microenvironment leading to impaired muscle regeneration that contributes to disease progression. Alternatively, many acquired myopathies caused by comorbidities (e.g., cardiopulmonary or kidney diseases), chronic inflammation/infection, or side effects of different drugs can also perturb MuSC function and their microenvironment. The goal of this review is to comprehensively summarize the current knowledge on acquired myopathies and their impact on MuSC function. We further describe potential therapeutic strategies to restore MuSC regenerative capacity.
Collapse
|
12
|
Zhao H, Li P, Wang J. The role of muscle-specific MicroRNAs in patients with chronic obstructive pulmonary disease and skeletal muscle dysfunction. Front Physiol 2022; 13:954364. [PMID: 36338492 PMCID: PMC9633658 DOI: 10.3389/fphys.2022.954364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/11/2022] [Indexed: 11/27/2022] Open
Abstract
Skeletal muscle dysfunction is a systematic manifestation of chronic obstructive pulmonary disease (COPD), which is manifested through the changes in the respiratory and peripheral muscle fiber types, reducing muscle strength and endurance, and muscle atrophy. Muscle dysfunction limits the daily mobility, negatively affects the quality of life, and may increase the patient’s risk of mortality. MicroRNAs (miRNAs) as the regulators of gene expression, plays an important role in modulating skeletal muscle dysfunction in COPD by regulating skeletal muscle development (proliferation, differentiation), protein synthesis and degradation, inflammatory response, and metabolism. In particular, muscle-specific miRNAs (myomiRs) may play an important role in this process, although the different expression levels of myomiRs in COPD and skeletal muscle dysfunction and the mechanisms underlying their role remain unclear. In this paper, we review the differential expression of the myomiRs in COPD to identify myomiRs that play a role in skeletal muscle dysfunction in COPD. We further explore their possible mechanisms and action in order to provide new ideas for the prevention and treatment of the skeletal muscle dysfunction in COPD.
Collapse
Affiliation(s)
- Hui Zhao
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Peijun Li
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Jihong Wang
- School of Physical Education, Shanghai University of Sport, Shanghai, China
- *Correspondence: Jihong Wang,
| |
Collapse
|
13
|
Jaitovich A. Impaired regenerative capacity contributes to skeletal muscle dysfunction in chronic obstructive pulmonary disease. Am J Physiol Cell Physiol 2022; 323:C974-C989. [PMID: 35993519 PMCID: PMC9484993 DOI: 10.1152/ajpcell.00292.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 01/18/2023]
Abstract
Locomotor skeletal muscle dysfunction is a relevant comorbidity of chronic obstructive pulmonary disease (COPD) and is strongly associated with worse clinical outcomes including higher mortality. Over the last decades, a large body of literature helped characterize the process, defining the disruptive muscle phenotype caused by COPD that involves reduction in muscle mass, force-generation capacity, fatigue-tolerance, and regenerative potential following injury. A major limitation in the field has been the scarcity of well-calibrated animal models to conduct mechanistic research based on loss- and gain-of-function studies. This article provides an overall description of the process, the tools available to mechanistically investigate it, and the potential role of mitochondrially driven metabolic signals on the regulation muscle regeneration after injury in COPD. Finally, a description of future avenues to further expand on the area is proposed based on very recent evidence involving mitochondrial metabolic cues affecting myogenesis.
Collapse
Affiliation(s)
- Ariel Jaitovich
- Division of Pulmonary and Critical Care Medicine, Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| |
Collapse
|
14
|
Zhang L, Li D, Chang C, Sun Y. Myostatin/HIF2α-Mediated Ferroptosis is Involved in Skeletal Muscle Dysfunction in Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2022; 17:2383-2399. [PMID: 36185172 PMCID: PMC9519128 DOI: 10.2147/copd.s377226] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
Objective Methods Results Conclusion
Collapse
Affiliation(s)
- Lijiao Zhang
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, 100191, People’s Republic of China
| | - Danyang Li
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, 100191, People’s Republic of China
| | - Chun Chang
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, 100191, People’s Republic of China
| | - Yongchang Sun
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, 100191, People’s Republic of China
- Correspondence: Yongchang Sun, Email
| |
Collapse
|
15
|
Peñailillo L, Valladares-Ide D, Jannas-Velas S, Flores-Opazo M, Jalón M, Mendoza L, Nuñez I, Diaz-Patiño O. Effects of eccentric, concentric and eccentric/concentric training on muscle function and mass, functional performance, cardiometabolic health, quality of life and molecular adaptations of skeletal muscle in COPD patients: a multicentre randomised trial. BMC Pulm Med 2022; 22:278. [PMID: 35854255 PMCID: PMC9297587 DOI: 10.1186/s12890-022-02061-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/04/2022] [Indexed: 11/12/2022] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is the third cause of death worldwide. COPD is characterised by dyspnoea, limited exercise tolerance, and muscle dysfunction. Muscle dysfunction has been linked to dysregulation between muscle protein synthesis, myogenesis and degradation mechanisms. Conventional concentric cycling has been shown to improve several clinical outcomes and reduce muscle wasting in COPD patients. Eccentric cycling is a less explored exercise modality that allows higher training workloads imposing lower cardio-metabolic demand during exercise, which has shown to induce greater muscle mass and strength gains after training. Interestingly, the combination of eccentric and concentric cycling training has scarcely been explored. The molecular adaptations of skeletal muscle after exercise interventions in COPD have shown equivocal results. The mechanisms of muscle wasting in COPD and whether it can be reversed by exercise training are unclear. Therefore, this study aims two-fold: (1) to compare the effects of 12 weeks of eccentric (ECC), concentric (CONC), and combined eccentric/concentric (ECC/CONC) cycling training on muscle mass and function, cardiometabolic health, physical activity levels and quality of life in severe COPD patients; and (2) to examine the molecular adaptations regulating muscle growth after training, and whether they occur similarly in specific muscle fibres (i.e., I, IIa and IIx). Methods Study 1 will compare the effects of 12 weeks of CONC, ECC, versus ECC/CONC training on muscle mass and function, cardiometabolic health, levels of physical activity and quality of life of severe COPD patients using a multicentre randomised trial. Study 2 will investigate the effects of these training modalities on the molecular adaptations regulating muscle protein synthesis, myogenesis and muscle degradation in a subgroup of patients from Study 1. Changes in muscle fibres morphology, protein content, genes, and microRNA expression involved in skeletal muscle growth will be analysed in specific fibre-type pools. Discussion We aim to demonstrate that a combination of eccentric and concentric exercise could maximise the improvements in clinical outcomes and may be ideal for COPD patients. We also expect to unravel the molecular mechanisms underpinning muscle mass regulation after training in severe COPD patients. Trial Registry: Deutshches Register Klinischer Studien; Trial registration: DRKS00027331; Date of registration: 12 January 2022. https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00027331.
Collapse
Affiliation(s)
- Luis Peñailillo
- Exercise and Rehabilitation Sciences Laboratory, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, 700 Fernández Concha, Las Condes, 7591538, Santiago, Chile.
| | - Denisse Valladares-Ide
- Long Active Life Laboratory, Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| | - Sebastián Jannas-Velas
- Long Active Life Laboratory, Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| | | | | | - Laura Mendoza
- Respiratory Unit, Departamento de Medicina, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Ingrid Nuñez
- Department of Pulmonary Diseases, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago, Chile.,Department of Critical Care, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago, Chile
| | - Orlando Diaz-Patiño
- Department of Pulmonary Diseases, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago, Chile.,Department of Critical Care, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago, Chile
| |
Collapse
|
16
|
Balnis J, Drake LA, Singer DV, Vincent CE, Korponay TC, D’Armiento J, Lee CG, Elias JA, Singer HA, Jaitovich A. Deaccelerated Myogenesis and Autophagy in Genetically Induced Pulmonary Emphysema. Am J Respir Cell Mol Biol 2022; 66:623-637. [PMID: 35286819 PMCID: PMC9163640 DOI: 10.1165/rcmb.2021-0351oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/31/2022] [Indexed: 01/18/2023] Open
Abstract
Patients with chronic obstructive pulmonary disease (COPD)-pulmonary emphysema often develop locomotor muscle dysfunction, which entails reduced muscle mass and force-generation capacity and is associated with worse outcomes, including higher mortality. Myogenesis contributes to adult muscle integrity during injury-repair cycles. Injurious events crucially occur in the skeletal muscles of patients with COPD in the setting of exacerbations and infections, which lead to acute decompensations for limited periods of time, after which patients typically fail to recover the baseline status they had before the acute event. Autophagy, which is dysregulated in muscles from patients with COPD, is a key regulator of muscle stem-satellite- cells activation and myogenesis, yet very little research has so far mechanistically investigated the role of autophagy dysregulation in COPD muscles. Using a genetically inducible interleukin-13-driven pulmonary emphysema model leading to muscle dysfunction, and confirmed with a second genetic animal model, we found a significant myogenic dysfunction associated with the reduced proliferative capacity of satellite cells. Transplantation experiments followed by lineage tracing suggest that an intrinsic defect in satellite cells, and not in the COPD environment, plays a dominant role in the observed myogenic dysfunction. RNA sequencing analysis and direct observation of COPD mice satellite cells suggest dysregulated autophagy. Moreover, while autophagy flux experiments with bafilomycin demonstrated deacceleration of autophagosome turnover in COPD mice satellite cells, spermidine-induced autophagy stimulation leads to a higher replication rate and myogenesis in these animals. Our data suggest that pulmonary emphysema causes disrupted myogenesis, which could be improved with stimulation of autophagy and satellite cells activation, leading to an attenuated muscle dysfunction.
Collapse
Affiliation(s)
- Joseph Balnis
- Division of Pulmonary and Critical Care Medicine and
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Lisa A. Drake
- Division of Pulmonary and Critical Care Medicine and
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Diane V. Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Catherine E. Vincent
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Tanner C. Korponay
- Division of Pulmonary and Critical Care Medicine and
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Jeanine D’Armiento
- Departments of Anesthesiology and Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University Medical Center, New York, New York; and
| | - Chun Geun Lee
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island
| | - Jack A. Elias
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island
| | - Harold A. Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Ariel Jaitovich
- Division of Pulmonary and Critical Care Medicine and
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| |
Collapse
|
17
|
Ito A, Hashimoto M, Tanihata J, Matsubayashi S, Sasaki R, Fujimoto S, Kawamoto H, Hosaka Y, Ichikawa A, Kadota T, Fujita Y, Takekoshi D, Ito S, Minagawa S, Numata T, Hara H, Matsuoka T, Udaka J, Araya J, Saito M, Kuwano K. Involvement of Parkin-mediated mitophagy in the pathogenesis of chronic obstructive pulmonary disease-related sarcopenia. J Cachexia Sarcopenia Muscle 2022; 13:1864-1882. [PMID: 35373498 PMCID: PMC9178376 DOI: 10.1002/jcsm.12988] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 02/19/2022] [Accepted: 02/28/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Sarcopenia is characterized by the loss of skeletal muscle mass and strength and is associated with poor prognosis in patients with chronic obstructive pulmonary disease (COPD). Cigarette smoke (CS) exposure, a major cause for COPD, induces mitochondrial damage, which has been implicated in sarcopenia pathogenesis. The current study sought to examine the involvement of insufficient Parkin-mediated mitophagy, a mitochondrion-selective autophagy, in the mechanisms by which dysfunctional mitochondria accumulate with excessive reactive oxygen species (ROS) production in the development of COPD-related sarcopenia. METHODS The involvement of Parkin-mediated mitophagy was examined using in vitro models of myotube formation, in vivo CS-exposure model using Parkin-/- mice, and human muscle samples from patients with COPD-related sarcopenia. RESULTS Cigarette smoke extract (CSE) induced myotube atrophy with concomitant 30% reduction in Parkin expression levels (P < 0.05). Parkin-mediated mitophagy regulated myotube atrophy by modulating mitochondrial damage and mitochondrial ROS production. Increased mitochondrial ROS was responsible for myotube atrophy by activating Muscle Ring Finger 1 (MuRF-1)-mediated myosin heavy chain (MHC) degradation. Parkin-/- mice with prolonged CS exposure showed enhanced limb muscle atrophy with a 31.7% reduction in limb muscle weights (P < 0.01) and 2.3 times greater MuRF-1 expression (P < 0.01) compared with wild-type mice with concomitant accumulation of damaged mitochondria and oxidative modifications in 4HNE expression. Patients with COPD-related sarcopenia exhibited significantly reduced Parkin but increased MuRF-1 protein levels (35% lower and 2.5 times greater protein levels compared with control patients, P < 0.01 and P < 0.05, respectively) and damaged mitochondria accumulation demonstrated in muscles. Electric pulse stimulation-induced muscle contraction prevented CSE-induced MHC reduction by maintaining Parkin levels in myotubes. CONCLUSIONS Taken together, COPD-related sarcopenia can be attributed to insufficient Parkin-mediated mitophagy and increased mitochondrial ROS causing enhanced muscle atrophy through MuRF-1 activation, which may be at least partly preventable through optimal physical exercise.
Collapse
Affiliation(s)
- Akihiko Ito
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University, Tokyo, Japan
| | - Mitsuo Hashimoto
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University, Tokyo, Japan
| | - Jun Tanihata
- Department of Cell Physiology, The Jikei University, Tokyo, Japan
| | - Sachi Matsubayashi
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University, Tokyo, Japan
| | - Ryoko Sasaki
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University, Tokyo, Japan
| | - Shota Fujimoto
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University, Tokyo, Japan
| | - Hironori Kawamoto
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University, Tokyo, Japan
| | - Yusuke Hosaka
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University, Tokyo, Japan
| | - Akihiro Ichikawa
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University, Tokyo, Japan
| | - Tsukasa Kadota
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University, Tokyo, Japan
| | - Yu Fujita
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University, Tokyo, Japan
| | - Daisuke Takekoshi
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University, Tokyo, Japan
| | - Sabro Ito
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University, Tokyo, Japan
| | - Shunsuke Minagawa
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University, Tokyo, Japan
| | - Takanori Numata
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University, Tokyo, Japan
| | - Hiromichi Hara
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University, Tokyo, Japan
| | - Tatsuki Matsuoka
- Department of Orthopedic Surgery, The Jikei University, Tokyo, Japan
| | - Jun Udaka
- Department of Orthopedic Surgery, The Jikei University, Tokyo, Japan
| | - Jun Araya
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University, Tokyo, Japan
| | - Mitsuru Saito
- Department of Orthopedic Surgery, The Jikei University, Tokyo, Japan
| | - Kazuyoshi Kuwano
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University, Tokyo, Japan
| |
Collapse
|
18
|
Nunes EA, Stokes T, McKendry J, Currier BS, Phillips SM. Disuse-induced skeletal muscle atrophy in disease and non-disease states in humans: mechanisms, prevention, and recovery strategies. Am J Physiol Cell Physiol 2022; 322:C1068-C1084. [PMID: 35476500 DOI: 10.1152/ajpcell.00425.2021] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Decreased skeletal muscle contractile activity (disuse) or unloading leads to muscle mass loss, also known as muscle atrophy. The balance between muscle protein synthesis (MPS) and muscle protein breakdown (MPB) is the primary determinant of skeletal muscle mass. A reduced mechanical load on skeletal muscle is one of the main external factors leading to muscle atrophy. However, endocrine and inflammatory factors can act synergistically in catabolic states, amplifying the atrophy process and accelerating its progression. Additionally, older individuals display aging-induced anabolic resistance, which can predispose this population to more pronounced effects when exposed to periods of reduced physical activity or mechanical unloading. Different cellular mechanisms contribute to the regulation of muscle protein balance during skeletal muscle atrophy. This review summarizes the effects of muscle disuse on muscle protein balance and the molecular mechanisms involved in muscle atrophy in the absence or presence of disease. Finally, a discussion of the current literature describing efficient strategies to prevent or improve the recovery from muscle atrophy is also presented.
Collapse
Affiliation(s)
- Everson A Nunes
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada.,Laboratory of Investigation of Chronic Diseases, Department of Physiological Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Tanner Stokes
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - James McKendry
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Brad S Currier
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Stuart M Phillips
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
19
|
Lin H, Zhang X, Li J, Liang L, Zhang Q, Fang Y, Song J, Yang W, Weng Z. Unraveling the Molecular Mechanism of Xuebijing Injection in the Treatment of Chronic Obstructive Pulmonary Disease by Combining Network Pharmacology and Affymetrix Array. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221092705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Xuebijing injection (XBJ), one of the classical prescriptions for treating inflammation-related diseases, has been used to chronic obstructive pulmonary disease (COPD) in clinical practice. However, its molecular mechanism is still unclear. Network pharmacology combined with Affymetrix arrays and molecular docking techniques were applied to explore the molecular mechanism of XBJ for COPD. Predictive analysis of 728 active compounds in XBJ and 6 sets of Affymetrix arrays expression data resulted in 106 potential therapeutic targets. Next, based on the active compound-co-target network topology analysis, most of these targets were found to be modulated by quercetin, myricetin, and ellagic acid. Furthermore, protein–protein interaction (PPI) analysis revealed that the key targets may be EGFR, STAT3, AKT1, CCND1, MMP9, AR, ESR1, and PTGS2. Then, by constructing a component-target-pathway network, we found that XBJ was a multi-pathway, multi-target, multi-compound synergistic therapy for COPD, and four key targets were involved in the FoxO signaling pathway. Luteolin and salvianolic acid b had the optimal binding ability to several key proteins. Therefore, we hypothesize that quercetin, myricetin, ellagic acid, luteolin, and salvianolic acid b mainly contribute to the therapeutic effect of XBJ on COPD by modulating the FoxO signaling pathway by regulating EGFR, STAT3, AKT1, and CCND1. XBJ exerts anti-inflammatory and antioxidative stress effects through the PI3K/Akt/FoxO axis combined with MMP9, AR, ESR1, and PTGS2 to regulate other signaling pathways.
Collapse
Affiliation(s)
- Haochang Lin
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Xinyue Zhang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Jiangya Li
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Liju Liang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Qian Zhang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Yan Fang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
- The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jingfeng Song
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Weimin Yang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Zhiying Weng
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| |
Collapse
|
20
|
|
21
|
La kinésithérapie en per- et post-exacerbation immédiate de BPCO. Rev Mal Respir 2022; 39:386-397. [DOI: 10.1016/j.rmr.2022.02.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/04/2022] [Indexed: 11/21/2022]
|
22
|
Trivedi A, Bade G, Madan K, Ahmed Bhat M, Guleria R, Talwar A. Effect of Smoking and Its Cessation on the Transcript Profile of Peripheral Monocytes in COPD Patients. Int J Chron Obstruct Pulmon Dis 2022; 17:65-77. [PMID: 35027824 PMCID: PMC8749770 DOI: 10.2147/copd.s337635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/13/2021] [Indexed: 11/23/2022] Open
Abstract
Rationale Smoking is the primary cause of chronic obstructive pulmonary disease (COPD); however, only 10–20% of smokers develop the disease suggesting possible genomic association in the causation of the disease. In the present study, we aimed to explore the whole genome transcriptomics of blood monocytes from COPD smokers (COPD-S), COPD Ex-smokers (COPD-ExS), Control smokers (CS), and Control Never-smokers (CNS) to understand the differential effects of smoking, COPD and that of smoking cessation. Methods Exploratory analyses in form of principal component analysis (PCA) and hierarchical component analysis (uHCA) were performed to evaluate the similarity in gene expression patterns, while differential expression analyses of different supervised groups of smokers and never smokers were performed to study the differential effect of smoking, COPD and smoking cessation. Differentially expressed genes among groups were subjected to post-hoc enrichment analysis. Candidate genes were subjected to external validation by quantitative RT-PCR experiments. Results CNS made a cluster completely segregated from the other three subgroups (CS, COPDS and COPD-ExS). About 550, 8 and 5 genes showed differential expression, respectively, between CNS and CS, between CS and COPD-S, and between COPD-S and COPD-ExS. Apoptosis, immune response, cell adhesion, and inflammation were the top process networks identified in enrichment analysis. Two candidate genes (CASP9 and TNFRSF1A) found to be integral to several pathways in enrichment analysis were validated in an external validation experiment. Conclusion Control never smokers had formed a cluster distinctively separated from all smokers (COPDS, COPD-ExS, and CS), while amongst all smokers, control smokers had aggregated in a separate cluster. Smoking cessation appeared beneficial if started at an early stage as many genes altered due to smoking started reverting towards the baseline, whereas only a few COPD-related genes showed reversal after smoking cessation.
Collapse
Affiliation(s)
- Anjali Trivedi
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Geetanjali Bade
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Karan Madan
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Muzaffer Ahmed Bhat
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Randeep Guleria
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Anjana Talwar
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
23
|
van Bakel SIJ, Gosker HR, Langen RC, Schols AMWJ. Towards Personalized Management of Sarcopenia in COPD. Int J Chron Obstruct Pulmon Dis 2021; 16:25-40. [PMID: 33442246 PMCID: PMC7800429 DOI: 10.2147/copd.s280540] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022] Open
Abstract
The awareness of the presence and consequences of sarcopenia has significantly increased over the past decade. Sarcopenia is defined as gradual loss of muscle mass and strength and ultimately loss of physical performance associated with aging and chronic disease. The prevalence of sarcopenia is higher in chronic obstructive pulmonary disease (COPD) compared to age-matched controls. Current literature suggests that next to physical inactivity, COPD-specific alterations in physiological processes contribute to accelerated development of sarcopenia. Sarcopenia in COPD can be assessed according to current guidelines, but during physical performance testing, ventilatory limitation should be considered. Treatment of muscle impairment can halt or even reverse sarcopenia, despite respiratory impairment. Exercise training and protein supplementation are currently at the basis of sarcopenia treatment. Furthermore, effective current and new interventions targeting the pulmonary system (eg, smoking cessation, bronchodilators and lung volume reduction surgery) may also facilitate muscle maintenance. Better understanding of disease-specific pathophysiological mechanisms involved in the accelerated development of sarcopenia in COPD will provide new leads to refine nutritional, exercise and physical activity interventions and develop pharmacological co-interventions.
Collapse
Affiliation(s)
- Sophie I J van Bakel
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre +, Department of Respiratory Medicine, Maastricht, The Netherlands
| | - Harry R Gosker
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre +, Department of Respiratory Medicine, Maastricht, The Netherlands
| | - Ramon C Langen
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre +, Department of Respiratory Medicine, Maastricht, The Netherlands
| | - Annemie M W J Schols
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre +, Department of Respiratory Medicine, Maastricht, The Netherlands
| |
Collapse
|
24
|
Jaitovich A. Hypercapnic Respiratory Failure-Driven Skeletal Muscle Dysfunction: It Is Time for Animal Model-Based Mechanistic Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:129-138. [PMID: 33788191 DOI: 10.1007/978-3-030-63046-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dysfunction of locomotor muscles is frequent in chronic pulmonary diseases and strongly associated with worse outcomes including higher mortality. Although these associations have been corroborated over the last decades, there is poor mechanistic understanding of the process, in part due to the lack of adequate animal models to investigate this process. Most of the mechanistic research has so far been accomplished using relevant individual stimuli such as low oxygen or high CO2 delivered to otherwise healthy animals as surrogates of the phenomena occurring in the clinical setting. This review advocates for the development of a syndromic model in which skeletal muscle dysfunction is investigated as a comorbidity of a well-validated pulmonary disease model, which could potentially allow discovering meaningful mechanisms and pathways and lead to more substantial progress to treat this devastating condition.
Collapse
Affiliation(s)
- Ariel Jaitovich
- Division of Pulmonary and Critical Care Medicine, Albany Medical College, Albany, NY, USA. .,Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
25
|
Gosker HR, Langen RC, Simons SO. Role of acute exacerbations in skeletal muscle impairment in COPD. Expert Rev Respir Med 2020; 15:103-115. [PMID: 33131350 DOI: 10.1080/17476348.2021.1843429] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Introduction: Muscle impairments are prevalent in COPD and have adverse clinical implications in terms of physical performance capacity, disease burden, quality of life and even mortality. During acute exacerbations of COPD (AECOPDs) the respiratory symptoms worsen and this might also apply to the muscle impairments. Areas covered: This report includes a review of both clinical and pre-clinical peer-reviewed literature of the past 20 years found in PubMed providing a comprehensive view on the role of AECOPD in muscle dysfunction in COPD, the putative underlying mechanisms and the treatment perspectives. Expert opinion: The contribution of AECOPD and its recurrent nature to muscle impairment in COPD cannot be ignored and can be attributed to the acutely intensifying and converging disease-related drivers of muscle deterioration, in particular disuse, systemic inflammation and corticosteroid treatment. The search for novel treatment options should focus on the AECOPD-enhanced drivers of muscle dysfunction as well as on the underlying, mainly catabolic, mechanisms. Considering the impact of AECOPD on muscle function, and that of muscle impairment on the recurrence of exacerbations, counteracting muscle deterioration in AECOPD provides an unprecedented therapeutic opportunity.
Collapse
Affiliation(s)
- Harry R Gosker
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Department of Respiratory Medicine , Maastricht, The Netherlands
| | - Ramon C Langen
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Department of Respiratory Medicine , Maastricht, The Netherlands
| | - Sami O Simons
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Department of Respiratory Medicine , Maastricht, The Netherlands
| |
Collapse
|
26
|
Vishnupriya S, Priya Dharshini LC, Sakthivel KM, Rasmi RR. Autophagy markers as mediators of lung injury-implication for therapeutic intervention. Life Sci 2020; 260:118308. [PMID: 32828942 PMCID: PMC7442051 DOI: 10.1016/j.lfs.2020.118308] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022]
Abstract
Lung injury is characterized by inflammatory processes demonstrated as loss of function of the pulmonary capillary endothelial and alveolar epithelial cells. Autophagy is an intracellular digestion system that work as an inducible adaptive response to lung injury which is a resultant of exposure to various stress agents like hypoxia, ischemia-reperfusion and xenobiotics which may be manifested as acute lung injury (ALI), acute respiratory distress syndrome (ARDS), chronic lung injury (CLI), bronchopulmonary dysplasia (BPD), chronic obstructive pulmonary disease (COPD), asthma, ventilator-induced lung injury (VILI), ventilator-associated lung injury (VALI), pulmonary fibrosis (PF), cystic fibrosis (CF) and radiation-induced lung injury (RILI). Numerous regulators like LC3B-II, Beclin 1, p62, HIF1/BNIP3 and mTOR play pivotal role in autophagy induction during lung injury possibly for progression/inhibition of the disease state. The present review focuses on the critical autophagic mediators and their potential cross talk with the lung injury pathophysiology thereby bringing to limelight the possible therapeutic interventions.
Collapse
Affiliation(s)
- Selvaraj Vishnupriya
- Department of Biotechnology, PSG College of Arts and Science, Civil Aerodrome Post, Coimbatore 641 014, Tamil Nadu, India
| | | | - Kunnathur Murugesan Sakthivel
- Department of Biochemistry, PSG College of Arts and Science, Civil Aerodrome Post, Coimbatore 641 014, Tamil Nadu, India
| | - Rajan Radha Rasmi
- Department of Biotechnology, PSG College of Arts and Science, Civil Aerodrome Post, Coimbatore 641 014, Tamil Nadu, India.
| |
Collapse
|
27
|
Balnis J, Lee CG, Elias JA, Jaitovich A. Hypercapnia-Driven Skeletal Muscle Dysfunction in an Animal Model of Pulmonary Emphysema Suggests a Complex Phenotype. Front Physiol 2020; 11:600290. [PMID: 33192616 PMCID: PMC7658396 DOI: 10.3389/fphys.2020.600290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
Patients with chronic pulmonary conditions such as chronic obstructive pulmonary disease (COPD) often develop skeletal muscle dysfunction, which is strongly and independently associated with poor outcomes including higher mortality. Some of these patients also develop chronic CO2 retention, or hypercapnia, which is also associated with worse prognosis. While muscle dysfunction in these settings involve reduction of muscle mass and disrupted fibers’ metabolism leading to suboptimal muscle work, mechanistic research in the field has been limited by the lack of adequate animal models. Over the last years, we have established a rodent model of COPD-induced skeletal muscle dysfunction that allowed a disaggregated interrogation of the cellular and physiological effects driven by COPD from the ones unique to hypercapnia. We found that while COPD and hypercapnia synergistically contribute to muscle atrophy, they are antagonistic processes regarding fibers respiratory capacity. We propose that AMP-activated protein kinase (AMPK) is a crucial regulator of CO2 signaling in hypercapnic muscles, which leads to both net protein catabolism and improved mitochondrial respiration to support a transition into a substrate-rich, fuel-efficient metabolic mode that allows muscle cells cope with the CO2 toxicity.
Collapse
Affiliation(s)
- Joseph Balnis
- Division of Pulmonary and Critical Care Medicine, Albany Medical College, Albany, NY, United States.,Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - Chun Geun Lee
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| | - Jack A Elias
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| | - Ariel Jaitovich
- Division of Pulmonary and Critical Care Medicine, Albany Medical College, Albany, NY, United States.,Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| |
Collapse
|
28
|
Urbina-Varela R, Castillo N, Videla LA, del Campo A. Impact of Mitophagy and Mitochondrial Unfolded Protein Response as New Adaptive Mechanisms Underlying Old Pathologies: Sarcopenia and Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2020; 21:E7704. [PMID: 33081022 PMCID: PMC7589512 DOI: 10.3390/ijms21207704] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are the first-line defense of the cell in the presence of stressing processes that can induce mitochondrial dysfunction. Under these conditions, the activation of two axes is accomplished, namely, (i) the mitochondrial unfolded protein response (UPRmt) to promote cell recovery and survival of the mitochondrial network; (ii) the mitophagy process to eliminate altered or dysfunctional mitochondria. For these purposes, the former response induces the expression of chaperones, proteases, antioxidant components and protein import and assembly factors, whereas the latter is signaled through the activation of the PINK1/Parkin and BNIP3/NIX pathways. These adaptive mechanisms may be compromised during aging, leading to the development of several pathologies including sarcopenia, defined as the loss of skeletal muscle mass and performance; and non-alcoholic fatty liver disease (NAFLD). These age-associated diseases are characterized by the progressive loss of organ function due to the accumulation of reactive oxygen species (ROS)-induced damage to biomolecules, since the ability to counteract the continuous and large generation of ROS becomes increasingly inefficient with aging, resulting in mitochondrial dysfunction as a central pathogenic mechanism. Nevertheless, the role of the integrated stress response (ISR) involving UPRmt and mitophagy in the development and progression of these illnesses is still a matter of debate, considering that some studies indicate that the prolonged exposure to low levels of stress may trigger these mechanisms to maintain mitohormesis, whereas others sustain that chronic activation of them could lead to cell death. In this review, we discuss the available research that contributes to unveil the role of the mitochondrial UPR in the development of sarcopenia, in an attempt to describe changes prior to the manifestation of severe symptoms; and in NAFLD, in order to prevent or reverse fat accumulation and its progression by means of suitable protocols to be addressed in future studies.
Collapse
Affiliation(s)
- Rodrigo Urbina-Varela
- Laboratorio de Fisiología y Bioenergética Celular, Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile; (R.U.-V.); (N.C.)
| | - Nataly Castillo
- Laboratorio de Fisiología y Bioenergética Celular, Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile; (R.U.-V.); (N.C.)
| | - Luis A. Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile;
| | - Andrea del Campo
- Laboratorio de Fisiología y Bioenergética Celular, Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile; (R.U.-V.); (N.C.)
| |
Collapse
|
29
|
Haji G, Wiegman CH, Michaeloudes C, Patel MS, Curtis K, Bhavsar P, Polkey MI, Adcock IM, Chung KF. Mitochondrial dysfunction in airways and quadriceps muscle of patients with chronic obstructive pulmonary disease. Respir Res 2020; 21:262. [PMID: 33046036 PMCID: PMC7552476 DOI: 10.1186/s12931-020-01527-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/01/2020] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Mitochondrial damage and dysfunction have been reported in airway and quadriceps muscle cells of patients with chronic obstructive pulmonary disease (COPD). We determined the concomitance of mitochondrial dysfunction in these cells in COPD. METHODS Bronchial biopsies were obtained from never- and ex-smoker volunteers and COPD patients (GOLD Grade 2) and quadriceps muscle biopsies from the same volunteers in addition to COPD patients at GOLD Grade 3/4 for measurement of mitochondrial function. RESULTS Decreased mitochondrial membrane potential (ΔΨm), increased mitochondrial reactive oxygen species (mtROS) and decreased superoxide dismutase 2 (SOD2) levels were observed in mitochondria isolated from bronchial biopsies from Grade 2 patients compared to healthy never- and ex-smokers. There was a significant correlation between ΔΨm and FEV1 (% predicted), transfer factor of the lung for carbon monoxide (TLCOC % predicted), 6-min walk test and maximum oxygen consumption. In addition, ΔΨm was also associated with decreased expression levels of electron transport chain (ETC) complex proteins I and II. In quadriceps muscle of Grade 2 COPD patients, a significant increase in total ROS and mtROS was observed without changes in ΔΨm, SOD2 or ETC complex protein expression. However, quadriceps muscle of GOLD Grade 3/4 COPD patients showed an increased mtROS and decreased SOD2 and ETC complex proteins I, II, III and V expression. CONCLUSIONS Mitochondrial dysfunction in the airways, but not in quadriceps muscle, is associated with airflow obstruction and exercise capacity in Grade 2 COPD. Oxidative stress-induced mitochondrial dysfunction in the quadriceps may result from similar disease processes occurring in the lungs.
Collapse
Affiliation(s)
- Gulam Haji
- Airways Disease, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, SW3 6LY, UK.,Royal Brompton & Harefield NHS Foundation Trust, London, UK
| | - Coen H Wiegman
- Airways Disease, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, SW3 6LY, UK.
| | - Charalambos Michaeloudes
- Airways Disease, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, SW3 6LY, UK
| | - Mehul S Patel
- Royal Brompton & Harefield NHS Foundation Trust, London, UK
| | - Katrina Curtis
- Royal Brompton & Harefield NHS Foundation Trust, London, UK
| | - Pankaj Bhavsar
- Airways Disease, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, SW3 6LY, UK
| | | | - Ian M Adcock
- Airways Disease, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, SW3 6LY, UK
| | - Kian Fan Chung
- Airways Disease, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, SW3 6LY, UK.,Royal Brompton & Harefield NHS Foundation Trust, London, UK
| | | |
Collapse
|
30
|
Korponay TC, Balnis J, Vincent CE, Singer DV, Chopra A, Adam AP, Ginnan R, Singer HA, Jaitovich A. High CO 2 Downregulates Skeletal Muscle Protein Anabolism via AMP-activated Protein Kinase α2-mediated Depressed Ribosomal Biogenesis. Am J Respir Cell Mol Biol 2020; 62:74-86. [PMID: 31264907 DOI: 10.1165/rcmb.2019-0061oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
High CO2 retention, or hypercapnia, is associated with worse outcomes in patients with chronic pulmonary diseases. Skeletal muscle wasting is also an independent predictor of poor outcomes in patients with acute and chronic pulmonary diseases. Although previous evidence indicates that high CO2 accelerates skeletal muscle catabolism via AMPK (AMP-activated protein kinase)-FoxO3a-MuRF1 (E3-ubiquitin ligase muscle RING finger protein 1), little is known about the role of high CO2 in regulating skeletal muscle anabolism. In the present study, we investigated the potential role of high CO2 in attenuating skeletal muscle protein synthesis. We found that locomotor muscles from patients with chronic CO2 retention demonstrated depressed ribosomal gene expression in comparison with locomotor muscles from non-CO2-retaining individuals, and analysis of the muscle proteome of normo- and hypercapnic mice indicates reduction of important components of ribosomal structure and function. Indeed, mice chronically kept under a high-CO2 environment show evidence of skeletal muscle downregulation of ribosomal biogenesis and decreased protein synthesis as measured by the incorporation of puromycin into skeletal muscle. Hypercapnia did not regulate the mTOR pathway, and rapamycin-induced deactivation of mTOR did not cause a decrease in ribosomal gene expression. Loss-of-function studies in cultured myotubes showed that AMPKα2 regulates CO2-mediated reductions in ribosomal gene expression and protein synthesis. Although previous evidence has implicated TIF1A (transcription initiation factor-1α) and KDM2A (lysine-specific demethylase 2A) in AMPK-driven regulation of ribosomal gene expression, we found that these mediators were not required in the high CO2-induced depressed protein anabolism. Our research supports future studies targeting ribosomal biogenesis and protein synthesis to alleviate the effects of high CO2 on skeletal muscle turnover.
Collapse
Affiliation(s)
- Tanner C Korponay
- Division of Pulmonary and Critical Care Medicine.,Department of Molecular and Cellular Physiology, and
| | - Joseph Balnis
- Division of Pulmonary and Critical Care Medicine.,Department of Molecular and Cellular Physiology, and
| | | | | | - Amit Chopra
- Division of Pulmonary and Critical Care Medicine
| | - Alejandro P Adam
- Department of Molecular and Cellular Physiology, and.,Department of Ophthalmology, Albany Medical College, Albany, New York; and
| | - Roman Ginnan
- Department of Molecular and Cellular Physiology, and
| | | | - Ariel Jaitovich
- Division of Pulmonary and Critical Care Medicine.,Department of Molecular and Cellular Physiology, and
| |
Collapse
|
31
|
Dalle S, Koppo K. Is inflammatory signaling involved in disease-related muscle wasting? Evidence from osteoarthritis, chronic obstructive pulmonary disease and type II diabetes. Exp Gerontol 2020; 137:110964. [PMID: 32407865 DOI: 10.1016/j.exger.2020.110964] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/15/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022]
Abstract
Muscle loss is an important feature that occurs in multiple pathologies including osteoarthritis (OA), chronic obstructive pulmonary disease (COPD) and type II diabetes (T2D). Despite differences in pathogenesis and disease-related complications, there are reasons to believe that some fundamental underlying mechanisms are inherent to the muscle wasting process, irrespective of the pathology. Recent evidence shows that inflammation, either local or systemic, contributes to the modulation of muscle mass and/or muscle strength, via an altered molecular profile in muscle tissue. However, it remains ambiguous to which extent and via which mechanisms inflammatory signaling affects muscle mass in disease. Therefore, the objective of the present review is to discuss the role of inflammation on skeletal muscle anabolism, catabolism and functionality in three pathologies that are characterized by an eventual loss in muscle mass (and muscle strength), i.e. OA, COPD and T2D. In OA and COPD, most rodent models confirmed that systemic (COPD) or muscle (OA) inflammation directly induces muscle loss or muscle dysfunctionality. However, in a patient population, the association between inflammation and muscular maladaptations are more ambiguous. For example, in T2D patients, systemic inflammation is associated with muscle loss whereas in OA patients this link has not consistently been established. T2D rodent models revealed that increased levels of advanced glycation end-products (AGEs) and a decreased mTORC1 activation play a key role in muscle atrophy, but it remains to be elucidated whether AGEs and mTORC1 are interconnected and contribute to muscle loss in T2D patients. Generally, if any, associations between inflammation and muscle are mainly based on observational and cross-sectional data. There is definitely a need for longitudinal evidence through well-powered randomized control trials that take into account confounders such as age, disease-phenotypes, comorbidities, physical (in) activity etc. This will allow to improve our understanding of the complex interaction between inflammatory signaling and muscle mass loss and hence contribute to the development of therapeutic strategies to combat muscle wasting in these diseases.
Collapse
Affiliation(s)
- Sebastiaan Dalle
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium
| | - Katrien Koppo
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium.
| |
Collapse
|
32
|
Balnis J, Korponay TC, Jaitovich A. AMP-Activated Protein Kinase (AMPK) at the Crossroads Between CO 2 Retention and Skeletal Muscle Dysfunction in Chronic Obstructive Pulmonary Disease (COPD). Int J Mol Sci 2020; 21:E955. [PMID: 32023946 PMCID: PMC7037951 DOI: 10.3390/ijms21030955] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/22/2020] [Accepted: 01/28/2020] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle dysfunction is a major comorbidity in chronic obstructive pulmonary disease (COPD) and other pulmonary conditions. Chronic CO2 retention, or hypercapnia, also occur in some of these patients. Both muscle dysfunction and hypercapnia associate with higher mortality in these populations. Over the last years, we have established a mechanistic link between hypercapnia and skeletal muscle dysfunction, which is regulated by AMPK and causes depressed anabolism via reduced ribosomal biogenesis and accelerated catabolism via proteasomal degradation. In this review, we discuss the main findings linking AMPK with hypercapnic pulmonary disease both in the lungs and skeletal muscles, and also outline potential avenues for future research in the area based on knowledge gaps and opportunities to expand mechanistic research with translational implications.
Collapse
Affiliation(s)
- Joseph Balnis
- Division of Pulmonary and Critical Care Medicine, Albany Medical College, Albany, NY 12208, USA; (J.B.); (T.C.K.)
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Tanner C. Korponay
- Division of Pulmonary and Critical Care Medicine, Albany Medical College, Albany, NY 12208, USA; (J.B.); (T.C.K.)
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Ariel Jaitovich
- Division of Pulmonary and Critical Care Medicine, Albany Medical College, Albany, NY 12208, USA; (J.B.); (T.C.K.)
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| |
Collapse
|
33
|
Marillier M, Bernard AC, Vergès S, Neder JA. Locomotor Muscles in COPD: The Rationale for Rehabilitative Exercise Training. Front Physiol 2020; 10:1590. [PMID: 31992992 PMCID: PMC6971045 DOI: 10.3389/fphys.2019.01590] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/19/2019] [Indexed: 12/28/2022] Open
Abstract
Exercise training as part of pulmonary rehabilitation is arguably the most effective intervention to improve tolerance to physical exertion in patients with chronic obstructive pulmonary disease (COPD). Owing to the fact that exercise training has modest effects on exertional ventilation, operating lung volumes and respiratory muscle performance, improving locomotor muscle structure and function are key targets for pulmonary rehabilitation in COPD. In the current concise review, we initially discuss whether patients’ muscles are exposed to deleterious factors. After presenting corroboratory evidence on this regard (e.g., oxidative stress, inflammation, hypoxemia, inactivity, and medications), we outline their effects on muscle macro- and micro-structure and related functional properties. We then finalize by addressing the potential beneficial consequences of different training strategies on these muscle-centered outcomes. This review provides, therefore, an up-to-date outline of the rationale for rehabilitative exercise training approaches focusing on the locomotor muscles in this patient population.
Collapse
Affiliation(s)
- Mathieu Marillier
- Laboratory of Clinical Exercise Physiology, Kingston General Hospital, Queen's University, Kingston, ON, Canada
| | - Anne-Catherine Bernard
- Laboratory of Clinical Exercise Physiology, Kingston General Hospital, Queen's University, Kingston, ON, Canada
| | - Samuel Vergès
- HP2 Laboratory, INSERM, CHU Grenoble Alpes, Grenoble Alpes University, Grenoble, France
| | - J Alberto Neder
- Laboratory of Clinical Exercise Physiology, Kingston General Hospital, Queen's University, Kingston, ON, Canada
| |
Collapse
|
34
|
Lv X, Li K, Hu Z. Chronic Obstructive Pulmonary Disease and Autophagy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1207:559-567. [PMID: 32671774 DOI: 10.1007/978-981-15-4272-5_39] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a classical chronic respiratory disease with the pathological changes involving the bronchi and alveoli. Many of the risk factors of COPD can induce autophagy in different kinds of cells in lung tissue including alveolar epithelial cells, broncho epithelial cells, and fibroblasts. Over-activation of autophagy may cause emphysema by inducing autophagic cell death. However, the bronchitis and fibrosis may be mainly caused by autophagic flux blocking. Thus, understanding the role of autophagy in the pathogenesis of COPD is important for the anti-COPD drug development.
Collapse
Affiliation(s)
- Xiaoxi Lv
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ke Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhuowei Hu
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
35
|
Whole-genome methylation profiling from PBMCs in acute-exacerbation COPD patients with good and poor responses to corticosteroid treatment. Genomics 2019; 111:1381-1386. [DOI: 10.1016/j.ygeno.2018.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/13/2018] [Accepted: 09/15/2018] [Indexed: 01/09/2023]
|
36
|
Jaitovich A, Barreiro E. Skeletal Muscle Dysfunction in Chronic Obstructive Pulmonary Disease. What We Know and Can Do for Our Patients. Am J Respir Crit Care Med 2019; 198:175-186. [PMID: 29554438 DOI: 10.1164/rccm.201710-2140ci] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle dysfunction occurs in patients with chronic obstructive pulmonary disease (COPD) and affects both ventilatory and nonventilatory muscle groups. It represents a very important comorbidity that is associated with poor quality of life and reduced survival. It results from a complex combination of functional, metabolic, and anatomical alterations leading to suboptimal muscle work. Muscle atrophy, altered fiber type and metabolism, and chest wall remodeling, in the case of the respiratory muscles, are relevant etiological contributors to this process. Muscle dysfunction worsens during COPD exacerbations, rendering patients progressively less able to perform activities of daily living, and it is also associated with poor outcomes. Muscle recovery measures consisting of a combination of pulmonary rehabilitation, optimized nutrition, and other strategies are associated with better prognosis when administered in stable patients as well as after exacerbations. A deeper understanding of this process' pathophysiology and clinical relevance will facilitate the use of measures to alleviate its effects and potentially improve patients' outcomes. In this review, a general overview of skeletal muscle dysfunction in COPD is offered to highlight its relevance and magnitude to expert practitioners and scientists as well as to the average clinician dealing with patients with chronic respiratory diseases.
Collapse
Affiliation(s)
- Ariel Jaitovich
- 1 Division of Pulmonary and Critical Care Medicine and.,2 Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Esther Barreiro
- 3 Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Institut Hospital del Mar d'Investigacions Mèdiques-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Barcelona, Spain; and.,4 Centro de Investigación en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
37
|
Byrne CA, McNeil AT, Koh TJ, Brunskill AF, Fantuzzi G. Expression of genes in the skeletal muscle of individuals with cachexia/sarcopenia: A systematic review. PLoS One 2019; 14:e0222345. [PMID: 31498843 PMCID: PMC6733509 DOI: 10.1371/journal.pone.0222345] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/27/2019] [Indexed: 12/24/2022] Open
Abstract
Background Cachexia occurs in individuals affected by chronic diseases in which systemic inflammation leads to fatigue, debilitation, decreased physical activity and sarcopenia. The pathogenesis of cachexia-associated sarcopenia is not fully understood. Objectives The aim of this systematic review is to summarize the current evidence on genes expressed in the skeletal muscles of humans with chronic disease-associated cachexia and/or sarcopenia (cases) compared to controls and to assess the strength of such evidence. Methods We searched PubMed, EMBASE and CINAHL using three concepts: cachexia/sarcopenia and associated symptoms, gene expression, and skeletal muscle. Results Eighteen genes were studied in at least three research articles, for a total of 27 articles analyzed in this review. Participants were approximately 60 years of age and majority male; sample size was highly variable. Use of comparison groups, matching criteria, muscle biopsy location, and definitions of cachexia and sarcopenia were not homogenous. None of the studies fulfilled all four criteria used to assess the quality of molecular analysis, with only one study powered on the outcome of gene expression. FOXO1 was the only gene significantly increased in cases versus healthy controls. No study found a significant decrease in expression of genes involved in autophagy, apoptosis or inflammation in cases versus controls. Inconsistent or non-significant findings were reported for genes involved in protein degradation, muscle differentiation/growth, insulin/insulin growth factor-1 or mitochondrial transcription. Conclusion Currently available evidence on gene expression in the skeletal muscles of humans with chronic disease-associated cachexia and/or sarcopenia is not powered appropriately and is not homogenous; therefore, it is difficult to compare results across studies and diseases.
Collapse
Affiliation(s)
- Cecily A. Byrne
- University of Illinois at Chicago, College of Applied Health Sciences, Department of Kinesiology and Nutrition, Chicago, IL, United States of America
| | - Amy T. McNeil
- University of Illinois at Chicago, College of Applied Health Sciences, Department of Kinesiology and Nutrition, Chicago, IL, United States of America
| | - Timothy J. Koh
- University of Illinois at Chicago, College of Applied Health Sciences, Department of Kinesiology and Nutrition, Chicago, IL, United States of America
| | - Amelia F. Brunskill
- University of Illinois at Chicago, Library of the Health Sciences, Chicago, IL, United States of America
| | - Giamila Fantuzzi
- University of Illinois at Chicago, College of Applied Health Sciences, Department of Kinesiology and Nutrition, Chicago, IL, United States of America
- * E-mail:
| |
Collapse
|
38
|
Abrigo J, Simon F, Cabrera D, Vilos C, Cabello-Verrugio C. Mitochondrial Dysfunction in Skeletal Muscle Pathologies. Curr Protein Pept Sci 2019; 20:536-546. [PMID: 30947668 DOI: 10.2174/1389203720666190402100902] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/26/2022]
Abstract
Several molecular mechanisms are involved in the regulation of skeletal muscle function. Among them, mitochondrial activity can be identified. The mitochondria is an important and essential organelle in the skeletal muscle that is involved in metabolic regulation and ATP production, which are two key elements of muscle contractibility and plasticity. Thus, in this review, we present the critical and recent antecedents regarding the mechanisms through which mitochondrial dysfunction can be involved in the generation and development of skeletal muscle pathologies, its contribution to detrimental functioning in skeletal muscle and its crosstalk with other typical signaling pathways related to muscle diseases. In addition, an update on the development of new strategies with therapeutic potential to inhibit the deleterious impact of mitochondrial dysfunction in skeletal muscle is discussed.
Collapse
Affiliation(s)
- Johanna Abrigo
- Laboratory of Muscle Pathology, Fragility and Aging, Departamento de Ciencias Biologicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe Simon
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Laboratory of Integrative Physiopathology, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Daniel Cabrera
- Departamento de Gastroenterologia, Facultad de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile.,Departamento de Ciencias Químicas y Biológicas, Facultad de Salud, Universidad Bernardo O Higgins, Santiago, Chile
| | - Cristian Vilos
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile.,Laboratory of Nanomedicine and Targeted Delivery, Center for Medical Research, School of Medicine. Universidad d e Talca, Talca, Chile
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility and Aging, Departamento de Ciencias Biologicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
39
|
Kryvenko V, Vadász I. Antianabolic Effects of Hypercapnia: No Country for Strong Men. Am J Respir Cell Mol Biol 2019; 62:8-9. [PMID: 31290693 PMCID: PMC6938131 DOI: 10.1165/rcmb.2019-0225ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Vitalii Kryvenko
- Department of Internal MedicineJustus Liebig UniversityGiessen, Germany.,Universities of Giessen and Marburg Lung CenterGiessen, Germany.,German Center for Lung ResearchGiessen, Germanyand
| | - István Vadász
- Department of Internal MedicineJustus Liebig UniversityGiessen, Germany.,Universities of Giessen and Marburg Lung CenterGiessen, Germany.,German Center for Lung ResearchGiessen, Germanyand
| |
Collapse
|
40
|
Abdulai RM, Jensen TJ, Patel NR, Polkey MI, Jansson P, Celli BR, Rennard SI. Deterioration of Limb Muscle Function during Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2019; 197:433-449. [PMID: 29064260 DOI: 10.1164/rccm.201703-0615ci] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Important features of both stable and acute exacerbation of chronic obstructive pulmonary disease (COPD) are skeletal muscle weakness and wasting. Limb muscle dysfunction during an exacerbation has been linked to various adverse outcomes, including prolonged hospitalization, readmission, and mortality. The contributing factors leading to muscle dysfunction are similar to those seen in stable COPD: disuse, nutrition/energy balance, hypercapnia, hypoxemia, electrolyte derangements, inflammation, and drugs (i.e., glucocorticoids). These factors may be the trigger for a downstream cascade of local inflammatory changes, pathway process alterations, and structural degradation. Ultimately, the clinical effects can be wide ranging and include reduced limb muscle strength. Current therapies, such as pulmonary/physical rehabilitation, have limited impact because of low participation rates. Recently, novel drugs have been developed in similar disorders, and learnings from these studies can be used as a foundation to facilitate discovery in patients hospitalized with a COPD exacerbation. Nevertheless, investigators should approach this patient population with knowledge of the limitations of each intervention. In this Concise Clinical Review, we provide an overview of acute muscle dysfunction in patients hospitalized with acute exacerbation of COPD and a strategic approach to drug development in this setting.
Collapse
Affiliation(s)
- Raolat M Abdulai
- 1 Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,2 Respiratory, Inflammation, and Autoimmunity, Early Clinical Development, IMED Biotech Unit, AstraZeneca, Boston, Massachusetts
| | - Tina Jellesmark Jensen
- 3 Respiratory, Inflammation, and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Naimish R Patel
- 2 Respiratory, Inflammation, and Autoimmunity, Early Clinical Development, IMED Biotech Unit, AstraZeneca, Boston, Massachusetts.,4 Beth Israel Deaconess Hospital, Boston, Massachusetts
| | - Michael I Polkey
- 5 National Institute for Health Research, Respiratory Biomedical Research Unit at the Royal Brompton Hospital and Imperial College London, London, United Kingdom
| | - Paul Jansson
- 3 Respiratory, Inflammation, and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Bartolomé R Celli
- 1 Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,6 Harvard Medical School, Boston, Massachusetts
| | - Stephen I Rennard
- 7 Pulmonary and Critical Care Medicine, University of Nebraska Medical Center, Omaha, Nebraska; and.,8 Clinical Discovery Unit, Early Clinical Development, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
41
|
Bensaid S, Fabre C, Fourneau J, Cieniewski-Bernard C. Impact of different methods of induction of cellular hypoxia: focus on protein homeostasis signaling pathways and morphology of C2C12 skeletal muscle cells differentiated into myotubes. J Physiol Biochem 2019; 75:367-377. [PMID: 31267382 DOI: 10.1007/s13105-019-00687-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/15/2019] [Indexed: 12/25/2022]
Abstract
Hypoxia, occurring in several pathologies, has deleterious effects on skeletal muscle, in particular on protein homeostasis. Different induction methods of hypoxia are commonly used in cellular models to investigate the alterations of muscular function consecutive to hypoxic stress. However, a consensus is not clearly established concerning hypoxia induction methodology. Our aim was to compare oxygen deprivation with chemically induced hypoxia using cobalt chloride (CoCl2) or desferrioxamine (DFO) on C2C12 myotubes which were either cultured in hypoxia chamber at an oxygen level of 4% or treated with CoCl2 or DFO. For each method of hypoxia induction, we determined their impact on muscle cell morphology and on expression or activation status of key signaling proteins of synthesis and degradation pathways. The expression of HIF-1α increased whatever the method of hypoxia induction. Myotube diameter and protein content decreased exclusively for C2C12 myotubes submitted to physiological hypoxia (4% O2) or treated with CoCl2. Results were correlated with a hypophosphorylation of key proteins regulated synthesis pathway (Akt, GSK3-β and P70S6K). Similarly, the phosphorylation of FoxO1 decreased and the autophagy-related LC3-II was overexpressed with 4% O2 and CoCl2 conditions. Our results demonstrated that in vitro oxygen deprivation and the use of mimetic agent such as CoCl2, unlike DFO, induced similar responses on myotube morphology and atrophy/hypertrophy markers. Thus, physiological hypoxia or its artificial induction using CoCl2 can be used to understand finely the molecular changes in skeletal muscle cells and to evaluate new therapeutics for hypoxia-related muscle disorders.
Collapse
Affiliation(s)
- Samir Bensaid
- Team Physical Activity, Muscle, Health, University Lille - EA 7369 - URePSSS, 59000, Lille, France.,Research Pole, CHU Lille, 59000, Lille, France
| | - Claudine Fabre
- Team Physical Activity, Muscle, Health, University Lille - EA 7369 - URePSSS, 59000, Lille, France
| | - Julie Fourneau
- Team Physical Activity, Muscle, Health, University Lille - EA 7369 - URePSSS, 59000, Lille, France
| | | |
Collapse
|
42
|
Jiang S, Sun J, Mohammadtursun N, Hu Z, Li Q, Zhao Z, Zhang H, Dong J. Dual role of autophagy/mitophagy in chronic obstructive pulmonary disease. Pulm Pharmacol Ther 2019; 56:116-125. [DOI: 10.1016/j.pupt.2019.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/18/2019] [Accepted: 04/07/2019] [Indexed: 02/06/2023]
|
43
|
Xu S, Sui S, Zhang X, Pang B, Wan L, Pang D. Modulation of autophagy in human diseases strategies to foster strengths and circumvent weaknesses. Med Res Rev 2019; 39:1953-1999. [PMID: 30820989 DOI: 10.1002/med.21571] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/20/2019] [Accepted: 02/05/2019] [Indexed: 12/19/2022]
Abstract
Autophagy is central to the maintenance of intracellular homeostasis across species. Accordingly, autophagy disorders are linked to a variety of diseases from the embryonic stage until death, and the role of autophagy as a therapeutic target has been widely recognized. However, autophagy-associated therapy for human diseases is still in its infancy and is supported by limited evidence. In this review, we summarize the landscape of autophagy-associated diseases and current autophagy modulators. Furthermore, we investigate the existing autophagy-associated clinical trials, analyze the obstacles that limit their progress, offer tactics that may allow barriers to be overcome along the way and then discuss the therapeutic potential of autophagy modulators in clinical applications.
Collapse
Affiliation(s)
- Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Shiyao Sui
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Xianyu Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Boran Pang
- Department of Surgery, Rui Jin Hospital, Shanghai Key Laboratory of Gastric Neoplasm, Shanghai Institute of Digestive Surgery, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Wan
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
- Heilongjiang Academy of Medical Sciences, Harbin, Heilongjcontrary, induction of autophagy elongiang, China
| |
Collapse
|
44
|
Protective effects of rapamycin induced autophagy on CLP septic mice. Comp Immunol Microbiol Infect Dis 2019; 64:47-52. [PMID: 31174699 DOI: 10.1016/j.cimid.2019.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 12/21/2018] [Accepted: 01/14/2019] [Indexed: 02/01/2023]
Abstract
Sepsis is a life-threatening condition that may develop to multiple organ failure and septic shock. Autophagy is considered to play an important role in the regulation of inflammation. The present study aims to investigate the protective role of mTORC1 inhibitor, rapamycin, on septic death using cecal ligation and puncture (CLP) mice model. Here, results showed that pretreatment with rapamycin reduced the pyroptosis of peritoneal macrophages stimulated by cecal contents and the release of inflammatory factors such as interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α); In septic mice, rapamycin treatment decreased the activation of inflammasome in lung, and alleviated the pathological injuries in lung, liver and spleen tissues during acute stage of sepsis. Treatment of rapamycin rescued animals from septic death significantly. Our results indicated that activation of autophagy is a potential strategy to regulate the excessive inflammation in acute stage of sepsis.
Collapse
|
45
|
Zhou G, Gui X, Chen R, Fu X, Ji X, Ding H. Elevated serum Activin A in chronic obstructive pulmonary disease with skeletal muscle wasting. Clinics (Sao Paulo) 2019; 74:e981. [PMID: 31271588 PMCID: PMC6585865 DOI: 10.6061/clinics/2019/e981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 03/19/2019] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Muscle wasting contributes to the reduced quality of life and increased mortality in chronic obstructive pulmonary disease (COPD). Muscle atrophy in mice with cachexia was caused by Activin A binding to ActRIIB. The role of circulating Activin A leading to muscle atrophy in COPD remains elusive. METHODS In the present study, we evaluated the relationship between serum levels of Activin A and skeletal muscle wasting in COPD patients. The expression levels of serum Activin A were measured in 78 stable COPD patients and in 60 healthy controls via ELISA, which was also used to determine the expression of circulating TNF-α levels. Total skeletal muscle mass (SMM) was calculated according to a validated formula by age and anthropometric measurements. The fat-free mass index (FFMI) was determined as the fat-free mass (FFM) corrected for body surface area. RESULTS Compared to the healthy controls, COPD patients had upregulated Activin A expression. The elevated levels of Activin A were correlated with TNF-α expression, while total SMM and FFMI were significantly decreased in COPD patients. Furthermore, serum Activin A expression in COPD patients was negatively associated with both FFMI and BMI. CONCLUSION The above results showed an association between increased circulating Activin A in COPD patients and the presence of muscle atrophy. Given our previous knowledge, we speculate that Activin A contributes to skeletal muscle wasting in COPD.
Collapse
Affiliation(s)
- Guanghui Zhou
- Department of Respiratory Medicine, Yixing People Hospital, Affiliated Jiangsu University, 214200, China
- Corresponding authors. E-mails: /
| | - Xianhua Gui
- Department of Respiratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, 210008, China
- Corresponding authors. E-mails: /
| | - Ruhua Chen
- Department of Respiratory Medicine, Yixing People Hospital, Affiliated Jiangsu University, 214200, China
- Corresponding authors. E-mails: /
| | - Xingli Fu
- Jiangsu University Health Science Center, Yizheng Road, Zhenjiang, Jiangsu, 212001, China
| | - Xiuhai Ji
- Department of Oncology, Affiliated Taicang Hospital of Traditional Chinese Medicine, Suzhou, 215400, China
- Corresponding authors. E-mails: /
| | - Hui Ding
- Department of Respiratory Medicine, Yixing People Hospital, Affiliated Jiangsu University, 214200, China
- Corresponding authors. E-mails: /
| |
Collapse
|
46
|
Barreiro E, Salazar‐Degracia A, Sancho‐Muñoz A, Gea J. Endoplasmic reticulum stress and unfolded protein response profile in quadriceps of sarcopenic patients with respiratory diseases. J Cell Physiol 2018; 234:11315-11329. [DOI: 10.1002/jcp.27789] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 10/31/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Esther Barreiro
- Pulmonology Department‐Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM‐Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB) Barcelona Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII) Monforte de Lemos Madrid Spain
| | - Anna Salazar‐Degracia
- Pulmonology Department‐Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM‐Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB) Barcelona Spain
| | - Antonio Sancho‐Muñoz
- Pulmonology Department‐Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM‐Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB) Barcelona Spain
| | - Joaquim Gea
- Pulmonology Department‐Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM‐Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB) Barcelona Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII) Monforte de Lemos Madrid Spain
| |
Collapse
|
47
|
Leermakers PA, Schols AMWJ, Kneppers AEM, Kelders MCJM, de Theije CC, Lainscak M, Gosker HR. Molecular signalling towards mitochondrial breakdown is enhanced in skeletal muscle of patients with chronic obstructive pulmonary disease (COPD). Sci Rep 2018; 8:15007. [PMID: 30302028 PMCID: PMC6177478 DOI: 10.1038/s41598-018-33471-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 09/27/2018] [Indexed: 11/09/2022] Open
Abstract
Loss of skeletal muscle mitochondrial oxidative capacity is well-established in patients with COPD, but the role of mitochondrial breakdown herein is largely unexplored. Currently, we studied if mitochondrial breakdown signalling is increased in skeletal muscle of COPD patients and associates with the loss of mitochondrial content, and whether it is affected in patients with iron deficiency (ID) or systemic inflammation. Therefore, mitophagy, autophagy, mitochondrial dynamics and content markers were analysed in vastus lateralis biopsies of COPD patients (N = 95, FEV1% predicted: 39.0 [31.0–53.6]) and healthy controls (N = 15, FEV1% predicted: 112.8 [107.5–125.5]). Sub-analyses were performed on patients stratified by ID or C-reactive protein (CRP). Compared with controls, COPD patients had lower muscle mitochondrial content, higher BNIP3L and lower FUNDC1 protein, and higher Parkin protein and gene-expression. BNIP3L and Parkin protein levels inversely correlated with mtDNA/gDNA ratio and FEV1% predicted. ID-COPD patients had lower BNIP3L protein and higher BNIP3 gene-expression, while high CRP patients had higher BNIP3 and autophagy-related protein levels. In conclusion, our data indicates that mitochondrial breakdown signalling is increased in skeletal muscle of COPD patients, and is related to disease severity and loss of mitochondrial content. Moreover, systemic inflammation is associated with higher BNIP3 and autophagy-related protein levels.
Collapse
Affiliation(s)
- P A Leermakers
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands.
| | - A M W J Schols
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - A E M Kneppers
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - M C J M Kelders
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - C C de Theije
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - M Lainscak
- Department of Cardiology, General Hospital Murska Sobota, Murska Sobota, Slovenia.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - H R Gosker
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
48
|
Role of altered proteostasis network in chronic hypobaric hypoxia induced skeletal muscle atrophy. PLoS One 2018; 13:e0204283. [PMID: 30240405 PMCID: PMC6150520 DOI: 10.1371/journal.pone.0204283] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/04/2018] [Indexed: 01/07/2023] Open
Abstract
Background High altitude associated hypobaric hypoxia is one of the cellular and environmental perturbation that alters proteostasis network and push the healthy cell towards loss of muscle mass. The present study has elucidated the robust proteostasis network and signaling mechanism for skeletal muscle atrophy under chronic hypobaric hypoxia (CHH). Methods Male Sprague Dawley rats were exposed to simulated hypoxia equivalent to a pressure of 282 torr for different durations (1, 3, 7 and 14 days). After CHH exposure, skeletal muscle tissue was excised from the hind limb of rats for biochemical analysis. Results Chronic hypobaric hypoxia caused a substantial increase in protein oxidation and exhibited a greater activation of ER chaperones, glucose-regulated protein-78 (GRP-78) and protein disulphide isomerase (PDI) till 14d of CHH. Presence of oxidized proteins triggered the proteolytic systems, 20S proteasome and calpain pathway which were accompanied by a marked increase in [Ca2+]. Upregulated Akt pathway was observed upto 07d of CHH which was also linked with enhanced glycogen synthase kinase-3β (GSk-3β) expression, a negative regulator of Akt. Muscle-derived cytokines, tumor necrosis factor-α (TNF-α), interferon-ϒ (IFN-©) and interleukin-1β (IL-1β) levels significantly increased from 07d onwards. CHH exposure also upregulated the expression of nuclear factor kappa-B (NF-κB) and E3 ligase, muscle atrophy F-box-1 (Mafbx-1/Atrogin-1) and MuRF-1 (muscle ring finger-1) on 07d and 14d. Further, severe hypoxia also lead to increase expression of ER-associated degradation (ERAD) CHOP/ GADD153, Ub-proteasome and apoptosis pathway. Conclusions The disrupted proteostasis network was tightly coupled to degradative pathways, altered anabolic signaling, inflammation, and apoptosis under chronic hypoxia. Severe and prolonged hypoxia exposure affected the protein homeostasis which overwhelms the muscular system and tends towards skeletal muscle atrophy.
Collapse
|
49
|
Gouzi F, Blaquière M, Catteau M, Bughin F, Maury J, Passerieux E, Ayoub B, Mercier J, Hayot M, Pomiès P. Oxidative stress regulates autophagy in cultured muscle cells of patients with chronic obstructive pulmonary disease. J Cell Physiol 2018; 233:9629-9639. [PMID: 29943813 DOI: 10.1002/jcp.26868] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 05/23/2018] [Indexed: 12/21/2022]
Abstract
The proteolytic autophagy pathway is enhanced in the lower limb muscles of patients with chronic obstructive pulmonary disease (COPD). Reactive oxygen species (ROS) have been shown to regulate autophagy in the skeletal muscles, but the role of oxidative stress in the muscle autophagy of patients with COPD is unknown. We used cultured myoblasts and myotubes from the quadriceps of eight healthy subjects and twelve patients with COPD (FEV1% predicted: 102.0% and 32.0%, respectively; p < 0.0001). We compared the autophagosome formation, the expression of autophagy markers, and the autophagic flux in healthy subjects and the patients with COPD, and we evaluated the effects of the 3-methyladenine (3-MA) autophagy inhibitor on the atrophy of COPD myotubes. Autophagy was also assessed in COPD myotubes treated with an antioxidant molecule, ascorbic acid. Autophagosome formation was increased in COPD myoblasts and myotubes (p = 0.011; p < 0.001), and the LC3 2/LC3 1 ratio (p = 0.002), SQSTM1 mRNA and protein expression (p = 0.023; p = 0.007), BNIP3 expression (p = 0.031), and autophagic flux (p = 0.002) were higher in COPD myoblasts. Inhibition of autophagy with 3-MA increased the COPD myotube diameter (p < 0.001) to a level similar to the diameter of healthy subject myotubes. Treatment of COPD myotubes with ascorbic acid decreased ROS concentration (p < 0.001), ROS-induced protein carbonylation (p = 0.019), the LC3 2/LC3 1 ratio (p = 0.037), the expression of SQSTM1 (p < 0.001) and BNIP3 (p < 0.001), and increased the COPD myotube diameter (p < 0.001). Thus, autophagy signaling is enhanced in cultured COPD muscle cells. Furthermore, the oxidative stress level contributes to the regulation of autophagy, which is involved in the atrophy of COPD myotubes in vitro.
Collapse
Affiliation(s)
- Fares Gouzi
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France.,Department of Clinical Physiology, CHRU of Montpellier, Montpellier, France
| | - Marine Blaquière
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France.,Department of Clinical Physiology, CHRU of Montpellier, Montpellier, France
| | - Matthias Catteau
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - François Bughin
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France.,Department of Clinical Physiology, CHRU of Montpellier, Montpellier, France
| | - Jonathan Maury
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France.,Clinique du Souffle "La Solane," Fontalvie/5-Santé Group, Osséja, France
| | - Emilie Passerieux
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Bronia Ayoub
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France.,Department of Clinical Physiology, CHRU of Montpellier, Montpellier, France
| | - Jacques Mercier
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France.,Department of Clinical Physiology, CHRU of Montpellier, Montpellier, France
| | - Maurice Hayot
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France.,Department of Clinical Physiology, CHRU of Montpellier, Montpellier, France
| | - Pascal Pomiès
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| |
Collapse
|
50
|
Simoes DCM, Vogiatzis I. Can muscle protein metabolism be specifically targeted by exercise training in COPD? J Thorac Dis 2018; 10:S1367-S1376. [PMID: 29928519 DOI: 10.21037/jtd.2018.02.67] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Patients with stable chronic obstructive pulmonary disease (COPD) frequently exhibit unintentional accentuated peripheral muscle loss and dysfunction. Skeletal muscle mass in these patients is a strong independent predictor of morbidity and mortality. Factors including protein anabolism/catabolism imbalance, hypoxia, physical inactivity, inflammation, and oxidative stress are involved in the initiation and progression of muscle wasting in these patients. Exercise training remains the most powerful intervention for reversing, in part, muscle wasting in COPD. Independently of the status of systemic or local muscle inflammation, rehabilitative exercise training induces up-regulation of key factors governing skeletal muscle hypertrophy and regeneration. However, COPD patients presenting similar degrees of lung dysfunction do not respond alike to a given rehabilitative exercise stimulus. In addition, a proportion of patients experience limited clinical outcomes, even when exercise training has been adequately performed. Consistently, several reports provide evidence that the muscles of COPD patients present training-induced myogenic activity limitation as exercise training induces a limited number of differentially expressed genes, which are mostly associated with protein degradation. This review summarises the nature of muscle adaptations induced by exercise training, promoted both by changes in the expression of contractile proteins and their function typically controlled by intracellular signalling and transcriptional responses. Rehabilitative exercise training in COPD patients stimulates skeletal muscle mechanosensitive signalling pathways for protein accretion and its regulation during muscle contraction. Exercise training also induces synthesis of myogenic proteins by which COPD skeletal muscle promotes hypertrophy leading to fusion of myogenic cells to the myofiber. Understanding of the biological mechanisms that regulate exercise training-induced muscle growth and regeneration is necessary for implementing therapeutic strategies specifically targeting myogenesis and hypertrophy in these patients.
Collapse
Affiliation(s)
- Davina C M Simoes
- Department of Applied Sciences, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, UK
| | - Ioannis Vogiatzis
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, UK
| |
Collapse
|