1
|
Awan AB, Osman MJA, Khan OM. Ubiquitination Enzymes in Cancer, Cancer Immune Evasion, and Potential Therapeutic Opportunities. Cells 2025; 14:69. [PMID: 39851497 PMCID: PMC11763706 DOI: 10.3390/cells14020069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/16/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025] Open
Abstract
Ubiquitination is cells' second most abundant posttranslational protein modification after phosphorylation. The ubiquitin-proteasome system (UPS) is critical in maintaining essential life processes such as cell cycle control, DNA damage repair, and apoptosis. Mutations in ubiquitination pathway genes are strongly linked to the development and spread of multiple cancers since several of the UPS family members possess oncogenic or tumor suppressor activities. This comprehensive review delves into understanding the ubiquitin code, shedding light on its role in cancer cell biology and immune evasion. Furthermore, we highlighted recent advances in the field for targeting the UPS pathway members for effective therapeutic intervention against human cancers. We also discussed the recent update on small-molecule inhibitors and PROTACs and their progress in preclinical and clinical trials.
Collapse
Affiliation(s)
- Aiman B. Awan
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar; (A.B.A.); (M.J.A.O.)
| | - Maryiam Jama Ali Osman
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar; (A.B.A.); (M.J.A.O.)
- Research Branch, Sidra Medicine, Doha P.O. Box 34110, Qatar
| | - Omar M. Khan
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar; (A.B.A.); (M.J.A.O.)
| |
Collapse
|
2
|
Kaushik A, Parashar S, Ambasta RK, Kumar P. Ubiquitin E3 ligases assisted technologies in protein degradation: Sharing pathways in neurodegenerative disorders and cancer. Ageing Res Rev 2024; 96:102279. [PMID: 38521359 DOI: 10.1016/j.arr.2024.102279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
E3 ligases, essential components of the ubiquitin-proteasome-mediated protein degradation system, play a critical role in cellular regulation. By covalently attaching ubiquitin (Ub) molecules to target proteins, these ligases mark them for degradation, influencing various bioprocesses. With over 600 E3 ligases identified, there is a growing realization of their potential as therapeutic candidates for addressing proteinopathies in cancer and neurodegenerative disorders (NDDs). Recent research has highlighted the need to delve deeper into the intricate roles of E3 ligases as nexus points in the pathogenesis of both cancer and NDDs. Their dysregulation is emerging as a common thread linking these seemingly disparate diseases, necessitating a comprehensive understanding of their molecular intricacies. Herein, we have discussed (i) the fundamental mechanisms through which different types of E3 ligases actively participate in selective protein degradation in cancer and NDDs, followed by an examination of common E3 ligases playing pivotal roles in both situations, emphasising common players. Moving to, (ii) the functional domains and motifs of E3 ligases involved in ubiquitination, we have explored their interactions with specific substrates in NDDs and cancer. Additionally, (iii) we have explored techniques like PROTAC, molecular glues, and other state-of-the-art methods for hijacking neurotoxic and oncoproteins. Lastly, (iv) we have provided insights into ongoing clinical trials, offering a glimpse into the evolving landscape of E3-based therapeutics for cancer and NDDs. Unravelling the intricate network of E3 ligase-mediated regulation holds the key to unlocking targeted therapies that address the specific molecular signatures of individual patients, heralding a new era in personalized medicines.
Collapse
Affiliation(s)
- Aastha Kaushik
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Somya Parashar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Rashmi K Ambasta
- Department of Biotechnology and Microbiology, SRM University-Sonepat, Haryana, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India.
| |
Collapse
|
3
|
Li J, Liu S, Li S. Mechanisms underlying linear ubiquitination and implications in tumorigenesis and drug discovery. Cell Commun Signal 2023; 21:340. [PMID: 38017534 PMCID: PMC10685518 DOI: 10.1186/s12964-023-01239-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/19/2023] [Indexed: 11/30/2023] Open
Abstract
Linear ubiquitination is a distinct type of ubiquitination that involves attaching a head-to-tail polyubiquitin chain to a substrate protein. Early studies found that linear ubiquitin chains are essential for the TNFα- and IL-1-mediated NF-κB signaling pathways. However, recent studies have discovered at least sixteen linear ubiquitination substrates, which exhibit a broader activity than expected and mediate many other signaling pathways beyond NF-κB signaling. Dysregulation of linear ubiquitination in these pathways has been linked to many types of cancers, such as lymphoma, liver cancer, and breast cancer. Since the discovery of linear ubiquitin, extensive effort has been made to delineate the molecular mechanisms of how dysregulation of linear ubiquitination causes tumorigenesis and cancer development. In this review, we highlight newly discovered linear ubiquitination-mediated signaling pathways, recent advances in the role of linear ubiquitin in different types of cancers, and the development of linear ubiquitin inhibitors. Video Abstract.
Collapse
Affiliation(s)
- Jack Li
- Department of Biosciences, Rice University, Houston, TX, 77005, USA
| | - Sijin Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China.
| | - Shitao Li
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
4
|
Wang G, Liu X, Liu H, Zhang X, Shao Y, Jia X. A novel necroptosis related gene signature and regulatory network for overall survival prediction in lung adenocarcinoma. Sci Rep 2023; 13:15345. [PMID: 37714937 PMCID: PMC10504370 DOI: 10.1038/s41598-023-41998-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 09/04/2023] [Indexed: 09/17/2023] Open
Abstract
We downloaded the mRNA expression profiles of patients with LUAD and corresponding clinical data from The Cancer Genome Atlas (TCGA) database and used the Least Absolute Shrinkage and Selection Operator Cox regression model to construct a multigene signature in the TCGA cohort, which was validated with patient data from the GEO cohort. Results showed differences in the expression levels of 120 necroptosis-related genes between normal and tumor tissues. An eight-gene signature (CYLD, FADD, H2AX, RBCK1, PPIA, PPID, VDAC1, and VDAC2) was constructed through univariate Cox regression, and patients were divided into two risk groups. The overall survival of patients in the high-risk group was significantly lower than of the patients in the low-risk group in the TCGA and GEO cohorts, indicating that the signature has a good predictive effect. The time-ROC curves revealed that the signature had a reliable predictive role in both the TCGA and GEO cohorts. Enrichment analysis showed that differential genes in the risk subgroups were associated with tumor immunity and antitumor drug sensitivity. We then constructed an mRNA-miRNA-lncRNA regulatory network, which identified lncRNA AL590666. 2/let-7c-5p/PPIA as a regulatory axis for LUAD. Real-time quantitative PCR (RT-qPCR) was used to validate the expression of the 8-gene signature. In conclusion, necroptosis-related genes are important factors for predicting the prognosis of LUAD and potential therapeutic targets.
Collapse
Affiliation(s)
- Guoyu Wang
- Department of Traditional Chinese Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xue Liu
- Department of Respiration, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huaman Liu
- Department of General Medicine, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinyue Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yumeng Shao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinhua Jia
- Department of Respiration, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
5
|
Zhang J, Tu H, Zheng Z, Zhao X, Lin X. RNF31 promotes tumorigenesis via inhibiting RIPK1 kinase-dependent apoptosis. Oncogene 2023; 42:1585-1596. [PMID: 36997719 DOI: 10.1038/s41388-023-02669-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 04/01/2023]
Abstract
It is well established that interferon (IFN) and tumor necrosis factor (TNF) could synergistically promote antitumor toxicity and avoid resistance of antigen-negative tumors during cancer immunotherapy. The linear ubiquitin chain assembly complex (LUBAC) has been widely known to regulate receptor-interacting protein kinase-1(RIPK1) kinase activity and TNF-mediated cell death during inflammation and embryogenesis. However, whether LUBAC and RIPK1 kinase activity in tumor microenvironment could regulate antitumor immunity are still not very clear. Here, we demonstrated a cancer cell-intrinsic role of LUBAC complex in tumor microenvironment to promote tumorigenesis. Lacking LUBAC component RNF31 in B16 melanoma cells but not immune cells including macrophages or dendritic cells greatly impaired tumor growth by increasing intratumoral CD8+ T cells infiltration. Mechanistically, we found that tumor cells without RNF31 shown severe apoptosis-mediated cell death caused by TNFα/IFNγ in the tumor microenvironment. Most importantly, we found that RNF31 could limit RIPK1 kinase activity and further prevent tumor cell death in a transcription-independent manner, suggesting a crucial role of RIPK1 kinase activity in tumorigenesis. Together, our results demonstrate an essential role of RNF31 and RIPK1 kinase activity in tumorigenesis and imply that RNF31 inhibition could be harnessed to enhance antitumor toxicity during tumor immunotherapy.
Collapse
Affiliation(s)
- Jie Zhang
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
- Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing, 100084, China
| | - Hailin Tu
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
- Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing, 100084, China
| | - Zheyu Zheng
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
- Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing, 100084, China
| | - Xueqiang Zhao
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
- Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing, 100084, China
| | - Xin Lin
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China.
- Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing, 100084, China.
| |
Collapse
|
6
|
Zhang Y, Lu Y, Xu Y, Le Z, Liu Y, Tu W, Liu Y. Hypoxia-induced degradation of PICK1 by RBCK1 promotes the proliferation of nasopharyngeal carcinoma cells. Life Sci 2023; 321:121594. [PMID: 36934971 DOI: 10.1016/j.lfs.2023.121594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/03/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
AIMS Hypoxia is an important feature of nasopharyngeal carcinoma (NPC). "Protein interacting with PRKCA 1" (PICK1) is commonly downregulated in human malignancies and is functionally related to poor prognosis. However, there is a limited understanding of the upstream mechanisms regulating PICK1 currently. MAIN METHODS PICK1 and HIF-1α expression levels were analyzed by Immunohistochemistry (IHC), western blotting, and quantitative real-time PCR assay. Protein stability and ubiquitin assays were used to investigate PICK1 protein degradation. Immunofluorescence and co-immunoprecipitation assays were used to demonstrate the interaction between RBCK1 and PICK1. Gene knockdown by siRNA transfection was used to investigate the role of HIF-1α and RBCK1 in hypoxia-induced PICK1 degradation. Cell Counting Kit-8 (CCK-8), 5-Ethynyl-2'-deoxyuridine (EdU) assays and subcutaneous xenograft nude models were used to explore the roles of RBCK1 and PICK1 in NPC cell proliferation. KEY FINDINGS PICK1 expression in NPC tissue was negatively relative to that of HIF-1α. HIF-1α downregulated PICK1 expression by facilitating its ubiquitination by the E3 ligases RANBP2-type and C3HC4-type zinc finger containing 1 (RBCK1), thereby enhancing proteasome-mediated PICK1 degradation. RBCK1 knockdown inhibited NPC cell proliferation, which was ameliorated by double knockdown of RBCK1/PICK1. SIGNIFICANCE These data provide evidence for an NPC cell adaptation mechanism to hypoxia, where HIF-1α regulates RBCK1, which targets PICK1 for degradation to promote cell proliferation.
Collapse
Affiliation(s)
- Yingzi Zhang
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Yue Lu
- Department of Radiotherapy, Huangpu Branch of the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yiqing Xu
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Ziyu Le
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Yi Liu
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Wenzhi Tu
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China.
| | - Yong Liu
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China.
| |
Collapse
|
7
|
Chen X, Ye Q, Zhao W, Chi X, Xie C, Wang X. RBCK1 promotes hepatocellular carcinoma metastasis and growth by stabilizing RNF31. Cell Death Discov 2022; 8:334. [PMID: 35869046 PMCID: PMC9307510 DOI: 10.1038/s41420-022-01126-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 12/24/2022] Open
Abstract
AbstractRNF31 (HOIP), RBCK1 (HOIL-1L), and SHARPIN are subunits of the linear ubiquitin chain assembly complex. Their function and specific molecular mechanisms in hepatocellular carcinoma (HCC) have not been reported previously. Here, we investigated the role of RNF31 and RBCK1 in HCC. We showed that RNF31 and RBCK1 were overexpressed in HCC and that upregulation of RNF31 and RBCK1 indicated poor clinical outcomes in patients with HCC. RNF31 overexpression was significantly associated with more satellite foci and vascular invasion in patients with HCC. Additionally, RBCK1 expression correlated positively with RNF31 expression in HCC tissues. Functionally, RBCK1 and RNF31 promote the metastasis and growth of HCC cells. Moreover, the RNF31 inhibitor gliotoxin inhibited the malignant behavior of HCC cells. Mechanistically, RBCK1 interacted with RNF31 and repressed its ubiquitination and proteasomal degradation. In summary, the present study revealed an oncogenic role and regulatory relationship between RBCK1 and RNF31 in facilitating proliferation and metastasis in HCC, suggesting that they are potential prognostic markers and therapeutic targets for HCC.
Collapse
|
8
|
Kelsall IR. Non-lysine ubiquitylation: Doing things differently. Front Mol Biosci 2022; 9:1008175. [PMID: 36200073 PMCID: PMC9527308 DOI: 10.3389/fmolb.2022.1008175] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022] Open
Abstract
The post-translational modification of proteins with ubiquitin plays a central role in nearly all aspects of eukaryotic biology. Historically, studies have focused on the conjugation of ubiquitin to lysine residues in substrates, but it is now clear that ubiquitylation can also occur on cysteine, serine, and threonine residues, as well as on the N-terminal amino group of proteins. Paradigm-shifting reports of non-proteinaceous substrates have further extended the reach of ubiquitylation beyond the proteome to include intracellular lipids and sugars. Additionally, results from bacteria have revealed novel ways to ubiquitylate (and deubiquitylate) substrates without the need for any of the enzymatic components of the canonical ubiquitylation cascade. Focusing mainly upon recent findings, this review aims to outline the current understanding of non-lysine ubiquitylation and speculate upon the molecular mechanisms and physiological importance of this non-canonical modification.
Collapse
|
9
|
Yin X, Liu Q, Liu F, Tian X, Yan T, Han J, Jiang S. Emerging Roles of Non-proteolytic Ubiquitination in Tumorigenesis. Front Cell Dev Biol 2022; 10:944460. [PMID: 35874839 PMCID: PMC9298949 DOI: 10.3389/fcell.2022.944460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/15/2022] [Indexed: 12/13/2022] Open
Abstract
Ubiquitination is a critical type of protein post-translational modification playing an essential role in many cellular processes. To date, more than eight types of ubiquitination exist, all of which are involved in distinct cellular processes based on their structural differences. Studies have indicated that activation of the ubiquitination pathway is tightly connected with inflammation-related diseases as well as cancer, especially in the non-proteolytic canonical pathway, highlighting the vital roles of ubiquitination in metabolic programming. Studies relating degradable ubiquitination through lys48 or lys11-linked pathways to cellular signaling have been well-characterized. However, emerging evidence shows that non-degradable ubiquitination (linked to lys6, lys27, lys29, lys33, lys63, and Met1) remains to be defined. In this review, we summarize the non-proteolytic ubiquitination involved in tumorigenesis and related signaling pathways, with the aim of providing a reference for future exploration of ubiquitination and the potential targets for cancer therapies.
Collapse
Affiliation(s)
- Xiu Yin
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Qingbin Liu
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Fen Liu
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Xinchen Tian
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China.,Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tinghao Yan
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China.,Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Han
- Department of Thyroid and Breast Surgery, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Shulong Jiang
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China
| |
Collapse
|
10
|
Krishnan D, Menon RN, Gopala S. SHARPIN: Role in Finding NEMO and in Amyloid-Beta Clearance and Degradation (ABCD) Pathway in Alzheimer's Disease? Cell Mol Neurobiol 2022; 42:1267-1281. [PMID: 33400084 PMCID: PMC11421708 DOI: 10.1007/s10571-020-01023-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022]
Abstract
SHANK- associated RH domain-interacting protein (SHARPIN) is a multifunctional protein associated with numerous physiological functions and many diseases. The primary role of the protein as a LUBAC-dependent component in regulating the activation of the transcription factor NF-κB accounts to its role in inflammation and antiapoptosis. Hence, an alteration of SHARPIN expression or genetic mutations or polymorphisms leads to the alteration of the above-mentioned primary physiological functions contributing to inflammation-associated diseases and cancer, respectively. However, there are complications of targeting SHARPIN as a therapeutic approach, which arises from the wide-range of LUBAC-independent functions and yet unknown roles of SHARPIN including neuronal functions. The identification of SHARPIN as a postsynaptic protein and the emerging studies indicating its role in several neurodegenerative diseases including Alzheimer's disease suggests a strong role of SHARPIN in neuronal functioning. This review summarizes the functional roles of SHARPIN in normal physiology and disease pathogenesis and strongly suggests a need for concentrating more studies on identifying the unknown neuronal functions of SHARPIN and hence its role in neurodegenerative diseases.
Collapse
Affiliation(s)
- Dhanya Krishnan
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695011, Kerala, India
| | - Ramsekhar N Menon
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695011, Kerala, India
| | - Srinivas Gopala
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695011, Kerala, India.
| |
Collapse
|
11
|
Xu Z, Shao J, Zheng C, Cai J, Li B, Peng X, Chen L, Liu T. The E3 ubiquitin ligase RBCK1 promotes the invasion and metastasis of hepatocellular carcinoma by destroying the PPARγ/PGC1α complex. Am J Cancer Res 2022; 12:1372-1392. [PMID: 35411229 PMCID: PMC8984891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/22/2022] [Indexed: 06/14/2023] Open
Abstract
The disruption of tumour cell metabolism can inhibit tumour metastasis, indicating that aerobic glycolysis is central to tumour development. However, the key factors responsible for mediating aerobic glycolysis in hepatocellular carcinoma (HCC) remain unknown. Here, we observed that RBCK1 expression was significantly upregulated in HCC tissues. Our clinical study revealed that high RBCK1 expression is significantly correlated with poor tumour survival and distant invasion. Functional assays revealed that RBCK1 promotes migration and invasion by enhancing GLUT1-mediated aerobic glycolysis. Furthermore, RBCK1-induced HCC cell migration and aerobic glycolysis via activation of WNT/β-catenin/GLUT1 pathway, which was dependent on the destruction of the PPARγ/PGC1α complex. Mechanistically, RBCK1 promotes PPARγ ubiquitination and degradation, and RBCK1 overexpression enhances the transcriptional activity of WNT/β-catenin, thus to upregulate the expression of GLUT1-mediated aerobic glycolysis in HCC cells. Altogether, our findings identify a mechanism used by HCC cells to survive the nutrient-poor tumour microenvironment and provide insight into the role of RBCK1 in HCC cellular adaptation to metabolic stresses.
Collapse
Affiliation(s)
- Zheng Xu
- Department of Head & Neck Surgery, Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi Province, China
| | - Jun Shao
- Department of General Surgery, Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi Province, China
| | - Cihua Zheng
- Department of Rehabilitation, Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi Province, China
| | - Jing Cai
- Department of Oncology, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi Province, China
| | - Bowen Li
- Department of General Surgery, Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi Province, China
| | - Xiaogang Peng
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi Province, China
| | - Leifeng Chen
- Cancer Center, Renmin Hospital of Wuhan UniversityWuhan 430060, Hubei, China
| | - Tiande Liu
- Department of General Surgery, Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi Province, China
| |
Collapse
|
12
|
Linear Ubiquitination Mediates EGFR-Induced NF-κB Pathway and Tumor Development. Int J Mol Sci 2021; 22:ijms222111875. [PMID: 34769306 PMCID: PMC8585052 DOI: 10.3390/ijms222111875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 01/03/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that instigates several signaling cascades, including the NF-κB signaling pathway, to induce cell differentiation and proliferation. Overexpression and mutations of EGFR are found in up to 30% of solid tumors and correlate with a poor prognosis. Although it is known that EGFR-mediated NF-κB activation is involved in tumor development, the signaling axis is not well elucidated. Here, we found that plakophilin 2 (PKP2) and the linear ubiquitin chain assembly complex (LUBAC) were required for EGFR-mediated NF-κB activation. Upon EGF stimulation, EGFR recruited PKP2 to the plasma membrane, and PKP2 bridged HOIP, the catalytic E3 ubiquitin ligase in the LUBAC, to the EGFR complex. The recruitment activated the LUBAC complex and the linear ubiquitination of NEMO, leading to IκB phosphorylation and subsequent NF-κB activation. Furthermore, EGF-induced linear ubiquitination was critical for tumor cell proliferation and tumor development. Knockout of HOIP impaired EGF-induced NF-κB activity and reduced cell proliferation. HOIP knockout also abrogated the growth of A431 epidermal xenograft tumors in nude mice by more than 70%. More importantly, the HOIP inhibitor, HOIPIN-8, inhibited EGFR-mediated NF-κB activation and cell proliferation of A431, MCF-7, and MDA-MB-231 cancer cells. Overall, our study reveals a novel linear ubiquitination signaling axis of EGFR and that perturbation of HOIP E3 ubiquitin ligase activity is potential targeted cancer therapy.
Collapse
|
13
|
Zhang H, Zhao X, Guo Y, Chen R, He J, Li L, Qiang Z, Yang Q, Liu X, Huang C, Lu R, Fang J, Cao Y, Huang J, Wang Y, Huang J, Chen GQ, Cheng J, Yu J. Hypoxia regulates overall mRNA homeostasis by inducing Met 1-linked linear ubiquitination of AGO2 in cancer cells. Nat Commun 2021; 12:5416. [PMID: 34518544 PMCID: PMC8438024 DOI: 10.1038/s41467-021-25739-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 08/26/2021] [Indexed: 11/30/2022] Open
Abstract
Hypoxia is the most prominent feature in human solid tumors and induces activation of hypoxia-inducible factors and their downstream genes to promote cancer progression. However, whether and how hypoxia regulates overall mRNA homeostasis is unclear. Here we show that hypoxia inhibits global-mRNA decay in cancer cells. Mechanistically, hypoxia induces the interaction of AGO2 with LUBAC, the linear ubiquitin chain assembly complex, which co-localizes with miRNA-induced silencing complex and in turn catalyzes AGO2 occurring Met1-linked linear ubiquitination (M1-Ubi). A series of biochemical experiments reveal that M1-Ubi of AGO2 restrains miRNA-mediated gene silencing. Moreover, combination analyses of the AGO2-associated mRNA transcriptome by RIP-Seq and the mRNA transcriptome by RNA-Seq confirm that AGO2 M1-Ubi interferes miRNA-targeted mRNA recruiting to AGO2, and thereby facilitates accumulation of global mRNAs. By this mechanism, short-term hypoxia may protect overall mRNAs and enhances stress tolerance, whereas long-term hypoxia in tumor cells results in seriously changing the entire gene expression profile to drive cell malignant evolution.
Collapse
Affiliation(s)
- Hailong Zhang
- State Key Laboratory of Oncogenes and Related Genes, Department of Biochemistry and Molecular Cell Biology & Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xian Zhao
- State Key Laboratory of Oncogenes and Related Genes, Department of Biochemistry and Molecular Cell Biology & Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yanmin Guo
- State Key Laboratory of Oncogenes and Related Genes, Department of Biochemistry and Molecular Cell Biology & Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ran Chen
- State Key Laboratory of Oncogenes and Related Genes, Department of Biochemistry and Molecular Cell Biology & Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jianfeng He
- State Key Laboratory of Oncogenes and Related Genes, Department of Biochemistry and Molecular Cell Biology & Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lian Li
- State Key Laboratory of Oncogenes and Related Genes, Department of Biochemistry and Molecular Cell Biology & Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhe Qiang
- State Key Laboratory of Oncogenes and Related Genes, Department of Biochemistry and Molecular Cell Biology & Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qianqian Yang
- State Key Laboratory of Oncogenes and Related Genes, Department of Biochemistry and Molecular Cell Biology & Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaojia Liu
- State Key Laboratory of Oncogenes and Related Genes, Department of Biochemistry and Molecular Cell Biology & Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Caihu Huang
- State Key Laboratory of Oncogenes and Related Genes, Department of Biochemistry and Molecular Cell Biology & Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Runhui Lu
- State Key Laboratory of Oncogenes and Related Genes, Department of Biochemistry and Molecular Cell Biology & Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiayu Fang
- State Key Laboratory of Oncogenes and Related Genes, Department of Biochemistry and Molecular Cell Biology & Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yingting Cao
- State Key Laboratory of Oncogenes and Related Genes, Department of Biochemistry and Molecular Cell Biology & Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiayi Huang
- State Key Laboratory of Oncogenes and Related Genes, Department of Biochemistry and Molecular Cell Biology & Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yanli Wang
- State Key Laboratory of Oncogenes and Related Genes, Department of Biochemistry and Molecular Cell Biology & Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jian Huang
- State Key Laboratory of Oncogenes and Related Genes, Department of Biochemistry and Molecular Cell Biology & Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Guo-Qiang Chen
- State Key Laboratory of Oncogenes and Related Genes, Department of Biochemistry and Molecular Cell Biology & Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jinke Cheng
- State Key Laboratory of Oncogenes and Related Genes, Department of Biochemistry and Molecular Cell Biology & Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jianxiu Yu
- State Key Laboratory of Oncogenes and Related Genes, Department of Biochemistry and Molecular Cell Biology & Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
14
|
Scholz N, Kurian KM, Siebzehnrubl FA, Licchesi JDF. Targeting the Ubiquitin System in Glioblastoma. Front Oncol 2020; 10:574011. [PMID: 33324551 PMCID: PMC7724090 DOI: 10.3389/fonc.2020.574011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma is the most common primary brain tumor in adults with poor overall outcome and 5-year survival of less than 5%. Treatment has not changed much in the last decade or so, with surgical resection and radio/chemotherapy being the main options. Glioblastoma is highly heterogeneous and frequently becomes treatment-resistant due to the ability of glioblastoma cells to adopt stem cell states facilitating tumor recurrence. Therefore, there is an urgent need for novel therapeutic strategies. The ubiquitin system, in particular E3 ubiquitin ligases and deubiquitinating enzymes, have emerged as a promising source of novel drug targets. In addition to conventional small molecule drug discovery approaches aimed at modulating enzyme activity, several new and exciting strategies are also being explored. Among these, PROteolysis TArgeting Chimeras (PROTACs) aim to harness the endogenous protein turnover machinery to direct therapeutically relevant targets, including previously considered "undruggable" ones, for proteasomal degradation. PROTAC and other strategies targeting the ubiquitin proteasome system offer new therapeutic avenues which will expand the drug development toolboxes for glioblastoma. This review will provide a comprehensive overview of E3 ubiquitin ligases and deubiquitinating enzymes in the context of glioblastoma and their involvement in core signaling pathways including EGFR, TGF-β, p53 and stemness-related pathways. Finally, we offer new insights into how these ubiquitin-dependent mechanisms could be exploited therapeutically for glioblastoma.
Collapse
Affiliation(s)
- Nico Scholz
- Department of Biology & Biochemistry, University of Bath, Bath, United Kingdom
| | - Kathreena M. Kurian
- Brain Tumour Research Group, Institute of Clinical Neurosciences, University of Bristol, Bristol, United Kingdom
| | - Florian A. Siebzehnrubl
- Cardiff University School of Biosciences, European Cancer Stem Cell Research Institute, Cardiff, United Kingdom
| | | |
Collapse
|
15
|
Brazee PL, Morales-Nebreda L, Magnani ND, Garcia JG, Misharin AV, Ridge KM, Budinger GRS, Iwai K, Dada LA, Sznajder JI. Linear ubiquitin assembly complex regulates lung epithelial-driven responses during influenza infection. J Clin Invest 2020; 130:1301-1314. [PMID: 31714898 DOI: 10.1172/jci128368] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 11/06/2019] [Indexed: 12/25/2022] Open
Abstract
Influenza A virus (IAV) is among the most common causes of pneumonia-related death worldwide. Pulmonary epithelial cells are the primary target for viral infection and replication and respond by releasing inflammatory mediators that recruit immune cells to mount the host response. Severe lung injury and death during IAV infection result from an exuberant host inflammatory response. The linear ubiquitin assembly complex (LUBAC), composed of SHARPIN, HOIL-1L, and HOIP, is a critical regulator of NF-κB-dependent inflammation. Using mice with lung epithelial-specific deletions of HOIL-1L or HOIP in a model of IAV infection, we provided evidence that, while a reduction in the inflammatory response was beneficial, ablation of the LUBAC-dependent lung epithelial-driven response worsened lung injury and increased mortality. Moreover, we described a mechanism for the upregulation of HOIL-1L in infected and noninfected cells triggered by the activation of type I IFN receptor and mediated by IRF1, which was maladaptive and contributed to hyperinflammation. Thus, we propose that lung epithelial LUBAC acts as a molecular rheostat that could be selectively targeted to modulate the immune response in patients with severe IAV-induced pneumonia.
Collapse
Affiliation(s)
- Patricia L Brazee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Luisa Morales-Nebreda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Natalia D Magnani
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Joe Gn Garcia
- Department of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Alexander V Misharin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Karen M Ridge
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, Illinois, USA
| | - G R Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Kazuhiro Iwai
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Yoshida-konoe-cho, Kyoto, Japan
| | - Laura A Dada
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
16
|
Wang P, Dai X, Jiang W, Li Y, Wei W. RBR E3 ubiquitin ligases in tumorigenesis. Semin Cancer Biol 2020; 67:131-144. [PMID: 32442483 DOI: 10.1016/j.semcancer.2020.05.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/28/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023]
Abstract
RING-in-between-RING (RBR) E3 ligases are one class of E3 ligases that is characterized by the unique RING-HECT hybrid mechanism to function with E2s to transfer ubiquitin to target proteins for degradation. Emerging evidence has demonstrated that RBR E3 ligases play essential roles in neurodegenerative diseases, infection, inflammation and cancer. Accumulated evidence has revealed that RBR E3 ligases exert their biological functions in various types of cancers by modulating the degradation of tumor promoters or suppressors. Hence, we summarize the differential functions of RBR E3 ligases in a variety of human cancers. In general, ARIH1, RNF14, RNF31, RNF144B, RNF216, and RBCK1 exhibit primarily oncogenic roles, whereas ARIH2, PARC and PARK2 mainly have tumor suppressive functions. Moreover, the underlying mechanisms by which different RBR E3 ligases are involved in tumorigenesis and progression are also described. We discuss the further investigation is required to comprehensively understand the critical role of RBR E3 ligases in carcinogenesis. We hope our review can stimulate the researchers to deeper explore the mechanism of RBR E3 ligases-mediated carcinogenesis and to develop useful inhibitors of these oncogenic E3 ligases for cancer therapy.
Collapse
Affiliation(s)
- Peter Wang
- School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China
| | - Xiaoming Dai
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA, USA
| | - Wenxiao Jiang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Yuyun Li
- School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA, USA.
| |
Collapse
|
17
|
Yang Y, Liang YH, Zheng Y, Tang LJ, Zhou ST, Zhu JN. SHARPIN regulates cell proliferation of cutaneous basal cell carcinoma via inactivation of the transcriptional factors GLI2 and c‑JUN. Mol Med Rep 2020; 21:1799-1808. [PMID: 32319607 PMCID: PMC7057814 DOI: 10.3892/mmr.2020.10981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 01/07/2020] [Indexed: 12/23/2022] Open
Abstract
SHANK‑associated RH domain‑interacting protein (SHARPIN) is a component of the linear ubiquitin chain assembly complex that can enhance the NF‑κB and JNK signaling pathways, acting as a tumor‑associated protein in a variety of cancer types. The present study investigated the role of SHARPIN in cutaneous basal cell carcinoma (BCC). Human BCC (n=26) and normal skin (n=5) tissues, and BCC (TE354.T) and normal skin (HaCaT) cell lines were used to evaluate SHARPIN expression level using immunohistochemistry and western blotting, respectively. A lentivirus carrying SHARPIN‑targeting or negative control short hairpin RNA was infected into TE354.T cells, and the infected stable cells were assayed to analyze tumor cell proliferation, cell cycle, apoptosis, migration and invasion by Cell Counting Kit‑8 and 5‑ethynyl‑2'‑deoxyuridine incorporation assays, flow cytometry and Transwell assays. Western blotting was performed to assess the protein expression levels of gene signaling in SHARPIN‑silenced BCC cells. SHARPIN protein expression levels were downregulated or absent in BCC cancer nests and precancerous lesions compared with normal skin samples. In addition, SHARPIN expression levels were lower in TE354.T cells compared with HaCaT cells. SHARPIN shRNA enhanced tumor cell proliferation and the S phase of the cell cycle, whereas BCC cell apoptotic rates, and migratory and invasive abilities were not significantly altered. The expression levels of cyclin D1, cyclin‑dependent kinase 4, phosphorylated‑c‑JUN and GLI family zinc finger 2 proteins were increased, whereas Patched 1 (PTCH1) and PTCH2 were decreased in the SHARPIN‑shRNA‑infected BCC cells. Therefore, the present results suggested that SHARPIN may act as a tumor suppressor during BCC development.
Collapse
Affiliation(s)
- Yao Yang
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518101, P.R. China
| | - Yan-Hua Liang
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518101, P.R. China
| | - Yan Zheng
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518101, P.R. China
| | - Ling-Jie Tang
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518101, P.R. China
| | - Si-Tong Zhou
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518101, P.R. China
| | - Jing-Na Zhu
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518101, P.R. China
| |
Collapse
|
18
|
Liu ML, Zang F, Zhang SJ. RBCK1 contributes to chemoresistance and stemness in colorectal cancer (CRC). Biomed Pharmacother 2019; 118:109250. [DOI: 10.1016/j.biopha.2019.109250] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 02/07/2023] Open
|
19
|
Yu S, Dai J, Ma M, Xu T, Kong Y, Cui C, Chi Z, Si L, Tang H, Yang L, Sheng X, Guo J. RBCK1 promotes p53 degradation via ubiquitination in renal cell carcinoma. Cell Death Dis 2019; 10:254. [PMID: 30874541 PMCID: PMC6420644 DOI: 10.1038/s41419-019-1488-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 01/05/2023]
Abstract
Renal cell carcinoma (RCC) accounts for approximately 3% of adult malignancies, and the incidence of RCC continues to rise worldwide. Although RCC can be treated with surgery at an early stages, the five-year survival rates have been observed to decline dramatically in patients with advanced disease. Most patients with RCC treated with cytotoxic or targeted drugs will develop resistance at some point during therapy. Thus, it is necessary to identify novel therapeutic targets for RCC. Here, we found that RANBP2-type and C3HC4-type zinc finger-containing 1 (RBCK1) expression was upregulated in human RCC samples. Analysis of multiple public databases revealed the correlation between RBCK1 expression and poor prognosis in RCC patients. Subsequently, we performed RBCK1 depletion experiments in RCC cells that severely affected the in vivo and in vitro proliferation of renal cancer cells. The effects of RBCK1 on cell proliferation could be rescued with p53 expression knockdown in two cell lines expressing wild-type p53. Further experiments demonstrated that RBCK1 could facilitate p53 poly-ubiquitination and degradation by direct interaction with p53. Together, our results show that RBCK1 may serve as a promising target for RCC therapy by restoring p53 functions.
Collapse
Affiliation(s)
- Sifan Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jie Dai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Meng Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Tianxiao Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yan Kong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Chuanliang Cui
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhihong Chi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Lu Si
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Huan Tang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Lu Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xinan Sheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China.
| | - Jun Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China.
| |
Collapse
|
20
|
Magnani ND, Dada LA, Sznajder JI. Ubiquitin-proteasome signaling in lung injury. Transl Res 2018; 198:29-39. [PMID: 29752900 PMCID: PMC6986356 DOI: 10.1016/j.trsl.2018.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/15/2018] [Accepted: 04/16/2018] [Indexed: 12/21/2022]
Abstract
Cell homeostasis requires precise coordination of cellular proteins function. Ubiquitination is a post-translational modification that modulates protein half-life and function and is tightly regulated by ubiquitin E3 ligases and deubiquitinating enzymes. Lung injury can progress to acute respiratory distress syndrome that is characterized by an inflammatory response and disruption of the alveolocapillary barrier resulting in alveolar edema accumulation and hypoxemia. Ubiquitination plays an important role in the pathobiology of acute lung injury as it regulates the proteins modulating the alveolocapillary barrier and the inflammatory response. Better understanding of the signaling pathways regulated by ubiquitination may lead to novel therapeutic approaches by targeting specific elements of the ubiquitination pathways.
Collapse
Affiliation(s)
- Natalia D Magnani
- Pulmonary and Critical Care Division, Northwestern Feinberg School of Medicine, Chicago, Illinois
| | - Laura A Dada
- Pulmonary and Critical Care Division, Northwestern Feinberg School of Medicine, Chicago, Illinois
| | - Jacob I Sznajder
- Pulmonary and Critical Care Division, Northwestern Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
21
|
HIF and HOIL-1L-mediated PKCζ degradation stabilizes plasma membrane Na,K-ATPase to protect against hypoxia-induced lung injury. Proc Natl Acad Sci U S A 2017; 114:E10178-E10186. [PMID: 29109255 DOI: 10.1073/pnas.1713563114] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Organisms have evolved adaptive mechanisms in response to stress for cellular survival. During acute hypoxic stress, cells down-regulate energy-consuming enzymes such as Na,K-ATPase. Within minutes of alveolar epithelial cell (AEC) exposure to hypoxia, protein kinase C zeta (PKCζ) phosphorylates the α1-Na,K-ATPase subunit and triggers it for endocytosis, independently of the hypoxia-inducible factor (HIF). However, the Na,K-ATPase activity is essential for cell homeostasis. HIF induces the heme-oxidized IRP2 ubiquitin ligase 1L (HOIL-1L), which leads to PKCζ degradation. Here we report a mechanism of prosurvival adaptation of AECs to prolonged hypoxia where PKCζ degradation allows plasma membrane Na,K-ATPase stabilization at ∼50% of normoxic levels, preventing its excessive down-regulation and cell death. Mice lacking HOIL-1L in lung epithelial cells (CreSPC/HOIL-1Lfl/fl ) were sensitized to hypoxia because they express higher levels of PKCζ and, consequently, lower plasma membrane Na,K-ATPase levels, which increased cell death and worsened lung injury. In AECs, expression of an α1-Na,K-ATPase construct bearing an S18A (α1-S18A) mutation, which precludes PKCζ phosphorylation, stabilized the Na,K-ATPase at the plasma membrane and prevented hypoxia-induced cell death even in the absence of HOIL-1L. Adenoviral overexpression of the α1-S18A mutant Na,K-ATPase in vivo rescued the enhanced sensitivity of CreSPC/HOIL-1Lfl/fl mice to hypoxic lung injury. These data suggest that stabilization of Na,K-ATPase during severe hypoxia is a HIF-dependent process involving PKCζ degradation. Accordingly, we provide evidence of an important adaptive mechanism to severe hypoxia, whereby halting the exaggerated down-regulation of plasma membrane Na,K-ATPase prevents cell death and lung injury.
Collapse
|
22
|
Zhou Q, Dai J, Chen T, Dada LA, Zhang X, Zhang W, DeCamp MM, Winn RA, Sznajder JI, Zhou G. Downregulation of PKCζ/Pard3/Pard6b is responsible for lung adenocarcinoma cell EMT and invasion. Cell Signal 2017; 38:49-59. [PMID: 28652146 PMCID: PMC5555371 DOI: 10.1016/j.cellsig.2017.06.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/08/2017] [Accepted: 06/20/2017] [Indexed: 12/24/2022]
Abstract
Atypical protein kinase C ζ (PKCζ) forms an apico-basal polarity complex with Partitioning Defective (Pard) 3 and Pard6 to regulate normal epithelial cell apico-basolateral polarization. The dissociation of the PKCζ/Pard3/Pard6 complex is essential for the disassembly of the tight/adherens junction and epithelial-mesenchymal transition (EMT) that is critical for tumor spreading. Loss of cell polarity and epithelial organization is strongly correlated with malignancy and tumor progression in some other cancer types. However, it is unclear whether the PKCζ/Pard3/Pard6 complex plays a role in the progression of non-small-cell lung cancer (NSCLC). We found that hypoxia downregulated the PKCζ/Pard3/Pard6 complex, correlating with induction of lung cancer cell migration and invasion. Silencing of the PKCζ/Pard3/Pard6 polarity complex components induced lung cancer cell EMT, invasion, and colonization in vivo. Suppression of Pard3 was associated with altered expression of genes regulating wound healing, cell apoptosis/death and cell motility, and particularly upregulation of MAP3K1 and fibronectin which are known to contribute to lung cancer progression. Human lung adenocarcinoma tissues expressed less Pard6b and PKCζ than the adjacent normal tissues and in experimental mouse lung adenocarcinoma, the levels of Pard3 and PKCζ were also decreased. In addition, we showed that a methylation locus in the gene body of Pard3 is positively associated with the expression of Pard3 and that methylation of the Pard3 gene increased cellular sensitivity to carboplatin, a common chemotherapy drug. Suppression of Pard3 increased chemoresistance in lung cancer cells. Together, these results suggest that reduced expression of PKCζ/Pard3/Pard6 contributes to NSCLC EMT, invasion, and chemoresistance.
Collapse
Affiliation(s)
- Qiyuan Zhou
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, USA
| | - Jingbo Dai
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, USA
| | - Tianji Chen
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, USA
| | - Laura A Dada
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xu Zhang
- Division of Hematology and Oncology, University of Illinois at Chicago, Chicago, IL, USA
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Malcolm M DeCamp
- The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Division of Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Robert A Winn
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA; Cancer Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Guofei Zhou
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, USA; Cancer Center, University of Illinois at Chicago, Chicago, IL, USA; State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
23
|
Cai X, Zhu H, Li Y. PKCζ, MMP‑2 and MMP‑9 expression in lung adenocarcinoma and association with a metastatic phenotype. Mol Med Rep 2017; 16:8301-8306. [PMID: 28983601 DOI: 10.3892/mmr.2017.7634] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 08/01/2017] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate protein kinase C ζ type (PKCζ), matrix metalloproteinase (MMP)‑2 and MMP‑9 expression in lung adenocarcinoma and to define their association with in vitro invasion and metastatic capacity. PKCζ, MMP‑2 and MMP‑9 expression was assessed by immunohistochemistry in 110 cases of lung adenocarcinoma. PKCζ small interfering (si)RNA was transfected into A549 cells, and western blotting was used to confirm PKCζ‑knockdown in transfected cells and to measure MMP‑2 and MMP‑9 levels. A Transwell invasion assay was used to detect in vitro invasive capacity. The rates of positive PKCζ, MMP‑2 and MMP‑9 staining in lung adenocarcinoma tissues were 52.73, 55.45 and 61.82%, respectively. PKCζ expression was increased in malignant tissues compared with adjacent normal lung tissues and was associated with lymph node metastasis (P<0.05), although it was not associated with any other clinicopathological parameters, including sex, age, tumor size, smoking status or distant metastases (all P>0.05). PKCζ, MMP‑2 and MMP‑9 expression was markedly decreased in siPKCζ‑treated A549 cells, which exhibited a significantly decreased invasive capacity in the Transwell invasion assay (P<0.05). In conclusion, PKCζ promoted lung adenocarcinoma invasion and metastasis, and its expression was associated with MMP‑2 and MMP‑9 expression. PKCζ may be a potential target for gene therapy in lung adenocarcinoma.
Collapse
Affiliation(s)
- Xiaoshan Cai
- Department of Pathology, Second People's Hospital of Weifang, Weifang, Shandong 261041, P.R. China
| | - Hongguang Zhu
- Department of Dentistry, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Ying Li
- Department of Pathology, Second People's Hospital of Weifang, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
24
|
Vadász I, Sznajder JI. Gas Exchange Disturbances Regulate Alveolar Fluid Clearance during Acute Lung Injury. Front Immunol 2017; 8:757. [PMID: 28725223 PMCID: PMC5495863 DOI: 10.3389/fimmu.2017.00757] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/15/2017] [Indexed: 01/07/2023] Open
Abstract
Disruption of the alveolar-capillary barrier and accumulation of pulmonary edema, if not resolved, result in poor alveolar gas exchange leading to hypoxia and hypercapnia, which are hallmarks of acute lung injury and the acute respiratory distress syndrome (ARDS). Alveolar fluid clearance (AFC) is a major function of the alveolar epithelium and is mediated by the concerted action of apically-located Na+ channels [epithelial Na+ channel (ENaC)] and the basolateral Na,K-ATPase driving vectorial Na+ transport. Importantly, those patients with ARDS who cannot clear alveolar edema efficiently have worse outcomes. While hypoxia can be improved in most cases by O2 supplementation and mechanical ventilation, the use of lung protective ventilation settings can lead to further CO2 retention. Whether the increase in CO2 concentrations has deleterious or beneficial effects have been a topic of significant controversy. Of note, both low O2 and elevated CO2 levels are sensed by the alveolar epithelium and by distinct and specific molecular mechanisms impair the function of the Na,K-ATPase and ENaC thereby inhibiting AFC and leading to persistence of alveolar edema. This review discusses recent discoveries on the sensing and signaling events initiated by hypoxia and hypercapnia and the relevance of these results in identification of potential novel therapeutic targets in the treatment of ARDS.
Collapse
Affiliation(s)
- István Vadász
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
25
|
Brazee P, Dada LA, Sznajder JI. Role of Linear Ubiquitination in Health and Disease. Am J Respir Cell Mol Biol 2017; 54:761-8. [PMID: 26848516 DOI: 10.1165/rcmb.2016-0014tr] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The covalent attachment of ubiquitin to target proteins is one of the most prevalent post-translational modifications, regulating a myriad of cellular processes including cell growth, survival, and metabolism. Recently, a novel RING E3 ligase complex was described, called linear ubiquitin assembly complex (LUBAC), which is capable of connecting ubiquitin molecules in a novel head-to-tail fashion via the N-terminal methionine residue. LUBAC is a heteromeric complex composed of heme-oxidized iron-responsive element-binding protein 2 ubiquitin ligase-1L (HOIL-1L), HOIL-1L-interacting protein, and shank-associated RH domain-interacting protein (SHARPIN). The essential role of LUBAC-generated linear chains for activation of nuclear factor-κB (NF-κB) signaling was first described in the activation of tumor necrosis factor-α receptor signaling complex. A decade of research has identified additional pathways that use LUBAC for downstream signaling, including CD40 ligand and the IL-1β receptor, as well as cytosolic pattern recognition receptors including nucleotide-binding oligomerization domain containing 2 (NOD2), retinoic acid-inducible gene 1 (RIG-1), and the NOD-like receptor family, pyrin domain containing 3 inflammasome (NLRP3). Even though the three components of the complex are required for full activation of NF-κB, the individual components of LUBAC regulate specific cell type- and stimuli-dependent effects. In humans, autosomal defects in LUBAC are associated with both autoinflammation and immunodeficiency, with additional disorders described in mice. Moreover, in the lung epithelium, HOIL-1L ubiquitinates target proteins independently of the other LUBAC components, adding another layer of complexity to the function and regulation of LUBAC. Although many advances have been made, the diverse functions of linear ubiquitin chains and the regulation of LUBAC are not yet completely understood. In this review, we discuss the various roles of linear ubiquitin chains and point to areas of study that would benefit from further investigation into LUBAC-mediated signaling pathways in lung pathophysiology.
Collapse
Affiliation(s)
- Patricia Brazee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, Illinois
| | - Laura A Dada
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, Illinois
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
26
|
Abstract
Ubiquitin can form eight different linkage types of chains using the intrinsic Met 1 residue or one of the seven intrinsic Lys residues. Each linkage type of ubiquitin chain has a distinct three-dimensional topology, functioning as a tag to attract specific signaling molecules, which are so-called ubiquitin readers, and regulates various biological functions. Ubiquitin chains linked via Met 1 in a head-to-tail manner are called linear ubiquitin chains. Linear ubiquitination plays an important role in the regulation of cellular signaling, including the best-characterized tumor necrosis factor (TNF)-induced canonical nuclear factor-κB (NF-κB) pathway. Linear ubiquitin chains are specifically generated by an E3 ligase complex called the linear ubiquitin chain assembly complex (LUBAC) and hydrolyzed by a deubiquitinase (DUB) called ovarian tumor (OTU) DUB with linear linkage specificity (OTULIN). LUBAC linearly ubiquitinates critical molecules in the TNF pathway, such as NEMO and RIPK1. The linear ubiquitin chains are then recognized by the ubiquitin readers, including NEMO, which control the TNF pathway. Accumulating evidence indicates an importance of the LUBAC complex in the regulation of apoptosis, development, and inflammation in mice. In this article, I focus on the role of linear ubiquitin chains in adaptive immune responses with an emphasis on the TNF-induced signaling pathways.
Collapse
Affiliation(s)
- Fumiyo Ikeda
- Institute of Molecular Biotechnology (IMBA), Vienna, Austria
| |
Collapse
|
27
|
Elton L, Carpentier I, Verhelst K, Staal J, Beyaert R. The multifaceted role of the E3 ubiquitin ligase HOIL-1: beyond linear ubiquitination. Immunol Rev 2016; 266:208-21. [PMID: 26085217 DOI: 10.1111/imr.12307] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ubiquitination controls and fine-tunes many signaling processes driving immunity, inflammation, and cancer. The E3 ubiquitin ligase HOIL-1 (heme-oxidized IRP2 ubiquitin ligase-1) is increasingly implicated in different signaling pathways and plays a vital role in immune regulation. HOIL-1 co operates with the E3 ubiquitin ligase HOIP (HOIL-1 interacting protein) to modify specific nuclear factor-κB (NF-κB) signaling proteins with linear M1-linked polyubiquitin chains. In addition, through its ability to also add K48-linked polyubiquitin chains to specific substrates, HOIL-1 has been linked with antiviral signaling, iron and xenobiotic metabolism, cell death, and cancer. HOIL-1 deficiency in humans leads to myopathy, amylopectinosis, auto-inflammation, and immunodeficiency associated with an increased frequency of bacterial infections. HOIL-1-deficient mice exhibit amylopectin-like deposits in the myocardium, pathogen-specific immunodeficiency, but minimal signs of hyper-inflammation. This review summarizes current knowledge on the mechanism of action of HOIL-1 and highlights recent advances regarding its role in health and disease.
Collapse
Affiliation(s)
- Lynn Elton
- Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Isabelle Carpentier
- Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Kelly Verhelst
- Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jens Staal
- Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Rudi Beyaert
- Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
28
|
Spira A, Halmos B, Powell CA. Update in Lung Cancer 2014. Am J Respir Crit Care Med 2015; 192:283-94. [PMID: 26230235 PMCID: PMC4584253 DOI: 10.1164/rccm.201504-0756up] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 05/15/2015] [Indexed: 12/14/2022] Open
Abstract
In the past 2 years, lung cancer research and clinical care have advanced significantly. Advancements in the field have improved outcomes and promise to lead to further reductions in deaths from lung cancer, the leading cause of cancer death worldwide. These advances include identification of new molecular targets for personalized targeted therapy, validation of molecular signatures of lung cancer risk in smokers, progress in lung tumor immunotherapy, and implementation of population-based lung cancer screening with chest computed tomography in the United States. In this review, we highlight recent research in these areas and challenges for the future.
Collapse
Affiliation(s)
- Avrum Spira
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts
| | - Balazs Halmos
- Department of Medicine, Columbia University Medical Center, New York, New York; and
| | - Charles A. Powell
- Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
29
|
Sasaki K, Iwai K. Roles of linear ubiquitinylation, a crucial regulator of NF-κB and cell death, in the immune system. Immunol Rev 2015; 266:175-89. [DOI: 10.1111/imr.12308] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Katsuhiro Sasaki
- Molecular and Cellular Physiology; Graduate School of Medicine; Kyoto University; Kyoto Japan
| | - Kazuhiro Iwai
- Molecular and Cellular Physiology; Graduate School of Medicine; Kyoto University; Kyoto Japan
| |
Collapse
|
30
|
Liu Y, Mallampalli RK. Decoding the growth advantage of hypoxia-sensitive lung cancer. Am J Respir Crit Care Med 2014; 190:603-5. [PMID: 25221878 DOI: 10.1164/rccm.201408-1503ed] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Yuan Liu
- 1 Department of Medicine University of Pittsburgh Pittsburgh, Pennsylvania
| | | |
Collapse
|