1
|
Eaton DC, Romero MJ, Matthay MA, Hamacher J, Advani A, Wolf A, Abu Mraheil M, Chakraborty T, Stepp DW, Belin de Chantemèle EJ, Kutlar A, Kraft F, Zeitlinger M, Kranke P, Frank S, Su Y, Verin AD, Fulton DJR, Ushio-Fukai M, Fukai T, Lucas R. Endothelial ENaC as a repressor of oxidative stress and a guardian of lung capillary barrier function in bacterial and viral pneumonia. Front Physiol 2025; 16:1562626. [PMID: 40260205 PMCID: PMC12009727 DOI: 10.3389/fphys.2025.1562626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/26/2025] [Indexed: 04/23/2025] Open
Abstract
The endothelium represents a crucial regulator of vascular homeostasis. Since endothelial cells mainly rely on glycolysis rather than on oxidative phosphorylation for their ATP generation, this allows capillaries to transport the maximum amount of oxygen to oxygen-starved tissues, where it can be used for energy generation. However, the occasionally high levels of oxygen and of reactive oxygen species (ROS) in the blood vessels requires a balancing act between pro- and anti-oxidative mechanisms in the endothelium. When this balance is disturbed by excessive oxidative stress, as can occur in bacterial and viral pneumonia, endothelial barrier function can be compromised. This review will discuss some of the recently discovered barrier-protective mechanisms during bacterial and viral pneumonia, mediated through the reduction of oxidative stress in lung capillaries by the epithelial sodium channel (ENaC).
Collapse
Affiliation(s)
- D. C. Eaton
- Department of Medicine, Emory School of Medicine, Atlanta, GA, United States
| | - M. J. Romero
- Vascular Biology Center, Augusta, GA, United States
- Department of Pharmacology and Toxicology, Augusta, GA, United States
| | - M. A. Matthay
- Cardiovascular Research Institute, University of California at San Francisco, San Francisco, CA, United States
| | - J. Hamacher
- Pneumology, Clinic for General Internal Medicine, Lindenhofspital, Bern, Switzerland
- Lungen-und Atmungsstiftung, Bern, Switzerland
- Medical Clinic V-Pneumology, Allergology, Intensive Care Medicine, and Environmental Medicine, Faculty of Medicine, Saarland University, University Medical Centre of the Saarland, Homburg, Germany
| | - A. Advani
- Department.of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - A. Wolf
- Department.of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - M. Abu Mraheil
- Institute for Medical Microbiology, German Centre for Infection Giessen-Marburg-Langen Site, Faculty of Medicine, Justus-Liebig University, Giessen, Germany
| | - T. Chakraborty
- Institute for Medical Microbiology, German Centre for Infection Giessen-Marburg-Langen Site, Faculty of Medicine, Justus-Liebig University, Giessen, Germany
| | - D. W. Stepp
- Vascular Biology Center, Augusta, GA, United States
| | | | - A. Kutlar
- Department.of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - F. Kraft
- Medical University of Vienna, Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Clinical Division of General Anaesthesia and Intensive Care Medicine, Vienna, Austria
| | - M. Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - P. Kranke
- Department of Anesthesiology, Critical Care, Emergency and Pain Medicine, University Hospital of Würzburg, Würzburg, Germany
| | - S. Frank
- Department of Anaesthesiology, LMU University Hospital, LMU, Munich, Germany
| | - Y. Su
- Department of Pharmacology and Toxicology, Augusta, GA, United States
- Department.of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Research Service, Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, United States
| | - A. D. Verin
- Vascular Biology Center, Augusta, GA, United States
- Department.of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - D. J. R. Fulton
- Vascular Biology Center, Augusta, GA, United States
- Department of Pharmacology and Toxicology, Augusta, GA, United States
| | - M. Ushio-Fukai
- Vascular Biology Center, Augusta, GA, United States
- Department of Pharmacology and Toxicology, Augusta, GA, United States
| | - T. Fukai
- Vascular Biology Center, Augusta, GA, United States
- Department of Pharmacology and Toxicology, Augusta, GA, United States
| | - R. Lucas
- Vascular Biology Center, Augusta, GA, United States
- Department of Pharmacology and Toxicology, Augusta, GA, United States
- Department.of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| |
Collapse
|
2
|
Romero MJ, Yue Q, Ahn WM, Hamacher J, Zaidi Y, Haigh S, Sridhar S, Gonzales J, Hudel M, Huo Y, Verin AD, Pace BS, Stansfield BK, Maishan M, Neptune ER, Enkhbaatar P, Su Y, Chakraborty T, Gonsalvez G, Hummler E, Davis WB, Bogdanov VY, Fulton DJR, Csanyi G, Matthay MA, Eaton DC, Lucas R. Endothelial ENaC-α Restrains Oxidative Stress in Lung Capillaries in Murine Pneumococcal Pneumonia-associated Acute Lung Injury. Am J Respir Cell Mol Biol 2025; 72:429-440. [PMID: 39405473 PMCID: PMC12005010 DOI: 10.1165/rcmb.2023-0440oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 10/15/2024] [Indexed: 03/12/2025] Open
Abstract
Infection of lung endothelial cells with pneumococci activates the superoxide-generating enzyme NOX2 (nicotinamide adenine dinucleotide phosphate hydrogen [NADPH] oxidase 2), involving the pneumococcal virulence factor PLY (pneumolysin). Excessive NOX2 activity disturbs capillary barriers, but its global inhibition can impair bactericidal phagocyte activity during pneumococcal pneumonia. Depletion of the α subunit of ENaC (epithelial sodium channel) in pulmonary endothelial cells increases expression and PMA-induced activity of NOX2. Direct ENaC activation by TIP peptide improves capillary barrier function-measured by electrical cell substrate impedance sensing in endothelial monolayers and by Evans blue dye incorporation in mouse lungs-after infection with pneumococci. PLY-induced hyperpermeability in human lung microvascular endothelial cell monolayers is abrogated by both NOX2 inhibitor gp91dstat and TIP peptide. Endothelial NOX2 expression is assessed by increased surface membrane presence of phosphorylated p47phox subunit (Western blotting) in vitro and by colocalization of CD31 and gp91phox in mouse lung slices using DuoLink, whereas NOX2-generated superoxide is measured by chemiluminescence. TIP peptide blunts PMA-induced NOX2 activity in cells expressing ENaC-α, but not in neutrophils, which lack ENaC. Conditional endothelial ENaC-α knockout (enENaC-α knockout) mice develop increased capillary leak upon intratracheal instillation with PLY or pneumococci, compared with wild-type animals. TIP peptide diminishes capillary leak in Streptococcus pneumoniae-infected wild-type mice, without significantly increasing lung bacterial load. Lung slices from S. pneumoniae-infected enENaC-α knockout mice have significantly increased endothelial NOX2 expression, compared with infected cyclization recombination mice. In conclusion, enENaC may represent a novel therapeutic target to reduce NOX2-mediated oxidative stress and capillary leak in acute respiratory distress syndrome, without impairing host defense.
Collapse
Affiliation(s)
| | - Qian Yue
- Department of Medicine, Emory School of Medicine, Atlanta, Georgia
| | | | - Jürg Hamacher
- Pneumology, Clinic for General Internal Medicine, Lindenhofspital, Bern, Switzerland
- Lungen-und Atmungsstiftung, Bern, Switzerland
- Medical Clinic V—Pneumology, Allergology, Intensive Care Medicine, and Environmental Medicine, Faculty of Medicine, Saarland University, University Medical Centre of the Saarland, Homburg, Germany
| | | | | | | | - Joyce Gonzales
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Martina Hudel
- Institute for Medical Microbiology, German Centre for Infection Giessen-Marburg-Langen Site, Faculty of Medicine, Justus-Liebig University, Giessen, Germany
| | - Yuqing Huo
- Vascular Biology Center
- Department of Cell Biology and Anatomy
| | - Alexander D. Verin
- Vascular Biology Center
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Betty S. Pace
- Department of Pediatrics, and
- Division of Hematology/Oncology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | | | - Mazharul Maishan
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California
| | - Enid R. Neptune
- Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Perenlei Enkhbaatar
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Yunchao Su
- Department of Pharmacology and Toxicology
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Trinad Chakraborty
- Institute for Medical Microbiology, German Centre for Infection Giessen-Marburg-Langen Site, Faculty of Medicine, Justus-Liebig University, Giessen, Germany
| | | | - Edith Hummler
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- National Center of Competence in Research Kidney.CH, Lausanne, Switzerland; and
| | - William B. Davis
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Vladimir Y. Bogdanov
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | | | - Gabor Csanyi
- Vascular Biology Center
- Department of Pharmacology and Toxicology
| | - Michael A. Matthay
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California
| | - Douglas C. Eaton
- Department of Medicine, Emory School of Medicine, Atlanta, Georgia
| | - Rudolf Lucas
- Vascular Biology Center
- Department of Pharmacology and Toxicology
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| |
Collapse
|
3
|
Dada LA, Vadász I. Editorial: Endocytic and trafficking events in acute lung injury and pulmonary inflammation. Front Immunol 2024; 15:1500369. [PMID: 39502701 PMCID: PMC11534811 DOI: 10.3389/fimmu.2024.1500369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/11/2024] [Indexed: 11/08/2024] Open
Affiliation(s)
- Laura A. Dada
- Divison of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - István Vadász
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| |
Collapse
|
4
|
Sure F, Einsiedel J, Gmeiner P, Duchstein P, Zahn D, Korbmacher C, Ilyaskin AV. The small molecule activator S3969 stimulates the epithelial sodium channel by interacting with a specific binding pocket in the channel's β-subunit. J Biol Chem 2024; 300:105785. [PMID: 38401845 PMCID: PMC11065748 DOI: 10.1016/j.jbc.2024.105785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/13/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024] Open
Abstract
The epithelial sodium channel (ENaC) is essential for mediating sodium absorption in several epithelia. Its impaired function leads to severe disorders, including pseudohypoaldosteronism type 1 and respiratory distress. Therefore, pharmacological ENaC activators have potential therapeutic implications. Previously, a small molecule ENaC activator (S3969) was developed. So far, little is known about molecular mechanisms involved in S3969-mediated ENaC stimulation. Here, we identified an S3969-binding site in human ENaC by combining structure-based simulations with molecular biological methods and electrophysiological measurements of ENaC heterologously expressed in Xenopus laevis oocytes. We confirmed a previous observation that the extracellular loop of β-ENaC is essential for ENaC stimulation by S3969. Molecular dynamics simulations predicted critical residues in the thumb domain of β-ENaC (Arg388, Phe391, and Tyr406) that coordinate S3969 within a binding site localized at the β-γ-subunit interface. Importantly, mutating each of these residues reduced (R388H; R388A) or nearly abolished (F391G; Y406A) the S3969-mediated ENaC activation. Molecular dynamics simulations also suggested that S3969-mediated ENaC stimulation involved a movement of the α5 helix of the thumb domain of β-ENaC away from the palm domain of γ-ENaC. Consistent with this, the introduction of two cysteine residues (βR437C - γS298C) to form a disulfide bridge connecting these two domains prevented ENaC stimulation by S3969 unless the disulfide bond was reduced by DTT. Finally, we demonstrated that S3969 stimulated ENaC endogenously expressed in cultured human airway epithelial cells (H441). These new findings may lead to novel (patho-)physiological and therapeutic concepts for disorders associated with altered ENaC function.
Collapse
Affiliation(s)
- Florian Sure
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jürgen Einsiedel
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Patrick Duchstein
- Theoretical Chemistry/Computer Chemistry Center (CCC), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Dirk Zahn
- Theoretical Chemistry/Computer Chemistry Center (CCC), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Korbmacher
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Alexandr V Ilyaskin
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
5
|
Aufy M, Hussein AM, Stojanovic T, Studenik CR, Kotob MH. Proteolytic Activation of the Epithelial Sodium Channel (ENaC): Its Mechanisms and Implications. Int J Mol Sci 2023; 24:17563. [PMID: 38139392 PMCID: PMC10743461 DOI: 10.3390/ijms242417563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Epithelial sodium channel (ENaC) are integral to maintaining salt and water homeostasis in various biological tissues, including the kidney, lung, and colon. They enable the selective reabsorption of sodium ions, which is a process critical for controlling blood pressure, electrolyte balance, and overall fluid volume. ENaC activity is finely controlled through proteolytic activation, a process wherein specific enzymes, or proteases, cleave ENaC subunits, resulting in channel activation and increased sodium reabsorption. This regulatory mechanism plays a pivotal role in adapting sodium transport to different physiological conditions. In this review article, we provide an in-depth exploration of the role of proteolytic activation in regulating ENaC activity. We elucidate the involvement of various proteases, including furin-like convertases, cysteine, and serine proteases, and detail the precise cleavage sites and regulatory mechanisms underlying ENaC activation by these proteases. We also discuss the physiological implications of proteolytic ENaC activation, focusing on its involvement in blood pressure regulation, pulmonary function, and intestinal sodium absorption. Understanding the mechanisms and consequences of ENaC proteolytic activation provides valuable insights into the pathophysiology of various diseases, including hypertension, pulmonary disorders, and various gastrointestinal conditions. Moreover, we discuss the potential therapeutic avenues that emerge from understanding these mechanisms, offering new possibilities for managing diseases associated with ENaC dysfunction. In summary, this review provides a comprehensive discussion of the intricate interplay between proteases and ENaC, emphasizing the significance of proteolytic activation in maintaining sodium and fluid balance in both health and disease.
Collapse
Affiliation(s)
- Mohammed Aufy
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria; (A.M.H.); (M.H.K.)
| | - Ahmed M. Hussein
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria; (A.M.H.); (M.H.K.)
- Department of Zoology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Tamara Stojanovic
- Programme for Proteomics, Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Christian R. Studenik
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria; (A.M.H.); (M.H.K.)
| | - Mohamed H. Kotob
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria; (A.M.H.); (M.H.K.)
- Department of Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| |
Collapse
|
6
|
Romero MJ, Yue Q, Singla B, Hamacher J, Sridhar S, Moseley AS, Song C, Mraheil MA, Fischer B, Zeitlinger M, Chakraborty T, Fulton D, Gan L, Annex BH, Csanyi G, Eaton DC, Lucas R. Direct endothelial ENaC activation mitigates vasculopathy induced by SARS-CoV2 spike protein. Front Immunol 2023; 14:1241448. [PMID: 37638055 PMCID: PMC10449264 DOI: 10.3389/fimmu.2023.1241448] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Although both COVID-19 and non-COVID-19 ARDS can be accompanied by significantly increased levels of circulating cytokines, the former significantly differs from the latter by its higher vasculopathy, characterized by increased oxidative stress and coagulopathy in lung capillaries. This points towards the existence of SARS-CoV2-specific factors and mechanisms that can sensitize the endothelium towards becoming dysfunctional. Although the virus is rarely detected within endothelial cells or in the circulation, the S1 subunit of its spike protein, which contains the receptor binding domain (RBD) for human ACE2 (hACE2), can be detected in plasma from COVID-19 patients and its levels correlate with disease severity. It remains obscure how the SARS-CoV2 RBD exerts its deleterious actions in lung endothelium and whether there are mechanisms to mitigate this. Methods In this study, we use a combination of in vitro studies in RBD-treated human lung microvascular endothelial cells (HL-MVEC), including electrophysiology, barrier function, oxidative stress and human ACE2 (hACE2) surface protein expression measurements with in vivo studies in transgenic mice globally expressing human ACE2 and injected with RBD. Results We show that SARS-CoV2 RBD impairs endothelial ENaC activity, reduces surface hACE2 expression and increases reactive oxygen species (ROS) and tissue factor (TF) generation in monolayers of HL-MVEC, as such promoting barrier dysfunction and coagulopathy. The TNF-derived TIP peptide (a.k.a. solnatide, AP301) -which directly activates ENaC upon binding to its a subunit- can override RBD-induced impairment of ENaC function and hACE2 expression, mitigates ROS and TF generation and restores barrier function in HL-MVEC monolayers. In correlation with the increased mortality observed in COVID-19 patients co-infected with S. pneumoniae, compared to subjects solely infected with SARS-CoV2, we observe that prior intraperitoneal RBD treatment in transgenic mice globally expressing hACE2 significantly increases fibrin deposition and capillary leak upon intratracheal instillation of S. pneumoniae and that this is mitigated by TIP peptide treatment.
Collapse
Affiliation(s)
- Maritza J. Romero
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Qian Yue
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Bhupesh Singla
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Jürg Hamacher
- Pneumology, Clinic for General Internal Medicine, Lindenhofspital, Bern, Switzerland
- Lungen-und Atmungsstiftung, Bern, Switzerland
- Medical Clinic V—Pneumology, Allergology, Intensive Care Medicine, and Environmental Medicine, Faculty of Medicine, Saarland University, University Medical Centre of the Saarland, Homburg, Germany
| | - Supriya Sridhar
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Auriel S. Moseley
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Chang Song
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Mobarak A. Mraheil
- Institute for Medical Microbiology, German Centre for Infection Giessen-Marburg-Langen Site, Faculty of Medicine, Justus-Liebig University, Giessen, Germany
| | | | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Trinad Chakraborty
- Institute for Medical Microbiology, German Centre for Infection Giessen-Marburg-Langen Site, Faculty of Medicine, Justus-Liebig University, Giessen, Germany
| | - David Fulton
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Lin Gan
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Brian H. Annex
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Gabor Csanyi
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Douglas C. Eaton
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Rudolf Lucas
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Division of Pulmonary and Critical Care Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| |
Collapse
|
7
|
Lemmens-Gruber R, Tzotzos S. The Epithelial Sodium Channel-An Underestimated Drug Target. Int J Mol Sci 2023; 24:ijms24097775. [PMID: 37175488 PMCID: PMC10178586 DOI: 10.3390/ijms24097775] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 05/15/2023] Open
Abstract
Epithelial sodium channels (ENaC) are part of a complex network of interacting biochemical pathways and as such are involved in several disease states. Dependent on site and type of mutation, gain- or loss-of-function generated symptoms occur which span from asymptomatic to life-threatening disorders such as Liddle syndrome, cystic fibrosis or generalized pseudohypoaldosteronism type 1. Variants of ENaC which are implicated in disease assist further understanding of their molecular mechanisms in order to create models for specific pharmacological targeting. Identification and characterization of ENaC modifiers not only furthers our basic understanding of how these regulatory processes interact, but also enables discovery of new therapeutic targets for the disease conditions caused by ENaC dysfunction. Numerous test compounds have revealed encouraging results in vitro and in animal models but less in clinical settings. The EMA- and FDA-designated orphan drug solnatide is currently being tested in phase 2 clinical trials in the setting of acute respiratory distress syndrome, and the NOX1/ NOX4 inhibitor setanaxib is undergoing clinical phase 2 and 3 trials for therapy of primary biliary cholangitis, liver stiffness, and carcinoma. The established ENaC blocker amiloride is mainly used as an add-on drug in the therapy of resistant hypertension and is being studied in ongoing clinical phase 3 and 4 trials for special applications. This review focuses on discussing some recent developments in the search for novel therapeutic agents.
Collapse
Affiliation(s)
- Rosa Lemmens-Gruber
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, A-1090 Vienna, Austria
| | | |
Collapse
|
8
|
Pinto ACMD, Nunes RDM, Nogueira IA, Fischer B, Lucas R, Girão-Carmona VCC, de Oliveira VLS, Amaral FA, Schett G, Rocha FAC. Potent anti-inflammatory activity of the lectin-like domain of TNF in joints. Front Immunol 2022; 13:1049368. [PMID: 36389831 PMCID: PMC9659759 DOI: 10.3389/fimmu.2022.1049368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/17/2022] [Indexed: 10/22/2023] Open
Abstract
In view of the crucial role of tumor necrosis factor (TNF) in joint destruction, TNF inhibitors, including neutralizing anti-TNF antibodies and soluble TNF receptor constructs, are commonly used therapeutics for the treatment of arthropathies like rheumatoid arthritis (RA). However, not all patients achieve remission; moreover, there is a risk of increased susceptibility to infection with these agents. Spatially distinct from its receptor binding sites, TNF harbors a lectin-like domain, which exerts unique functions that can be mimicked by the 17 residue solnatide peptide. This domain binds to specific oligosaccharides such as N'N'-diacetylchitobiose and directly target the α subunit of the epithelial sodium channel. Solnatide was shown to have anti-inflammatory actions in acute lung injury and glomerulonephritis models. In this study, we evaluated whether the lectin-like domain of TNF can mitigate the development of immune-mediated arthritis in mice. In an antigen-induced arthritis model, solnatide reduced cell influx and release of pro-inflammatory mediators into the joints, associated with reduction in edema and tissue damage, as compared to controls indicating that TNF has anti-inflammatory effects in an acute model of joint inflammation via its lectin-like domain.
Collapse
Affiliation(s)
| | - Rodolfo de Melo Nunes
- Departamento de Medicina Interna, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Igor Albuquerque Nogueira
- Departamento de Medicina Interna, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Brazil
| | | | - Rudolf Lucas
- Vascular Biology Center, Department of Pharmacology and Toxicology, Division of Pulmonary and Critical Care Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | | | | | - Flavio Almeida Amaral
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Georg Schett
- Department of Internal Medicine 3, Rheumatology and Immunolgy, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | | |
Collapse
|
9
|
Phenotypic and Transcriptional Changes of Pulmonary Immune Responses in Dogs Following Canine Distemper Virus Infection. Int J Mol Sci 2022; 23:ijms231710019. [PMID: 36077417 PMCID: PMC9456005 DOI: 10.3390/ijms231710019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/25/2022] Open
Abstract
Canine distemper virus (CDV), a morbillivirus within the family Paramyxoviridae, is a highly contagious infectious agent causing a multisystemic, devastating disease in a broad range of host species, characterized by severe immunosuppression, encephalitis and pneumonia. The present study aimed at investigating pulmonary immune responses of CDV-infected dogs in situ using immunohistochemistry and whole transcriptome analyses by bulk RNA sequencing. Spatiotemporal analysis of phenotypic changes revealed pulmonary immune responses primarily driven by MHC-II+, Iba-1+ and CD204+ innate immune cells during acute and subacute infection phases, which paralleled pathologic lesion development and coincided with high viral loads in CDV-infected lungs. CD20+ B cell numbers initially declined, followed by lymphoid repopulation in the advanced disease phase. Transcriptome analysis demonstrated an increased expression of transcripts related to innate immunity, antiviral defense mechanisms, type I interferon responses and regulation of cell death in the lung of CDV-infected dogs. Molecular analyses also revealed disturbed cytokine responses with a pro-inflammatory M1 macrophage polarization and impaired mucociliary defense in CDV-infected lungs. The exploratory study provides detailed data on CDV-related pulmonary immune responses, expanding the list of immunologic parameters potentially leading to viral elimination and virus-induced pulmonary immunopathology in canine distemper.
Collapse
|
10
|
Parinandi N, Gerasimovskaya E, Verin A. Editorial: Molecular mechanisms of lung endothelial permeability. Front Physiol 2022; 13:976873. [PMID: 35936898 PMCID: PMC9355505 DOI: 10.3389/fphys.2022.976873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 01/16/2023] Open
Affiliation(s)
- Narasimham Parinandi
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Evgenia Gerasimovskaya
- Division of Critical Care Medicine, Department of Pediatrics, University of Colorado Denver, Aurora, CO, United States
| | - Alexander Verin
- Vascular Biology Center and Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States,*Correspondence: Alexander Verin,
| |
Collapse
|
11
|
Martin-Malpartida P, Arrastia-Casado S, Farrera-Sinfreu J, Lucas R, Fischer H, Fischer B, Eaton DC, Tzotzos S, Macias MJ. Conformational ensemble of the TNF-derived peptide solnatide in solution. Comput Struct Biotechnol J 2022; 20:2082-2090. [PMID: 35601958 PMCID: PMC9079168 DOI: 10.1016/j.csbj.2022.04.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 12/12/2022] Open
Abstract
Tumor necrosis factor (TNF) is a homotrimer that has two spatially distinct binding regions, three lectin-like domains (LLD) at the TIP of the protein and three basolaterally located receptor-binding sites, the latter of which are responsible for the inflammatory and cell death-inducing properties of the cytokine. Solnatide (a.k.a. TIP peptide, AP301) is a 17-mer cyclic peptide that mimics the LLD of human TNF which activates the amiloride-sensitive epithelial sodium channel (ENaC) and, as such, recapitulates the capacity of TNF to enhance alveolar fluid clearance, as demonstrated in numerous preclinical studies. TNF and solnatide interact with glycoproteins and these interactions are necessary for their trypanolytic and ENaC-activating activities. In view of the crucial role of ENaC in lung liquid clearance, solnatide is currently being evaluated as a novel therapeutic agent to treat pulmonary edema in patients with moderate-to-severe acute respiratory distress syndrome (ARDS), as well as severe COVID-19 patients with ARDS. To facilitate the description of the functional properties of solnatide in detail, as well as to further target-docking studies, we have analyzed its folding properties by NMR. In solution, solnatide populates a set of conformations characterized by a small hydrophobic core and two electrostatically charged poles. Using the structural information determined here and also that available for the ENaC protein, we propose a model to describe solnatide interaction with the C-terminal domain of the ENaCα subunit. This model may serve to guide future experiments to validate specific interactions with ENaCα and the design of new solnatide analogs with unexplored functionalities.
Collapse
Key Words
- AP301 peptide
- ARDS, Acute Respiratory Distress Syndrome
- AlphaFold applications
- Alveolar fluid clearance
- Amiloride-sensitive epithelial sodium channel
- Amphipathic helix
- ENaC
- ENaC, Amiloride-sensitive Epithelial Sodium/Channel
- HPLC, High Performance Liquid Chromatography
- HSQC, Heteronuclear Single Quantum Coherence
- LLD, Lectin-Like Domains
- MARCKS, Myristoylated Alanine-Rich C Kinase Substrate
- NMR, Nuclear Magnetic Resonance
- NOESY, Nuclear Overhauser Effect Spectroscopy
- PIP2, Phosphatidylinositol Bisphosphate
- Peptide NMR
- Pulmonary edema
- Solnatide structure
- TIP peptide
- TM, Transmembrane Regions
- TNF, Tumor Necrosis Factor
- TOCSY, Total Correlation Spectroscopy
- Tumor necrosis factor
Collapse
Affiliation(s)
- Pau Martin-Malpartida
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
| | | | | | - Rudolf Lucas
- Vascular Biology Center, Dept of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Hendrik Fischer
- APEPTICO Forschung und Entwicklung GmbH, Mariahilferstraße 136, 1150 Vienna, Austria
| | - Bernhard Fischer
- APEPTICO Forschung und Entwicklung GmbH, Mariahilferstraße 136, 1150 Vienna, Austria
| | - Douglas C. Eaton
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Susan Tzotzos
- APEPTICO Forschung und Entwicklung GmbH, Mariahilferstraße 136, 1150 Vienna, Austria
| | - Maria J. Macias
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona 08010, Spain
| |
Collapse
|
12
|
Schmid B, Kranke P, Lucas R, Meybohm P, Zwissler B, Frank S. Safety and preliminary efficacy of sequential multiple ascending doses of solnatide to treat pulmonary permeability edema in patients with moderate to severe ARDS in a randomized, placebo-controlled, double-blind trial: preliminary evaluation of safety and feasibility in light of the COVID-19 pandemic. Trials 2022; 23:252. [PMID: 35379296 PMCID: PMC8978157 DOI: 10.1186/s13063-022-06182-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/12/2022] [Indexed: 11/10/2022] Open
Abstract
Background In May 2018, the first patient was enrolled in the phase-IIb clinical trial “Safety and Preliminary Efficacy of Sequential Multiple Ascending Doses of Solnatide to Treat Pulmonary Permeability Edema in Patients with Moderate to Severe ARDS.” With the onset of the COVID-19 pandemic in early 2020, the continuation and successful execution of this clinical study was in danger. Therefore, before the Data Safety Monitoring Board (DSMB) allowed proceeding with the study and enrollment of further COVID-19 ARDS patients into it, additional assessment on possible study bias was considered mandatory. Methods We conducted an ad hoc interim analysis of 16 patients (5 COVID-19- ARDS patients and 11 with ARDS from different causes) from the phase-IIB clinical trial. We assessed possible differences in clinical characteristics of the ARDS patients and the impact of the pandemic on study execution. Results COVID-19 patients seemed to be less sick at baseline, which also showed in higher survival rates over the 28-day observation period. Trial specific outcomes regarding pulmonary edema and ventilation parameters did not differ between the groups, nor did more general indicators of (pulmonary) sepsis like oxygenation ratio and required noradrenaline doses. Conclusion The DSMB and the investigators did not find any evidence that patients suffering from ARDS due to SARS-CoV-2 may be at higher (or generally altered) risk when included in the trial, nor were there indications that those patients might influence the integrity of the study data altogether. For this reason, a continuation of the phase IIB clinical study activities can be justified. Researchers continuing clinical trials during the pandemic should always be aware that the exceptional circumstances may alter study results and therefore adaptations of the study design might be necessary.
Collapse
|
13
|
Lucas R, Hadizamani Y, Enkhbaatar P, Csanyi G, Caldwell RW, Hundsberger H, Sridhar S, Lever AA, Hudel M, Ash D, Ushio-Fukai M, Fukai T, Chakraborty T, Verin A, Eaton DC, Romero M, Hamacher J. Dichotomous Role of Tumor Necrosis Factor in Pulmonary Barrier Function and Alveolar Fluid Clearance. Front Physiol 2022; 12:793251. [PMID: 35264975 PMCID: PMC8899333 DOI: 10.3389/fphys.2021.793251] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/30/2021] [Indexed: 02/04/2023] Open
Abstract
Alveolar-capillary leak is a hallmark of the acute respiratory distress syndrome (ARDS), a potentially lethal complication of severe sepsis, trauma and pneumonia, including COVID-19. Apart from barrier dysfunction, ARDS is characterized by hyper-inflammation and impaired alveolar fluid clearance (AFC), which foster the development of pulmonary permeability edema and hamper gas exchange. Tumor Necrosis Factor (TNF) is an evolutionarily conserved pleiotropic cytokine, involved in host immune defense against pathogens and cancer. TNF exists in both membrane-bound and soluble form and its mainly -but not exclusively- pro-inflammatory and cytolytic actions are mediated by partially overlapping TNFR1 and TNFR2 binding sites situated at the interface between neighboring subunits in the homo-trimer. Whereas TNFR1 signaling can mediate hyper-inflammation and impaired barrier function and AFC in the lungs, ligand stimulation of TNFR2 can protect from ventilation-induced lung injury. Spatially distinct from the TNFR binding sites, TNF harbors within its structure a lectin-like domain that rather protects lung function in ARDS. The lectin-like domain of TNF -mimicked by the 17 residue TIP peptide- represents a physiological mediator of alveolar-capillary barrier protection. and increases AFC in both hydrostatic and permeability pulmonary edema animal models. The TIP peptide directly activates the epithelial sodium channel (ENaC) -a key mediator of fluid and blood pressure control- upon binding to its α subunit, which is also a part of the non-selective cation channel (NSC). Activity of the lectin-like domain of TNF is preserved in complexes between TNF and its soluble TNFRs and can be physiologically relevant in pneumonia. Antibody- and soluble TNFR-based therapeutic strategies show considerable success in diseases such as rheumatoid arthritis, psoriasis and inflammatory bowel disease, but their chronic use can increase susceptibility to infection. Since the lectin-like domain of TNF does not interfere with TNF's anti-bacterial actions, while exerting protective actions in the alveolar-capillary compartments, it is currently evaluated in clinical trials in ARDS and COVID-19. A more comprehensive knowledge of the precise role of the TNFR binding sites versus the lectin-like domain of TNF in lung injury, tissue hypoxia, repair and remodeling may foster the development of novel therapeutics for ARDS.
Collapse
Affiliation(s)
- Rudolf Lucas
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States,*Correspondence: Rudolf Lucas,
| | - Yalda Hadizamani
- Lungen-und Atmungsstiftung Bern, Bern, Switzerland,Pneumology, Clinic for General Internal Medicine, Lindenhofspital Bern, Bern, Switzerland
| | - Perenlei Enkhbaatar
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, United States
| | - Gabor Csanyi
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States
| | - Robert W. Caldwell
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States
| | - Harald Hundsberger
- Department of Medical Biotechnology, University of Applied Sciences, Krems, Austria,Department of Dermatology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Supriya Sridhar
- Vascular Biology Center, Augusta University, Augusta, GA, United States
| | - Alice Ann Lever
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Martina Hudel
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Dipankar Ash
- Vascular Biology Center, Augusta University, Augusta, GA, United States
| | - Masuko Ushio-Fukai
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Tohru Fukai
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States,Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, United States
| | - Trinad Chakraborty
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Alexander Verin
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Douglas C. Eaton
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Maritza Romero
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States,Department of Anesthesiology and Perioperative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Jürg Hamacher
- Lungen-und Atmungsstiftung Bern, Bern, Switzerland,Pneumology, Clinic for General Internal Medicine, Lindenhofspital Bern, Bern, Switzerland,Medical Clinic V-Pneumology, Allergology, Intensive Care Medicine, and Environmental Medicine, Faculty of Medicine, University Medical Centre of the Saarland, Saarland University, Homburg, Germany,Institute for Clinical & Experimental Surgery, Faculty of Medicine, Saarland University, Homburg, Germany,Jürg Hamacher,
| |
Collapse
|
14
|
Fopiano KA, Jalnapurkar S, Davila AC, Arora V, Bagi Z. Coronary Microvascular Dysfunction and Heart Failure with Preserved Ejection Fraction - implications for Chronic Inflammatory Mechanisms. Curr Cardiol Rev 2022; 18:e310821195986. [PMID: 34488616 PMCID: PMC9413735 DOI: 10.2174/1573403x17666210831144651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/01/2021] [Accepted: 06/14/2021] [Indexed: 11/22/2022] Open
Abstract
Coronary Microvascular Dysfunction (CMD) is now considered one of the key underlying pathologies responsible for the development of both acute and chronic cardiac complications. It has been long recognized that CMD contributes to coronary no-reflow, which occurs as an acute complication during percutaneous coronary interventions. More recently, CMD was proposed to play a mechanistic role in the development of left ventricle diastolic dysfunction in heart failure with preserved ejection fraction (HFpEF). Emerging evidence indicates that a chronic low-grade pro-inflammatory activation predisposes patients to both acute and chronic cardiovascular complications raising the possibility that pro-inflammatory mediators serve as a mechanistic link in HFpEF. Few recent studies have evaluated the role of the hyaluronan-CD44 axis in inflammation-related cardiovascular pathologies, thus warranting further investigations. This review article summarizes current evidence for the role of CMD in the development of HFpEF, focusing on molecular mediators of chronic proinflammatory as well as oxidative stress mechanisms and possible therapeutic approaches to consider for treatment and prevention.
Collapse
Affiliation(s)
- Katie Anne Fopiano
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Sawan Jalnapurkar
- Division of Cardiology, Department of Medicine, Medical College of Georgia, Augusta University Augusta, GA 30912, USA
| | - Alec C Davila
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Vishal Arora
- Division of Cardiology, Department of Medicine, Medical College of Georgia, Augusta University Augusta, GA 30912, USA
| | - Zsolt Bagi
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
15
|
Jia Q, Yang Y, Chen X, Yao S, Hu Z. Emerging roles of mechanosensitive ion channels in acute lung injury/acute respiratory distress syndrome. Respir Res 2022; 23:366. [PMID: 36539808 PMCID: PMC9764320 DOI: 10.1186/s12931-022-02303-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a devastating respiratory disorder with high rates of mortality and morbidity, but the detailed underlying mechanisms of ALI/ARDS remain largely unknown. Mechanosensitive ion channels (MSCs), including epithelial sodium channel (ENaC), Piezo channels, transient receptor potential channels (TRPs), and two-pore domain potassium ion (K2P) channels, are highly expressed in lung tissues, and the activity of these MSCs can be modulated by mechanical forces (e.g., mechanical ventilation) and other stimuli (e.g., LPS, hyperoxia). Dysfunction of MSCs has been found in various types of ALI/ARDS, and MSCs play a key role in regulating alveolar fluid clearance, alveolar epithelial/endothelial barrier function, the inflammatory response and surfactant secretion in ALI/ARDS lungs. Targeting MSCs exerts therapeutic effects in the treatment of ALI/ARDS. In this review, we summarize the structure and functions of several well-recognized MSCs, the role of MSCs in the pathogenesis of ALI/ARDS and recent advances in the pharmacological and molecular modulation of MSCs in the treatment of ALI/ARDS. According to the current literature, targeting MSCs might be a very promising therapeutic approach against ALI/ARDS.
Collapse
Affiliation(s)
- Qi Jia
- grid.33199.310000 0004 0368 7223Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiyi Yang
- grid.33199.310000 0004 0368 7223Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangdong Chen
- grid.33199.310000 0004 0368 7223Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanglong Yao
- grid.33199.310000 0004 0368 7223Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqiang Hu
- grid.33199.310000 0004 0368 7223Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Mraheil MA, Toque HA, La Pietra L, Hamacher J, Phanthok T, Verin A, Gonzales J, Su Y, Fulton D, Eaton DC, Chakraborty T, Lucas R. Dual Role of Hydrogen Peroxide as an Oxidant in Pneumococcal Pneumonia. Antioxid Redox Signal 2021; 34:962-978. [PMID: 32283950 PMCID: PMC8035917 DOI: 10.1089/ars.2019.7964] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance:Streptococcus pneumoniae (Spn), a facultative anaerobic Gram-positive human pathogen with increasing rates of penicillin and macrolide resistance, is a major cause of lower respiratory tract infections worldwide. Pneumococci are a primary agent of severe pneumonia in children younger than 5 years and of community-acquired pneumonia in adults. A major defense mechanism toward Spn is the generation of reactive oxygen species, including hydrogen peroxide (H2O2), during the oxidative burst of neutrophils and macrophages. Paradoxically, Spn produces high endogenous levels of H2O2 as a strategy to promote colonization. Recent Advances: Pneumococci, which express neither catalase nor common regulators of peroxide stress resistance, have developed unique mechanisms to protect themselves from H2O2. Spn generates high levels of H2O2 as a strategy to promote colonization. Production of H2O2 moreover constitutes an important virulence phenotype and its cellular activities overlap and complement those of other virulence factors, such as pneumolysin, in modulating host immune responses and promoting organ injury. Critical Issues: This review examines the dual role of H2O2 in pneumococcal pneumonia, from the viewpoint of both the pathogen (defense mechanisms, lytic activity toward competing pathogens, and virulence) and the resulting host-response (inflammasome activation, endoplasmic reticulum stress, and damage to the alveolar-capillary barrier in the lungs). Future Directions: An understanding of the complexity of H2O2-mediated host-pathogen interactions is necessary to develop novel strategies that target these processes to enhance lung function during severe pneumonia.
Collapse
Affiliation(s)
- Mobarak Abu Mraheil
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Haroldo A Toque
- Vascular Biology Center and Medical College of Georgia at Augusta University, Augusta, Georgia, USA.,Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Luigi La Pietra
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Juerg Hamacher
- Internal Medicine and Pneumology, Lindenhofspital, Bern, Switzerland.,Lungen- und Atmungsstiftung Bern, Bern, Switzerland.,Internal Medicine V-Pneumology, Allergology, Respiratory and Environmental Medicine, Faculty of Medicine, Saarland University, Saarbrücken, Germany
| | - Tenzing Phanthok
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Alexander Verin
- Vascular Biology Center and Medical College of Georgia at Augusta University, Augusta, Georgia, USA.,Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Joyce Gonzales
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Yunchao Su
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - David Fulton
- Vascular Biology Center and Medical College of Georgia at Augusta University, Augusta, Georgia, USA.,Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Douglas C Eaton
- Department of Medicine, Emory School of Medicine, Atlanta, Georgia, USA
| | - Trinad Chakraborty
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Rudolf Lucas
- Vascular Biology Center and Medical College of Georgia at Augusta University, Augusta, Georgia, USA.,Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA.,Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| |
Collapse
|
17
|
CRISPR/Cas9 Mediated Knock Down of δ-ENaC Blunted the TNF-Induced Activation of ENaC in A549 Cells. Int J Mol Sci 2021; 22:ijms22041858. [PMID: 33673381 PMCID: PMC7917654 DOI: 10.3390/ijms22041858] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 11/16/2022] Open
Abstract
Tumor necrosis factor (TNF) is known to activate the epithelial Na+ channel (ENaC) in A549 cells. A549 cells are widely used model for ENaC research. The role of δ-ENaC subunit in TNF-induced activation has not been studied. In this study we hypothesized that δ-ENaC plays a major role in TNF-induced activation of ENaC channel in A549 cells which are widely used model for ENaC research. We used CRISPR/Cas 9 approach to knock down (KD) the δ-ENaC in A549 cells. Western blot and immunofluorescence assays were performed to analyze efficacy of δ-ENaC protein KD. Whole-cell patch clamp technique was used to analyze the TNF-induced activation of ENaC. Overexpression of wild type δ-ENaC in the δ-ENaC KD of A549 cells restored the TNF-induced activation of whole-cell Na+ current. Neither N-linked glycosylation sites nor carboxyl terminus domain of δ-ENaC was necessary for the TNF-induced activation of whole-cell Na+ current in δ-ENaC KD of A549 cells. Our data demonstrated that in A549 cells the δ-ENaC plays a major role in TNF-induced activation of ENaC.
Collapse
|
18
|
Eisenhut M, Shin JI. Pathways in the Pathophysiology of Coronavirus 19 Lung Disease Accessible to Prevention and Treatment. Front Physiol 2020; 11:872. [PMID: 32922301 PMCID: PMC7457053 DOI: 10.3389/fphys.2020.00872] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022] Open
Abstract
Background: In COVID 19 related lung disease, which is a leading cause of death from this disease, cytokines like tumor necrosis factor-alpha (TNF alpha) may be pivotal in the pathogenesis. TNF alpha reduces fluid absorption due to impairment of sodium and chloride transport required for building an osmotic gradient across epithelial cells, which in the airways maintains airway surface liquid helping to keep airways open and enabling bacterial clearance and aids water absorption from the alveolar spaces. TNF alpha can, through Rho-kinase, disintegrate the endothelial and epithelial cytoskeleton, and thus break up intercellular tight junctional proteins, breaching the intercellular barrier, which prevents flooding of the interstitial and alveolar spaces with fluid. Hypotheses: (1) Preservation and restoration of airway and alveolar epithelial sodium and chloride transport and the cytoskeleton dependent integrity of the cell barriers within the lung can prevent and treat COVID 19 lung disease. (2) TNF alpha is the key mediator of pulmonary edema in COVID 19 lung disease. Confirmation of hypothesis and implications: The role of a reduction in the function of epithelial sodium and chloride transport could with regards to chloride transport be tested by analysis of chloride levels in exhaled breath condensate and levels correlated with TNF alpha concentrations. Reduced levels would indicate a reduction of the function of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel and a correlation with TNF alpha levels indicative of its involvement. Anti-TNF alpha treatment with antibodies is already available and needs to be tested in randomized controlled trials of COVID 19 lung disease. TNF alpha levels could also be reduced by statins, aspirin, and curcumin. Chloride transport could be facilitated by CFTR activators, including curcumin and phosphodiesterase-5 inhibitors. Sodium and chloride transport could be further regulated to prevent accumulation of alveolar fluid by use of Na(+)/K(+)/2Cl(-) cotransporter type 1 inhibitors, which have been associated with improved outcome in adults ventilated for acute respiratory distress syndrome (ARDS) in randomized controlled trials. Primary prevention of coronavirus infection and TNF alpha release in response to it could be improved by induction of antimicrobial peptides LL-37 and human beta defensin-2 and reduction of TNF alpha production by vitamin D prophylaxis for the population as a whole.
Collapse
Affiliation(s)
- Michael Eisenhut
- Children's & Adolescent Services, Luton & Dunstable University Hospital NHS Foundation Trust, Luton, United Kingdom
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
19
|
Matera MG, Rogliani P, Bianco A, Cazzola M. Pharmacological management of adult patients with acute respiratory distress syndrome. Expert Opin Pharmacother 2020; 21:2169-2183. [PMID: 32783481 DOI: 10.1080/14656566.2020.1801636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION There is still no definite drug for acute respiratory distress syndrome (ARDS) that is capable of reducing either short-term or long-term mortality. Therefore, great efforts are being made to identify a pharmacological approach that can be really effective. AREAS COVERED This review focuses on current challenges and future directions in the pharmacological management of ARDS, regardless of anti-infective treatments. The authors have excluded small randomized controlled trials (RCTs) with less than 60 patients because those studies do not have statistical power for outcome data, and also anecdotal trials but have considered the last meta-analysis on any drug. EXPERT OPINION There has been substantial progress in our knowledge of ARDS over the past two decades and many drugs have been used in its treatment. Nevertheless, effective targeted pharmacological treatments for ARDS are still lacking. The likely reason why a pharmacological approach is beneficial for some patients, but harmful for others is that ARDS is an extremely heterogeneous syndrome. To overcome this issue, a precision approach for ARDS, whereby therapies are specifically targeted to patients most likely to benefit, has been proposed. At present, however, the application of this approach seems to be a difficult task.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli" , Naples, Italy
| | - Paola Rogliani
- Department of Experimental Medicine, University of Rome "Tor Vergata" , Rome, Italy
| | - Andrea Bianco
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli"/Monaldi Hospital , Naples, Italy
| | - Mario Cazzola
- Department of Experimental Medicine, University of Rome "Tor Vergata" , Rome, Italy
| |
Collapse
|
20
|
Madaio MP, Czikora I, Kvirkvelia N, McMenamin M, Yue Q, Liu T, Toque HA, Sridhar S, Covington K, Alaisami R, O'Connor PM, Caldwell RW, Chen JK, Clauss M, Brands MW, Eaton DC, Romero MJ, Lucas R. The TNF-derived TIP peptide activates the epithelial sodium channel and ameliorates experimental nephrotoxic serum nephritis. Kidney Int 2019; 95:1359-1372. [PMID: 30905471 DOI: 10.1016/j.kint.2018.12.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023]
Abstract
In mice, the initial stage of nephrotoxic serum-induced nephritis (NTN) mimics antibody-mediated human glomerulonephritis. Local immune deposits generate tumor necrosis factor (TNF), which activates pro-inflammatory pathways in glomerular endothelial cells (GECs) and podocytes. Because TNF receptors mediate antibacterial defense, existing anti-TNF therapies can promote infection; however, we have previously demonstrated that different functional domains of TNF may have opposing effects. The TIP peptide mimics the lectin-like domain of TNF, and has been shown to blunt inflammation in acute lung injury without impairing TNF receptor-mediated antibacterial activity. We evaluated the impact of TIP peptide in NTN. Intraperitoneal administration of TIP peptide reduced inflammation, proteinuria, and blood urea nitrogen. The protective effect was blocked by the cyclooxygenase inhibitor indomethacin, indicating involvement of prostaglandins. Targeted glomerular delivery of TIP peptide improved pathology in moderate NTN and reduced mortality in severe NTN, indicating a local protective effect. We show that TIP peptide activates the epithelial sodium channel(ENaC), which is expressed by GEC, upon binding to the channel's α subunit. In vitro, TNF treatment of GEC activated pro-inflammatory pathways and decreased the generation of prostaglandin E2 and nitric oxide, which promote recovery from NTN. TIP peptide counteracted these effects. Despite the capacity of TIP peptide to activate ENaC, it did not increase mean arterial blood pressure in mice. In the later autologous phase of NTN, TIP peptide blunted the infiltration of Th17 cells. By countering the deleterious effects of TNF through direct actions in GEC, TIP peptide could provide a novel strategy to treat glomerular inflammation.
Collapse
Affiliation(s)
- Michael P Madaio
- Department of Medicine, Augusta University, Augusta, Georgia, USA.
| | - Istvan Czikora
- Vascular Biology Center, Augusta University, Augusta, Georgia, USA; Department of Physiology, Augusta University, Augusta, Georgia, USA
| | - Nino Kvirkvelia
- Department of Medicine, Augusta University, Augusta, Georgia, USA
| | | | - Qiang Yue
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ting Liu
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, Georgia, USA
| | - Haroldo A Toque
- Vascular Biology Center, Augusta University, Augusta, Georgia, USA
| | - Supriya Sridhar
- Vascular Biology Center, Augusta University, Augusta, Georgia, USA
| | | | - Rabei Alaisami
- Department of Physiology, Augusta University, Augusta, Georgia, USA
| | - Paul M O'Connor
- Department of Physiology, Augusta University, Augusta, Georgia, USA
| | - Robert W Caldwell
- Department of Pharmacology and Toxicology, Augusta University, Augusta, Georgia, USA
| | - Jian-Kang Chen
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, Georgia, USA
| | - Matthias Clauss
- Indiana Center for Vascular Biology and Medicine, RLR-VA Medical Center, Indianapolis, Indiana, USA
| | - Michael W Brands
- Department of Physiology, Augusta University, Augusta, Georgia, USA
| | - Douglas C Eaton
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Maritza J Romero
- Vascular Biology Center, Augusta University, Augusta, Georgia, USA; Department of Pharmacology and Toxicology, Augusta University, Augusta, Georgia, USA; Department of Anesthesiology and Perioperative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Rudolf Lucas
- Department of Medicine, Augusta University, Augusta, Georgia, USA; Vascular Biology Center, Augusta University, Augusta, Georgia, USA; Department of Pharmacology and Toxicology, Augusta University, Augusta, Georgia, USA.
| |
Collapse
|
21
|
Mannon EC, Sun J, Wilson K, Brands M, Martinez-Quinones P, Baban B, O'Connor PM. A basic solution to activate the cholinergic anti-inflammatory pathway via the mesothelium? Pharmacol Res 2019; 141:236-248. [PMID: 30616018 DOI: 10.1016/j.phrs.2019.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/20/2018] [Accepted: 01/03/2019] [Indexed: 12/24/2022]
Abstract
Much research now indicates that vagal nerve stimulation results in a systemic reduction in inflammatory cytokine production and an increase in anti-inflammatory cell populations that originates from the spleen. Termed the 'cholinergic anti-inflammatory pathway', therapeutic activation of this innate physiological response holds enormous promise for the treatment of inflammatory disease. Much controversy remains however, regarding the underlying physiological pathways mediating this response. This controversy is anchored in the fact that the vagal nerve itself does not innervate the spleen. Recent research from our own laboratory indicating that oral intake of sodium bicarbonate stimulates splenic anti-inflammatory pathways, and that this effect may require transmission of signals to the spleen through the mesothelium, provide new insight into the physiological pathways mediating the cholinergic anti-inflammatory pathway. In this review, we examine proposed models of the cholinergic anti-inflammatory pathway and attempt to frame our recent results in relation to these hypotheses. Following this discussion, we then provide an alternative model of the cholinergic anti-inflammatory pathway which is consistent both with our recent findings and the published literature. We then discuss experimental approaches that may be useful to delineate these hypotheses. We believe the outcome of these experiments will be critical in identifying the most appropriate methods to harness the therapeutic potential of the cholinergic anti-inflammatory pathway for the treatment of disease and may also shed light on the etiology of other pathologies, such as idiopathic fibrosis.
Collapse
Affiliation(s)
- Elinor C Mannon
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Jingping Sun
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Katie Wilson
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Michael Brands
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Patricia Martinez-Quinones
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States; Department of Surgery, Augusta University Medical Center, Augusta University, Augusta, GA, United States
| | - Babak Baban
- Department of Oral Biology, Augusta University, Augusta, GA, United States
| | - Paul M O'Connor
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
22
|
Vadász I, Lucas R. Editorial: Cytokine-Ion Channel Interactions in Pulmonary Inflammation. Front Immunol 2018; 9:2598. [PMID: 30459774 PMCID: PMC6232534 DOI: 10.3389/fimmu.2018.02598] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/22/2018] [Indexed: 01/11/2023] Open
Affiliation(s)
- István Vadász
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany
| | - Rudolf Lucas
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Division of Pulmonary and Critical Care Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
23
|
Kvirkvelia N, McMenamin M, Warren M, Jadeja RN, Kodeboyina SK, Sharma A, Zhi W, O'Connor PM, Raju R, Lucas R, Madaio MP. Kidney-targeted inhibition of protein kinase C-α ameliorates nephrotoxic nephritis with restoration of mitochondrial dysfunction. Kidney Int 2018; 94:280-291. [PMID: 29731111 DOI: 10.1016/j.kint.2018.01.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/21/2017] [Accepted: 01/18/2018] [Indexed: 01/26/2023]
Abstract
To investigate the role of protein kinase C-α (PKC-α) in glomerulonephritis, the capacity of PKC-α inhibition to reverse the course of established nephrotoxic nephritis (NTN) was evaluated. Nephritis was induced by a single injection of nephrotoxic serum and after its onset, a PKC-α inhibitor was administered either systemically or by targeted glomerular delivery. By day seven, all mice with NTN had severe nephritis, whereas mice that received PKC-α inhibitors in either form had minimal evidence of disease. To further understand the underlying mechanism, label-free shotgun proteomic analysis of the kidney cortexes were performed, using quantitative mass spectrometry. Ingenuity pathway analysis revealed 157 differentially expressed proteins and mitochondrial dysfunction as the most modulated pathway. Functional protein groups most affected by NTN were mitochondrial proteins associated with respiratory processes. These proteins were down-regulated in the mice with NTN, while their expression was restored with PKC-α inhibition. This suggests a role for proteins that regulate oxidative phosphorylation in recovery. In cultured glomerular endothelial cells, nephrotoxic serum caused a decrease in mitochondrial respiration and membrane potential, mitochondrial morphologic changes and an increase in glycolytic lactic acid production; all normalized by PKC-α inhibition. Thus, PKC-α has a critical role in NTN progression, and the results implicate mitochondrial processes through restoring oxidative phosphorylation, as an essential mechanism underlying recovery. Importantly, our study provides additional support for targeted therapy to glomeruli to reverse the course of progressive disease.
Collapse
Affiliation(s)
- Nino Kvirkvelia
- Department of Medicine, Augusta University, Augusta, Georgia, USA
| | | | - Marie Warren
- Department of Pharmacology and Toxicology, Augusta University, Augusta, Georgia, USA
| | - Ravirajsinh N Jadeja
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia, USA
| | - Sai Karthik Kodeboyina
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, USA
| | - Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, USA
| | - Wenbo Zhi
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, USA
| | - Paul M O'Connor
- Department of Physiology and Endocrinology, Augusta University, Augusta, Georgia, USA
| | - Raghavan Raju
- Department of Pharmacology and Toxicology, Augusta University, Augusta, Georgia, USA
| | - Rudolf Lucas
- Vascular Biology Center, Department of Pharmacology and Toxicology, Augusta University, Augusta, Georgia, USA
| | - Michael P Madaio
- Department of Medicine, Augusta University, Augusta, Georgia, USA.
| |
Collapse
|
24
|
Yang G, Pillich H, White R, Czikora I, Pochic I, Yue Q, Hudel M, Gorshkov B, Verin A, Sridhar S, Isales CM, Eaton DC, Hamacher J, Chakraborty T, Lucas R. Listeriolysin O Causes ENaC Dysfunction in Human Airway Epithelial Cells. Toxins (Basel) 2018; 10:toxins10020079. [PMID: 29439494 PMCID: PMC5848180 DOI: 10.3390/toxins10020079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/01/2018] [Accepted: 02/07/2018] [Indexed: 01/22/2023] Open
Abstract
Pulmonary permeability edema is characterized by reduced alveolar Na⁺ uptake capacity and capillary barrier dysfunction and is a potentially lethal complication of listeriosis. Apical Na⁺ uptake is mainly mediated by the epithelial sodium channel (ENaC) and initiates alveolar liquid clearance. Here we examine how listeriolysin O (LLO), the pore-forming toxin of Listeria monocytogenes, impairs the expression and activity of ENaC. To that purpose, we studied how sub-lytic concentrations of LLO affect negative and positive regulators of ENaC expression in the H441 airway epithelial cell line. LLO reduced expression of the crucial ENaC-α subunit in H441 cells within 2 h and this was preceded by activation of PKC-α, a negative regulator of the channel's expression. At later time points, LLO caused a significant reduction in the phosphorylation of Sgk-1 at residue T256 and of Akt-1 at residue S473, both of which are required for full activation of ENaC. The TNF-derived TIP peptide prevented LLO-mediated PKC-α activation and restored phospho-Sgk-1-T256. The TIP peptide also counteracted the observed LLO-induced decrease in amiloride-sensitive Na⁺ current and ENaC-α expression in H441 cells. Intratracheally instilled LLO caused profound pulmonary edema formation in mice, an effect that was prevented by the TIP peptide; thus indicating the therapeutic potential of the peptide for the treatment of pore-forming toxin-associated permeability edema.
Collapse
Affiliation(s)
- Guang Yang
- Vascular Biology Center, Medical College of Georgia at Augusta University, Room CB-3213B, Augusta, GA 30912-2500, USA.
| | - Helena Pillich
- Institute of Medical Microbiology, Justus-Liebig University Giessen, 35392 Gießen, Germany.
| | - Richard White
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Room CB-3213B, Augusta, GA 30912-2500, USA.
- Department of Biomedical Sciences, Georgia Campus-Philadelphia College of Osteopathic Medicine, Atlanta, GA 30224, USA.
| | - Istvan Czikora
- Vascular Biology Center, Medical College of Georgia at Augusta University, Room CB-3213B, Augusta, GA 30912-2500, USA.
| | - Isabelle Pochic
- Biochemical Pharmacology, University of Konstanz, 78464 Konstanz, Germany.
- Sandoz Inc., 83607 Holzkirchen, Germany.
| | - Qiang Yue
- Department of Physiology, Emory School of Medicine, Atlanta, GA 30307, USA.
| | - Martina Hudel
- Institute of Medical Microbiology, Justus-Liebig University Giessen, 35392 Gießen, Germany.
| | - Boris Gorshkov
- Vascular Biology Center, Medical College of Georgia at Augusta University, Room CB-3213B, Augusta, GA 30912-2500, USA.
| | - Alexander Verin
- Vascular Biology Center, Medical College of Georgia at Augusta University, Room CB-3213B, Augusta, GA 30912-2500, USA.
| | - Supriya Sridhar
- Vascular Biology Center, Medical College of Georgia at Augusta University, Room CB-3213B, Augusta, GA 30912-2500, USA.
| | - Carlos M Isales
- Department of Medicine, Medical College of Georgia, Augusta, GA 30901, USA.
| | - Douglas C Eaton
- Department of Physiology, Emory School of Medicine, Atlanta, GA 30307, USA.
| | - Jürg Hamacher
- Biochemical Pharmacology, University of Konstanz, 78464 Konstanz, Germany.
- Department of Pneumology, Lindenhofspital, 3001 Bern, Switzerland.
- Internal, Pulmonary and Critical Care Medicine, Saarland University, 66424 Homburg/Saar, Germany.
- Lungen-und Atmungsstifung, 3001 Bern, Switzerland.
| | - Trinad Chakraborty
- Institute of Medical Microbiology, Justus-Liebig University Giessen, 35392 Gießen, Germany.
| | - Rudolf Lucas
- Vascular Biology Center, Medical College of Georgia at Augusta University, Room CB-3213B, Augusta, GA 30912-2500, USA.
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Room CB-3213B, Augusta, GA 30912-2500, USA.
- Department of Medicine, Medical College of Georgia, Augusta, GA 30901, USA.
| |
Collapse
|
25
|
Hamacher J, Hadizamani Y, Borgmann M, Mohaupt M, Männel DN, Moehrlen U, Lucas R, Stammberger U. Cytokine-Ion Channel Interactions in Pulmonary Inflammation. Front Immunol 2018; 8:1644. [PMID: 29354115 PMCID: PMC5758508 DOI: 10.3389/fimmu.2017.01644] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/10/2017] [Indexed: 12/12/2022] Open
Abstract
The lungs conceptually represent a sponge that is interposed in series in the bodies’ systemic circulation to take up oxygen and eliminate carbon dioxide. As such, it matches the huge surface areas of the alveolar epithelium to the pulmonary blood capillaries. The lung’s constant exposure to the exterior necessitates a competent immune system, as evidenced by the association of clinical immunodeficiencies with pulmonary infections. From the in utero to the postnatal and adult situation, there is an inherent vital need to manage alveolar fluid reabsorption, be it postnatally, or in case of hydrostatic or permeability edema. Whereas a wealth of literature exists on the physiological basis of fluid and solute reabsorption by ion channels and water pores, only sparse knowledge is available so far on pathological situations, such as in microbial infection, acute lung injury or acute respiratory distress syndrome, and in the pulmonary reimplantation response in transplanted lungs. The aim of this review is to discuss alveolar liquid clearance in a selection of lung injury models, thereby especially focusing on cytokines and mediators that modulate ion channels. Inflammation is characterized by complex and probably time-dependent co-signaling, interactions between the involved cell types, as well as by cell demise and barrier dysfunction, which may not uniquely determine a clinical picture. This review, therefore, aims to give integrative thoughts and wants to foster the unraveling of unmet needs in future research.
Collapse
Affiliation(s)
- Jürg Hamacher
- Internal Medicine and Pneumology, Lindenhofspital, Bern, Switzerland.,Internal Medicine V - Pneumology, Allergology, Respiratory and Environmental Medicine, Faculty of Medicine, Saarland University, Saarbrücken, Germany.,Lungen- und Atmungsstiftung Bern, Bern, Switzerland
| | - Yalda Hadizamani
- Internal Medicine and Pneumology, Lindenhofspital, Bern, Switzerland.,Lungen- und Atmungsstiftung Bern, Bern, Switzerland
| | - Michèle Borgmann
- Internal Medicine and Pneumology, Lindenhofspital, Bern, Switzerland.,Lungen- und Atmungsstiftung Bern, Bern, Switzerland
| | - Markus Mohaupt
- Internal Medicine, Sonnenhofspital Bern, Bern, Switzerland
| | | | - Ueli Moehrlen
- Paediatric Visceral Surgery, Universitäts-Kinderspital Zürich, Zürich, Switzerland
| | - Rudolf Lucas
- Department of Pharmacology and Toxicology, Vascular Biology Center, Medical College of Georgia, Augusta, GA, United States
| | - Uz Stammberger
- Lungen- und Atmungsstiftung Bern, Bern, Switzerland.,Novartis Institutes for Biomedical Research, Translational Clinical Oncology, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
26
|
Bartoszewski R, Matalon S, Collawn JF. Ion channels of the lung and their role in disease pathogenesis. Am J Physiol Lung Cell Mol Physiol 2017; 313:L859-L872. [PMID: 29025712 PMCID: PMC5792182 DOI: 10.1152/ajplung.00285.2017] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/03/2017] [Accepted: 10/03/2017] [Indexed: 12/16/2022] Open
Abstract
Maintenance of normal epithelial ion and water transport in the lungs includes providing a thin layer of surface liquid that coats the conducting airways. This airway surface liquid is critical for normal lung function in a number of ways but, perhaps most importantly, is required for normal mucociliary clearance and bacterial removal. Preservation of the appropriate level of hydration, pH, and viscosity for the airway surface liquid requires the proper regulation and function of a battery of different types of ion channels and transporters. Here we discuss how alterations in ion channel/transporter function often lead to lung pathologies.
Collapse
Affiliation(s)
- Rafal Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Cell, Developmental, and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
- Gregory Fleming James Cystic Fibrosis Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - James F Collawn
- Department of Cell, Developmental, and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama;
- Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
- Gregory Fleming James Cystic Fibrosis Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
27
|
Aigner C, Slama A, Barta M, Mitterbauer A, Lang G, Taghavi S, Matilla J, Ullrich R, Krenn K, Jaksch P, Markstaller K, Klepetko W. Treatment of primary graft dysfunction after lung transplantation with orally inhaled AP301: A prospective, randomized pilot study. J Heart Lung Transplant 2017; 37:S1053-2498(17)32036-3. [PMID: 29055604 DOI: 10.1016/j.healun.2017.09.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 07/04/2017] [Accepted: 09/26/2017] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND Primary graft dysfunction (PGD) after lung transplantation (LTx) carries significant morbidity and mortality in the early post-operative period and is associated with the development of chronic lung allograft dysfunction. AP301, an activator of epithelial sodium channel-mediated Na+ uptake represents a new concept for prevention and treatment of pulmonary edema and has shown promising results in the pre-clinical setting. This pilot study investigated the clinical effect of inhaled AP301 on patients with development of PGD > 1 according to International Society of Heart and Lung Transplantation criteria after primary LTx in a high-volume center and was conducted as a randomized, placebo-controlled, single-center pilot-study including 20 patients. All consecutive patients fulfilling inclusion criteria were screened for PGD at arrival on the intensive care unit (ICU) after LTx. After randomization, inhaled AP301 or placebo was administered by nebulizer twice daily for 7 days or until extubation. Otherwise, patients were treated according to routine clinical protocol. Partial pressure of arterial oxygen (Pao2)/fraction of inspired oxygen (Fio2) values were obtained until extubation and assessed as a primary outcome parameter. Patients were monitored for 30 days within the study protocol. RESULTS From July 2013 to August 2014, 20 patients were randomized 1:1 to AP301 (Group 1) or placebo (Group 2). Both groups were comparable with regard to sex (40% women/60% men vs 50% women/50% men), mean age (55 ± 13 vs 54 ± 6 years), comorbidities, and diagnosis leading to LTx. The Pao2/Fio2 ratio at the time of inclusion was comparable in both groups, with a mean 235.65 ± 90.78 vs 214.2 ± 95.84 (p = 0.405), and there was no significant difference in the extravascular lung water index (13.88 ± 5.28 vs 16 ± 6.29 ml/kg, p = 0.476). The primary end point was mean Pao2/Fio2 ratio values between baseline and Day 3. In the AP301 group, only 1 patient was ventilated at Day 4 and no patients were ventilated after Day 4. In the placebo group, 5 patients were ventilated on Day 4 and 2 patients on Days 5, 6, and 7. The mean increase in the Pao2/Fio2 ratio was significantly higher in Group 1 patients, and the mean between baseline and at 72 hours was 365.6 ± 90.4 in Group 1 vs 335.2 ± 42.3 in Group 2 (p = 0.049). The duration of intubation was shorter in Group 1 than in Group 2 patients (2 ± 0.82 vs 3.7 ± 1.95 days; p = 0.02). ICU stay was 7.5 ± 3.13 days in Group 1 vs 10.8 ± 8.65 days in group 2 (p = 0.57). Survival at 30 days was 100%. No severe adverse events were recorded. CONCLUSIONS This study was designed as a proof-of-concept pilot study. Although it was not powered to achieve statistical significances, the study demonstrated relevant clinical effects of inhaled AP301 on patients with PGD after primary LTx. The improved gas exchange led to a significantly shorter duration of mechanical ventilation and a trend towards a shorter ICU stay. Further investigation of AP301 for treatment of PGD in larger studies is warranted. TRIAL REGISTRATION The trial is registered at https://www.clinicaltrialsregister.eu/ctr-search/trial/2013-000716-21/AT.
Collapse
Affiliation(s)
- Clemens Aigner
- Department of Thoracic Surgery Medical University of Vienna, Vienna, Austria; Department of Thoracic Surgery and Surgical Endoscopy, Ruhrlandklinik, University Clinic Essen, Essen, Germany.
| | - Alexis Slama
- Department of Thoracic Surgery Medical University of Vienna, Vienna, Austria; Department of Thoracic Surgery and Surgical Endoscopy, Ruhrlandklinik, University Clinic Essen, Essen, Germany
| | - Maximilian Barta
- Department of Thoracic Surgery Medical University of Vienna, Vienna, Austria
| | - Andreas Mitterbauer
- Department of Thoracic Surgery Medical University of Vienna, Vienna, Austria
| | - Gyoergy Lang
- Department of Thoracic Surgery Medical University of Vienna, Vienna, Austria
| | - Shahrokh Taghavi
- Department of Thoracic Surgery Medical University of Vienna, Vienna, Austria
| | - Jose Matilla
- Department of Thoracic Surgery Medical University of Vienna, Vienna, Austria
| | - Roman Ullrich
- Department of Anaesthesia, Critical Care and Pain Medicince, Medical University of Vienna, Vienna, Austria
| | - Katharina Krenn
- Department of Anaesthesia, Critical Care and Pain Medicince, Medical University of Vienna, Vienna, Austria
| | - Peter Jaksch
- Department of Thoracic Surgery Medical University of Vienna, Vienna, Austria
| | - Klaus Markstaller
- Department of Anaesthesia, Critical Care and Pain Medicince, Medical University of Vienna, Vienna, Austria
| | - Walter Klepetko
- Department of Thoracic Surgery Medical University of Vienna, Vienna, Austria
| |
Collapse
|
28
|
Londino JD, Lazrak A, Collawn JF, Bebok Z, Harrod KS, Matalon S. Influenza virus infection alters ion channel function of airway and alveolar cells: mechanisms and physiological sequelae. Am J Physiol Lung Cell Mol Physiol 2017; 313:L845-L858. [PMID: 28775098 DOI: 10.1152/ajplung.00244.2017] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 02/07/2023] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) and the amiloride-sensitive epithelial sodium channels (ENaC) are located in the apical membranes of airway and alveolar epithelial cells. These transporters play an important role in the regulation of lung fluid balance across airway and alveolar epithelia by being the conduits for chloride (Cl-) and bicarbonate ([Formula: see text]) secretion and sodium (Na+) ion absorption, respectively. The functional role of these channels in the respiratory tract is to maintain the optimum volume and ionic composition of the bronchial periciliary fluid (PCL) and alveolar lining fluid (ALF) layers. The PCL is required for proper mucociliary clearance of pathogens and debris, and the ALF is necessary for surfactant homeostasis and optimum gas exchange. Dysregulation of ion transport may lead to mucus accumulation, bacterial infections, inflammation, pulmonary edema, and compromised respiratory function. Influenza (or flu) in mammals is caused by influenza A and B viruses. Symptoms include dry cough, sore throat, and is often followed by secondary bacterial infections, accumulation of fluid in the alveolar spaces and acute lung injury. The underlying mechanisms of flu symptoms are not fully understood. This review summarizes our present knowledge of how influenza virus infections alter airway and alveolar epithelial cell CFTR and ENaC function in vivo and in vitro and the role of these changes in influenza pathogenesis.
Collapse
Affiliation(s)
- James David Londino
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ahmed Lazrak
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Zsuzsanna Bebok
- Department of Cell, Developmental and Integrative Biology School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kevin S Harrod
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| |
Collapse
|
29
|
Krenn K, Lucas R, Croizé A, Boehme S, Klein KU, Hermann R, Markstaller K, Ullrich R. Inhaled AP301 for treatment of pulmonary edema in mechanically ventilated patients with acute respiratory distress syndrome: a phase IIa randomized placebo-controlled trial. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2017; 21:194. [PMID: 28750677 PMCID: PMC5531100 DOI: 10.1186/s13054-017-1795-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/12/2017] [Indexed: 02/08/2023]
Abstract
Background High-permeability pulmonary edema is a hallmark of acute respiratory distress syndrome (ARDS) and is frequently accompanied by impaired alveolar fluid clearance (AFC). AP301 enhances AFC by activating epithelial sodium channels (ENaCs) on alveolar epithelial cells, and we investigated its effect on extravascular lung water index (EVLWI) in mechanically ventilated patients with ARDS. Methods Forty adult mechanically ventilated patients with ARDS were included in a randomized, double-blind, placebo-controlled trial for proof of concept. Patients were treated with inhaled AP301 (n = 20) or placebo (0.9% NaCl; n = 20) twice daily for 7 days. EVLWI was measured by thermodilution (PiCCO®), and treatment groups were compared using the nonparametric Mann–Whitney U test. Results AP301 inhalation was well tolerated. No differences in mean baseline-adjusted change in EVLWI from screening to day 7 were found between the AP301 and placebo group (p = 0.196). There was no difference in the PaO2/FiO2 ratio, ventilation pressures, Murray lung injury score, or 28-day mortality between the treatment groups. An exploratory subgroup analysis according to severity of illness showed reductions in EVLWI (p = 0.04) and ventilation pressures (p < 0.05) over 7 days in patients with initial sequential organ failure assessment (SOFA) scores ≥11 inhaling AP301 versus placebo, but not in patients with SOFA scores ≤10. Conclusions There was no difference in mean baseline-adjusted EVLWI between the AP301 and placebo group. An exploratory post-hoc subgroup analysis indicated reduced EVLWI in patients with SOFA scores ≥11 receiving AP301. These results suggest further confirmation in future clinical trials of inhaled AP301 for treatment of pulmonary edema in patients with ARDS. Trial registration The study was prospectively registered at clinicaltrials.gov, NCT01627613. Registered 20 June 2012. Electronic supplementary material The online version of this article (doi:10.1186/s13054-017-1795-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katharina Krenn
- Department of Anaesthesia, Critical Care and Pain Medicine, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Vienna, Austria
| | - Rudolf Lucas
- Vascular Biology Center, Department of Pharmacology and Toxicology and Division of Pulmonary and Critical Care Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Adrien Croizé
- Department of Anaesthesia, Critical Care and Pain Medicine, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Vienna, Austria
| | - Stefan Boehme
- Department of Anaesthesia, Critical Care and Pain Medicine, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Vienna, Austria
| | - Klaus Ulrich Klein
- Department of Anaesthesia, Critical Care and Pain Medicine, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Vienna, Austria
| | | | - Klaus Markstaller
- Department of Anaesthesia, Critical Care and Pain Medicine, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Vienna, Austria
| | - Roman Ullrich
- Department of Anaesthesia, Critical Care and Pain Medicine, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Vienna, Austria.
| |
Collapse
|
30
|
Wynne BM, Zou L, Linck V, Hoover RS, Ma HP, Eaton DC. Regulation of Lung Epithelial Sodium Channels by Cytokines and Chemokines. Front Immunol 2017; 8:766. [PMID: 28791006 PMCID: PMC5524836 DOI: 10.3389/fimmu.2017.00766] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 06/16/2017] [Indexed: 12/20/2022] Open
Abstract
Acute lung injury leading to acute respiratory distress (ARDS) is a global health concern. ARDS patients have significant pulmonary inflammation leading to flooding of the pulmonary alveoli. This prevents normal gas exchange with consequent hypoxemia and causes mortality. A thin fluid layer in the alveoli is normal. The maintenance of this thin layer results from fluid movement out of the pulmonary capillaries into the alveolar interstitium driven by vascular hydrostatic pressure and then through alveolar tight junctions. This is then balanced by fluid reabsorption from the alveolar space mediated by transepithelial salt and water transport through alveolar cells. Reabsorption is a two-step process: first, sodium enters via sodium-permeable channels in the apical membranes of alveolar type 1 and 2 cells followed by active extrusion of sodium into the interstitium by the basolateral Na+, K+-ATPase. Anions follow the cationic charge gradient and water follows the salt-induced osmotic gradient. The proximate cause of alveolar flooding is the result of a failure to reabsorb sufficient salt and water or a failure of the tight junctions to prevent excessive movement of fluid from the interstitium to alveolar lumen. Cytokine- and chemokine-induced inflammation can have a particularly profound effect on lung sodium transport since they can alter both ion channel and barrier function. Cytokines and chemokines affect alveolar amiloride-sensitive epithelial sodium channels (ENaCs), which play a crucial role in sodium transport and fluid reabsorption in the lung. This review discusses the regulation of ENaC via local and systemic cytokines during inflammatory disease and the effect on lung fluid balance.
Collapse
Affiliation(s)
- Brandi M Wynne
- Department of Medicine, Nephrology, Emory University, Atlanta, GA, United States.,Department of Physiology, Emory University, Atlanta, GA, United States.,The Center for Cell and Molecular Signaling, Emory University, Atlanta, GA, United States
| | - Li Zou
- Department of Physiology, Emory University, Atlanta, GA, United States
| | - Valerie Linck
- Department of Physiology, Emory University, Atlanta, GA, United States
| | - Robert S Hoover
- Department of Medicine, Nephrology, Emory University, Atlanta, GA, United States.,Department of Physiology, Emory University, Atlanta, GA, United States.,Research Service, Atlanta Veteran's Administration Medical Center, Decatur, GA, United States
| | - He-Ping Ma
- Department of Physiology, Emory University, Atlanta, GA, United States.,The Center for Cell and Molecular Signaling, Emory University, Atlanta, GA, United States
| | - Douglas C Eaton
- Department of Physiology, Emory University, Atlanta, GA, United States.,The Center for Cell and Molecular Signaling, Emory University, Atlanta, GA, United States
| |
Collapse
|
31
|
Czikora I, Alli AA, Sridhar S, Matthay MA, Pillich H, Hudel M, Berisha B, Gorshkov B, Romero MJ, Gonzales J, Wu G, Huo Y, Su Y, Verin AD, Fulton D, Chakraborty T, Eaton DC, Lucas R. Epithelial Sodium Channel-α Mediates the Protective Effect of the TNF-Derived TIP Peptide in Pneumolysin-Induced Endothelial Barrier Dysfunction. Front Immunol 2017; 8:842. [PMID: 28785264 PMCID: PMC5519615 DOI: 10.3389/fimmu.2017.00842] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/04/2017] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Streptococcus pneumoniae is a major etiologic agent of bacterial pneumonia. Autolysis and antibiotic-mediated lysis of pneumococci induce release of the pore-forming toxin, pneumolysin (PLY), their major virulence factor, which is a prominent cause of acute lung injury. PLY inhibits alveolar liquid clearance and severely compromises alveolar-capillary barrier function, leading to permeability edema associated with pneumonia. As a consequence, alveolar flooding occurs, which can precipitate lethal hypoxemia by impairing gas exchange. The α subunit of the epithelial sodium channel (ENaC) is crucial for promoting Na+ reabsorption across Na+-transporting epithelia. However, it is not known if human lung microvascular endothelial cells (HL-MVEC) also express ENaC-α and whether this subunit is involved in the regulation of their barrier function. METHODS The presence of α, β, and γ subunits of ENaC and protein phosphorylation status in HL-MVEC were assessed in western blotting. The role of ENaC-α in monolayer resistance of HL-MVEC was examined by depletion of this subunit by specific siRNA and by employing the TNF-derived TIP peptide, a specific activator that directly binds to ENaC-α. RESULTS HL-MVEC express all three subunits of ENaC, as well as acid-sensing ion channel 1a (ASIC1a), which has the capacity to form hybrid non-selective cation channels with ENaC-α. Both TIP peptide, which specifically binds to ENaC-α, and the specific ASIC1a activator MitTx significantly strengthened barrier function in PLY-treated HL-MVEC. ENaC-α depletion significantly increased sensitivity to PLY-induced hyperpermeability and in addition, blunted the protective effect of both the TIP peptide and MitTx, indicating an important role for ENaC-α and for hybrid NSC channels in barrier function of HL-MVEC. TIP peptide blunted PLY-induced phosphorylation of both calmodulin-dependent kinase II (CaMKII) and of its substrate, the actin-binding protein filamin A (FLN-A), requiring the expression of both ENaC-α and ASIC1a. Since non-phosphorylated FLN-A promotes ENaC channel open probability and blunts stress fiber formation, modulation of this activity represents an attractive target for the protective actions of ENaC-α in both barrier function and liquid clearance. CONCLUSION Our results in cultured endothelial cells demonstrate a previously unrecognized role for ENaC-α in strengthening capillary barrier function that may apply to the human lung. Strategies aiming to activate endothelial NSC channels that contain ENaC-α should be further investigated as a novel approach to improve barrier function in the capillary endothelium during pneumonia.
Collapse
Affiliation(s)
- Istvan Czikora
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Abdel A Alli
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, United States.,Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Supriya Sridhar
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Michael A Matthay
- Cardiovascular Research Institute, UCSF, San Francisco, CA, United States
| | - Helena Pillich
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Martina Hudel
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Besim Berisha
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Boris Gorshkov
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Maritza J Romero
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Joyce Gonzales
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Yuqing Huo
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Yunchao Su
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Alexander D Verin
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - David Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Trinad Chakraborty
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Douglas C Eaton
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Rudolf Lucas
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
32
|
Artigas A, Camprubí-Rimblas M, Tantinyà N, Bringué J, Guillamat-Prats R, Matthay MA. Inhalation therapies in acute respiratory distress syndrome. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:293. [PMID: 28828368 DOI: 10.21037/atm.2017.07.21] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The defining features of acute respiratory distress syndrome (ARDS) are an excessive inflammatory respiratory response associated with high morbidity and mortality. Treatment consists mainly of measures to avoid worsening lung injury and cannot reverse the underlying pathophysiological process. New pharmacological agents have shown promising results in preclinical studies; however, they have not been successfully translated to patients with ARDS. The lack of effective therapeutic interventions has resulted in a recent interest in strategies to prevent ARDS with treatments delivering medications directly to the lungs by inhalation and nebulization, hopefully minimizing systemic adverse events. We analyzed the effect of different aerosolized drugs such as bronchodilators, corticosteroids, pulmonary vasodilators, anticoagulants, mucolytics and surfactant. New therapeutic strategies and ongoing trials using carbon monoxide (CO) and AP301 peptide are also briefly reviewed.
Collapse
Affiliation(s)
- Antonio Artigas
- Institut d'Investigació i Innovació Parc Tauli (I3PT), Sabadell, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Critical Care Center, Corporació Sanitària Universitaria Parc Taulí, Sabadell, Spain
| | - Marta Camprubí-Rimblas
- Institut d'Investigació i Innovació Parc Tauli (I3PT), Sabadell, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Neus Tantinyà
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Josep Bringué
- Institut d'Investigació i Innovació Parc Tauli (I3PT), Sabadell, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Raquel Guillamat-Prats
- Institut d'Investigació i Innovació Parc Tauli (I3PT), Sabadell, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Michael A Matthay
- Departments of Medicine and Anesthesia and Cardiovascular Research Institute, University of California, San Francisco, USA
| |
Collapse
|
33
|
Willam A, Aufy M, Tzotzos S, El-Malazi D, Poser F, Wagner A, Unterköfler B, Gurmani D, Martan D, Iqbal SM, Fischer B, Fischer H, Pietschmann H, Czikora I, Lucas R, Lemmens-Gruber R, Shabbir W. TNF Lectin-Like Domain Restores Epithelial Sodium Channel Function in Frameshift Mutants Associated with Pseudohypoaldosteronism Type 1B. Front Immunol 2017; 8:601. [PMID: 28611771 PMCID: PMC5447021 DOI: 10.3389/fimmu.2017.00601] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/08/2017] [Indexed: 11/28/2022] Open
Abstract
Previous in vitro studies have indicated that tumor necrosis factor (TNF) activates amiloride-sensitive epithelial sodium channel (ENaC) current through its lectin-like (TIP) domain, since cyclic peptides mimicking the TIP domain (e.g., solnatide), showed ENaC-activating properties. In the current study, the effects of TNF and solnatide on individual ENaC subunits or ENaC carrying mutated glycosylation sites in the α-ENaC subunit were compared, revealing a similar mode of action for TNF and solnatide and corroborating the previous assumption that the lectin-like domain of TNF is the relevant molecular structure for ENaC activation. Accordingly, TNF enhanced ENaC current by increasing open probability of the glycosylated channel, position N511 in the α-ENaC subunit being identified as the most important glycosylation site. TNF significantly increased Na+ current through ENaC comprising only the pore forming subunits α or δ, was less active in ENaC comprising only β-subunits, and showed no effect on ENaC comprising γ-subunits. TNF did not increase the membrane abundance of ENaC subunits to the extent observed with solnatide. Since the α-subunit is believed to play a prominent role in the ENaC current activating effect of TNF and TIP, we investigated whether TNF and solnatide can enhance αβγ-ENaC current in α-ENaC loss-of-function frameshift mutants. The efficacy of solnatide has been already proven in pathological conditions involving ENaC in phase II clinical trials. The frameshift mutations αI68fs, αT169fs, αP197fs, αE272fs, αF435fs, αR438fs, αY447fs, αR448fs, αS452fs, and αT482fs have been reported to cause pseudohypoaldosteronism type 1B (PHA1B), a rare, life-threatening, salt-wasting disease, which hitherto has been treated only symptomatically. In a heterologous expression system, all frameshift mutants showed significantly reduced amiloride-sensitive whole-cell current compared to wild type αβγ-ENaC, whereas membrane abundance varied between mutants. Solnatide restored function in α-ENaC frameshift mutants to current density levels of wild type ENaC or higher despite their lacking a binding site for solnatide, previously located to the region between TM2 and the C-terminus of the α-subunit. TNF similarly restored current density to wild type levels in the mutant αR448fs. Activation of βγ-ENaC may contribute to this moderate current enhancement, but whatever the mechanism, experimental data indicate that solnatide could be a new strategy to treat PHA1B.
Collapse
Affiliation(s)
- Anita Willam
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria.,APEPTICO GmbH, Vienna, Austria
| | - Mohammed Aufy
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | | | - Dina El-Malazi
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Franziska Poser
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Alina Wagner
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Birgit Unterköfler
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Didja Gurmani
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - David Martan
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | | | | | | | | | - Istvan Czikora
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Rudolf Lucas
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Rosa Lemmens-Gruber
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Waheed Shabbir
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria.,APEPTICO GmbH, Vienna, Austria
| |
Collapse
|
34
|
Peteranderl C, Sznajder JI, Herold S, Lecuona E. Inflammatory Responses Regulating Alveolar Ion Transport during Pulmonary Infections. Front Immunol 2017; 8:446. [PMID: 28458673 PMCID: PMC5394420 DOI: 10.3389/fimmu.2017.00446] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 03/31/2017] [Indexed: 01/13/2023] Open
Abstract
The respiratory epithelium is lined by a tightly balanced fluid layer that allows normal O2 and CO2 exchange and maintains surface tension and host defense. To maintain alveolar fluid homeostasis, both the integrity of the alveolar–capillary barrier and the expression of epithelial ion channels and pumps are necessary to establish a vectorial ion gradient. However, during pulmonary infection, auto- and/or paracrine-acting mediators induce pathophysiological changes of the alveolar–capillary barrier, altered expression of epithelial Na,K-ATPase and of epithelial ion channels including epithelial sodium channel and cystic fibrosis membrane conductance regulator, leading to the accumulation of edema and impaired alveolar fluid clearance. These mediators include classical pro-inflammatory cytokines such as TGF-β, TNF-α, interferons, or IL-1β that are released upon bacterial challenge with Streptococcus pneumoniae, Klebsiella pneumoniae, or Mycoplasma pneumoniae as well as in viral infection with influenza A virus, pathogenic coronaviruses, or respiratory syncytial virus. Moreover, the pro-apoptotic mediator TNF-related apoptosis-inducing ligand, extracellular nucleotides, or reactive oxygen species impair epithelial ion channel expression and function. Interestingly, during bacterial infection, alterations of ion transport function may serve as an additional feedback loop on the respiratory inflammatory profile, further aggravating disease progression. These changes lead to edema formation and impair edema clearance which results in suboptimal gas exchange causing hypoxemia and hypercapnia. Recent preclinical studies suggest that modulation of the alveolar–capillary fluid homeostasis could represent novel therapeutic approaches to improve outcomes in infection-induced lung injury.
Collapse
Affiliation(s)
- Christin Peteranderl
- Department of Internal Medicine II, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Susanne Herold
- Department of Internal Medicine II, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Emilia Lecuona
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
35
|
Maddux AB, Hiller TD, Overdier KH, Pyle LL, Douglas IS. Innate Immune Function and Organ Failure Recovery in Adults With Sepsis. J Intensive Care Med 2017; 34:486-494. [PMID: 28372498 DOI: 10.1177/0885066617701903] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE Sepsis stimulates pro- and anti-inflammatory immune responses. The innate immune response is critical to organ injury repair. We tested for an association between innate immune function and organ function recovery in a prospective cohort of immune-competent adults with sepsis. METHODS We conducted a prospective observational cohort study enrolling immune-competent adults with sepsis. We tested innate immune function by quantification of lipopolysaccharide (LPS)-stimulated tumor necrosis factor (TNF) α production capacity in whole blood samples on hospital days 1, 4, and 6. The primary outcome was organ function recovery on day 4 defined as a 4-point decrease in the composite cardiovascular and respiratory Sequential Organ Failure Assessment (SOFA) score components or a SOFA score ≤2. RESULTS Patients with sepsis who recovered organ function by day 4 (n = 11) had similar baseline characteristics when compared to those with ongoing organ failure (n = 13). Tumor necrosis factor α production capacity was similar between the 2 groups on hospital days 1 and 4 but significantly different on day 6. Patients who regained organ function recovery had significantly higher TNF-α production capacity on day 6 ( P = .01), which persisted after adjustment for age, Acute Physiology and Chronic Health Evaluation III score, and steroid administration ( P = .03). There was no difference in TNF-α production capacity over time in those who survived to hospital discharge versus nonsurvivors. CONCLUSION Increasing TNF-α production capacity is associated with improved organ failure recovery. Further studies are needed to evaluate a causal association between innate immune suppression and organ failure recovery as well as predictive accuracy for hospital survival. Impaired TNF-α production as a marker of sepsis-associated innate immune dysfunction may be a feasible target for immune stimulation to decrease time to organ failure recovery.
Collapse
Affiliation(s)
- Aline B Maddux
- 1 Department of Pediatrics, Section of Pediatric Critical Care, University of Colorado School of Medicine, Aurora, CO, USA.,2 Children's Hospital Colorado, Aurora, CO, USA
| | - Terra D Hiller
- 3 Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, Denver Health Medical Center, Denver, CO, USA
| | - Katherine H Overdier
- 3 Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, Denver Health Medical Center, Denver, CO, USA
| | - Laura L Pyle
- 1 Department of Pediatrics, Section of Pediatric Critical Care, University of Colorado School of Medicine, Aurora, CO, USA.,4 Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA
| | - Ivor S Douglas
- 1 Department of Pediatrics, Section of Pediatric Critical Care, University of Colorado School of Medicine, Aurora, CO, USA.,3 Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, Denver Health Medical Center, Denver, CO, USA
| |
Collapse
|
36
|
Solnatide Demonstrates Profound Therapeutic Activity in a Rat Model of Pulmonary Edema Induced by Acute Hypobaric Hypoxia and Exercise. Chest 2017; 151:658-667. [DOI: 10.1016/j.chest.2016.10.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/11/2016] [Accepted: 10/17/2016] [Indexed: 11/23/2022] Open
|
37
|
Willam A, Aufy M, Tzotzos S, Evanzin H, Chytracek S, Geppert S, Fischer B, Fischer H, Pietschmann H, Czikora I, Lucas R, Lemmens-Gruber R, Shabbir W. Restoration of Epithelial Sodium Channel Function by Synthetic Peptides in Pseudohypoaldosteronism Type 1B Mutants. Front Pharmacol 2017; 8:85. [PMID: 28286482 PMCID: PMC5323398 DOI: 10.3389/fphar.2017.00085] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/09/2017] [Indexed: 12/20/2022] Open
Abstract
The synthetically produced cyclic peptides solnatide (a.k.a. TIP or AP301) and its congener AP318, whose molecular structures mimic the lectin-like domain of human tumor necrosis factor (TNF), have been shown to activate the epithelial sodium channel (ENaC) in various cell- and animal-based studies. Loss-of-ENaC-function leads to a rare, life-threatening, salt-wasting syndrome, pseudohypoaldosteronism type 1B (PHA1B), which presents with failure to thrive, dehydration, low blood pressure, anorexia and vomiting; hyperkalemia, hyponatremia and metabolic acidosis suggest hypoaldosteronism, but plasma aldosterone and renin activity are high. The aim of the present study was to investigate whether the ENaC-activating effect of solnatide and AP318 could rescue loss-of-function phenotype of ENaC carrying mutations at conserved amino acid positions observed to cause PHA1B. The macroscopic Na+ current of all investigated mutants was decreased compared to wild type ENaC when measured in whole-cell patch clamp experiments, and a great variation in the membrane abundance of different mutant ENaCs was observed with Western blotting experiments. However, whatever mechanism leads to loss-of-function of the studied ENaC mutations, the synthetic peptides solnatide and AP318 could restore ENaC function up to or even higher than current levels of wild type ENaC. As therapy of PHA1B is only symptomatic so far, the peptides solnatide and AP318, which directly target ENaC, are promising candidates for the treatment of the channelopathy-caused disease PHA1B.
Collapse
Affiliation(s)
- Anita Willam
- Department of Pharmacology and Toxicology, University of Vienna Vienna, Austria
| | - Mohammed Aufy
- Department of Pharmacology and Toxicology, University of Vienna Vienna, Austria
| | | | - Heinrich Evanzin
- Department of Pharmacology and Toxicology, University of Vienna Vienna, Austria
| | - Sabine Chytracek
- Department of Pharmacology and Toxicology, University of Vienna Vienna, Austria
| | - Sabrina Geppert
- Department of Pharmacology and Toxicology, University of Vienna Vienna, Austria
| | | | | | | | - Istvan Czikora
- Vascular Biology Center, Medical College of Georgia, Augusta University Augusta, GA, USA
| | - Rudolf Lucas
- Vascular Biology Center, Medical College of Georgia, Augusta University Augusta, GA, USA
| | - Rosa Lemmens-Gruber
- Department of Pharmacology and Toxicology, University of Vienna Vienna, Austria
| | - Waheed Shabbir
- Department of Pharmacology and Toxicology, University of ViennaVienna, Austria; APEPTICO GmbHVienna, Austria
| |
Collapse
|
38
|
Wilson MR, Wakabayashi K, Bertok S, Oakley CM, Patel BV, O'Dea KP, Cordy JC, Morley PJ, Bayliffe AI, Takata M. Inhibition of TNF Receptor p55 By a Domain Antibody Attenuates the Initial Phase of Acid-Induced Lung Injury in Mice. Front Immunol 2017; 8:128. [PMID: 28243236 PMCID: PMC5304467 DOI: 10.3389/fimmu.2017.00128] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/25/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Tumor necrosis factor-α (TNF) is strongly implicated in the development of acute respiratory distress syndrome (ARDS), but its potential as a therapeutic target has been hampered by its complex biology. TNF signals through two receptors, p55 and p75, which play differential roles in pulmonary edema formation during ARDS. We have recently shown that inhibition of p55 by a novel domain antibody (dAb™) attenuated ventilator-induced lung injury. In the current study, we explored the efficacy of this antibody in mouse models of acid-induced lung injury to investigate the longer consequences of treatment. METHODS We employed two acid-induced injury models, an acute ventilated model and a resolving spontaneously breathing model. C57BL/6 mice were pretreated intratracheally or intranasally with p55-targeting dAb or non-targeting "dummy" dAb, 1 or 4 h before acid instillation. RESULTS Acid instillation in the dummy dAb group caused hypoxemia, increased respiratory system elastance, pulmonary inflammation, and edema in both the ventilated and resolving models. Pretreatment with p55-targeting dAb significantly attenuated physiological markers of ARDS in both models. p55-targeting dAb also attenuated pulmonary inflammation in the ventilated model, with signs that altered cytokine production and leukocyte recruitment persisted beyond the very acute phase. CONCLUSION These results demonstrate that the p55-targeting dAb attenuates lung injury and edema formation in models of ARDS induced by acid aspiration, with protection from a single dose lasting up to 24 h. Together with our previous data, the current study lends support toward the clinical targeting of p55 for patients with, or at risk of ARDS.
Collapse
Affiliation(s)
- Michael R Wilson
- Section of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital , London , UK
| | - Kenji Wakabayashi
- Section of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK; Department of Intensive Care Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Szabolcs Bertok
- Section of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital , London , UK
| | - Charlotte M Oakley
- Section of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital , London , UK
| | - Brijesh V Patel
- Section of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital , London , UK
| | - Kieran P O'Dea
- Section of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital , London , UK
| | - Joanna C Cordy
- Biopharm Molecular Discovery, GlaxoSmithKline R&D , Stevenage , UK
| | - Peter J Morley
- Biopharm Molecular Discovery, GlaxoSmithKline R&D , Stevenage , UK
| | | | - Masao Takata
- Section of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital , London , UK
| |
Collapse
|
39
|
An angiotensin II type 1 receptor binding molecule has a critical role in hypertension in a chronic kidney disease model. Kidney Int 2017; 91:1115-1125. [PMID: 28081856 DOI: 10.1016/j.kint.2016.10.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/28/2016] [Accepted: 10/27/2016] [Indexed: 01/13/2023]
Abstract
Angiotensin II type 1 receptor-associated protein (ATRAP) promotes AT1R internalization along with suppression of hyperactivation of tissue AT1R signaling. Here, we provide evidence that renal ATRAP plays a critical role in suppressing hypertension in a mouse remnant kidney model of chronic kidney disease. The effect of 5/6 nephrectomy on endogenous ATRAP expression was examined in the kidney of C57BL/6 and 129/Sv mice. While 129/Sv mice with a remnant kidney showed decreased renal ATRAP expression and developed hypertension, C57BL/6 mice exhibited increased renal ATRAP expression and resistance to progressive hypertension. Consequently, we hypothesized that downregulation of renal ATRAP expression is involved in pathogenesis of hypertension in the remnant kidney model of chronic kidney disease. Interestingly, 5/6 nephrectomy in ATRAP-knockout mice on the hypertension-resistant C57BL/6 background caused hypertension with increased plasma volume. Moreover, in knockout compared to wild-type C57BL/6 mice after 5/6 nephrectomy, renal expression of the epithelial sodium channel α-subunit and tumor necrosis factor-α was significantly enhanced, concomitant with increased plasma membrane angiotensin II type 1 receptor in the kidneys. Thus, renal ATRAP downregulation is involved in the onset and progression of blood pressure elevation caused by renal mass reduction, and implicates ATRAP as a therapeutic target for hypertension in chronic kidney disease.
Collapse
|
40
|
Altered Prostasin (CAP1/Prss8) Expression Favors Inflammation and Tissue Remodeling in DSS-induced Colitis. Inflamm Bowel Dis 2016; 22:2824-2839. [PMID: 27755216 DOI: 10.1097/mib.0000000000000940] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Inflammatory bowel diseases (IBD) including ulcerative colitis and Crohn's disease are diseases with impaired epithelial barrier function. We aimed to investigate whether mutated prostasin and thus, reduced colonic epithelial sodium channel activity predisposes to develop an experimentally dextran sodium sulfate (DSS)-induced colitis. METHODS Wildtype, heterozygous (fr/+), and homozygous (fr/fr) prostasin-mutant rats were treated 7 days with DSS followed by 7 days of recovery and analyzed with respect to histology, clinicopathological parameters, inflammatory marker mRNA transcript expression, and sodium transporter protein expression. RESULTS In this study, a more detailed analysis on rat fr/fr colons revealed reduced numbers of crypt and goblet cells, and local angiodysplasia, as compared with heterozygous (fr/+) and wildtype littermates. Following 2% DSS treatment for 7 days followed by 7 days recovery, fr/fr animals lost body weight, and reached maximal diarrhea score and highest disease activity after only 3 days, and strongly increased cytokine levels. The histology score significantly increased in all groups, but fr/fr colons further displayed pronounced histological alterations with near absence of goblet cells, rearrangement of the lamina propria, and presence of neutrophils, eosinophils, and macrophages. Additionally, fr/fr colons showed ulcerations and edemas that were absent in fr/+ and wildtype littermates. Following recovery, fr/fr rats reached, although significantly delayed, near-normal diarrhea score and disease activity, but exhibited severe architectural remodeling, despite unchanged sodium transporter protein expression. CONCLUSIONS In summary, our results demonstrate a protective role of colonic prostasin expression against experimental colitis, and thus represent a susceptibility gene in the development of inflammatory bowel disease.
Collapse
|
41
|
Lucas R, Yue Q, Alli A, Duke BJ, Al-Khalili O, Thai TL, Hamacher J, Sridhar S, Lebedyeva I, Su H, Tzotzos S, Fischer B, Gameiro AF, Loose M, Chakraborty T, Shabbir W, Aufy M, Lemmens-Gruber R, Eaton DC, Czikora I. The Lectin-like Domain of TNF Increases ENaC Open Probability through a Novel Site at the Interface between the Second Transmembrane and C-terminal Domains of the α-Subunit. J Biol Chem 2016; 291:23440-23451. [PMID: 27645999 DOI: 10.1074/jbc.m116.718163] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Indexed: 12/29/2022] Open
Abstract
Regulation of the epithelial sodium channel (ENaC), which regulates fluid homeostasis and blood pressure, is complex and remains incompletely understood. The TIP peptide, a mimic of the lectin-like domain of TNF, activates ENaC by binding to glycosylated residues in the extracellular loop of ENaC-α, as well as to a hitherto uncharacterized internal site. Molecular docking studies suggested three residues, Val567, Glu568, and Glu571, located at the interface between the second transmembrane and C-terminal domains of ENaC-α, as a critical site for binding of the TIP peptide. We generated Ala replacement mutants in this region of ENaC-α and examined its interaction with TIP peptide (3M, V567A/E568A/E571A; 2M, V567A/E568A; and 1M, E571A). 3M and 2M ENaC-α, but not 1M ENaC-α, displayed significantly reduced binding capacity to TIP peptide and to TNF. When overexpressed in H441 cells, 3M mutant ENaC-α formed functional channels with similar gating and density characteristics as the WT subunit and efficiently associated with the β and γ subunits in the plasma membrane. We subsequently assayed for increased open probability time and membrane expression, both of which define ENaC activity, following addition of TIP peptide. TIP peptide increased open probability time in H441 cells overexpressing wild type and 1M ENaC-α channels, but not 3M or 2M ENaC-α channels. On the other hand, TIP peptide-mediated reduction in ENaC ubiquitination was similar in cells overexpressing either WT or 3M ENaC-α subunits. In summary, this study has identified a novel site in ENaC-α that is crucial for activation of the open probability of the channel, but not membrane expression, by the lectin-like domain of TNF.
Collapse
Affiliation(s)
- Rudolf Lucas
- From the Vascular Biology Center, .,the Department of Pharmacology and Toxicology, and.,the Division of Pulmonary and Critical Care Medicine, Medical College of Georgia, Augusta, Georgia 30912
| | - Qiang Yue
- the Department of Physiology, Emory University, Atlanta, Georgia 30322
| | - Abdel Alli
- the Department of Physiology, Emory University, Atlanta, Georgia 30322.,the Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida 32610
| | | | - Otor Al-Khalili
- the Department of Physiology, Emory University, Atlanta, Georgia 30322
| | - Tiffany L Thai
- the Department of Physiology, Emory University, Atlanta, Georgia 30322
| | - Jürg Hamacher
- the Department of Pulmonology, Saarland University, D-66421 Homburg, Germany
| | | | - Iryna Lebedyeva
- the Department of Chemistry, Augusta University, Augusta, Georgia 30912
| | - Huabo Su
- From the Vascular Biology Center
| | - Susan Tzotzos
- Apeptico Research and Development, 1150 Vienna, Austria
| | | | | | - Maria Loose
- the Institute for Medical Microbiology, Justus-Liebig University, 35390 Giessen, Germany, and
| | - Trinad Chakraborty
- the Institute for Medical Microbiology, Justus-Liebig University, 35390 Giessen, Germany, and
| | - Waheed Shabbir
- the Department of Pharmacology and Toxicology, University Vienna, 1010 Vienna, Austria
| | - Mohammed Aufy
- the Department of Pharmacology and Toxicology, University Vienna, 1010 Vienna, Austria
| | - Rosa Lemmens-Gruber
- the Department of Pharmacology and Toxicology, University Vienna, 1010 Vienna, Austria
| | - Douglas C Eaton
- the Department of Physiology, Emory University, Atlanta, Georgia 30322,
| | | |
Collapse
|
42
|
Liu Y, Jiang BJ, Zhao RZ, Ji HL. Epithelial Sodium Channels in Pulmonary Epithelial Progenitor and Stem Cells. Int J Biol Sci 2016; 12:1150-4. [PMID: 27570489 PMCID: PMC4997059 DOI: 10.7150/ijbs.15747] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/11/2016] [Indexed: 11/05/2022] Open
Abstract
Regeneration of the epithelium of mammalian lungs is essential for restoring normal function following injury, and various cells and mechanisms contribute to this regeneration and repair. Club cells, bronchioalveolar stem cells (BASCs), and alveolar type II epithelial cells (ATII) are dominant stem/progenitor cells for maintaining epithelial turnover and repair. Epithelial Na(+) channels (ENaC), a critical pathway for transapical salt and fluid transport, are expressed in lung epithelial progenitors, including club and ATII cells. Since ENaC activity and expression are development- and differentiation-dependent, apically located ENaC activity has therefore been used as a functional biomarker of lung injury repair. ENaC activity may be involved in the migration and differentiation of local and circulating stem/progenitor cells with diverse functions, eventually benefiting stem cells spreading to re-epithelialize injured lungs. This review summarizes the potential roles of ENaC expressed in native progenitor and stem cells in the development and regeneration of the respiratory epithelium.
Collapse
Affiliation(s)
- Yang Liu
- Institute of Lung and Molecular Therapy, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Bi-Jie Jiang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Run-Zhen Zhao
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas 75708, USA
- Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler, Texas 75708, USA
| | - Hong-Long Ji
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas 75708, USA
- Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler, Texas 75708, USA
| |
Collapse
|
43
|
Kumarhia D, He L, McCluskey LP. Inflammatory stimuli acutely modulate peripheral taste function. J Neurophysiol 2016; 115:2964-75. [PMID: 27009163 DOI: 10.1152/jn.01104.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/23/2016] [Indexed: 12/30/2022] Open
Abstract
Inflammation-mediated changes in taste perception can affect health outcomes in patients, but little is known about the underlying mechanisms. In the present work, we hypothesized that proinflammatory cytokines directly modulate Na(+) transport in taste buds. To test this, we measured acute changes in Na(+) flux in polarized fungiform taste buds loaded with a Na(+) indicator dye. IL-1β elicited an amiloride-sensitive increase in Na(+) transport in taste buds. In contrast, TNF-α dramatically and reversibly decreased Na(+) flux in polarized taste buds via amiloride-sensitive and amiloride-insensitive Na(+) transport systems. The speed and partial amiloride sensitivity of these changes in Na(+) flux indicate that IL-1β and TNF-α modulate epithelial Na(+) channel (ENaC) function. A portion of the TNF-mediated decrease in Na(+) flux is also blocked by the TRPV1 antagonist capsazepine, although TNF-α further reduced Na(+) transport independently of both amiloride and capsazepine. We also assessed taste function in vivo in a model of infection and inflammation that elevates these and additional cytokines. In rats administered systemic lipopolysaccharide (LPS), CT responses to Na(+) were significantly elevated between 1 and 2 h after LPS treatment. Low, normally preferred concentrations of NaCl and sodium acetate elicited high response magnitudes. Consistent with this outcome, codelivery of IL-1β and TNF-α enhanced Na(+) flux in polarized taste buds. These results demonstrate that inflammation elicits swift changes in Na(+) taste function, which may limit salt consumption during illness.
Collapse
Affiliation(s)
- Devaki Kumarhia
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia; and Graduate Program in Molecular Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Lianying He
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia; and
| | - Lynnette Phillips McCluskey
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia; and
| |
Collapse
|
44
|
Ji HL, Nie HG, Chang Y, Lian Q, Liu SL. CPT-cGMP Is A New Ligand of Epithelial Sodium Channels. Int J Biol Sci 2016; 12:359-66. [PMID: 27019621 PMCID: PMC4807156 DOI: 10.7150/ijbs.13764] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 11/11/2015] [Indexed: 12/28/2022] Open
Abstract
Epithelial sodium channels (ENaC) are localized at the apical membrane of the epithelium, and are responsible for salt and fluid reabsorption. Renal ENaC takes up salt, thereby controlling salt content in serum. Loss-of-function ENaC mutations lead to low blood pressure due to salt-wasting, while gain-of-function mutations cause impaired sodium excretion and subsequent hypertension as well as hypokalemia. ENaC activity is regulated by intracellular and extracellular signals, including hormones, neurotransmitters, protein kinases, and small compounds. Cyclic nucleotides are broadly involved in stimulating protein kinase A and protein kinase G signaling pathways, and, surprisingly, also appear to have a role in regulating ENaC. Increasing evidence suggests that the cGMP analog, CPT-cGMP, activates αβγ-ENaC activity reversibly through an extracellular pathway in a dose-dependent manner. Furthermore, the parachlorophenylthio moiety and ribose 2'-hydroxy group of CPT-cGMP are essential for facilitating the opening of ENaC channels by this compound. Serving as an extracellular ligand, CPT-cGMP eliminates sodium self-inhibition, which is a novel mechanism for stimulating salt reabsorption in parallel to the traditional NO/cGMP/PKG signal pathway. In conclusion, ENaC may be a druggable target for CPT-cGMP, leading to treatments for kidney malfunctions in salt reabsorption.
Collapse
Affiliation(s)
- Hong-Long Ji
- 1. Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas 75708, USA
| | - Hong-Guang Nie
- 2. Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang 110001, China
| | - Yongchang Chang
- 3. Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, Arizona, 85013, USA
| | - Qizhou Lian
- 4. Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Shan-Lu Liu
- 5. Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
45
|
Glycosylation-dependent activation of epithelial sodium channel by solnatide. Biochem Pharmacol 2015; 98:740-53. [DOI: 10.1016/j.bcp.2015.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/03/2015] [Indexed: 12/29/2022]
|
46
|
Goligher EC, Douflé G, Fan E. Update in Mechanical Ventilation, Sedation, and Outcomes 2014. Am J Respir Crit Care Med 2015; 191:1367-73. [DOI: 10.1164/rccm.201502-0346up] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
47
|
Gonzales JN, Lucas R, Verin AD. The Acute Respiratory Distress Syndrome: Mechanisms and Perspective Therapeutic Approaches. AUSTIN JOURNAL OF VASCULAR MEDICINE 2015; 2:1009. [PMID: 26973981 PMCID: PMC4786180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Acute Respiratory Distress Syndrome (ARDS) is a severe lung inflammatory disorder with a 30-50% mortality. Sepsis and pneumonia are the leading causes of ARDS. On the cellular level there is pulmonary capillary endothelial cell permeability and fluid leakage into the pulmonary parenchyma, followed by neutrophils, cytokines and an acute inflammatory response. When fluid increases in the interstitium then the outward movement continues and protein rich fluid floods the alveolar spaces through the tight junctions of the epithelial cells. Neutrophils play an important role in the development of pulmonary edema associated with acute lung injury or ARDS. Animal studies have shown that endothelial injury appears within minutes to hours after Acute Lung Injury (ALI) initiation with resulting intercellular gaps of the endothelial cells. The Endothelial Cell (EC) gaps allow for permeability of fluid, neutrophils and cytokines into the pulmonary parenchymal space. The neutrophils that infiltrate the lungs and migrate into the airways express pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and contribute to both the endothelial and epithelial integrity disruption of the barriers. Pharmacological treatments have been ineffective. The ARDS Network trial identified low tidal volume mechanical ventilation, positive end expiratory pressure and fluid management guidelines that have improved outcomes for patients with ARDS. Extracorporeal membrane oxygenation is used in specialized centers for severe cases. Prone positioning has recently proven to have significantly decreased ventilator days and days in the intensive care unit. Current investigation includes administration of mesenchymal stem cell therapy, partial fluid ventilation, TIP peptide nebulized administration and the continued examination of pharmacologic drugs.
Collapse
Affiliation(s)
- JN Gonzales
- Department of Internal Medicine, Georgia Regents University, USA
- Vascular Biology Center, Georgia Regents University, USA
| | - R Lucas
- Department of Internal Medicine, Georgia Regents University, USA
- Department of Pharmacology and Toxicology, Georgia Regents University, USA
| | - AD Verin
- Department of Internal Medicine, Georgia Regents University, USA
- Vascular Biology Center, Georgia Regents University, USA
| |
Collapse
|
48
|
Hartmann EK, Ziebart A, Thomas R, Liu T, Schad A, Tews M, Moosmann B, Kamuf J, Duenges B, Thal SC, David M. Inhalation therapy with the synthetic TIP-like peptide AP318 attenuates pulmonary inflammation in a porcine sepsis model. BMC Pulm Med 2015; 15:7. [PMID: 25879802 PMCID: PMC4346123 DOI: 10.1186/s12890-015-0002-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 01/19/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The lectin-like domain of TNF-α can be mimicked by synthetic TIP peptides and represents an innovative pharmacologic option to treat edematous respiratory failure. TIP inhalation was shown to reduce pulmonary edema and improve gas exchange. In addition to its edema resolution effect, TIP peptides may exert some anti-inflammatory properties. The present study therefore investigates the influence of the inhaled TIP peptide AP318 on intrapulmonary inflammatory response in a porcine model of systemic sepsis. METHODS In a randomized-blinded setting lung injury was induced in 18 pigs by lipopolysaccharide-infusion and a second hit with a short period of ventilator-induced lung stress, followed by a six-hour observation period. The animals received either two inhalations with the peptide (AP318, 2×1 mg kg(-1)) or vehicle. Post-mortem pulmonary expression of inflammatory and mechanotransduction markers were determined by real-time polymerase chain reaction (IL-1β, IL-6, TNF-α, COX-2, iNOS, amphiregulin, and tenascin-c). Furthermore, regional histopathological lung injury, edema formation and systemic inflammation were quantified. RESULTS Despite similar systemic response to lipopolysaccharide infusion in both groups, pulmonary inflammation (IL-6, TNF-α, COX-2, tenascin-c) was significantly mitigated by AP318. Furthermore, a Western blot analysis shows a significantly lower of COX-2 protein level. The present sepsis model caused minor lung edema formation and moderate gas exchange impairment. Six hours after onset pathologic scoring showed no improvement, while gas exchange parameters and pulmonary edema formation were similar in the two groups. CONCLUSION In summary, AP318 significantly attenuated intrapulmonary inflammatory response even without the presence or resolution of severe pulmonary edema in a porcine model of systemic sepsis-associated lung injury. These findings suggest an anti-inflammatory mechanism of the lectin-like domain beyond mere edema reabsorption in endotoxemic lung injury in vivo.
Collapse
Affiliation(s)
- Erik K Hartmann
- Department of Anesthesiology, Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Alexander Ziebart
- Department of Anesthesiology, Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Rainer Thomas
- Department of Anesthesiology, Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Tanghua Liu
- Department of Anesthesiology, Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Arno Schad
- Institute of Pathology, Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Martha Tews
- Institute of Pathobiochemistry, Medical Center of the Johannes, Gutenberg-University, Duesbergweg 6, 55128, Mainz, Germany.
| | - Bernd Moosmann
- Institute of Pathobiochemistry, Medical Center of the Johannes, Gutenberg-University, Duesbergweg 6, 55128, Mainz, Germany.
| | - Jens Kamuf
- Department of Anesthesiology, Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Bastian Duenges
- Department of Anesthesiology, Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Serge C Thal
- Department of Anesthesiology, Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Matthias David
- Department of Anesthesiology, Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany.
| |
Collapse
|
49
|
Sieck GC, Wylam ME. Paradoxical use of tumor necrosis factor in treating pulmonary edema. Am J Respir Crit Care Med 2014; 190:595-6. [PMID: 25221873 DOI: 10.1164/rccm.201407-1364ed] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Gary C Sieck
- 1 Department of Physiology and Biomedical Engineering Mayo Clinic Rochester, Minnesota
| | | |
Collapse
|