1
|
Pilard CM, Cardouat G, Gauthereau I, Gassiat L, Dubois M, Robillard P, Sauvestre F, Pelluard F, Berenguer S, Sarreau M, Claverol S, Tokarski C, Sentilhes L, Coatleven F, Vincienne M, Marthan R, Dumas-de-la-Roque E, Berger P, Friedberg MK, Renesme L, Freund-Michel V, Guibert C. Celastrol has beneficial effects on pulmonary hypertension associated with bronchopulmonary dysplasia: Preclinical study outcomes. Biomed Pharmacother 2025; 184:117881. [PMID: 39891950 DOI: 10.1016/j.biopha.2025.117881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025] Open
Abstract
Pulmonary hypertension associated with bronchopulmonary dysplasia (BPD-PH) is a severe cardiorespiratory disease of preterm newborns leading to an excess of mortality in infancy and no curative treatment currently exists. Inflammation and oxidative stress are the common pathways that lead to BPD-PH. Therefore, we aimed to evaluate celastrol, a molecule with anti-inflammatory and antioxidant properties, as a promising preventive treatment in BPD-PH. In a model of neonatal rats exposed to hyperoxia, we demonstrated that mortality was prevented in animals treated with celastrol. Moreover, in vivo, celastrol decreased pulmonary hypertension, right ventricular hypertrophy, vascular remodeling, pulmonary arterial hyperreactivity to endothelin-1 and inflammation but had no effect on hypoalveolarization and altered angiogenesis. In vitro experiments carried out on human fetal pulmonary artery smooth muscle cells (HfPA-SMC) exposed to hyperoxia showed that endothelin-1-induced intracellular calcium response was increased and celastrol significantly inhibited this effect, without modifying endothelin-1 receptors expression. Regarding inflammation, celastrol decreased both CD68 staining in lung and secretion of the pro-inflammatory cytokine Tissue Inhibitor of Metalloproteinases-1 in intrapulmonary arteries from neonatal rats. IL-6 secretion was also decreased by celastrol in HfPA-SMC. Finally, hyperoxia increased heme oxygenase-1 (HO-1) expression and celastrol induced an overexpression of HO-1 in both neonatal rat lung and human cells. These results suggest that celastrol has a preventive effect on major hallmarks of PH in both a rat hyperoxic model of BPD-PH and HfPA-SMC exposed to hyperoxia via modulation of macrophage inflammatory signaling and HfPA-SMC calcium cycling. Celastrol could therefore be considered as a promising preventive treatment in BPD-PH.
Collapse
Affiliation(s)
- Claire-Marie Pilard
- Plateforme Technologique d'Innovation Biomédicale, Pessac F-33600, France; INSERM U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Pessac F-33600, France; Neonatology Department, Bordeaux University Hospital, Bordeaux F-33000, France
| | - Guillaume Cardouat
- Plateforme Technologique d'Innovation Biomédicale, Pessac F-33600, France; INSERM U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Pessac F-33600, France
| | - Isabel Gauthereau
- Plateforme Technologique d'Innovation Biomédicale, Pessac F-33600, France; INSERM U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Pessac F-33600, France
| | - Laure Gassiat
- Plateforme Technologique d'Innovation Biomédicale, Pessac F-33600, France; INSERM U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Pessac F-33600, France
| | - Mathilde Dubois
- Plateforme Technologique d'Innovation Biomédicale, Pessac F-33600, France; INSERM U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Pessac F-33600, France
| | - Paul Robillard
- Plateforme Technologique d'Innovation Biomédicale, Pessac F-33600, France; INSERM U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Pessac F-33600, France
| | - Fanny Sauvestre
- Pathology Department, Bordeaux University Hospital, Bordeaux F-33000, France
| | - Fanny Pelluard
- Pathology Department, Bordeaux University Hospital, Bordeaux F-33000, France
| | - Sophie Berenguer
- Pathology Department, Bordeaux University Hospital, Bordeaux F-33000, France
| | - Melie Sarreau
- Pathology Department, Bordeaux University Hospital, Bordeaux F-33000, France
| | | | | | - Loïc Sentilhes
- Obstetrics and Gynecology Department, Bordeaux University Hospital, Bordeaux F-33000, France
| | - Frederic Coatleven
- Obstetrics and Gynecology Department, Bordeaux University Hospital, Bordeaux F-33000, France
| | - Marie Vincienne
- Obstetrics and Gynecology Department, Bordeaux University Hospital, Bordeaux F-33000, France
| | - Roger Marthan
- Plateforme Technologique d'Innovation Biomédicale, Pessac F-33600, France; INSERM U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Pessac F-33600, France; Respiratory Functional Explorations Department, Bordeaux University Hospital, Bordeaux F-33000, France
| | - Eric Dumas-de-la-Roque
- Plateforme Technologique d'Innovation Biomédicale, Pessac F-33600, France; INSERM U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Pessac F-33600, France; Neonatology Department, Bordeaux University Hospital, Bordeaux F-33000, France
| | - Patrick Berger
- Plateforme Technologique d'Innovation Biomédicale, Pessac F-33600, France; INSERM U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Pessac F-33600, France; Respiratory Functional Explorations Department, Bordeaux University Hospital, Bordeaux F-33000, France
| | - Mark K Friedberg
- Department of Pediatrics, the Labatt Family Heart Centre, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Laurent Renesme
- Plateforme Technologique d'Innovation Biomédicale, Pessac F-33600, France; INSERM U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Pessac F-33600, France; Neonatology Department, Bordeaux University Hospital, Bordeaux F-33000, France
| | - Véronique Freund-Michel
- Plateforme Technologique d'Innovation Biomédicale, Pessac F-33600, France; INSERM U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Pessac F-33600, France
| | - Christelle Guibert
- Plateforme Technologique d'Innovation Biomédicale, Pessac F-33600, France; INSERM U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Pessac F-33600, France.
| |
Collapse
|
2
|
Cardouat G, Douard M, Bouchet C, Roubenne L, Kmecová Z, Esteves P, Brette F, Guignabert C, Tu L, Campagnac M, Robillard P, Coste F, Delcambre F, Thumerel M, Begueret H, Maurac A, Belaroussi Y, Klimas J, Ducret T, Quignard JF, Vacher P, Baudrimont I, Marthan R, Berger P, Guibert C, Freund-Michel V. NGF increases Connexin-43 expression and function in pulmonary arterial smooth muscle cells to induce pulmonary artery hyperreactivity. Biomed Pharmacother 2024; 174:116552. [PMID: 38599061 DOI: 10.1016/j.biopha.2024.116552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/30/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
AIMS Pulmonary hypertension (PH) is characterised by an increase in pulmonary arterial pressure, ultimately leading to right ventricular failure and death. We have previously shown that nerve growth factor (NGF) plays a critical role in PH. Our objectives here were to determine whether NGF controls Connexin-43 (Cx43) expression and function in the pulmonary arterial smooth muscle, and whether this mechanism contributes to NGF-induced pulmonary artery hyperreactivity. METHODS AND RESULTS NGF activates its TrkA receptor to increase Cx43 expression, phosphorylation, and localization at the plasma membrane in human pulmonary arterial smooth muscle cells, thus leading to enhanced activity of Cx43-dependent GAP junctions as shown by Lucifer Yellow dye assay transfer and fluorescence recovery after photobleaching -FRAP- experiments. Using both in vitro pharmacological and in vivo SiRNA approaches, we demonstrate that NGF-dependent increase in Cx43 expression and activity in the rat pulmonary circulation causes pulmonary artery hyperreactivity. We also show that, in a rat model of PH induced by chronic hypoxia, in vivo blockade of NGF or of its TrkA receptor significantly reduces Cx43 increased pulmonary arterial expression induced by chronic hypoxia and displays preventive effects on pulmonary arterial pressure increase and right heart hypertrophy. CONCLUSIONS Modulation of Cx43 by NGF in pulmonary arterial smooth muscle cells contributes to NGF-induced alterations of pulmonary artery reactivity. Since NGF and its TrkA receptor play a role in vivo in Cx43 increased expression in PH induced by chronic hypoxia, these NGF/Cx43-dependent mechanisms may therefore play a significant role in human PH pathophysiology.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Rats
- Cells, Cultured
- Connexin 43/metabolism
- Gap Junctions/metabolism
- Gap Junctions/drug effects
- Hypertension, Pulmonary/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Nerve Growth Factor/metabolism
- Phosphorylation
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Rats, Sprague-Dawley
- Rats, Wistar
- Receptor, trkA/metabolism
Collapse
Affiliation(s)
| | - Matthieu Douard
- Univ. Bordeaux, INSERM, CRCTB, U 1045, Bordeaux F-33000, France; Univ. Bordeaux, INSERM, CRCTB, U 1045, IHU Liryc, Bordeaux F-33000, France
| | - Clément Bouchet
- Univ. Bordeaux, INSERM, CRCTB, U 1045, Bordeaux F-33000, France
| | - Lukas Roubenne
- Univ. Bordeaux, INSERM, CRCTB, U 1045, Bordeaux F-33000, France
| | - Zuzana Kmecová
- Department of Pharmacology and Toxicology, Comenius University, Bratislava, Slovakia
| | - Pauline Esteves
- Univ. Bordeaux, INSERM, CRCTB, U 1045, Bordeaux F-33000, France
| | - Fabien Brette
- Univ. Bordeaux, INSERM, CRCTB, U 1045, Bordeaux F-33000, France; Univ. Bordeaux, INSERM, CRCTB, U 1045, IHU Liryc, Bordeaux F-33000, France
| | - Christophe Guignabert
- INSERM UMR_S 999, « Pulmonary Hypertension: Pathophysiology and Novel Therapies », Hôpital Marie Lannelongue, Le Plessis-Robinson 92350, France; Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre 94270, France
| | - Ly Tu
- INSERM UMR_S 999, « Pulmonary Hypertension: Pathophysiology and Novel Therapies », Hôpital Marie Lannelongue, Le Plessis-Robinson 92350, France; Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre 94270, France
| | | | - Paul Robillard
- Univ. Bordeaux, INSERM, CRCTB, U 1045, Bordeaux F-33000, France
| | - Florence Coste
- Laboratoire de Pharm-écologie Cardiovasculaire (LaPEC-EA 4278), Université d'Avignon et des Pays du Vaucluse, Avignon 84000, France
| | | | - Matthieu Thumerel
- Univ. Bordeaux, INSERM, CRCTB, U 1045, Bordeaux F-33000, France; CHU de Bordeaux, Bordeaux 33000, France
| | | | | | | | - Jan Klimas
- Department of Pharmacology and Toxicology, Comenius University, Bratislava, Slovakia
| | - Thomas Ducret
- Univ. Bordeaux, INSERM, CRCTB, U 1045, Bordeaux F-33000, France
| | | | - Pierre Vacher
- Univ. Bordeaux, INSERM, CRCTB, U 1045, Bordeaux F-33000, France
| | | | - Roger Marthan
- Univ. Bordeaux, INSERM, CRCTB, U 1045, Bordeaux F-33000, France; CHU de Bordeaux, Bordeaux 33000, France
| | - Patrick Berger
- Univ. Bordeaux, INSERM, CRCTB, U 1045, Bordeaux F-33000, France; CHU de Bordeaux, Bordeaux 33000, France
| | | | | |
Collapse
|
3
|
Bouchet C, Guibert C, Freund-Michel V. [Nerve growth factor (NGF) in pulmonary hypertension (PH)]. Rev Mal Respir 2024; 41:265-268. [PMID: 38461086 DOI: 10.1016/j.rmr.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 03/11/2024]
Abstract
Pulmonary hypertension (PH) is the main pathology in lung circulation, characterized by increased pressure in pulmonary arteries and ultimately resulting in right heart failure with potentially fatal outcomes. Given the current lack of available curative treatments, it is of paramount importance to identify novel therapeutic targets. Due to its involvement in pulmonary arterial remodeling, hyperreactivity, and inflammation, our explorations have focused on the nerve growth factor (NGF), offering promising avenues for innovative therapeutic approaches.
Collapse
Affiliation(s)
- C Bouchet
- Inserm U1045, centre de recherche cardio-thoracique de Bordeaux, Bordeaux, France; Université de Bordeaux, Bordeaux, France.
| | - C Guibert
- Inserm U1045, centre de recherche cardio-thoracique de Bordeaux, Bordeaux, France; Université de Bordeaux, Bordeaux, France
| | - V Freund-Michel
- Inserm U1045, centre de recherche cardio-thoracique de Bordeaux, Bordeaux, France; Université de Bordeaux, Bordeaux, France
| |
Collapse
|
4
|
Boucetta H, Zhang L, Sosnik A, He W. Pulmonary arterial hypertension nanotherapeutics: New pharmacological targets and drug delivery strategies. J Control Release 2024; 365:236-258. [PMID: 37972767 DOI: 10.1016/j.jconrel.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/25/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a rare, serious, and incurable disease characterized by high lung pressure. PAH-approved drugs based on conventional pathways are still not exhibiting favorable therapeutic outcomes. Drawbacks like short half-lives, toxicity, and teratogenicity hamper effectiveness, clinical conventionality, and long-term safety. Hence, approaches like repurposing drugs targeting various and new pharmacological cascades and/or loaded in non-toxic/efficient nanocarrier systems are being investigated lately. This review summarizes the status of conventional, repurposed, either in vitro, in vivo, and/or in clinical trials of PAH treatment. In-depth description, discussion, and classification of the new pharmacological targets and nanomedicine strategies with a description of all the nanocarriers that showed promising efficiency in delivering drugs are discussed. Ultimately, an illustration of the different nucleic acids tailored and nanoencapsulated within different types of nanocarriers to restore the pathways affected by this disease is presented.
Collapse
Affiliation(s)
- Hamza Boucetta
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Lei Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Technion City, Haifa 3200003, Israel.
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China.
| |
Collapse
|
5
|
Mathew R, Iacobas S, Huang J, Iacobas DA. Metabolic Deregulation in Pulmonary Hypertension. Curr Issues Mol Biol 2023; 45:4850-4874. [PMID: 37367058 DOI: 10.3390/cimb45060309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
The high morbidity and mortality rate of pulmonary arterial hypertension (PAH) is partially explained by metabolic deregulation. The present study complements our previous publication in "Genes" by identifying significant increases of the glucose transporter solute carrier family 2 (Slc2a1), beta nerve growth factor (Ngf), and nuclear factor erythroid-derived 2-like 2 (Nfe2l2) in three standard PAH rat models. PAH was induced by subjecting the animals to hypoxia (HO), or by injecting with monocrotaline in either normal (CM) or hypoxic (HM) atmospheric conditions. The Western blot and double immunofluorescent experiments were complemented with novel analyses of previously published transcriptomic datasets of the animal lungs from the perspective of the Genomic Fabric Paradigm. We found substantial remodeling of the citrate cycle, pyruvate metabolism, glycolysis/gluconeogenesis, and fructose and mannose pathways. According to the transcriptomic distance, glycolysis/gluconeogenesis was the most affected functional pathway in all three PAH models. PAH decoupled the coordinated expression of many metabolic genes, and replaced phosphomannomutase 2 (Pmm2) with phosphomannomutase 1 (Pmm1) in the center of the fructose and mannose metabolism. We also found significant regulation of key genes involved in PAH channelopathies. In conclusion, our data show that metabolic dysregulation is a major PAH pathogenic factor.
Collapse
Affiliation(s)
- Rajamma Mathew
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, USA
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA
| | - Sanda Iacobas
- Department of Pathology, New York Medical College, Valhalla, NY 10595, USA
| | - Jing Huang
- Department of Pathology and Laboratory Medicine, Rutgers University Biomedical and Health Sciences, New Brunswick, NJ 08901, USA
| | - Dumitru Andrei Iacobas
- Personalized Genomics Laboratory, Texas Undergraduate Medical Academy, Prairie View A&M University, Prairie View, TX 77446, USA
| |
Collapse
|
6
|
Koudstaal T, Boomars KA. Inflammatory biomarkers in pulmonary arterial hypertension: ready for clinical implementation? Eur Respir J 2023; 61:61/3/2300018. [PMID: 36958746 DOI: 10.1183/13993003.00018-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 03/25/2023]
Affiliation(s)
- Thomas Koudstaal
- Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Karin A Boomars
- Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
7
|
Boucly A, Tu L, Guignabert C, Rhodes C, De Groote P, Prévot G, Bergot E, Bourdin A, Beurnier A, Roche A, Jevnikar M, Jaïs X, Montani D, Wilkins MR, Humbert M, Sitbon O, Savale L. Cytokines as prognostic biomarkers in pulmonary arterial hypertension. Eur Respir J 2023; 61:2201232. [PMID: 36549710 DOI: 10.1183/13993003.01232-2022] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/12/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Risk stratification and assessment of disease progression in patients with pulmonary arterial hypertension (PAH) are challenged by the lack of accurate disease-specific and prognostic biomarkers. To date, brain natriuretic peptide (BNP) and/or its N-terminal fragment (NT-proBNP) are the only markers for right ventricular dysfunction used in clinical practice, in association with echocardiographic and invasive haemodynamic variables to predict outcome in patients with PAH. METHODS This study was designed to identify an easily measurable biomarker panel in the serum of 80 well-phenotyped PAH patients with idiopathic, heritable or drug-induced PAH at baseline and at first follow-up. The prognostic value of identified cytokines of interest was secondly analysed in an external validation cohort of 125 PAH patients. RESULTS Among the 20 biomarkers studied with the multiplex Ella platform, we identified a three-biomarker panel composed of β-NGF, CXCL9 and TRAIL that were independently associated with prognosis both at the time of PAH diagnosis and at the first follow-up after initiation of PAH therapy. β-NGF and CXCL9 were predictors of death or transplantation, whereas high levels of TRAIL were associated with a better prognosis. Furthermore, the prognostic value of the three cytokines was more powerful for predicting survival than usual non-invasive variables (New York Heart Association Functional Class, 6-min walk distance and BNP/NT-proBNP). The results were validated in a fully independent external validation cohort. CONCLUSION The monitoring of β-NGF, CXCL9 and TRAIL levels in serum should be considered in the management and treatment of patients with PAH to objectively guide therapeutic options.
Collapse
Affiliation(s)
- Athénaïs Boucly
- INSERM UMR_S999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- AP-HP, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Ly Tu
- INSERM UMR_S999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
| | - Christophe Guignabert
- INSERM UMR_S999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
| | | | - Pascal De Groote
- Université de Lille, Service de Cardiologie, CHU Lille, Institut Pasteur de Lille, Inserm U1167, Lille, France
| | - Grégoire Prévot
- CHU de Toulouse, Hôpital Larrey, Service de Pneumologie, Toulouse, France
| | - Emmanuel Bergot
- Unicaen, UFR Santé, Service de Pneumologie & Oncologie Thoracique, Centre Hospitalier Universitaire de Caen, Caen, France
| | - Arnaud Bourdin
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR_9214, Montpellier, France
| | - Antoine Beurnier
- INSERM UMR_S999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- AP-HP, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Anne Roche
- INSERM UMR_S999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- AP-HP, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Mitja Jevnikar
- INSERM UMR_S999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- AP-HP, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Xavier Jaïs
- INSERM UMR_S999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- AP-HP, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - David Montani
- INSERM UMR_S999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- AP-HP, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Martin R Wilkins
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Marc Humbert
- INSERM UMR_S999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- AP-HP, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Olivier Sitbon
- INSERM UMR_S999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- AP-HP, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
- These authors contributed equally to this work
| | - Laurent Savale
- INSERM UMR_S999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- AP-HP, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
- These authors contributed equally to this work
| |
Collapse
|
8
|
IL-1β may contribute to NGF-induced alterations in pulmonary hypertension. Rev Mal Respir 2023. [DOI: 10.1016/j.rmr.2022.11.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
9
|
Short-term mechanisms activated by NGF to induce pulmonary arterial hyperreactivity. Rev Mal Respir 2023. [DOI: 10.1016/j.rmr.2022.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
10
|
Goten C, Usui S, Takashima SI, Inoue O, Yamaguchi K, Hashimuko D, Takeda Y, Nomura A, Sakata K, Kaneko S, Takamura M. Important Role of Endogenous Nerve Growth Factor Receptor in the Pathogenesis of Hypoxia-Induced Pulmonary Hypertension in Mice. Int J Mol Sci 2023; 24:1868. [PMID: 36768190 PMCID: PMC9916204 DOI: 10.3390/ijms24031868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/30/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) remains a disease with poor prognosis; thus, a new mechanism for PAH treatment is necessary. Circulating nerve growth factor receptor (Ngfr)-positive cells in peripheral blood mononuclear cells are associated with disease severity and the prognosis of PAH patients; however, the role of Ngfr in PAH is unknown. In this study, we evaluated the function of Ngfr using Ngfr gene-deletion (Ngfr-/-) mice. To elucidate the role of Ngfr in pulmonary hypertension (PH), we used Ngfr-/- mice that were exposed to chronic hypoxic conditions (10% O2) for 3 weeks. The development of hypoxia-induced PH was accelerated in Ngfr-/- mice compared to littermate controls. In contrast, the reconstitution of bone marrow (BM) in Ngfr-/- mice transplanted with wild-type BM cells improved PH. Notably, the exacerbation of PH in Ngfr-/- mice was accompanied by the upregulation of pulmonary vascular remodeling-related genes in lung tissue. In a hypoxia-induced PH model, Ngfr gene deletion resulted in PH exacerbation. This suggests that Ngfr may be a key molecule involved in the pathogenesis of PAH.
Collapse
Affiliation(s)
- Chiaki Goten
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8641, Ishikawa, Japan
| | - Soichiro Usui
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8641, Ishikawa, Japan
| | - Shin-ichiro Takashima
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8641, Ishikawa, Japan
| | - Oto Inoue
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8641, Ishikawa, Japan
| | - Kosei Yamaguchi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8641, Ishikawa, Japan
| | - Daiki Hashimuko
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8641, Ishikawa, Japan
| | - Yusuke Takeda
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8641, Ishikawa, Japan
| | - Ayano Nomura
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8641, Ishikawa, Japan
| | - Kenji Sakata
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8641, Ishikawa, Japan
| | - Shuichi Kaneko
- Department of Information-Based Medicine Development, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8641, Ishikawa, Japan
| | - Masayuki Takamura
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8641, Ishikawa, Japan
| |
Collapse
|
11
|
Bouchet C, Cardouat G, Douard M, Coste F, Robillard P, Delcambre F, Ducret T, Quignard JF, Vacher P, Baudrimont I, Marthan R, Berger P, Guibert C, Freund-Michel V. Inflammation and Oxidative Stress Induce NGF Secretion by Pulmonary Arterial Cells through a TGF-β1-Dependent Mechanism. Cells 2022; 11:cells11182795. [PMID: 36139373 PMCID: PMC9496672 DOI: 10.3390/cells11182795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Expression of the nerve growth factor NGF is increased in pulmonary hypertension (PH). We have here studied whether oxidative stress and inflammation, two pathological conditions associated with transforming growth factor-β1 (TGF-β1) in PH, may trigger NGF secretion by pulmonary arterial (PA) cells. Effects of hydrogen peroxide (H2O2) and interleukin-1β (IL-1β) were investigated ex vivo on rat pulmonary arteries, as well as in vitro on human PA smooth muscle (hPASMC) or endothelial cells (hPAEC). TβRI expression was assessed by Western blotting. NGF PA secretion was assessed by ELISA after TGF-β1 blockade (anti-TGF-β1 siRNA, TGF-β1 blocking antibodies, TβRI kinase, p38 or Smad3 inhibitors). TβRI PA expression was evidenced by Western blotting both ex vivo and in vitro. H2O2 or IL-1β significantly increased NGF secretion by hPASMC and hPAEC, and this effect was significantly reduced when blocking TGF-β1 expression, binding to TβRI, TβRI activity, or signaling pathways. In conclusion, oxidative stress and inflammation may trigger TGF-β1 secretion by hPASMC and hPAEC. TGF-β1 may then act as an autocrine factor on these cells, increasing NGF secretion via TβRI activation. Since NGF and TGF-β1 are relevant growth factors involved in PA remodeling, such mechanisms may therefore be relevant to PH pathophysiology.
Collapse
Affiliation(s)
- Clément Bouchet
- Centre de Recherche Cardio-Thoracique de Bordeaux, University Bordeaux, U1045, 33600 Pessac, France
- INSERM (Institut National de la Santé Et de la Recherche Médicale), Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, 33600 Pessac, France
| | - Guillaume Cardouat
- Centre de Recherche Cardio-Thoracique de Bordeaux, University Bordeaux, U1045, 33600 Pessac, France
- INSERM (Institut National de la Santé Et de la Recherche Médicale), Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, 33600 Pessac, France
| | - Matthieu Douard
- Centre de Recherche Cardio-Thoracique de Bordeaux, University Bordeaux, U1045, 33600 Pessac, France
- INSERM (Institut National de la Santé Et de la Recherche Médicale), Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, 33600 Pessac, France
- IHU Institut de Rythmologie et Modélisation Cardiaque (LIRYC), 33600 Pessac, France
| | - Florence Coste
- Laboratoire de Pharm-Écologie Cardiovasculaire (LaPEC-EA 4278), Université d’Avignon et des Pays du Vaucluse, 84000 Avignon, France
| | - Paul Robillard
- Centre de Recherche Cardio-Thoracique de Bordeaux, University Bordeaux, U1045, 33600 Pessac, France
- INSERM (Institut National de la Santé Et de la Recherche Médicale), Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, 33600 Pessac, France
| | | | - Thomas Ducret
- Centre de Recherche Cardio-Thoracique de Bordeaux, University Bordeaux, U1045, 33600 Pessac, France
- INSERM (Institut National de la Santé Et de la Recherche Médicale), Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, 33600 Pessac, France
| | - Jean-François Quignard
- Centre de Recherche Cardio-Thoracique de Bordeaux, University Bordeaux, U1045, 33600 Pessac, France
- INSERM (Institut National de la Santé Et de la Recherche Médicale), Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, 33600 Pessac, France
| | - Pierre Vacher
- Centre de Recherche Cardio-Thoracique de Bordeaux, University Bordeaux, U1045, 33600 Pessac, France
- INSERM (Institut National de la Santé Et de la Recherche Médicale), Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, 33600 Pessac, France
| | - Isabelle Baudrimont
- Centre de Recherche Cardio-Thoracique de Bordeaux, University Bordeaux, U1045, 33600 Pessac, France
- INSERM (Institut National de la Santé Et de la Recherche Médicale), Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, 33600 Pessac, France
| | - Roger Marthan
- Centre de Recherche Cardio-Thoracique de Bordeaux, University Bordeaux, U1045, 33600 Pessac, France
- INSERM (Institut National de la Santé Et de la Recherche Médicale), Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, 33600 Pessac, France
- CHU de Bordeaux, 33000 Bordeaux, France
| | - Patrick Berger
- Centre de Recherche Cardio-Thoracique de Bordeaux, University Bordeaux, U1045, 33600 Pessac, France
- INSERM (Institut National de la Santé Et de la Recherche Médicale), Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, 33600 Pessac, France
- CHU de Bordeaux, 33000 Bordeaux, France
| | - Christelle Guibert
- Centre de Recherche Cardio-Thoracique de Bordeaux, University Bordeaux, U1045, 33600 Pessac, France
- INSERM (Institut National de la Santé Et de la Recherche Médicale), Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, 33600 Pessac, France
| | - Véronique Freund-Michel
- Centre de Recherche Cardio-Thoracique de Bordeaux, University Bordeaux, U1045, 33600 Pessac, France
- INSERM (Institut National de la Santé Et de la Recherche Médicale), Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, 33600 Pessac, France
- Correspondence:
| |
Collapse
|
12
|
Deweirdt J, Ducret T, Quignard JF, Freund-Michel V, Lacomme S, Gontier E, Muller B, Marthan R, Guibert C, Baudrimont I. Effects of FW2 Nanoparticles Toxicity in a New In Vitro Pulmonary Vascular Cells Model Mimicking Endothelial Dysfunction. Cardiovasc Toxicol 2021; 22:14-28. [PMID: 34524626 DOI: 10.1007/s12012-021-09679-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/22/2021] [Indexed: 11/29/2022]
Abstract
Several epidemiological studies have revealed the involvement of nanoparticles (NPs) in respiratory and cardiovascular mortality. In this work, the focus will be on the effect of manufactured carbon black NPs for risk assessment of consumers and workers, as human exposure is likely to increase. Since the pulmonary circulation could be one of the primary targets of inhaled NPs, patients suffering from pulmonary hypertension (PH) could be a population at risk. To compare the toxic effect of carbon black NPs in the pulmonary circulation under physiologic and pathological conditions, we developed a new in vitro model mimicking the endothelial dysfunction and vascular dynamics observed in vascular pathology such as PH. Human pulmonary artery endothelial cells were cultured under physiological conditions (static and normoxia 21% O2) or under pathological conditions (20% cycle stretch and hypoxia 1% O2). Then, cells were treated for 4 or 6 h with carbon black FW2 NPs from 5 to 10 µg/cm2. Different endpoints were studied: (i) NPs internalization by transmission electronic microscopy; (ii) oxidative stress by CM-H2DCFDA probe and electron paramagnetic resonance; (iii) NO (nitrites and nitrates) production by Griess reaction; (iv) inflammation by ELISA assay; and (v) calcium signaling by confocal microscopy. The present study characterizes the in vitro model mimicking endothelial dysfunction in PH and indicates that, under such pathological conditions, oxidative stress and inflammation are increased along with calcium signaling alterations, as compared to the physiological conditions. Human exposure to carbon black NPs could produce greater deleterious effects in vulnerable patients suffering from cardiovascular diseases.
Collapse
Affiliation(s)
- J Deweirdt
- University of Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U 1045, 33000, Bordeaux, France.,Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 33604, Pessac, France
| | - T Ducret
- University of Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U 1045, 33000, Bordeaux, France.,Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 33604, Pessac, France
| | - J-F Quignard
- University of Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U 1045, 33000, Bordeaux, France.,Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 33604, Pessac, France
| | - V Freund-Michel
- University of Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U 1045, 33000, Bordeaux, France.,Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 33604, Pessac, France
| | - S Lacomme
- CNRS, Bordeaux Imaging Center UMS 3420 CNRS - US4 INSERM, 33000, Bordeaux, France
| | - E Gontier
- CNRS, Bordeaux Imaging Center UMS 3420 CNRS - US4 INSERM, 33000, Bordeaux, France
| | - B Muller
- University of Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U 1045, 33000, Bordeaux, France.,Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 33604, Pessac, France
| | - R Marthan
- University of Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U 1045, 33000, Bordeaux, France.,Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 33604, Pessac, France.,CHU de Bordeaux, Service d'Exploration Fonctionnelle Respiratoire, 33000, Bordeaux, France
| | - C Guibert
- University of Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U 1045, 33000, Bordeaux, France.,Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 33604, Pessac, France
| | - I Baudrimont
- University of Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U 1045, 33000, Bordeaux, France. .,Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 33604, Pessac, France.
| |
Collapse
|
13
|
Liu P, Li S, Tang L. Nerve Growth Factor: A Potential Therapeutic Target for Lung Diseases. Int J Mol Sci 2021; 22:ijms22179112. [PMID: 34502019 PMCID: PMC8430922 DOI: 10.3390/ijms22179112] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/19/2022] Open
Abstract
The lungs play a very important role in the human respiratory system. However, many factors can destroy the structure of the lung, causing several lung diseases and, often, serious damage to people's health. Nerve growth factor (NGF) is a polypeptide which is widely expressed in lung tissues. Under different microenvironments, NGF participates in the occurrence and development of lung diseases by changing protein expression levels and mediating cell function. In this review, we summarize the functions of NGF as well as some potential underlying mechanisms in pulmonary fibrosis (PF), coronavirus disease 2019 (COVID-19), pulmonary hypertension (PH), asthma, chronic obstructive pulmonary disease (COPD), and lung cancer. Furthermore, we highlight that anti-NGF may be used in future therapeutic strategies.
Collapse
Affiliation(s)
- Piaoyang Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China;
| | - Shun Li
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu 610500, China
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu 610500, China
- Correspondence: (S.L.); (L.T.)
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China;
- Correspondence: (S.L.); (L.T.)
| |
Collapse
|
14
|
Lechartier B, Berrebeh N, Huertas A, Humbert M, Guignabert C, Tu L. Phenotypic Diversity of Vascular Smooth Muscle Cells in Pulmonary Arterial Hypertension: Implications for Therapy. Chest 2021; 161:219-231. [PMID: 34391758 DOI: 10.1016/j.chest.2021.08.040] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/28/2021] [Accepted: 08/05/2021] [Indexed: 10/20/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive incurable condition that is characterized by extensive remodelling of the pulmonary circulation, leading to severe right heart failure and death. Similar to other vascular contractile cells, pulmonary arterial smooth muscle cells (PA-SMCs) play central roles in physiological and pathological vascular remodelling due to their remarkable ability to dynamically modulate their phenotype to ensure contractile and synthetic functions. The dysfunction and molecular mechanisms underlying their contribution to the various pulmonary vascular lesions associated with PAH have been a major focus of research. The aim of this review is to describe the medial and non-medial origins of contractile cells in the pulmonary vascular wall and present evidence of how they contribute to the onset and progression of PAH. We also highlight specific potential target molecules and discuss future directions that are being explored to widen the therapeutic options for the treatment of PAH.
Collapse
Affiliation(s)
- Benoit Lechartier
- Pulmonary Division, Lausanne University Hospital, Lausanne, Switzerland; Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France; AP-HP, Department of Respiratory and Intensive Care Medicine, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Nihel Berrebeh
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Alice Huertas
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France; AP-HP, Department of Respiratory and Intensive Care Medicine, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Marc Humbert
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France; AP-HP, Department of Respiratory and Intensive Care Medicine, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Christophe Guignabert
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Ly Tu
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.
| |
Collapse
|
15
|
ROCK Inhibition as Potential Target for Treatment of Pulmonary Hypertension. Cells 2021; 10:cells10071648. [PMID: 34209333 PMCID: PMC8303917 DOI: 10.3390/cells10071648] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
Pulmonary hypertension (PH) is a cardiovascular disease caused by extensive vascular remodeling in the lungs, which ultimately leads to death in consequence of right ventricle (RV) failure. While current drugs for PH therapy address the sustained vasoconstriction, no agent effectively targets vascular cell proliferation and tissue inflammation. Rho-associated protein kinases (ROCKs) emerged in the last few decades as promising targets for PH therapy, since ROCK inhibitors demonstrated significant anti-remodeling and anti-inflammatory effects. In this review, current aspects of ROCK inhibition therapy are discussed in relation to the treatment of PH and RV dysfunction, from cell biology to preclinical and clinical studies.
Collapse
|
16
|
Amsallem M, Sweatt AJ, Arthur Ataam J, Guihaire J, Lecerf F, Lambert M, Ghigna MR, Ali MK, Mao Y, Fadel E, Rabinovitch M, de Jesus Perez V, Spiekerkoetter E, Mercier O, Haddad F, Zamanian RT. Targeted proteomics of right heart adaptation to pulmonary arterial hypertension. Eur Respir J 2021; 57:2002428. [PMID: 33334941 PMCID: PMC8029214 DOI: 10.1183/13993003.02428-2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023]
Abstract
No prior proteomic screening study has centred on the right ventricle (RV) in pulmonary arterial hypertension (PAH). This study investigates the circulating proteomic profile associated with right heart maladaptive phenotype (RHMP) in PAH.Plasma proteomic profiling was performed using multiplex immunoassay in 121 (discovery cohort) and 76 (validation cohort) PAH patients. The association between proteomic markers and RHMP, defined by the Mayo right heart score (combining RV strain, New York Heart Association (NYHA) class and N-terminal pro-brain natriuretic peptide (NT-proBNP)) and Stanford score (RV end-systolic remodelling index, NYHA class and NT-proBNP), was assessed by partial least squares regression. Biomarker expression was measured in RV samples from PAH patients and controls, and pulmonary artery banding (PAB) mice.High levels of hepatocyte growth factor (HGF), stem cell growth factor-β, nerve growth factor and stromal derived factor-1 were associated with worse Mayo and Stanford scores independently from pulmonary resistance or pressure in both cohorts (the validation cohort had more severe disease features: lower cardiac index and higher NT-proBNP). In both cohorts, HGF added value to the REVEAL score in the prediction of death, transplant or hospitalisation at 3 years. RV expression levels of HGF and its receptor c-Met were higher in end-stage PAH patients than controls, and in PAB mice than shams.High plasma HGF levels are associated with RHMP and predictive of 3-year clinical worsening. Both HGF and c-Met RV expression levels are increased in PAH. Assessing plasma HGF levels might identify patients at risk of heart failure who warrant closer follow-up and intensified therapy.
Collapse
Affiliation(s)
- Myriam Amsallem
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Vera Moulton Wall Center at Stanford, Stanford University School of Medicine, Stanford, CA, USA
- Both first authors contributed equally
| | - Andrew J. Sweatt
- Vera Moulton Wall Center at Stanford, Stanford University School of Medicine, Stanford, CA, USA
- Division of Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Both first authors contributed equally
| | - Jennifer Arthur Ataam
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Julien Guihaire
- Research and Innovation Laboratory, INSERM U999, Marie Lannelongue Hospital, Paris Sud Saclay University, Le Plessis Robinson, France
| | - Florence Lecerf
- Research and Innovation Laboratory, INSERM U999, Marie Lannelongue Hospital, Paris Sud Saclay University, Le Plessis Robinson, France
| | - Mélanie Lambert
- Research and Innovation Laboratory, INSERM U999, Marie Lannelongue Hospital, Paris Sud Saclay University, Le Plessis Robinson, France
| | - Maria Rosa Ghigna
- Division of Pathology, Marie Lannelongue Hospital, Le Plessis Robinson, France
| | - Md Khadem Ali
- Vera Moulton Wall Center at Stanford, Stanford University School of Medicine, Stanford, CA, USA
- Division of Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Yuqiang Mao
- Vera Moulton Wall Center at Stanford, Stanford University School of Medicine, Stanford, CA, USA
- Division of Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Elie Fadel
- Division of Pathology, Marie Lannelongue Hospital, Le Plessis Robinson, France
| | - Marlene Rabinovitch
- Vera Moulton Wall Center at Stanford, Stanford University School of Medicine, Stanford, CA, USA
- Division of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Vinicio de Jesus Perez
- Vera Moulton Wall Center at Stanford, Stanford University School of Medicine, Stanford, CA, USA
- Division of Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Edda Spiekerkoetter
- Vera Moulton Wall Center at Stanford, Stanford University School of Medicine, Stanford, CA, USA
- Division of Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Olaf Mercier
- Research and Innovation Laboratory, INSERM U999, Marie Lannelongue Hospital, Paris Sud Saclay University, Le Plessis Robinson, France
| | - Francois Haddad
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Vera Moulton Wall Center at Stanford, Stanford University School of Medicine, Stanford, CA, USA
- Both senior authors contributed equally
| | - Roham T. Zamanian
- Vera Moulton Wall Center at Stanford, Stanford University School of Medicine, Stanford, CA, USA
- Division of Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Both senior authors contributed equally
| |
Collapse
|
17
|
Martin JH, Head R. A pharmacological framework for integrating treating the host, drug repurposing and the damage response framework in COVID-19. Br J Clin Pharmacol 2021; 87:875-885. [PMID: 32959913 PMCID: PMC7646655 DOI: 10.1111/bcp.14551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 12/19/2022] Open
Abstract
With any new disease a framework for the development of preventative or treatment therapeutics is key; the absence of such in COVID-19 has enabled ineffective and potentially unsafe treatments to be taken up by governments and clinicians desperate to have options for patients. As we still have few therapies and nil vaccines yet available, the void of a clear framework for research and practice is increasingly clear. We describe a framework that has been used to prioritise therapeutic research in previous pandemics which could be used to progress clinical pharmacology and therapeutics research in COVID-19. This is particularly relevant as discussion has already moved on from antiviral therapeutics to delineating the treatment of the host from treatment and elimination of the infective agent. Focussing on the host brings together three concepts: host treatment, the damage response framework and therapeutic repurposing. The integration of these three areas plays to the traditional strength of pharmaceuticals in providing a period of stabilization to permit time for the development of novel antiviral drugs and vaccines. In integrating approaches to repurposing, host treatment and damage response we identified three key properties that a potentially effective repurposed drug must possess by way of a framework. There must be homology, i.e., the same or similar relation with the pathogenesis of the disease, ideally targeted to the conserved pathophysiological outcomes of the viral attack; there must be a defined locus within the spectrum to prevention to severe disease and the framework must draw upon the historical dose and safety experience of the repurposed drug. To illustrate, we have mapped therapeutics that impact upon a key dysregulated pathway in COVID-19 - the renin angiotensin system - using this approach. Collectively this type of analysis reveals the importance of existing data (repurposed information and administrative observational data) and the importance of the details of the known pathophysiological response to viruses in approaches to treating the host.
Collapse
Affiliation(s)
- Jennifer H. Martin
- Centre for Human Drug Repurposing and Medicines ResearchUniversity of NewcastleNSW2305Australia
| | - Richard Head
- University of South AustraliaSouth AustraliaAustralia
| |
Collapse
|
18
|
Jin H, Jiao Y, Guo L, Ma Y, Zhao R, Li X, Shen L, Zhou Z, Kim SC, Liu J. Astragaloside IV blocks monocrotaline‑induced pulmonary arterial hypertension by improving inflammation and pulmonary artery remodeling. Int J Mol Med 2020; 47:595-606. [PMID: 33416126 PMCID: PMC7797426 DOI: 10.3892/ijmm.2020.4813] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/18/2020] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is associated with increased inflammation and abnormal vascular remodeling. Astragaloside IV (ASIV), a purified small molecular saponin contained in the well-know herb, Astragalus membranaceus, is known to exert anti-inflammatory and anti-proliferation effects. Thus, the present study investigated the possible therapeutic effects of ASIV on monocrotaline (MCT)-induced PAH. Rats were administered a single intraperitoneal injection of MCT (60 mg/kg), followed by treatment with ASIV at doses of 10 and 30 mg/kg once daily for 21 days. Subsequently, right ventricle systolic pressure, right ventricular hypertrophy and serum inflammatory cytokines, as well as pathological changes of the pulmonary arteries, were examined. The effects of ASIV on the hypoxia-induced proliferation and apoptotic resistance of human pulmonary artery smooth muscle cells (HPASMCs) and the dysfunction of human pulmonary artery endothelial cells (HPAECs) were evaluated. MCT elevated pulmonary artery pressure and promoted pulmonary artery structural remodeling and right ventricular hypertrophy in the rats, which were all attenuated by both doses of ASIV used. Additionally, ASIV prevented the increase in the TNF-α and IL-1β concentrations in serum, as well as their gene expression in lung tissues induced by MCT. In in vitro experiments, ASIV attenuated the hypoxia-induced proliferation and apoptotic resistance of HPASMCs. In addition, ASIV upregulated the protein expression of p27, p21, Bax, caspase-9 and caspase-3, whereas it downregulated HIF-1α, phospho-ERK and Bcl-2 protein expression in HPASMCs. Furthermore, in HPAECs, ASIV normalized the increased release of inflammatory cytokines and the increased protein levels of HIF-1α and VEGF induced by hypoxia. On the whole, these results indicate that ASIV attenuates MCT-induced PAH by improving inflammation, pulmonary artery endothelial cell dysfunction, pulmonary artery smooth muscle cell proliferation and resistance to apoptosis.
Collapse
Affiliation(s)
- Haifeng Jin
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Yu Jiao
- Department of Psychopharmacology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Linna Guo
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Yong Ma
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Rongjie Zhao
- Department of Psychopharmacology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Xuemei Li
- Experiment and Practice Training Center, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Lei Shen
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Zhongguang Zhou
- Basic Discipline of Chinese and Western Integrative Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150000, P.R. China
| | - Sang Chan Kim
- MRC‑GHF, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsang 38610, Republic of Korea
| | - Jicheng Liu
- Qigihar Institute of Medical and Pharmaceutical Sciences, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| |
Collapse
|
19
|
Csósza G, Karlócai K, Losonczy G, Müller V, Lázár Z. Growth factors in pulmonary arterial hypertension: Focus on preserving right ventricular function. Physiol Int 2020; 107:177-194. [PMID: 32692713 DOI: 10.1556/2060.2020.00021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 02/17/2020] [Indexed: 12/24/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a rare and progressive disease, characterized by increased vascular resistance leading to right ventricle (RV) failure. The extent of right ventricular dysfunction crucially influences disease prognosis; however, currently no therapies have specific cardioprotective effects. Besides discussing the pathophysiology of right ventricular adaptation in PAH, this review focuses on the roles of growth factors (GFs) in disease pathomechanism. We also summarize the involvement of GFs in the preservation of cardiomyocyte function, to evaluate their potential as cardioprotective biomarkers and novel therapeutic targets in PAH.
Collapse
Affiliation(s)
- G Csósza
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - K Karlócai
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - G Losonczy
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - V Müller
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Z Lázár
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
20
|
Bouvard C, Genet N, Phan C, Rode B, Thuillet R, Tu L, Robillard P, Campagnac M, Soleti R, Dumas De La Roque E, Delcambre F, Cronier L, Parpaite T, Maurat E, Berger P, Savineau JP, Marthan R, Guignabert C, Freund-Michel V, Guibert C. Connexin-43 is a promising target for pulmonary hypertension due to hypoxaemic lung disease. Eur Respir J 2020; 55:13993003.00169-2019. [PMID: 31862763 DOI: 10.1183/13993003.00169-2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 11/27/2019] [Indexed: 02/06/2023]
Abstract
The mechanisms underlying pulmonary hypertension (PH) are complex and multifactorial, and involve different cell types that are interconnected through gap junctional channels. Although connexin (Cx)-43 is the most abundant gap junction protein in the heart and lungs, and critically governs intercellular signalling communication, its contribution to PH remains unknown. The focus of the present study is thus to evaluate Cx43 as a potential new target in PH.Expressions of Cx37, Cx40 and Cx43 were studied in lung specimens from patients with idiopathic pulmonary arterial hypertension (IPAH) or PH associated with chronic hypoxaemic lung diseases (chronic hypoxia-induced pulmonary hypertension (CH-PH)). Heterozygous Cx43 knockdown CD1 (Cx43+/-) and wild-type littermate (Cx43+/+) mice at 12 weeks of age were randomly divided into two groups, one of which was maintained in room air and the other exposed to hypoxia (10% oxygen) for 3 weeks. We evaluated pulmonary haemodynamics, remodelling processes in cardiac tissues and pulmonary arteries (PAs), lung inflammation and PA vasoreactivity.Cx43 levels were increased in PAs from CH-PH patients and decreased in PAs from IPAH patients; however, no difference in Cx37 or Cx40 levels was noted. Upon hypoxia treatment, the Cx43+/- mice were partially protected against CH-PH when compared to Cx43+/+ mice, with reduced pulmonary arterial muscularisation and inflammatory infiltration. Interestingly, the adaptive changes in cardiac remodelling in Cx43+/- mice were not affected. PA contraction due to endothelin-1 (ET-1) was increased in Cx43+/- mice under normoxic and hypoxic conditions.Taken together, these results indicate that targeting Cx43 may have beneficial therapeutic effects in PH without affecting compensatory cardiac hypertrophy.
Collapse
Affiliation(s)
- Claire Bouvard
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Pessac, France.,Univ-Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Nafiisha Genet
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Pessac, France.,Univ-Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Carole Phan
- INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
| | - Baptiste Rode
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Pessac, France.,Univ-Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Raphaël Thuillet
- INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
| | - Ly Tu
- INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
| | - Paul Robillard
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Pessac, France.,Univ-Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Marilyne Campagnac
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Pessac, France.,Univ-Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | | | - Eric Dumas De La Roque
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Pessac, France.,CHU de Bordeaux, Pessac, France
| | | | - Laurent Cronier
- Laboratoire Signalisation et Transports Ioniques Membranaires, CNRS ERL 7003, Université de Poitiers, Poitiers, France
| | - Thibaud Parpaite
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Pessac, France.,Univ-Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Elise Maurat
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Pessac, France.,Univ-Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Patrick Berger
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Pessac, France.,Univ-Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France.,CHU de Bordeaux, Pessac, France
| | - Jean-Pierre Savineau
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Pessac, France.,Univ-Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Roger Marthan
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Pessac, France.,Univ-Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France.,CHU de Bordeaux, Pessac, France
| | - Christophe Guignabert
- INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
| | - Véronique Freund-Michel
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Pessac, France.,Univ-Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Christelle Guibert
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Pessac, France .,Univ-Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| |
Collapse
|
21
|
Cardouat G, Guibert C, Freund-Michel V. [The expression and role of nerve growth factor (NGF) in pulmonary hypertension]. Rev Mal Respir 2020; 37:205-209. [PMID: 32151405 DOI: 10.1016/j.rmr.2020.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 01/12/2020] [Indexed: 11/29/2022]
Abstract
Pulmonary hypertension is a severe multifactorial disease of the pulmonary circulation characterized by a progressive elevation in mean pulmonary arterial pressure (PAPm), leading to right ventricular failure and the death of the patient. Current therapies slow the progression of the disease but do not offer a cure. Nerve growth factor NGF is a growth factor playing a significant role in the pathophysiology of pulmonary hypertension, particularly in pulmonary arterial hyperreactivity, and the remodelling and inflammation of the pulmonary vasculature. Thus, targeting NGF may offer new therapeutic strategies in the treatment of this disease.
Collapse
Affiliation(s)
- G Cardouat
- Centre de Recherche Cardio-Thoracique de Bordeaux, Inserm U1045; Université de Bordeaux.
| | - C Guibert
- Centre de Recherche Cardio-Thoracique de Bordeaux, Inserm U1045; Université de Bordeaux
| | - V Freund-Michel
- Centre de Recherche Cardio-Thoracique de Bordeaux, Inserm U1045; Université de Bordeaux
| |
Collapse
|
22
|
Ramjug S, Adão R, Lewis R, Coste F, de Man F, Jimenez D, Sitbon O, Delcroix M, Vonk-Noordegraaf A. Highlights from the ERS International Congress 2018: Assembly 13 - Pulmonary Vascular Diseases. ERJ Open Res 2019; 5:00202-2018. [PMID: 30895188 PMCID: PMC6421363 DOI: 10.1183/23120541.00202-2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 01/25/2019] [Indexed: 11/29/2022] Open
Abstract
The 2018 European Respiratory Society (ERS) International Congress in Paris, France, highlighted the subject of pulmonary vascular disease (PVD). 2018 was an exciting year for the PVD community as it was the first ERS International Congress since the formation of Assembly 13, which is dedicated to PVD, pulmonary embolism and the right ventricle. This article aims to summarise the high-quality studies presented at the 2018 Congress into four subject areas: the use of risk stratification in pulmonary arterial hypertension, the molecular mechanisms and treatment of pulmonary hypertension (PH), understanding and improving the right ventricle in PH, and finally, advances in the field of acute pulmonary embolus.
Collapse
Affiliation(s)
- Sheila Ramjug
- Dept of Respiratory Medicine, Manchester University NHS Foundation Trust, Wythenshawe, UK
| | - Rui Adão
- Dept of Surgery and Physiology, Cardiovascular Research and Development Center – UnIC, Faculty of Medicine of the University of Porto, Porto, Portugal
| | | | - Florence Coste
- University Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux U1045, Bordeaux, France
| | - Frances de Man
- VU University Medical Center, Dept of Pulmonary Medicine, Amsterdam, The Netherlands
| | - David Jimenez
- Respiratory Dept, Ramon y Cajal Hospital, IRYCIS, Alcaia Henares University, Madrid, Spain
| | | | - Marion Delcroix
- Pneumology Dept, Universitarie Ziekenhuizen, Leuven, Belgium
| | | |
Collapse
|
23
|
Jandl K, Thekkekara Puthenparampil H, Marsh LM, Hoffmann J, Wilhelm J, Veith C, Sinn K, Klepetko W, Olschewski H, Olschewski A, Brock M, Kwapiszewska G. Long non-coding RNAs influence the transcriptome in pulmonary arterial hypertension: the role of PAXIP1-AS1. J Pathol 2019; 247:357-370. [PMID: 30450722 PMCID: PMC6900182 DOI: 10.1002/path.5195] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/18/2018] [Accepted: 11/02/2018] [Indexed: 12/15/2022]
Abstract
In idiopathic pulmonary arterial hypertension (IPAH), global transcriptional changes induce a smooth muscle cell phenotype characterised by excessive proliferation, migration, and apoptosis resistance. Long non‐coding RNAs (lncRNAs) are key regulators of cellular function. Using a compartment‐specific transcriptional profiling approach, we sought to investigate the link between transcriptional reprogramming by lncRNAs and the maladaptive smooth muscle cell phenotype in IPAH. Transcriptional profiling of small remodelled arteries from 18 IPAH patients and 17 controls revealed global perturbations in metabolic, neuronal, proliferative, and immunological processes. We demonstrated an IPAH‐specific lncRNA expression profile and identified the lncRNA PAXIP1‐AS1 as highly abundant. Comparative transcriptomic analysis and functional assays revealed an intrinsic role for PAXIP1‐AS1 in orchestrating the hyperproliferative and migratory actions of IPAH smooth muscle cells. Further, we showed that PAXIP1‐AS1 mechanistically interferes with the focal adhesion axis via regulation of expression and phosphorylation of its downstream target paxillin. Overall, we show that changes in the lncRNA transcriptome contribute to the disease‐specific transcriptional landscape in IPAH. Our results suggest that lncRNAs, such as PAXIP1‐AS1, can modulate smooth muscle cell function by affecting multiple IPAH‐specific transcriptional programmes. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Katharina Jandl
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | | | - Leigh M Marsh
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Julia Hoffmann
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Jochen Wilhelm
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Christine Veith
- Excellence Cluster Cardio-Pulmonary System, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center, German Center for Lung Lung Research, Giessen, Germany
| | - Katharina Sinn
- Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Walter Klepetko
- Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Horst Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Otto Loewi Research Center, Chair of Physiology, Medical University of Graz, Graz, Austria
| | - Matthias Brock
- Division of Pulmonology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Otto Loewi Research Center, Chair of Physiology, Medical University of Graz, Graz, Austria
| |
Collapse
|
24
|
Maron BA, Gladwin MT, Simon MA. Update in Pulmonary Vascular Disease 2015. Am J Respir Crit Care Med 2017; 193:1337-44. [PMID: 27304242 DOI: 10.1164/rccm.201601-0143up] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Bradley A Maron
- 1 Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.,2 Department of Cardiology, Boston Veterans Affairs Healthcare System, Boston, Massachusetts; and
| | - Mark T Gladwin
- 3 Division of Pulmonary, Allergy, and Critical Care Medicine and
| | - Marc A Simon
- 4 Division of Cardiology, Department of Medicine, University of Pittsburgh Medical Center and Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
25
|
|
26
|
Treatment with platelet-derived growth factor (PDGF) and rock inhibitors is related to declined nerve growth factor (NGF) signaling in an experimental model of rat pulmonary hypertension. Pharmacol Rep 2017; 69:532-535. [DOI: 10.1016/j.pharep.2017.01.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/18/2017] [Accepted: 01/30/2017] [Indexed: 11/21/2022]
|
27
|
Coste F, Guibert C, Magat J, Abell E, Vaillant F, Dubois M, Courtois A, Diolez P, Quesson B, Marthan R, Savineau JP, Muller B, Freund-Michel V. Chronic hypoxia aggravates monocrotaline-induced pulmonary arterial hypertension: a rodent relevant model to the human severe form of the disease. Respir Res 2017; 18:47. [PMID: 28288643 PMCID: PMC5348907 DOI: 10.1186/s12931-017-0533-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 03/08/2017] [Indexed: 12/11/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe form of pulmonary hypertension that combines multiple alterations of pulmonary arteries, including, in particular, thrombotic and plexiform lesions. Multiple-pathological-insult animal models, developed to more closely mimic this human severe PAH form, often require complex and/or long experimental procedures while not displaying the entire panel of characteristic lesions observed in the human disease. In this study, we further characterized a rat model of severe PAH generated by combining a single injection of monocrotaline with 4 weeks exposure to chronic hypoxia. This model displays increased pulmonary arterial pressure, right heart altered function and remodeling, pulmonary arterial inflammation, hyperresponsiveness and remodeling. In particular, severe pulmonary arteriopathy was observed, with thrombotic, neointimal and plexiform-like lesions similar to those observed in human severe PAH. This model, based on the combination of two conventional procedures, may therefore be valuable to further understand the pathophysiology of severe PAH and identify new potential therapeutic targets in this disease.
Collapse
Affiliation(s)
- Florence Coste
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux U1045, F-33000, Bordeaux, France. .,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux U1045, F-33000, Bordeaux, France. .,CHU de Bordeaux, F-33000, Bordeaux, France.
| | - Christelle Guibert
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux U1045, F-33000, Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux U1045, F-33000, Bordeaux, France
| | - Julie Magat
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux U1045, F-33000, Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux U1045, F-33000, Bordeaux, France.,IHU Liryc, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, F-33600, Pessac, Bordeaux, France
| | - Emma Abell
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux U1045, F-33000, Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux U1045, F-33000, Bordeaux, France.,IHU Liryc, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, F-33600, Pessac, Bordeaux, France
| | - Fanny Vaillant
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux U1045, F-33000, Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux U1045, F-33000, Bordeaux, France.,IHU Liryc, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, F-33600, Pessac, Bordeaux, France
| | - Mathilde Dubois
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux U1045, F-33000, Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux U1045, F-33000, Bordeaux, France
| | - Arnaud Courtois
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux U1045, F-33000, Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux U1045, F-33000, Bordeaux, France
| | - Philippe Diolez
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux U1045, F-33000, Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux U1045, F-33000, Bordeaux, France.,IHU Liryc, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, F-33600, Pessac, Bordeaux, France
| | - Bruno Quesson
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux U1045, F-33000, Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux U1045, F-33000, Bordeaux, France.,IHU Liryc, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, F-33600, Pessac, Bordeaux, France
| | - Roger Marthan
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux U1045, F-33000, Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux U1045, F-33000, Bordeaux, France.,CHU de Bordeaux, F-33000, Bordeaux, France
| | - Jean-Pierre Savineau
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux U1045, F-33000, Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux U1045, F-33000, Bordeaux, France
| | - Bernard Muller
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux U1045, F-33000, Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux U1045, F-33000, Bordeaux, France
| | - Véronique Freund-Michel
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux U1045, F-33000, Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux U1045, F-33000, Bordeaux, France
| |
Collapse
|
28
|
|
29
|
Tu L, Ghigna MR, Phan C, Bordenave J, Le Hiress M, Thuillet R, Ricard N, Huertas A, Humbert M, Guignabert C. [Towards new targets for the treatment of pulmonary arterial hypertension : Importance of cell-cell communications]. Biol Aujourdhui 2016; 210:65-78. [PMID: 27687598 DOI: 10.1051/jbio/2016010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Indexed: 11/14/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a disorder in which mechanical obstruction of the pulmonary vascular bed is largely responsible for the rise in mean pulmonary arterial pressure (mPAP), resulting in a progressive functional decline despite current available therapeutic options. There are multiple mechanisms predisposing to and/or promoting the aberrant pulmonary vascular remodeling in PAH, and these involve not only altered crosstalk between cells within the vascular wall but also sustained inflammation and dysimmunity, cell accumulation in the vascular wall and excessive activation of some growth factor-stimulated signaling pathways, in addition to the interaction of systemic hormones, local growth factors, cytokines, and transcription factors. Heterozygous germline mutations in the bone morphogenetic protein receptor, type-2 (BMPR2) gene, a gene encoding a receptor for the transforming growth factor (TGF)-β superfamily, can predispose to the disease. Although the spectrum of therapeutic options for PAH has expanded in the last 20 years, available therapies remain essentially palliative. Over the past decade, however, a better understanding of key regulators of this irreversible remodeling of the pulmonary vasculature has been obtained. New and more effective approaches are likely to emerge. The present article profiles the innovative research into novel pathways and therapeutic targets that may lead to the development of targeted agents in PAH.
Collapse
Affiliation(s)
- Ly Tu
- INSERM UMRS 999, LabEx LERMIT, Hôpital Marie Lannelongue, 133 Avenue de la Résistance, 92350 Le Plessis-Robinson, France - Université Paris-Sud, Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
| | - Maria-Rosa Ghigna
- INSERM UMRS 999, LabEx LERMIT, Hôpital Marie Lannelongue, 133 Avenue de la Résistance, 92350 Le Plessis-Robinson, France - Université Paris-Sud, Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France - Service de Pathologie, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Carole Phan
- INSERM UMRS 999, LabEx LERMIT, Hôpital Marie Lannelongue, 133 Avenue de la Résistance, 92350 Le Plessis-Robinson, France - Université Paris-Sud, Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
| | - Jennifer Bordenave
- INSERM UMRS 999, LabEx LERMIT, Hôpital Marie Lannelongue, 133 Avenue de la Résistance, 92350 Le Plessis-Robinson, France - Université Paris-Sud, Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
| | - Morane Le Hiress
- INSERM UMRS 999, LabEx LERMIT, Hôpital Marie Lannelongue, 133 Avenue de la Résistance, 92350 Le Plessis-Robinson, France - Université Paris-Sud, Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
| | - Raphaël Thuillet
- INSERM UMRS 999, LabEx LERMIT, Hôpital Marie Lannelongue, 133 Avenue de la Résistance, 92350 Le Plessis-Robinson, France - Université Paris-Sud, Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
| | - Nicolas Ricard
- INSERM UMRS 999, LabEx LERMIT, Hôpital Marie Lannelongue, 133 Avenue de la Résistance, 92350 Le Plessis-Robinson, France - Université Paris-Sud, Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
| | - Alice Huertas
- INSERM UMRS 999, LabEx LERMIT, Hôpital Marie Lannelongue, 133 Avenue de la Résistance, 92350 Le Plessis-Robinson, France - Université Paris-Sud, Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France - AP-HP, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, France
| | - Marc Humbert
- INSERM UMRS 999, LabEx LERMIT, Hôpital Marie Lannelongue, 133 Avenue de la Résistance, 92350 Le Plessis-Robinson, France - Université Paris-Sud, Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France - AP-HP, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, France
| | - Christophe Guignabert
- INSERM UMRS 999, LabEx LERMIT, Hôpital Marie Lannelongue, 133 Avenue de la Résistance, 92350 Le Plessis-Robinson, France - Université Paris-Sud, Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
| |
Collapse
|
30
|
de Jesus Perez VA. First among Equals: Nerve Growth Factor in the Pathogenesis of Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 2015; 192:274-5. [DOI: 10.1164/rccm.201504-0807ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|