1
|
Kassa B, Fonseca‐Balladares DC, Kumar R, Lee MH, Mickael C, Sanders L, Nolan K, Graham BB. Experimental Schistosoma haematobium pulmonary hypertension. Pulm Circ 2024; 14:e12336. [PMID: 38312832 PMCID: PMC10835079 DOI: 10.1002/pul2.12336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 02/06/2024] Open
Abstract
Whether all Schistosoma species cause pulmonary hypertension (PH) is unclear. Experimentally exposing mice to Schistosoma haematobium eggs caused PH, which was less severe than that induced by S. mansoni exposure. These findings align with the relatively uncommon reports of pulmonary arterial hypertension associated with S. haematobium.
Collapse
Affiliation(s)
- Biruk Kassa
- Department of MedicineLung Biology Center, Zuckerberg San Francisco General HospitalSan FranciscoCaliforniaUSA
- Department of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Dara C. Fonseca‐Balladares
- Department of MedicineLung Biology Center, Zuckerberg San Francisco General HospitalSan FranciscoCaliforniaUSA
- Department of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Rahul Kumar
- Department of MedicineLung Biology Center, Zuckerberg San Francisco General HospitalSan FranciscoCaliforniaUSA
- Department of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Michael H. Lee
- Department of MedicineLung Biology Center, Zuckerberg San Francisco General HospitalSan FranciscoCaliforniaUSA
- Department of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Claudia Mickael
- Department of MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Linda Sanders
- Department of MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Kevin Nolan
- Department of MedicineLung Biology Center, Zuckerberg San Francisco General HospitalSan FranciscoCaliforniaUSA
- Department of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Brian B. Graham
- Department of MedicineLung Biology Center, Zuckerberg San Francisco General HospitalSan FranciscoCaliforniaUSA
- Department of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
2
|
Marinho Y, Villarreal ES, Aboagye SY, Williams DL, Sun J, Silva CLM, Lutz SE, Oliveira SD. Schistosomiasis-associated pulmonary hypertension unveils disrupted murine gut-lung microbiome and reduced endoprotective Caveolin-1/BMPR2 expression. Front Immunol 2023; 14:1254762. [PMID: 37908354 PMCID: PMC10613683 DOI: 10.3389/fimmu.2023.1254762] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/22/2023] [Indexed: 11/02/2023] Open
Abstract
Schistosomiasis-associated Pulmonary Arterial Hypertension (Sch-PAH) is a life-threatening complication of chronic S. mansoni infection that can lead to heart failure and death. During PAH, the expansion of apoptosis-resistant endothelial cells (ECs) has been extensively reported; however, therapeutic approaches to prevent the progression or reversal of this pathological phenotype remain clinically challenging. Previously, we showed that depletion of the anti-apoptotic protein Caveolin-1 (Cav-1) by shedding extracellular vesicles contributes to shifting endoprotective bone morphogenetic protein receptor 2 (BMPR2) towards transforming growth factor beta (TGF-β)-mediated survival of an abnormal EC phenotype. However, the mechanism underlying the reduced endoprotection in PAH remains unclear. Interestingly, recent findings indicate that, similar to the gut, healthy human lungs are populated by diverse microbiota, and their composition depends significantly on intrinsic and extrinsic host factors, including infection. Despite the current knowledge that the disruption of the gut microbiome contributes to the development of PAH, the role of the lung microbiome remains unclear. Thus, using a preclinical animal model of Sch-PAH, we tested whether S. mansoni infection alters the gut-lung microbiome composition and causes EC injury, initiating the expansion of an abnormal EC phenotype observed in PAH. Indeed, in vivo stimulation with S. mansoni eggs significantly altered the gut-lung microbiome profile, in addition to promoting injury to the lung vasculature, characterized by increased apoptotic markers and loss of endoprotective expression of lung Cav-1 and BMPR2. Moreover, S. mansoni egg stimulus induced severe pulmonary vascular remodeling, leading to elevated right ventricular systolic pressure and hypertrophy, characteristic of PAH. In vitro, exposure to the immunodominant S. mansoni egg antigen p40 activated TLR4/CD14-mediated transient phosphorylation of Cav-1 at Tyr14 in human lung microvascular EC (HMVEC-L), culminating in a mild reduction of Cav-1 expression, but failed to promote death and shedding of extracellular vesicles observed in vivo. Altogether, these data suggest that disruption of the host-associated gut-lung microbiota may be essential for the emergence and expansion of the abnormal lung endothelial phenotype observed in PAH, in addition to S. mansoni eggs and antigens.
Collapse
Affiliation(s)
- Ygor Marinho
- Vascular Immunobiology Lab, Department of Anesthesiology, College of Medicine, University of Illinois Chicago, Chicago, IL, United States
| | - Elizabeth S. Villarreal
- Vascular Immunobiology Lab, Department of Anesthesiology, College of Medicine, University of Illinois Chicago, Chicago, IL, United States
| | - Sammy Y. Aboagye
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States
| | - David L. Williams
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States
| | - Jun Sun
- Department of Medicine, College of Medicine, University of Illinois Chicago, Chicago, IL, United States
| | - Claudia L. M. Silva
- Molecular and Biochemical Pharmacology Lab, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Sarah E. Lutz
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, Chicago, IL, United States
| | - Suellen D. Oliveira
- Vascular Immunobiology Lab, Department of Anesthesiology, College of Medicine, University of Illinois Chicago, Chicago, IL, United States
- Vascular Immunobiology Lab, Department of Physiology and Biophysics, College of Medicine, University of Illinois Chicago, Chicago, IL, United States
| |
Collapse
|
3
|
Kumar R, Lee M, Kassa B, Fonseca Balladares D, Mickael C, Sanders L, Andruska A, Kumar M, Spiekerkoetter E, Bandeira A, Stenmark K, Tuder R, Graham B. Repetitive schistosoma exposure causes perivascular lung fibrosis and persistent pulmonary hypertension. Clin Sci (Lond) 2023; 137:617-631. [PMID: 37014925 PMCID: PMC10133871 DOI: 10.1042/cs20220642] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 04/06/2023]
Abstract
BACKGROUND Pulmonary hypertension (PH) can occur as a complication of schistosomiasis. In humans, schistosomiasis-PH persists despite antihelminthic therapy and parasite eradication. We hypothesized that persistent disease arises as a consequence of exposure repetition. METHODS Following intraperitoneal sensitization, mice were experimentally exposed to Schistosoma eggs by intravenous injection, either once or three times repeatedly. The phenotype was characterized by right heart catheterization and tissue analysis. RESULTS Following intraperitoneal sensitization, a single intravenous Schistosoma egg exposure resulted in a PH phenotype that peaked at 7-14 days, followed by spontaneous resolution. Three sequential exposures resulted in a persistent PH phenotype. Inflammatory cytokines were not significantly different between mice exposed to one or three egg doses, but there was an increase in perivascular fibrosis in those who received three egg doses. Significant perivascular fibrosis was also observed in autopsy specimens from patients who died of this condition. CONCLUSIONS Repeatedly exposing mice to schistosomiasis causes a persistent PH phenotype, accompanied by perivascular fibrosis. Perivascular fibrosis may contribute to the persistent schistosomiasis-PH observed in humans with this disease.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of California San Francisco, San Francisco, California, U.S.A
- Lung Biology Center, Zuckerberg San Francisco General Hospital, San Francisco, California, U.S.A
| | - Michael H. Lee
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of California San Francisco, San Francisco, California, U.S.A
- Lung Biology Center, Zuckerberg San Francisco General Hospital, San Francisco, California, U.S.A
| | - Biruk Kassa
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of California San Francisco, San Francisco, California, U.S.A
- Lung Biology Center, Zuckerberg San Francisco General Hospital, San Francisco, California, U.S.A
| | - Dara C. Fonseca Balladares
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of California San Francisco, San Francisco, California, U.S.A
- Lung Biology Center, Zuckerberg San Francisco General Hospital, San Francisco, California, U.S.A
| | - Claudia Mickael
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, U.S.A
| | - Linda Sanders
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, U.S.A
| | - Adam Andruska
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Palo Alto, CA, U.S.A
| | - Maya Kumar
- Department of Pediatrics, Division of Pulmonary Medicine, Stanford University, Palo Alto, CA, U.S.A
| | - Edda Spiekerkoetter
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Palo Alto, CA, U.S.A
| | - Angela Bandeira
- PROCAPE, Universidade de Pernambuco, Recife, Pernambuco, Brazil
| | - Kurt R. Stenmark
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, U.S.A
| | - Rubin M. Tuder
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, U.S.A
| | - Brian B Graham
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of California San Francisco, San Francisco, California, U.S.A
- Lung Biology Center, Zuckerberg San Francisco General Hospital, San Francisco, California, U.S.A
| |
Collapse
|
4
|
Houlder EL, Costain AH, Nambuya I, Brown SL, Koopman JPR, Langenberg MCC, Janse JJ, Hoogerwerf MA, Ridley AJL, Forde-Thomas JE, Colombo SAP, Winkel BMF, Galdon AA, Hoffmann KF, Cook PC, Roestenberg M, Mpairwe H, MacDonald AS. Pulmonary inflammation promoted by type-2 dendritic cells is a feature of human and murine schistosomiasis. Nat Commun 2023; 14:1863. [PMID: 37012228 PMCID: PMC10070318 DOI: 10.1038/s41467-023-37502-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
Schistosomiasis is a parasitic disease affecting over 200 million people in multiple organs, including the lungs. Despite this, there is little understanding of pulmonary immune responses during schistosomiasis. Here, we show type-2 dominated lung immune responses in both patent (egg producing) and pre-patent (larval lung migration) murine Schistosoma mansoni (S. mansoni) infection. Human pre-patent S. mansoni infection pulmonary (sputum) samples revealed a mixed type-1/type-2 inflammatory cytokine profile, whilst a case-control study showed no significant pulmonary cytokine changes in endemic patent infection. However, schistosomiasis induced expansion of pulmonary type-2 conventional dendritic cells (cDC2s) in human and murine hosts, at both infection stages. Further, cDC2s were required for type-2 pulmonary inflammation in murine pre-patent or patent infection. These data elevate our fundamental understanding of pulmonary immune responses during schistosomiasis, which may be important for future vaccine design, as well as for understanding links between schistosomiasis and other lung diseases.
Collapse
Affiliation(s)
- E L Houlder
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Centre, Leiden, Netherlands
| | - A H Costain
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Centre, Leiden, Netherlands
| | - I Nambuya
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
- MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - S L Brown
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - J P R Koopman
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Centre, Leiden, Netherlands
| | - M C C Langenberg
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Centre, Leiden, Netherlands
| | - J J Janse
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Centre, Leiden, Netherlands
| | - M A Hoogerwerf
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Centre, Leiden, Netherlands
| | - A J L Ridley
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - J E Forde-Thomas
- Department of Life Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - S A P Colombo
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - B M F Winkel
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Centre, Leiden, Netherlands
| | - A A Galdon
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - K F Hoffmann
- Department of Life Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - P C Cook
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - M Roestenberg
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Centre, Leiden, Netherlands
| | - H Mpairwe
- MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - A S MacDonald
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK.
| |
Collapse
|
5
|
Oliveira SD. Insights on the Gut-Mesentery-Lung Axis in Pulmonary Arterial Hypertension: A Poorly Investigated Crossroad. Arterioscler Thromb Vasc Biol 2022; 42:516-526. [PMID: 35296152 PMCID: PMC9050827 DOI: 10.1161/atvbaha.121.316236] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/28/2022] [Indexed: 11/16/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a life-threatening disease characterized by the hyperproliferation of vascular cells, including smooth muscle and endothelial cells. Hyperproliferative cells eventually obstruct the lung vasculature, leading to irreversible lesions that collectively drive pulmonary pressure to life-threatening levels. Although the primary cause of PAH is not fully understood, several studies have indicated it results from chronic pulmonary inflammation, such as observed in response to pathogens' infection. Curiously, infection by the intravascular parasite Schistosoma mansoni recapitulates several aspects of the widespread pulmonary inflammation that leads to development of chronic PAH. Globally, >200 million people are currently infected by Schistosoma spp., with about 5% developing PAH (Sch-PAH) in response to the parasite egg-induced obliteration and remodeling of the lung vasculature. Before their settling into the lungs, Schistosoma eggs are released inside the mesenteric veins, where they either cross the intestinal wall and disturb the gut microbiome or migrate to other organs, including the lungs and liver, increasing pressure. Spontaneous or surgical liver bypass via collateral circulation alleviates the pressure in the portal system; however, it also allows the translocation of pathogens, toxins, and antigens into the lungs, ultimately causing PAH. This brief review provides an overview of the gut-mesentery-lung axis during PAH, with a particular focus on Sch-PAH, and attempts to delineate the mechanism by which pathogen translocation might contribute to the onset of chronic pulmonary vascular diseases.
Collapse
Affiliation(s)
- Suellen Darc Oliveira
- Department of Anesthesiology, College of Medicine, University of Illinois at Chicago
| |
Collapse
|
6
|
Xin Z, Wang J, Li S, Sun C, Jiang W, Xin Q, Wang J, Qi T, Li K, Zhang Z, Luan Y. A review of BMP and Wnt signaling pathway in the pathogenesis of pulmonary arterial hypertension. Clin Exp Hypertens 2021; 44:175-180. [PMID: 34821188 DOI: 10.1080/10641963.2021.1996590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a chronic disease characterized by a progressive elevation in mean pulmonary arterial pressure. This occurs due to abnormal remodeling of small peripheral lung vasculature resulting in progressive occlusion of the artery lumen that eventually causes right heart failure and death. Current therapeutic options for PAH are limited and focused mainly on reversal of pulmonary vasoconstriction and proliferation of vascular cells. Although these treatments can relieve disease symptoms, PAH remains a progressive lethal disease.Bone morphogenetic proteins (BMPs) and their receptors were required for PAH-induced right ventricular hypertrophy. Emerging data suggest that restoration of BMP type II receptor (BMPR2) signaling in PAH is a promising alternative that could prevent and reverse pulmonary vascular remodeling. BMPR2 mutations have been identified in >70% of familial and roughly 15% of sporadic PAH cases. Wingless (Wnt) are a family of secreted glycoproteins with varying expression patterns and a range of functions, Wnt signaling pathway is divided into canonical signaling pathway and non-canonical signaling pathway. A recent study reports that interaction between BMP and Wnt closely associated with lung development, those cascade coordination regulation stem cell fate which determine lung branching morphogenes. The promoting effect of BMPR2 on proliferation, survival, and motility of endothelial cells was through recruiting Wnts signaling pathway, the interaction between BMP and Wnt closely associated with lung development.Therefore, in this review, we outline the latest advances of BMP and Wnt signaling pathway in the pathogenesis of PAH and disease progression.
Collapse
Affiliation(s)
- Zhihong Xin
- Department of Pediatrics, The Second Hospital, Cheeloo College of Medicine, Shandong University
| | - Junfu Wang
- Clinical laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University
| | - Susu Li
- College of pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271000, China
| | - Chao Sun
- Institute of Medical Science, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247, Beiyuan Dajie, Jinan, 250033, P.R. China
| | - Wan Jiang
- Institute of Medical Science, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247, Beiyuan Dajie, Jinan, 250033, P.R. China
| | - Qian Xin
- Institute of Medical Science, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247, Beiyuan Dajie, Jinan, 250033, P.R. China
| | - Jue Wang
- Institute of Medical Science, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247, Beiyuan Dajie, Jinan, 250033, P.R. China
| | - Tonggnag Qi
- Institute of Medical Science, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247, Beiyuan Dajie, Jinan, 250033, P.R. China
| | - Kailin Li
- Institute of Medical Science, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247, Beiyuan Dajie, Jinan, 250033, P.R. China
| | - Zhaohua Zhang
- Department of Pediatrics, The Second Hospital, Cheeloo College of Medicine, Shandong University
| | - Yun Luan
- Institute of Medical Science, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247, Beiyuan Dajie, Jinan, 250033, P.R. China
| |
Collapse
|
7
|
Lambden S, Cowburn AS, Macias D, Garrud TAC, Krause BJ, Giussani DA, Summers C, Johnson RS. Endothelial cell regulation of systemic haemodynamics and metabolism acts through the HIF transcription factors. Intensive Care Med Exp 2021; 9:28. [PMID: 34114090 PMCID: PMC8192653 DOI: 10.1186/s40635-021-00390-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 04/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The vascular endothelium has important endocrine and paracrine roles, particularly in the regulation of vascular tone and immune function, and it has been implicated in the pathophysiology of a range of cardiovascular and inflammatory conditions. This study uses a series of transgenic murine models to explore for the first time the role of the hypoxia-inducible factors, HIF-1α and HIF-2α in the pulmonary and systemic circulations as potential regulators of systemic vascular function in normoxic or hypoxic conditions and in response to inflammatory stress. We developed a series of transgenic mouse models, the HIF-1α Tie2Cre, deficient in HIF1-α in the systemic and pulmonary vascular endothelium and the L1Cre, a pulmonary endothelium specific knockout of HIF-1α or HIF-2α. In vivo, arterial blood pressure and metabolic activity were monitored continuously in normal atmospheric conditions and following an acute stimulus with hypoxia (10%) or lipopolysaccharide (LPS). Ex vivo, femoral artery reactivity was assessed using wire myography. RESULTS Under normoxia, the HIF-1α Tie2Cre mouse had increased systolic and diastolic arterial pressure compared to litter mate controls over the day-night cycle under normal environmental conditions. VO2 and VCO2 were also increased. Femoral arteries displayed impaired endothelial relaxation in response to acetylcholine mediated by a reduction in the nitric oxide dependent portion of the response. HIF-1α L1Cre mice displayed a similar pattern of increased systemic blood pressure, metabolic rate and impaired vascular relaxation without features of pulmonary hypertension, polycythaemia or renal dysfunction under normal conditions. In response to acute hypoxia, deficiency of HIF-1α was associated with faster resolution of hypoxia-induced haemodynamic and metabolic compromise. In addition, systemic haemodynamics were less compromised by LPS treatment. CONCLUSIONS These data show that deficiency of HIF-1α in the systemic or pulmonary endothelium is associated with increased systemic blood pressure and metabolic rate, a pattern that persists in both normoxic conditions and in response to acute stress with potential implications for our understanding of the pathophysiology of vascular dysfunction in acute and chronic disease.
Collapse
Affiliation(s)
- Simon Lambden
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Andrew S Cowburn
- National Heart and Lung Institute, Imperial College London, London, UK
| | - David Macias
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Tessa A C Garrud
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Bernardo J Krause
- Department of Neonatology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Dino A Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | | | - Randall S Johnson
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK. .,Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
8
|
Houlder EL, Costain AH, Cook PC, MacDonald AS. Schistosomes in the Lung: Immunobiology and Opportunity. Front Immunol 2021; 12:635513. [PMID: 33953712 PMCID: PMC8089482 DOI: 10.3389/fimmu.2021.635513] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/01/2021] [Indexed: 01/21/2023] Open
Abstract
Schistosome infection is a major cause of global morbidity, particularly in sub-Saharan Africa. However, there is no effective vaccine for this major neglected tropical disease, and re-infection routinely occurs after chemotherapeutic treatment. Following invasion through the skin, larval schistosomula enter the circulatory system and migrate through the lung before maturing to adulthood in the mesenteric or urogenital vasculature. Eggs released from adult worms can become trapped in various tissues, with resultant inflammatory responses leading to hepato-splenic, intestinal, or urogenital disease – processes that have been extensively studied in recent years. In contrast, although lung pathology can occur in both the acute and chronic phases of schistosomiasis, the mechanisms underlying pulmonary disease are particularly poorly understood. In chronic infection, egg-mediated fibrosis and vascular destruction can lead to the formation of portosystemic shunts through which eggs can embolise to the lungs, where they can trigger granulomatous disease. Acute schistosomiasis, or Katayama syndrome, which is primarily evident in non-endemic individuals, occurs during pulmonary larval migration, maturation, and initial egg-production, often involving fever and a cough with an accompanying immune cell infiltrate into the lung. Importantly, lung migrating larvae are not just a cause of inflammation and pathology but are a key target for future vaccine design. However, vaccine efforts are hindered by a limited understanding of what constitutes a protective immune response to larvae. In this review, we explore the current understanding of pulmonary immune responses and inflammatory pathology in schistosomiasis, highlighting important unanswered questions and areas for future research.
Collapse
Affiliation(s)
- Emma L Houlder
- Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Alice H Costain
- Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Peter C Cook
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Andrew S MacDonald
- Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
9
|
Macias D, Moore S, Crosby A, Southwood M, Du X, Tan H, Xie S, Vassallo A, Wood AJT, Wallace EM, Cowburn AS. Targeting HIF2α-ARNT hetero-dimerisation as a novel therapeutic strategy for pulmonary arterial hypertension. Eur Respir J 2021; 57:13993003.02061-2019. [PMID: 32972983 PMCID: PMC7930471 DOI: 10.1183/13993003.02061-2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 08/26/2020] [Indexed: 12/13/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a destructive disease of the pulmonary vasculature often leading to right heart failure and death. Current therapeutic intervention strategies only slow disease progression. The role of aberrant hypoxia-inducible factor (HIF)2α stability and function in the initiation and development of pulmonary hypertension (PH) has been an area of intense interest for nearly two decades.Here we determine the effect of a novel HIF2α inhibitor (PT2567) on PH disease initiation and progression, using two pre-clinical models of PH. Haemodynamic measurements were performed, followed by collection of heart, lung and blood for pathological, gene expression and biochemical analysis. Blood outgrowth endothelial cells from idiopathic PAH patients were used to determine the impact of HIF2α-inhibition on endothelial function.Global inhibition of HIF2a reduced pulmonary vascular haemodynamics and pulmonary vascular remodelling in both su5416/hypoxia prevention and intervention models. PT2567 intervention reduced the expression of PH-associated target genes in both lung and cardiac tissues and restored plasma nitrite concentration. Treatment of monocrotaline-exposed rodents with PT2567 reduced the impact on cardiovascular haemodynamics and promoted a survival advantage. In vitro, loss of HIF2α signalling in human pulmonary arterial endothelial cells suppresses target genes associated with inflammation, and PT2567 reduced the hyperproliferative phenotype and overactive arginase activity in blood outgrowth endothelial cells from idiopathic PAH patients. These data suggest that targeting HIF2α hetero-dimerisation with an orally bioavailable compound could offer a new therapeutic approach for PAH. Future studies are required to determine the role of HIF in the heterogeneous PAH population.
Collapse
Affiliation(s)
- David Macias
- CRUK Cambridge Centre Early Detection Programme, Dept of Oncology, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK.,Both authors contributed equally
| | - Stephen Moore
- Dept of Medicine, University of Cambridge, Cambridge, UK.,Both authors contributed equally
| | - Alexi Crosby
- Dept of Medicine, University of Cambridge, Cambridge, UK
| | - Mark Southwood
- Dept of Pathology, Papworth Hospital National Health Service Foundation Trust, Cambridge, UK
| | - Xinlin Du
- Peloton Therapeutics Inc. (a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA), Dallas, TX, USA
| | - Huiling Tan
- Peloton Therapeutics Inc. (a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA), Dallas, TX, USA
| | - Shanhai Xie
- Peloton Therapeutics Inc. (a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA), Dallas, TX, USA
| | | | | | - Eli M Wallace
- Peloton Therapeutics Inc. (a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA), Dallas, TX, USA
| | - Andrew S Cowburn
- Dept of Medicine, University of Cambridge, Cambridge, UK .,National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
10
|
Xue X, Zhang S, Jiang W, Wang J, Xin Q, Sun C, Li K, Qi T, Luan Y. Protective effect of baicalin against pulmonary arterial hypertension vascular remodeling through regulation of TNF-α signaling pathway. Pharmacol Res Perspect 2021; 9:e00703. [PMID: 33421306 PMCID: PMC7796790 DOI: 10.1002/prp2.703] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive cardiovascular disease with high mortality. However, there were no efficient medical drugs for PAH to enormously improve the survival and quality of life measures. The present study aimed to explore the protective effect of baicalin against experimental PAH in vivo and vitro. All the experimental rats received intraperitoneal injection of monocrotaline (MCT) to induce PAH model. Baicalin was given by intragastric administration from 2 days after MCT injection. Forty animals were randomly divided into four groups: Control, MCT, saline-, and baicalin-treated groups (n = 10 in each). Post-operation, hemodynamic data, and index of right ventricular hypertrophy (RVHI) were recorded to evaluate the inhibition of baicalin on MCT-induced PAH. Furthermore, pulmonary artery smooth muscle cells (PASMCs) model induced by tumor necrosis factor-α (TNF-α) was used to observe the inhibition of vascular cells proliferation in vitro. The results demonstrated that baicalin significantly attenuated MCT-induced right ventricular systolic pressure (RVSP), the index of right ventricular hypertrophy, and vessel wall thickness; inhibit inflammatory and cell proliferation induced by MCT or TNF-α, respectively. In addition, we found that baicalin might protect against experimental PAH via regulating the TNF-α/BMPR2 signaling pathway.
Collapse
Affiliation(s)
- Xia Xue
- Department of PharmacyThe Second HospitalCheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Shanshan Zhang
- Department of EmergencyThe Second HospitalCheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Wen Jiang
- Central Research LaboratoryThe Second HospitalCheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Jue Wang
- Central Research LaboratoryThe Second HospitalCheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Qian Xin
- Central Research LaboratoryThe Second HospitalCheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Chao Sun
- Central Research LaboratoryThe Second HospitalCheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Kailin Li
- Central Research LaboratoryThe Second HospitalCheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Tonggang Qi
- Central Research LaboratoryThe Second HospitalCheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Yun Luan
- Central Research LaboratoryThe Second HospitalCheeloo College of MedicineShandong UniversityJinanShandongChina
| |
Collapse
|
11
|
Sibomana JP, Campeche A, Carvalho-Filho RJ, Correa RA, Duani H, Pacheco Guimaraes V, Hilton JF, Kassa B, Kumar R, Lee MH, Loureiro CMC, Mazimba S, Mickael C, Oliveira RKF, Ota-Arakaki JS, Rezende CF, Silva LCS, Sinkala E, Ahmed HY, Graham BB. Schistosomiasis Pulmonary Arterial Hypertension. Front Immunol 2020; 11:608883. [PMID: 33362796 PMCID: PMC7758287 DOI: 10.3389/fimmu.2020.608883] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/03/2020] [Indexed: 12/18/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a disease of the lung blood vessels that results in right heart failure. PAH is thought to occur in about 5% to 10% of patients with hepatosplenic schistosomiasis, particularly due to S. mansoni. The lung blood vessel injury may result from a combination of embolization of eggs through portocaval shunts into the lungs causing localized Type 2 inflammatory response and vessel remodeling, triggering of autonomous pathology that becomes independent of the antigen, and high cardiac output as seen in portopulmonary hypertension. The condition is likely underdiagnosed as there is little systematic screening, and risk factors for developing PAH are not known. Screening is done by echocardiography, and formal diagnosis requires invasive right heart catheterization. Patients with Schistosoma-associated PAH show reduced functional capacity and can be treated with pulmonary vasodilators, which improves symptoms and may improve survival. There are animal models of this disease that might help in understanding disease pathogenesis and identify novel targets to screen and treatment. Pathogenic mechanisms include Type 2 immunity and activation and signaling in the TGF-β pathway. There are still major uncertainties regarding Schistosoma-associated PAH development, course and treatment.
Collapse
Affiliation(s)
- Jean Pierre Sibomana
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Tikur Anbessa Specialized Hospital, College of Health Sciences, University of Addis Ababa, Addis Ababa, Ethiopia
- Department of Medicine, Butare University Teaching Hospital, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Aloma Campeche
- Division of Gastroenterology, Department of Medicine, Santa Casa Hospital, Salvador, Bahia, Brazil
| | - Roberto J. Carvalho-Filho
- Division of Gastroenterology, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Ricardo Amorim Correa
- Internal Medicine/Pulmonary Division, Medical School, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Helena Duani
- Internal Medicine/Infectious Diseases Division, Medical School, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Virginia Pacheco Guimaraes
- Pulmonary Department, Hospital Júlia Kubistchek, Fundação Hospitalar of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Joan F. Hilton
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, United States
| | - Biruk Kassa
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States
- Department of Medicine, Zuckerberg San Francisco General Hospital, San Francisco, CA, United States
| | - Rahul Kumar
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States
- Department of Medicine, Zuckerberg San Francisco General Hospital, San Francisco, CA, United States
| | - Michael H. Lee
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States
- Department of Medicine, Zuckerberg San Francisco General Hospital, San Francisco, CA, United States
| | | | - Sula Mazimba
- Division of Cardiology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Claudia Mickael
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Rudolf K. F. Oliveira
- Division of Respiratory Diseases, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Jaquelina S. Ota-Arakaki
- Division of Respiratory Diseases, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Camila Farnese Rezende
- Pulmonary Medicine, Hospital das Clinicas, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luciana C. S. Silva
- Internal Medicine Department, Medical School, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Edford Sinkala
- Hepatology Clinic, Department of Medicine, University of Zambia Teaching Hospital, Lusaka, Zambia
| | - Hanan Yusuf Ahmed
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Tikur Anbessa Specialized Hospital, College of Health Sciences, University of Addis Ababa, Addis Ababa, Ethiopia
| | - Brian B. Graham
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States
- Department of Medicine, Zuckerberg San Francisco General Hospital, San Francisco, CA, United States
| |
Collapse
|
12
|
Kifle DW, Chaiyadet S, Waardenberg AJ, Wise I, Cooper M, Becker L, Doolan DL, Laha T, Sotillo J, Pearson MS, Loukas A. Uptake of Schistosoma mansoni extracellular vesicles by human endothelial and monocytic cell lines and impact on vascular endothelial cell gene expression. Int J Parasitol 2020; 50:685-696. [DOI: 10.1016/j.ijpara.2020.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 12/27/2022]
|
13
|
Knafl D, Gerges C, King CH, Humbert M, Bustinduy AL. Schistosomiasis-associated pulmonary arterial hypertension: a systematic review. Eur Respir Rev 2020; 29:29/155/190089. [DOI: 10.1183/16000617.0089-2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 09/17/2019] [Indexed: 12/21/2022] Open
Abstract
Schistosomiasis-associated pulmonary arterial hypertension (Sch-PAH) is a life-threatening complication of chronic hepatosplenic schistosomiasis. It is suggested to be the leading cause of pulmonary arterial hypertension (PAH) worldwide. However, pathophysiological data on Sch-PAH are scarce. We examined the hypothesis that there are pronounced similarities in pathophysiology, haemodynamics, and survival of Sch-PAH and idiopathic PAH (iPAH).This systematic review and meta-analysis was registered in the PROSPERO database (identifier CRD42018104066). A systematic search and review of the literature was performed according to PRISMA guidelines for studies published between 01 January 1990 and 29 June 2018.For Sch-PAH, 18 studies evaluating pathophysiological mechanisms, eight studies on haemodynamics (n=277), and three studies on survival (n=191) were identified. 16 clinical registries reporting data on haemodynamics and survival including a total of 5792 patients with iPAH were included for comparison. Proinflammatory molecular pathways are involved in both Sch-PAH and iPAH. The transforming growth factor (TGF)-β signalling pathway is upregulated in Sch-PAH and iPAH. While there was no difference in mean pulmonary artery pressure (54±17 mmHg versus 55±15 mmHg, p=0.29), cardiac output (4.4±1.3 L·min−1versus 4.1±1.4 L·min−1, p=0.046), and cardiac index (2.6±0.7 L·min−1·m−2versus 2.3±0.8 L·min−1·m−2, p<0.001) were significantly higher in Sch-PAH compared to iPAH, resulting in a lower pulmonary vascular resistance in Sch-PAH (10±6 Woods units versus 13±7 Woods units, p<0.001). 1- and 3-year survival were significantly better in the Sch-PAH group (p<0.001).Sch-PAH and iPAH share common pathophysiological mechanisms related to inflammation and the TGF-β signalling pathway. Patients with Sch-PAH show a significantly better haemodynamic profile and survival than patients with iPAH.
Collapse
|
14
|
Mickael CS, Graham BB. The Role of Type 2 Inflammation in Schistosoma-Induced Pulmonary Hypertension. Front Immunol 2019; 10:27. [PMID: 30733718 PMCID: PMC6353826 DOI: 10.3389/fimmu.2019.00027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/08/2019] [Indexed: 12/15/2022] Open
Abstract
Approximately 5% of individuals chronically infected with Schistosoma mansoni develop pulmonary hypertension (PH). The disease is progressive and often fatal, and treatment options are palliative, not curative. Recent studies have unraveled major players of the Th2 inflammation axis in the Schistosoma-induced PH pathology using murine models and studying human samples. TGF-β signaling is a link between the Type 2 inflammation and vascular remodeling, and specifically Thrombospondin-1 (TSP-1) is upregulated by the inflammation and activates TGF-β. Overall, the current model for the pathogenesis of Schistosoma-induced PH is that deposition of Schistosoma mansoni eggs in the pulmonary vasculature results in localized Th2 inflammation, leading to TGF-β activation by TSP-1, and the active TGF-β then results in vascular remodeling and PH.
Collapse
Affiliation(s)
- Claudia S Mickael
- Program in Translational Lung Research, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Brian B Graham
- Program in Translational Lung Research, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
15
|
Kassa B, Mickael C, Kumar R, Sanders L, Koyanagi D, Hernandez-Saavedra D, Tuder RM, Graham BB. Paclitaxel blocks Th2-mediated TGF-β activation in Schistosoma mansoni-induced pulmonary hypertension. Pulm Circ 2018; 9:2045894018820813. [PMID: 30511588 PMCID: PMC6304706 DOI: 10.1177/2045894018820813] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Schistosomiasis is a leading cause of pulmonary hypertension (PH) worldwide.
Recent studies reveal that the type-2 immune cytokines IL-4 and IL-13, as well
as consequent activation of TGF-β, are key factors in the pathogenesis of
Schistosoma-PH. Paclitaxel has been reported to act as an
adjuvant for Th2 inflammation while downregulating TGF-β activation. Moreover,
paclitaxel blocks PH in monocrotaline and SU5416-hypoxia models. We hypothesized
that paclitaxel would augment Th2 inflammation while blocking TGF-β activation
and PH after schistosomiasis exposure. Wild-type mice (C57BL6/J; 6/group) were
intraperitoneally (IP) sensitized and then intravenously (IV) challenged with
Schistosoma mansoni eggs. One day after IV egg challenge,
the mice were treated with a single IP dose of 25 mg/kg paclitaxel or vehicle.
Right ventricular (RV) catheterization was performed and granuloma volumes and
vascular remodeling were quantified. Lung cytokines were quantified by ELISA and
reverse transcription polymerase chain reaction, and the quantity of active
TGF-β was determined using a cell reporter line. We also investigated
hypoxia-induced PH. Paclitaxel treatment significantly protected mice from
Schistosoma-PH, with decreased RV systolic pressure
(P = 0.005) and pulmonary vascular media thickness.
Inflammation was significantly suppressed, contrary to our hypothesis, with
decreased IL-4 and IL-13 levels, smaller granulomas, and less active TGF-β
following paclitaxel treatment. There was no change in IFN-γ or FoxO1 or FoxO3
expression. Paclitaxel did not suppress chronic hypoxia-induced PH, which is
also TGF-β-driven but independent of type-2 immunity. Paclitaxel protects
against Schistosoma-induced PH in mice, although by blocking
proximate Th2 inflammation rather than suppressing distal TGF-β activation.
Collapse
Affiliation(s)
- Biruk Kassa
- Program in Translational Lung Research, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Claudia Mickael
- Program in Translational Lung Research, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rahul Kumar
- Program in Translational Lung Research, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Linda Sanders
- Program in Translational Lung Research, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dan Koyanagi
- Program in Translational Lung Research, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Daniel Hernandez-Saavedra
- Program in Translational Lung Research, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rubin M Tuder
- Program in Translational Lung Research, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brian B Graham
- Program in Translational Lung Research, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
16
|
[Etiological diagnosis of pulmonary hypertension: A cause of difficult diagnosis]. Rev Mal Respir 2018; 36:350-354. [PMID: 30473449 DOI: 10.1016/j.rmr.2018.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 09/10/2018] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Schistosomiasis associated pulmonary arterial hypertension belongs to group 1 of the pulmonary hypertension classification and should be considered in any patient with pulmonary hypertension returning from an endemic area. CASE REPORT A 17-year-old patient was hospitalized for pulmonary hypertension detected during the initial assessment of viral hepatitis B-related cirrhosis with portal hypertension. The initial assessment established the diagnosis of pulmonary hypertension secondary to viral hepatitis B-cirrhosis. The patient's hepatic and haemodynamic condition deteriorated and he was treated with intravenous epoprostenol. This allowed subsequent performance of a liver transplantation. Epoprostenol could then be discontinued. Unexpectedly, histology of the liver explant revealed florid schistosomiasis in addition to hepatitis B cirrhosis. CONCLUSION The diagnosis of pulmonary arterial hypertension associated with schistosomiasis may be difficult. It is necessary to repeat the serological studies and, sometimes, to obtain a rectal biopsy. The treatment of pulmonary arterial hypertension associated with schistosomiasis is based on specific therapies and antiparasitic treatment.
Collapse
|
17
|
Yang K, Wang J, Lu W. Bone morphogenetic protein signalling in pulmonary hypertension: advances and therapeutic implications. Exp Physiol 2017; 102:1083-1089. [PMID: 28449240 DOI: 10.1113/ep086041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/24/2017] [Indexed: 01/07/2023]
Abstract
NEW FINDINGS What is the topic of this review? This review covers recent evidence highlighting the crucial pathophysiological roles and molecular mechanisms of the bone morphogenetic protein (BMP) signalling pathway during the progression of pulmonary hypertension (PH) and discusses targeting of BMP signalling as a new treatment option against PH. What advances does it highlight? A series of breakthrough findings have greatly enriched our understanding about the mechanism of action of BMP signalling in PH and proved the feasibility of BMP targeting strategies in experimental PH models. This review collects these ideas and discusses the frontiers of BMP signalling-targeted PH therapy at different steps of the signal transduction. The bone morphogenetic protein (BMP)-mediated signalling pathway plays crucial roles in the development and progression of pulmonary hypertension (PH). Typical BMP signalling involves BMP ligands, specific transmembrane serine/threonine kinase receptors, cellular responsive kinases and secreted antagonists. As more and more studies have been conducted, the specific protective or pathogenic roles of these molecules within all these subgroups of BMP signalling have been continuously uncovered. Based on this evidence, specific strategies have been designed by targeting these factors as a new treatment approach to PH. In this review, we have collected recent advances in the exciting findings that link BMP signalling with the pathogenesis of PH and we discuss the potential future frontiers in therapeutic design.
Collapse
Affiliation(s)
- Kai Yang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Jian Wang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona, Tucson, AZ, USA
| | - Wenju Lu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
18
|
Identification of Biomarkers for Schistosoma-Associated Pulmonary Arterial Hypertension Based on RNA-Seq Data of Mouse Whole Lung Tissues. Lung 2017; 195:377-385. [DOI: 10.1007/s00408-017-9999-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/09/2017] [Indexed: 12/25/2022]
|
19
|
Gonçalves-Macedo L, Domingues ALC, Lopes EP, Luna CF, Mota VG, Becker MMDC, Markman-Filho B. Pulmonary shunts in severe hepatosplenic schistosomiasis: Diagnosis by contrast echocardiography and their relationship with abdominal ultrasound findings. PLoS Negl Trop Dis 2017; 11:e0005417. [PMID: 28369056 PMCID: PMC5391128 DOI: 10.1371/journal.pntd.0005417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 04/13/2017] [Accepted: 02/16/2017] [Indexed: 12/31/2022] Open
Abstract
Background Schistosomiasis is endemic to several parts of the world. Among the species that affect humans, Schistosoma mansoni is one of the most common causes of illness. In regions where schistosomiasis mansoni is endemic, reinfection is responsible for the emergence of hepatosplenic schistosomiasis (HSS) with portal hypertension in about 10% of infected individuals. Regardless of its etiology, portal hypertension may bring about the formation of arteriovenous fistulas and pulmonary vascular dilation, thus constituting a pulmonary shunt and its presence has been associated with the occurrence of neurological complications. The objective of this study was to identify pulmonary shunt using TTCE in patients with HSS and esophageal varices, and to compare the abdominal ultrasound and endoscopy findings among patients with and without pulmonary shunt. Methodology/Principal findings In this case series, a total of 461 patients with schistosomiasis mansoni were prospectively evaluated using abdominal ultrasound and endoscopy and 71 presented with HSS with esophageal varices. Fifty seven patients remained in the final analysis. The mean age of the patients was 55 ± 14 years, and 65% were female. Pulmonary shunts were observed in 19 (33.3%) patients. On comparing the groups with and without pulmonary shunt, no significant differences were observed in relation to the abdominal ultrasound and endoscopic findings. When comparing the two subgroups with pulmonary shunts (grade 1 vs grades 2 and 3), it was observed that the subgroup with shunt grades 2 and 3 presented with a significantly higher frequency of an enlarged splenic vein diameter (>0.9 cm), and an advanced pattern of periportal hepatic fibrosis (P = 0.041 and P = 0.005, respectively). None of the patients with pulmonary shunts had severe neurological complications. Conclusions/Significance Our findings suggest that in HSS with esophageal varices the pulmonary shunts may be present in higher grades and that in this condition it was associated with ultrasound findings compatible with advanced HSS. Among the species of Schistosoma that infect humans Schistosoma mansoni is one of the most common causes of illness. In the areas where schistosomiasis mansoni is endemic, around 10% of infected individuals develop hepatosplenic schistosomiasis (HSS) with portal hypertension. Portal hypertension may promotes an imbalance in the hepatic production of vasoactive substances, which may act on the lungs promoting the formation of arteriovenous fistulas and pulmonary vascular dilation, a condition that is called a pulmonary shunt. When the pulmonary shunt is of higher grades, small thrombus or septic emboli that would normally be filtered through the pulmonary capillaries reach the left heart and the systemic circulation, which can lead to neurological complications. We found pulmonary shunts in patients with HSS and esophageal varices and we also found that patients with higher grades of pulmonary shunts presented with a significantly higher frequency of advanced periportal fibrosis and an enlarged splenic vein diameter. No neurological complications were observed. Our findings suggest that pulmonary shunts may be present in patients with HSS and esophageal varices. The abdominal ultrasound findings compatible with advanced HSS could be used as screening to investigate pulmonary shunt.
Collapse
Affiliation(s)
- Liana Gonçalves-Macedo
- Graduate Program in Tropical Medicine, Universidade Federal de Pernambuco, Recife, Brazil
- * E-mail:
| | - Ana Lucia Coutinho Domingues
- Department of Clinical Medicine, Universidade Federal de Pernambuco, Recife, Brazil
- Center for Gastroenterology and Hepatology, Universidade Federal de Pernambuco, Recife, Brazil
| | - Edmundo Pessoa Lopes
- Department of Clinical Medicine, Universidade Federal de Pernambuco, Recife, Brazil
- Center for Gastroenterology and Hepatology, Universidade Federal de Pernambuco, Recife, Brazil
| | - Carlos Feitosa Luna
- Laboratory of Quantitative Health Methods, Fundação Oswaldo Cruz (Fiocruz), Recife, Brazil
| | - Vitor Gomes Mota
- Department of Clinical Medicine, Universidade Federal de Pernambuco, Recife, Brazil
- Center for Cardiology and Echocardiography, Universidade Federal de Pernambuco, Recife, Brazil
| | - Mônica Moraes de Chaves Becker
- Department of Clinical Medicine, Universidade Federal de Pernambuco, Recife, Brazil
- Center for Cardiology and Echocardiography, Universidade Federal de Pernambuco, Recife, Brazil
| | - Brivaldo Markman-Filho
- Department of Clinical Medicine, Universidade Federal de Pernambuco, Recife, Brazil
- Center for Cardiology and Echocardiography, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
20
|
Abstract
Schistosomiasis is the most common parasitic disease associated with pulmonary arterial hypertension (PAH). It induces remodeling via complex inflammatory processes produced by the parasite eggs. Changes in the pulmonary vasculature after Schistosoma infection are common, but may not always be associated with a clinical manifestation of PAH. Those patients who presented with PAH show clinical signs and symptoms that are not distinguishable from other forms of PAH.
Collapse
|
21
|
HIF2α-arginase axis is essential for the development of pulmonary hypertension. Proc Natl Acad Sci U S A 2016; 113:8801-6. [PMID: 27432976 DOI: 10.1073/pnas.1602978113] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Hypoxic pulmonary vasoconstriction is correlated with pulmonary vascular remodeling. The hypoxia-inducible transcription factors (HIFs) HIF-1α and HIF-2α are known to contribute to the process of hypoxic pulmonary vascular remodeling; however, the specific role of pulmonary endothelial HIF expression in this process, and in the physiological process of vasoconstriction in response to hypoxia, remains unclear. Here we show that pulmonary endothelial HIF-2α is a critical regulator of hypoxia-induced pulmonary arterial hypertension. The rise in right ventricular systolic pressure (RVSP) normally observed following chronic hypoxic exposure was absent in mice with pulmonary endothelial HIF-2α deletion. The RVSP of mice lacking HIF-2α in pulmonary endothelium after exposure to hypoxia was not significantly different from normoxic WT mice and much lower than the RVSP values seen in WT littermate controls and mice with pulmonary endothelial deletion of HIF-1α exposed to hypoxia. Endothelial HIF-2α deletion also protected mice from hypoxia remodeling. Pulmonary endothelial deletion of arginase-1, a downstream target of HIF-2α, likewise attenuated many of the pathophysiological symptoms associated with hypoxic pulmonary hypertension. We propose a mechanism whereby chronic hypoxia enhances HIF-2α stability, which causes increased arginase expression and dysregulates normal vascular NO homeostasis. These data offer new insight into the role of pulmonary endothelial HIF-2α in regulating the pulmonary vascular response to hypoxia.
Collapse
|