1
|
Xu X, Zhang Y, Cheng L, Fan Y, Han Y, Jie Y, Li H, Li X, Liu H, Liu J, Liu W, Lv W, Ma Y, Ouyang Y, Shan C, Shi G, Song X, Sun S, Wang J, Wang X, Wang X, Wang Z, Xu Y, Yang Q, Zhang Y, Zhang Y, Zhu D, Wang C, Chen R, Zhang L. Chinese Expert Consensus on the Impact of Ambient Air Pollution on Allergic Rhinitis and Recommendations for Mitigation Strategies. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2025; 17:149-164. [PMID: 40204502 PMCID: PMC11982644 DOI: 10.4168/aair.2025.17.2.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/09/2025] [Accepted: 03/19/2025] [Indexed: 04/11/2025]
Abstract
Ambient air pollution poses a significant yet manageable threat to human health. The growing consensus on the impact of ambient air pollutants on allergic rhinitis (AR) emphasizes the importance of prevention, control, and treatment strategies. A multidisciplinary consensus development group was established to further standardize management strategies for AR in the presence of exposure to ambient air pollutants. The quality of the evidence and the strength of the recommendations were evaluated using the grading of recommendations, assessment, development, and evaluation (GRADE) system based on domestic and international relevant medical evidence. This consensus evaluates the effects of key air pollutants on public health in relation to AR, including the synergistic effects of air pollutants with meteorological conditions and aeroallergens. At the same time, the consensus provides recommendations for targeted therapeutic and preventive measures for AR under conditions of ambient air pollution, aiming to improve AR-related health outcomes. These recommendations aim to increase public and clinical awareness of the contribution of environmental factors to AR, and offer evidence-based insights for policymakers and regulators to establish informed ambient air quality standards.
Collapse
Affiliation(s)
- Xu Xu
- Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yuan Zhang
- Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Lei Cheng
- Department of Otorhinolaryngology & Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yunping Fan
- Department of Otolaryngology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yaozhong Han
- Department of Otorhinolaryngology, The NO.2 Hospital of Baoding, Baoding, China
| | - Ying Jie
- Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Huabin Li
- Allergy Center, Department of Otolaryngology, Affiliated Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Xiaobo Li
- School of Public Health, Capital Medical University, Beijing, China
| | - Huanhai Liu
- Department of Otolaryngology-Head and Neck Surgery, Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Jianfeng Liu
- Department of Otorhinolaryngology Head & Neck Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Weiwei Liu
- Department of Otolaryngology, Cangzhou Central Hospital, Cangzhou, China
| | - Wei Lv
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yongjian Ma
- Department of Otolaryngology, Weifang NO.2 People's Hospital, Weifang, China
| | - Yuhui Ouyang
- Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Chunguang Shan
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guanggang Shi
- Department of Otolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xicheng Song
- Department of Otolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, China
| | - Shengzhi Sun
- School of Public Health, Capital Medical University, Beijing, China
| | - Jiajia Wang
- School of Public Health, Capital Medical University, Beijing, China
| | - Xiangdong Wang
- Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Xueyan Wang
- Department of Allergy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Zhenlin Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yu Xu
- Department of Rhinology and Allergy, Otolaryngology-Head and Neck Surgery Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qintai Yang
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Allergy, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yana Zhang
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Allergy, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yu Zhang
- Department of Otolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, China
| | - Dongdong Zhu
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Jilin Provincial Key Laboratory of Precise Diagnosis and Treatment of Upper Airway Allergic Diseases, Changchun, Jilin, China
| | - Chengshuo Wang
- Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Laboratory for Environmental Health and Allergic Nasal Diseases, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China.
| | - Rui Chen
- School of Public Health, Capital Medical University, Beijing, China
- Laboratory for Environmental Health and Allergic Nasal Diseases, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China.
| | - Luo Zhang
- Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China.
| |
Collapse
|
2
|
Buthelezi MS, Mentz G, Wright CY, Phaswana S, Garland RM, Naidoo RN. Short-term, lagged association of airway inflammation, lung function, and asthma symptom score with PM 2.5 exposure among schoolchildren within a high air pollution region in South Africa. Environ Epidemiol 2024; 8:e354. [PMID: 39483641 PMCID: PMC11527423 DOI: 10.1097/ee9.0000000000000354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/08/2024] [Indexed: 11/03/2024] Open
Abstract
Background Asthma affects millions of people globally, and high levels of air pollution aggravate asthma occurrence. This study aimed to determine the association between short-term lagged PM2.5 exposure and airway inflammation, lung function, and asthma symptom scores among schoolchildren in communities in the Highveld high-pollution region in South Africa. Methods A cross-sectional study was conducted among schoolchildren aged 9-14 years in six communities in the Highveld region in South Africa, between October 2018 and February 2019. A NIOX 200 instrument was used to measure fractional exhaled nitric oxide (FeNO). Lung function indices (forced expiratory volume in one second [FEV1]; forced vital capacity [FVC] and FEV1/FVC) were collected using spirometry and the percent of predicted of these was based on the reference equations from the Global Lung Initiative, without ethnic correction. These values were further analyzed as binary outcomes following relevant thresholds (lower limits of normal for lung function and a cutoff of 35 ppb for FeNO). Asthma symptoms were used to create the asthma symptom score. Daily averages of PM2.5 data for the nearest monitoring station located in each community, were collected from the South African Air Quality Information System and created short-term 5-day lag PM2.5 concentrations. Additional reported environmental exposures were collected using standardized instruments. Results Of the 706 participating schoolchildren, only 1.13% of the participants had doctor-diagnosed asthma, compared to a prevalence of 6.94% with an asthma symptom score suggestive of asthma. Lag 1 (odds ratio [OR]: 1.01; 95% confidence interval [CI]: 1.00, 1.02, P = 0.039) and 5-day average lagged PM2.5 (OR: 1.02; 95% CI: 0.99, 1.04, P = 0.050) showed increased odds of the FeNO > 35 ppb. Lung function parameters (FEV1 < lower limit of normal [LLN] [OR: 1.02, 95% CI: 1.00, 1.03, P = 0.018], and FEV1/FVC < LLN [OR: 1.01; 95% CI: 1.00, 1.02, P < 0.001]) and asthma symptom score ≥ 2 (OR: 1.02; 95% CI: 1.00, 1.04, P = 0.039) also showed significant associations with lag 2, lag 4 and lag 1 of PM2.5, respectively. Conclusion Lagged PM2.5 exposure was associated with an increased odds of airway inflammation and an increased odds of lung function parameters below the LLN particularly for the later lags, but a significant dose-response relationship across the entire sample was not consistent.
Collapse
Affiliation(s)
- Minenhle S. Buthelezi
- Discipline of Occupational and Environmental Health, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Graciela Mentz
- Anesthesiology Department, Medical School, University of Michigan, Ann Arbor, Michigan
| | - Caradee Y. Wright
- Environment and Health Research Unit, South African Medical Research Council, Pretoria, South Africa
- Department of Geography, Geoinformatics and Meteorology, University of Pretoria, Pretoria, South Africa
| | - Shumani Phaswana
- Discipline of Occupational and Environmental Health, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Rebecca M. Garland
- Department of Geography, Geoinformatics and Meteorology, University of Pretoria, Pretoria, South Africa
- Smart Places, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Rajen N. Naidoo
- Discipline of Occupational and Environmental Health, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
3
|
Koo MS, Moon S, Rha MS. Mucosal Inflammatory Memory in Chronic Rhinosinusitis. Cells 2024; 13:1947. [PMID: 39682698 PMCID: PMC11639807 DOI: 10.3390/cells13231947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Recent advancements in medical management, endoscopic sinus surgery, and biologics have significantly improved outcomes for patients with chronic rhinosinusitis (CRS). However, long-term recurrence is frequently observed following endoscopic sinus surgery, with symptoms worsening after biologics are discontinued. Consequently, refractory or recurrent CRS remains a significant challenge, causing a substantial healthcare burden. In this review, we provide current insights into mucosal inflammatory memory, a potential mechanism leading to CRS recurrence. Given that both immune and non-immune cells in the sinonasal mucosa play critical roles in the pathophysiology of CRS, a deeper understanding of the mechanisms underlying mucosal inflammatory memory in various cellular components of sinonasal tissue could aid in the management of refractory CRS. We describe and discuss the latest knowledge regarding the novel concept of inflammatory memory, including both adaptive immune memory and trained immunity. Additionally, we summarize the pathogenic memory features of the sinonasal mucosa cellular components in the context of CRS.
Collapse
Affiliation(s)
| | | | - Min-Seok Rha
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.-S.K.); (S.M.)
| |
Collapse
|
4
|
Chen L, Wu L, Cheng X, Huang J, Peng J. Effects of PM2.5 on mucus hypersecretion in airway through miR-133b-5p/EGFR/Claudin1/MUC5AC axis. Aging (Albany NY) 2024; 16:8472-8483. [PMID: 38809424 PMCID: PMC11164504 DOI: 10.18632/aging.205785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/29/2024] [Indexed: 05/30/2024]
Abstract
OBJECTIVE To investigate the role of the EGFR/MAPK signaling pathway in PM2.5 in promoting the MUC5AC hypersecretion in airway and exacerbating airway inflammation. METHODS By establishing rat model exposed to PM2.5, overexpressing miR-133b-5p and Claudin1, the content of IL-1 and TNF-α in serum were detected by ELISA, the pathology of lung tissue was observed by HE staining, p-EGFR, Claudin1, MUC5AC, p-ERK1/2, p-JNK, p-p38 in rats lung tissue were detected by immunohistochemical and WB, the expression level of miR-133b-5p in rats lung tissue were detected by qPCR. RESULTS After the rats were exposed to PM2.5, the content of inflammatory factors in serum increased, the inflammatory damage of lung tissues occurred, the expression of miR-133b-5p was down-regulated, and the expression of MUC5AC protein was increased. The ELISA test results showed that the expression of IL-1 and TNF-α in the model group was significantly higher than that in the control group, and the model +AG1478 treatment group was down-regulated compared with the model group, and the +miR-133b-5p agomir treatment group was significantly lower than that in the control group, the model group and the model +Claudin1 overexpression blank load group, and the model +Claudin1 overexpression group was down-regulated compared with the model group and the model +Claudin1 overexpression blank load group. The protein detection results showed that the expression of p-EGFR, MUC5AC, p-ERK1/2, p-JNK and p-p38 proteins was increased and the expression of Claudin1 protein was decreased in the model group compared with the control group. In the model + AG1478 treatment group, model + miR-133b-5p agomir treatment group and model + Claudin1 overexpression group, compared with the model group, p-EGFR, MUC5AC, p-ERK1/2, p-JNK, p-p38 protein expression was down-regulated, and Claudin1 protein expression was up-regulated. CONCLUSIONS PM2.5 inhibited the expression of miR-133b-5p to activate the EGFR/MAPK signal pathway, induce the hypersecretion of MUC5AC, thus aggravating PM2.5-related airway inflammation in rats.
Collapse
Affiliation(s)
- Lerong Chen
- Department of Respiratory, Jiangxi Provincial Chest Hospital, Nanchang 330006, Jiangxi, China
| | - Liangliang Wu
- Department of Respiratory, Jiangxi Provincial Chest Hospital, Nanchang 330006, Jiangxi, China
| | - Xiaopeng Cheng
- Department of Respiratory, Jiangxi Provincial Chest Hospital, Nanchang 330006, Jiangxi, China
| | - Jianhua Huang
- Department of Respiratory, Jiangxi Provincial Chest Hospital, Nanchang 330006, Jiangxi, China
| | - Jianping Peng
- Department of Respiratory, Jiangxi Provincial Chest Hospital, Nanchang 330006, Jiangxi, China
| |
Collapse
|
5
|
Yan B, Lan F, Li J, Wang C, Zhang L. The mucosal concept in chronic rhinosinusitis: Focus on the epithelial barrier. J Allergy Clin Immunol 2024; 153:1206-1214. [PMID: 38295881 DOI: 10.1016/j.jaci.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 02/29/2024]
Abstract
Chronic rhinosinusitis (CRS) is a common chronic nasal cavity and sinus disease affecting a growing number of individuals worldwide. Recent advances have shifted our understanding of CRS pathophysiology from a physical obstruction model of ventilation and drainage to a mucosal concept that recognizes the complexities of mucosal immunologic variations and cellular aberrations. A growing number of studies have demonstrated the alteration of the epithelial barrier during inflammatory states. Therefore, the current review has focused on the crucial role of epithelial cells within this mucosal framework in CRS, detailing the perturbed epithelial homeostasis, impaired epithelial cell barrier, dysregulated epithelial cell repair processes, and enhanced interactions between epithelial cells and immune cells. Notably, the utilization of novel technologies, such as single-cell transcriptomics, has revealed the novel functions of epithelial barriers, such as inflammatory memory and neuroendocrine functions. Therefore, this review also emphasizes the importance of epithelial inflammatory memory and the necessity of further investigations into neuroendocrine epithelial cells and neurogenic inflammation in CRS. We conclude by contemplating the prospective benefits of epithelial cell-oriented biological treatments, which are currently under investigation in rigorous randomized, double-blind clinical trials in patients with CRS with nasal polyps.
Collapse
Affiliation(s)
- Bing Yan
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Feng Lan
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Jingyun Li
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Chengshuo Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China.
| | - Luo Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
6
|
Lubner RJ, Rubel K, Chandra RK, Turner JH, Chowdhury NI. Particulate matter exposure is associated with increased inflammatory cytokines and eosinophils in chronic rhinosinusitis. Allergy 2024; 79:1219-1229. [PMID: 38180309 PMCID: PMC11062815 DOI: 10.1111/all.16006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Chronic rhinosinusitis (CRS) is thought to result from complex interactions between the host immune system, microbiota, and environmental exposures. Currently, there is limited data regarding the impact of ambient particulate matter ≤2.5 μm in diameter (PM2.5) in the pathogenesis of CRS, despite evidence linking PM2.5 to other respiratory diseases. We hypothesized that PM2.5 may result in differential cytokine patterns that could inform our mechanistic understanding of the effect of environmental factors on CRS. METHODS We conducted an analysis of data prospectively collected from 308 CRS patients undergoing endoscopic sinus surgery. Cytokines were quantified in intraoperative mucus specimens using a multiplex flow cytometric bead assay. Clinical and demographic data including zip codes were extracted and used to obtain tract-level income and rurality measures. A spatiotemporal machine learning model was used to estimate daily PM2.5 levels for the year prior to each patient's surgery date. Spearman correlations and regression analysis were performed to characterize the relationship between mucus cytokines and PM2.5. RESULTS: Several inflammatory cytokines including IL-2, IL-5/IL-13, IL-12, and 21 were significantly correlated with estimated average 6, 9, and 12-month preoperative PM2.5 levels. These relationships were maintained for most cytokines after adjusting for age, income, body mass index, rurality, polyps, asthma, and allergic rhinitis (AR) (p < .05). There were also higher odds of asthma (OR = 1.5, p = .01) and AR (OR = 1.48, p = .03) with increasing 12-month PM2.5 exposure. Higher tissue eosinophil counts were associated with increasing PM2.5 levels across multiple timeframes (p < .05). CONCLUSIONS Chronic PM2.5 exposure may be an independent risk factor for development of a mixed, type-2 dominant CRS inflammatory response.
Collapse
Affiliation(s)
- Rory J Lubner
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kolin Rubel
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rakesh K Chandra
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Justin H Turner
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Naweed I Chowdhury
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
7
|
Zhu Y, Zhang S, Gu Y, Sun X, Luo C, Zhou J, Li Z, Lin H, Zhang W. PM 2.5 activates IL-17 signaling pathway in human nasal mucosa-derived fibroblasts. Int Immunopharmacol 2024; 128:111484. [PMID: 38199192 DOI: 10.1016/j.intimp.2024.111484] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/27/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024]
Abstract
Fine particulate matter (PM2.5) represents a prevalent environmental pollutant in the atmosphere, capable of exerting deleterious effects on human health. Numerous studies have indicated a correlation between PM2.5 exposure and the development of chronic upper airway inflammatory diseases. The objective of this study was to investigate the impact of PM2.5 on the transcriptome of fibroblasts derived from nasal mucosa. Initially, nasal mucosa-derived fibroblasts were isolated, cultured, and subsequently stimulated with PM2.5 (100 μg/mL) or an equivalent volume of normal culture medium for a duration of 24 h. Following this, total RNA from these cells was extracted, purified, and subjected to sequencing using next-generation RNA sequencing technology. Differentially expressed genes (DEGs) were then identified and utilized for functional enrichment analysis. A protein-protein interaction (PPI) network of DEGs was constructed, and validation of key genes and proteins was carried out using quantitative real-time PCR and ELISA methods. Results revealed 426 DEGs, comprising 276 up-regulated genes and 150 down-regulated genes in nasal mucosa-derived fibroblasts treated with PM2.5 compared to control cells. Functional enrichment analysis indicated that DEGs were predominantly associated with inflammation-related pathways, including the IL-17 signaling pathway. In alignment with this, PPI analysis highlighted that hub genes were primarily involved in the regulation of the IL-17 signaling pathway. Subsequent validation through quantitative real-time PCR and ELISA confirmed significant alterations in the relative expressions of IL-17 signaling pathway-related genes and concentrations of IL-17 signaling pathway related proteins in nasal mucosa-derived fibroblasts treated with PM2.5 compared to control cells. In conclusion, PM2.5 intervention substantially altered the transcriptome of nasal mucosa-derived fibroblasts. Furthermore, PM2.5 has the potential to exacerbate the inflammatory responses of these fibroblasts by modulating the expression of key genes in the IL-17 signaling pathway.
Collapse
Affiliation(s)
- Ying Zhu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Shiyao Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Yuelong Gu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Xiwen Sun
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Chunyu Luo
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Jiayao Zhou
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Zhipeng Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Hai Lin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China.
| | - Weitian Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China.
| |
Collapse
|
8
|
Gavito-Covarrubias D, Ramírez-Díaz I, Guzmán-Linares J, Limón ID, Manuel-Sánchez DM, Molina-Herrera A, Coral-García MÁ, Anastasio E, Anaya-Hernández A, López-Salazar P, Juárez-Díaz G, Martínez-Juárez J, Torres-Jácome J, Albarado-Ibáñez A, Martínez-Laguna Y, Morán C, Rubio K. Epigenetic mechanisms of particulate matter exposure: air pollution and hazards on human health. Front Genet 2024; 14:1306600. [PMID: 38299096 PMCID: PMC10829887 DOI: 10.3389/fgene.2023.1306600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/20/2023] [Indexed: 02/02/2024] Open
Abstract
Environmental pollution nowadays has not only a direct correlation with human health changes but a direct social impact. Epidemiological studies have evidenced the increased damage to human health on a daily basis because of damage to the ecological niche. Rapid urban growth and industrialized societies importantly compromise air quality, which can be assessed by a notable accumulation of air pollutants in both the gas and the particle phases. Of them, particulate matter (PM) represents a highly complex mixture of organic and inorganic compounds of the most variable size, composition, and origin. PM being one of the most complex environmental pollutants, its accumulation also varies in a temporal and spatial manner, which challenges current analytical techniques used to investigate PM interactions. Nevertheless, the characterization of the chemical composition of PM is a reliable indicator of the composition of the atmosphere, the quality of breathed air in urbanized societies, industrial zones and consequently gives support for pertinent measures to avoid serious health damage. Epigenomic damage is one of the most promising biological mechanisms of air pollution-derived carcinogenesis. Therefore, this review aims to highlight the implication of PM exposure in diverse molecular mechanisms driving human diseases by altered epigenetic regulation. The presented findings in the context of pan-organic cancer, fibrosis, neurodegeneration and metabolic diseases may provide valuable insights into the toxicity effects of PM components at the epigenomic level and may serve as biomarkers of early detection for novel targeted therapies.
Collapse
Affiliation(s)
- Dulcemaría Gavito-Covarrubias
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
| | - Ivonne Ramírez-Díaz
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
- Universidad Popular Autónoma del Estado de Puebla (UPAEP), Puebla, Mexico
| | - Josué Guzmán-Linares
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
| | - Ilhuicamina Daniel Limón
- Laboratory of Neuropharmacology, Faculty of Chemical Sciences, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Dulce María Manuel-Sánchez
- Laboratory of Neuropharmacology, Faculty of Chemical Sciences, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Alejandro Molina-Herrera
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
| | - Miguel Ángel Coral-García
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
| | - Estela Anastasio
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
| | - Arely Anaya-Hernández
- Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Primavera López-Salazar
- Centro de Investigaciones en Dispositivos Semiconductores (CIDS), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Gabriel Juárez-Díaz
- Centro de Investigaciones en Dispositivos Semiconductores (CIDS), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Javier Martínez-Juárez
- Centro de Investigaciones en Dispositivos Semiconductores (CIDS), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Julián Torres-Jácome
- Laboratorio de Fisiopatología Cardiovascular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Alondra Albarado-Ibáñez
- Laboratorio de Fisiopatología Cardiovascular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Ygnacio Martínez-Laguna
- Vicerrectoría de Investigación y Estudios de Posgrado, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Carolina Morán
- Centro de Investigación en Fisicoquímica de Materiales, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Karla Rubio
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
| |
Collapse
|
9
|
Zaręba Ł, Piszczatowska K, Dżaman K, Soroczynska K, Motamedi P, Szczepański MJ, Ludwig N. The Relationship between Fine Particle Matter (PM2.5) Exposure and Upper Respiratory Tract Diseases. J Pers Med 2024; 14:98. [PMID: 38248800 PMCID: PMC10817350 DOI: 10.3390/jpm14010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/13/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
PM2.5 is one of the most harmful components of airborne pollution and includes particles with diameters of less than 2.5 μm. Almost 90% of the world's population lives in areas with poor air quality exceeding the norms established by the WHO. PM2.5 exposure affects various organs and systems of the human body including the upper respiratory tract which is one of the most prone to its adverse effects. PM2.5 can disrupt nasal epithelial cell metabolism, decrease the integrity of the epithelial barrier, affect mucociliary clearance, and alter the inflammatory process in the nasal mucosa. Those effects may increase the chance of developing upper respiratory tract diseases in areas with high PM2.5 pollution. PM2.5's contribution to allergic rhinitis (AR) and rhinosinusitis was recently thoroughly investigated. Numerous studies demonstrated various mechanisms that occur when subjects with AR or rhinosinusitis are exposed to PM2.5. Various immunological changes and alterations in the nasal and sinonasal epithelia were reported. These changes may contribute to the observations that exposure to higher PM2.5 concentrations may increase AR and rhinosinusitis symptoms in patients and the number of clinical visits. Thus, studying novel strategies against PM2.5 has recently become the focus of researchers' attention. In this review, we summarize the current knowledge on the effects of PM2.5 on healthy upper respiratory tract mucosa and PM2.5's contribution to AR and rhinosinusitis. Finally, we summarize the current advances in developing strategies against PM2.5 particles' effects on the upper respiratory tract.
Collapse
Affiliation(s)
- Łukasz Zaręba
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland; (Ł.Z.); (K.P.); (K.S.); (P.M.)
| | - Katarzyna Piszczatowska
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland; (Ł.Z.); (K.P.); (K.S.); (P.M.)
| | - Karolina Dżaman
- Department of Otolaryngology, The Medical Centre of Postgraduate Education, 03-242 Warsaw, Poland;
| | - Karolina Soroczynska
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland; (Ł.Z.); (K.P.); (K.S.); (P.M.)
| | - Parham Motamedi
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland; (Ł.Z.); (K.P.); (K.S.); (P.M.)
| | - Mirosław J. Szczepański
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland; (Ł.Z.); (K.P.); (K.S.); (P.M.)
| | - Nils Ludwig
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
10
|
Aghaei-Zarch SM, Alipourfard I, Rasoulzadeh H, Najafi S, Aghaei-Zarch F, Partov S, Movafagh A, Jahanara A, Toolabi A, Sheikhmohammadi A, Pour NN, Neghad SK, Ashrafi-Asgarabad A. Non-coding RNAs: An emerging player in particulate matter 2.5-mediated toxicity. Int J Biol Macromol 2023; 235:123790. [PMID: 36822288 DOI: 10.1016/j.ijbiomac.2023.123790] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/17/2023] [Indexed: 02/23/2023]
Abstract
Exposure to air pollution has been connected to around seven million early deaths annually and also contributing to higher than 3 % of disability-adjusted lost life years. Particulate matters (PM) are among the key pollutants that directly discharged or formed due to atmospheric chemical interactions. Among these matters, due of its large surface area, PM2.5 may absorb a different harmful and toxic substances. One of the outcomes of such environmental disturbance is oxidative stress which affects cellular processes including apoptosis, inflammation, and epithelial mesenchymal transition. Non-coding RNAs (ncRNA) such as, miRNAs, lncRNAs, and circRNAs are classified as non-protein coding RNA's. Over the past few years these small molecules have been gaining so much attention since they participate in variety of physiological and pathological processes and their expression change during disease periods. Regarding epigenetic properties, ncRNAs play an important function in organism's response to environmental stimulus. In this manner, it was revealed that exposure to PM2.5 may cause epigenetic reprogramming, such as, ncRNAs signature's alteration, which can be effective concerning pathophysiology state. In this review, we describe PM2.5 impact on ncRNAs and excavate its roles in toxicity caused by PM2.5.
Collapse
Affiliation(s)
- Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Iraj Alipourfard
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Hassan Rasoulzadeh
- Department of Environmental Health Engineering, School of Public Health, Bam University of Medical Sciences, Bam, Iran.
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Saber Partov
- Department of Clinical and Biological Sciences, Faculty of Medicine and Surgery, University of Turin, Turin, Italy
| | - Abolfazl Movafagh
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abbas Jahanara
- Neonatology, Bam University of Medical Sciences, Bam, Iran
| | - Ali Toolabi
- Environmental Health Research Center, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Amir Sheikhmohammadi
- Department of Environmental Health Engineering, School of Health, Khoy University of Medical Sciences, Khoy, Iran
| | | | | | - Ahad Ashrafi-Asgarabad
- Department of Epidemiology, School of Health, Bam University of Medical Sciences, Bam, Iran
| |
Collapse
|
11
|
Wang X, Sima Y, Zhao Y, Zhang N, Zheng M, Du K, Wang M, Wang Y, Hao Y, Li Y, Liu M, Piao Y, Liu C, Tomassen P, Zhang L, Bachert C. Endotypes of chronic rhinosinusitis based on inflammatory and remodeling factors. J Allergy Clin Immunol 2023; 151:458-468. [PMID: 36272582 DOI: 10.1016/j.jaci.2022.10.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Previous studies on the endotyping of chronic rhinosinusitis (CRS) that were based on inflammatory factors have broadened our understanding of the disease. However, the endotype of CRS combined with inflammatory and remodeling features has not yet been clearly elucidated. OBJECTIVE We sought to identify the endotypes of patients with CRS according to inflammatory and remodeling factors. METHODS Forty-eight inflammatory and remodeling factors in the nasal mucosal tissues of 128 CRS patients and 24 control subjects from northern China were analyzed by Luminex, ELISA, and ImmunoCAP. Sixteen factors were used to perform the cluster analysis. The characteristics of each cluster were analyzed using correlation analysis and validated by immunofluorescence staining. RESULTS Patients were classified into 5 clusters. Clusters 1 and 2 showed non-type 2 signatures with low biomarker concentrations, except for IL-19 and IL-27. Cluster 3 involved a low type 2 endotype with the highest expression of neutrophil factors, such as granulocyte colony-stimulating factor, IL-8, and myeloperoxidase, and remodeling factors, such as matrix metalloproteinases and fibronectin. Cluster 4 exhibited moderate type 2 inflammation. Cluster 5 exhibited high type 2 inflammation, which was associated with relatively higher levels of neutrophil and remodeling factors. The proportion of CRS with nasal polyps, asthma, allergies, anosmia, aspirin sensitivity, and the recurrence of CRS increased from clusters 1 to 5. CONCLUSION Diverse inflammatory mechanisms result in distinct CRS endotypes and remodeling profiles. The explicit differentiation and accurate description of these endotypes will guide targeted treatment decisions.
Collapse
Affiliation(s)
- Xiangdong Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | - Yutong Sima
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | - Yan Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | - Nan Zhang
- Upper Airways Research Laboratory, Department of Oto-Rhino-Laryngology, Ghent University Hospital, Ghent, Belgium
| | - Ming Zheng
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Kun Du
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | - Min Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | - Yue Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | - Yun Hao
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | - Ying Li
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | | | - Yingshi Piao
- Department of Pathology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Chengyao Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Peter Tomassen
- Upper Airways Research Laboratory, Department of Oto-Rhino-Laryngology, Ghent University Hospital, Ghent, Belgium
| | - Luo Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China.
| | - Claus Bachert
- Upper Airways Research Laboratory, Department of Oto-Rhino-Laryngology, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
12
|
Huang Y, Zhang Y, Wang J, Li X, Wang C, Chen R, Zhang L. Impact of Air Pollutants and Pollen on the Severity of Nonallergic Rhinitis: A Data-Oriented Analysis. J Asthma Allergy 2022; 15:1045-1054. [PMID: 35967096 PMCID: PMC9364988 DOI: 10.2147/jaa.s372927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/24/2022] [Indexed: 11/23/2022] Open
Abstract
Background Rhino-conjunctivitis symptoms are more severe in nonallergic rhinitis (NAR) patients during pollen season than in other seasons. Little is known about the role of pollen and air pollutants on the severity of NAR. Objective The aim of this study is to assess the cross-sectional effects of both pollen and air pollutants on NAR patients during the pollen and non-pollen seasons, and to further explore the possible relationship among these triggers. Methods A total of 2411 clinically diagnosed NAR outpatients from 2018 to 2019 were recruited for this study. The severity of NAR was measured using rhinoconjunctivitis symptom scores. Associations of daily exposure to pollen, PM2.5, PM10, NO2, SO2, CO, O3, and rhinoconjunctivitis symptom scores were evaluated using Logistic regression models. Distributed Lag Nonlinear models were used to explore single-day and accumulative Lag effects of environmental factors mentioned above. Results During the pollen season, pollen concentration, higher exposure levels of PM10, PM2.5, NO2, and SO2 increased the severity of NAR group when compared with the low-moderate severity group. The high severity group was associated with lower exposure levels of O3. However, during non-pollen seasons, no significant association was found in air pollutant metrics, pollen concentration, and severity of NAR. The exposure-severity effects of pollen were different when different ambient pollutants were stratified. Conclusion Synergistic effect of pollen and air pollutants, including PM2.5, PM10, SO2, NO2, and O3, might be responsible for aggravating the symptoms of NAR patients during pollen seasons.
Collapse
Affiliation(s)
- Yanran Huang
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, People’s Republic of China
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, People’s Republic of China
| | - Yuan Zhang
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, People’s Republic of China
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, People’s Republic of China
| | - Jiajia Wang
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People’s Republic of China
- School of Public Health, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, People’s Republic of China
| | - Xiaobo Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People’s Republic of China
- School of Public Health, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, People’s Republic of China
| | - Chengshuo Wang
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, People’s Republic of China
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Rui Chen
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People’s Republic of China
- School of Public Health, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, People’s Republic of China
- Rui Chen, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 10 Xitoutiao, You’anmen, Fengtai District, Beijing, 100069, People’s Republic of China, Email
| | - Luo Zhang
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, People’s Republic of China
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, People’s Republic of China
- Correspondence: Luo Zhang, Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, No. 17, HouGouHuTong, DongCheng District, Beijing, 100005, People’s Republic of China, Email
| |
Collapse
|
13
|
Wang Y, Shen Z, Zhao S, Huang D, Wang X, Wu Y, Pei C, Shi S, Jia N, He Y, Wang Z. Sipeimine ameliorates PM2.5-induced lung injury by inhibiting ferroptosis via the PI3K/Akt/Nrf2 pathway: A network pharmacology approach. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113615. [PMID: 35567927 DOI: 10.1016/j.ecoenv.2022.113615] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/24/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Fine particulate matter (PM2.5) exposure can cause lung injury and a large number of respiratory diseases. Sipeimine is a steroidal alkaloid isolated from Fritillaria roylei which has been associated with anti-inflammatory, antitussive and antiasthmatic properties. In this study, we explored the potential effects of sipeimine against PM2.5-induced lung injury in Sprague Dawley rats. Sipeimine alleviated lung injury caused by PM2.5 and decreased pulmonary edema, inflammation and the levels of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in the bronchoalveolar lavage fluid. In addition, sipeimine upregulated the glutathione (GSH) expression and downregulated the expression of 4-hydroxynonenal (4-HNE), tissue iron and malondialdehyde (MDA). The downregulation of proteins involved in ferroptosis, including nuclear factor E2-related factor 2 (Nrf2), glutathione peroxidase 4 (GPX4), heme oxygenase-1 (HO-1) and solute carrier family 7 member 11 (SLC7A11) was reversed by sipeimine. The administration of RSL3, a potent ferroptosis-triggering agent, blocked the effects of sipeimine. Using network pharmacology, we found that the effects of sipeimine were presumably mediated through the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway. A PI3K inhibitor (LY294002) blocked the PI3K/Akt signaling pathway and reversed the effects of sipeimine. Overall, this study suggested that the protective effect of sipeimine against PM2.5-induced lung injury was mainly mediated through the PI3K/Akt pathway, ultimately leading to a reduction in ferroptosis.
Collapse
Affiliation(s)
- Yilan Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Zherui Shen
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Sijing Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Demei Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Xiaomin Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Yongcan Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Caixia Pei
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Shihua Shi
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Nan Jia
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Yacong He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue, Chengdu, Sichuan 611137, China.
| | - Zhenxing Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China.
| |
Collapse
|
14
|
Wu H, Dong C, Xiao W, Wei H, Shao Y, Chen T, Xia Y. Associations between PM 2.5 exposure and infant growth: A mediation analysis of oral microbiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153688. [PMID: 35131243 DOI: 10.1016/j.scitotenv.2022.153688] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/26/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Previous studies have linked growth retardation with ambient fine particulate matter (PM2.5) exposure. However, few studies explored such association from the perspective of microbiota, such as oral microbiota. We aimed to identify the potential role of oral microbiota in the links between PM2.5 exposure and infant growth. METHODS Baseline information of 335 recruited mother-child pairs was collected by structured questionnaires. Growth indicators (weight, length) of one-year-old infants were abstracted from medical records when they had physical examination and corresponding z scores were calculated. 16S rRNA gene amplicon sequencing was performed to assess oral microbiota of infants and co-abundance groups (CAGs) were further calculated. We assessed PM2.5 levels by inverse distance weighting (IDW). Generalized linear regression and mediation analysis were performed to determine associations between PM2.5 exposure, oral microbiota and growth indicators. RESULTS Per 10 μg m-3 increment of PM2.5 in the period of 10th month-examination was associated with decreased length z score (β = -1.97, 95%CI: -3.83, -0.11). Oral microbiota correlated with weight z score and body mass index (BMI) z score was identified by Spearman correlation analysis. CAG4 was statistically associated with increased weight z score (β = 3.40, 95%CI: 0.29, 6.51) and BMI z score (β = 5.44, 95%CI: 1.00, 9.87). Several bacteria in the level of genus and CAG associated with PM2.5 exposure were additionally identified (P < 0.05). Mediation analysis revealed that PM2.5 in the period of birth-3rd month impacted the z scores of weight and BMI by altering relative abundance of Megasphaera (P < 0.05). CONCLUSION PM2.5 exposure from 10th to 12th month after birth could retard infant linear growth. PM2.5 might impact oral microbiota of one-year-old infants. Growth-related bacteria and CAGs were identified. Megasphaera might function as mediator between PM2.5 exposure during birth-3rd month and infant z scores of weight and BMI.
Collapse
Affiliation(s)
- Huaying Wu
- Department of Stomatology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Chao Dong
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wenwen Xiao
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Hongcheng Wei
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yunmin Shao
- Department of Stomatology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Ting Chen
- Department of Science and Technology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China.
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
15
|
PM10 Alters Trophoblast Cell Function and Modulates miR-125b-5p Expression. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3697944. [PMID: 35036432 PMCID: PMC8759905 DOI: 10.1155/2022/3697944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 12/16/2022]
Abstract
Air pollution is one of the largest global environmental health hazards that threaten premature mortality or morbidity. Particulate matter 10 (PM10) has been demonstrated to contribute to several human diseases via dysregulated miRNA expression. Trophoblast cells play a key role in implantation and placentation for a successful pregnancy. Nonetheless, the PM10 associated trophoblast cell functions during pregnancy and miRNA expression are still unknown. Our study showed that PM10 affected HTR-8/SVneo cell viability and also decreased cell proliferation, migration, and invasion. A high concentration of PM10 caused an increase in HTR-8/SVneo cell apoptosis. Treatment with PM10 induced inflammation through the upregulated IL-1β, IL-6, and TNF-α expression in trophoblast cells. In PM10-treated HTR-8/SVneo cells, miR-125b-5p expression was considerably increased and TXNRD1 was found to be negatively related to miR-125b-5p. Collectively, our findings revealed that PM10 could alter miR-125b-5p expression by targeting TXNRD1 and suppressing trophoblast cell functions. Additional investigations relating to the function of miR-125b-5p and its target on particulate pollution exposure in trophoblast are warranted for future biomarker or effective therapeutic approaches.
Collapse
|
16
|
Xu Z, Huang Y, Delemarre T, Cavaliere C, Zhang N, Bachert C. Advances in chronic rhinosinusitis in 2020 and 2021. J Allergy Clin Immunol 2021; 149:854-866. [PMID: 34973298 DOI: 10.1016/j.jaci.2021.12.782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 01/11/2023]
Abstract
Major progress has been achieved in the understanding and clinical practice of chronic rhinosinusitis, with or without nasal polyps. These advances resulted in a better understanding of the pathophysiology, the distribution into subgroups, and consequently in a better management perspective using classical approaches and biologics. Pathomechanisms, endotypes and biomarkers, and finally innovative therapeutic approaches are themes especially for the more severe forms of chronic rhinosinusitis, those with uncontrolled severe nasal polyps. Biologicals against key type 2 cytokines are gaining ground in the long-term treatment approaches of often recurrent nasal polyps, and should be integrated in care pathways making use of classical and innovative treatment pathways. These areas of interest show a fast development and will profoundly change our disease management within a decade.
Collapse
Affiliation(s)
- Zhaofeng Xu
- Upper Airways Research Laboratory, Ghent University, Ghent, Belgium; Sun Yat-sen Medical University, First Affiliated Hospital, Guangzhou, China
| | - Yanran Huang
- Upper Airways Research Laboratory, Ghent University, Ghent, Belgium; Department of ORLHNS, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Tim Delemarre
- Upper Airways Research Laboratory, Ghent University, Ghent, Belgium
| | - Carlo Cavaliere
- Department of Sense Organs, Sapienza University, Rome, Italy
| | - Nan Zhang
- Upper Airways Research Laboratory, Ghent University, Ghent, Belgium
| | - Claus Bachert
- Upper Airways Research Laboratory, Ghent University, Ghent, Belgium; Sun Yat-sen Medical University, First Affiliated Hospital, Guangzhou, China; Division of ENT Diseases, CLINTEC, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
17
|
Yang X, Shen S, Deng Y, Wang C, Zhang L. Air Pollution Exposure Affects Severity and Cellular Endotype of Chronic Rhinosinusitis With Nasal Polyps. Laryngoscope 2021; 132:2103-2110. [PMID: 34870326 DOI: 10.1002/lary.29974] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 11/10/2022]
Abstract
OBJECTIVES/HYPOTHESIS Air pollution has emerged as an important environmental risk factor for chronic rhinosinusitis (CRS) progression. This study assessed exposure to five types of air pollution (PM2.5/10 , SO2 , NO2 , CO, O3 ) and explored their effects on CRS with nasal polyps (CRSwNP) severity and endotype. STUDY DESIGN Retrospective cohort study. METHODS Air pollution data from monitoring sites in Beijing were obtained to assess individual air pollution exposure. Outcomes of CRSwNP (n = 282) including Lund-Mackay (L-M) score, Lund-Kennedy (L-K) score, visual analogue scale (VAS) score and nasal patency/airflow resistance and so on were measured to analyze correlations with air pollution and compare groups with different exposure types. Multivariable-adjusted binary logistic regression was used to determine potential air pollution risk factors of the endotype of eosinophilic CRSwNP (ECRSwNP). RESULTS Short-term exposures to PM2.5/10 , SO2 , CO, NO2 , and O3 were weak but significantly associated with increased L-M scores. Short-term exposures to PM10 , CO, and NO2 were correlated with increased VAS headache/facial pain scores. The L-M scores of the group of the highest PM2.5 (≥150 μg/m3 ) exposure were significantly higher than those of control group. For each increased unit of the average concentration of PM2.5 , there was a 1.047-fold (95% confidence interval, 1.005-1.091) increased risk of the endotype of ECRSwNP. CONCLUSIONS Air pollution exposure exacerbated CRSwNP severity and PM2.5 could be a risk factor for endotype of ECRSwNP, suggesting the role of air pollution in CRSwNP pathogenesis. LEVEL OF EVIDENCE 4 Laryngoscope, 2021.
Collapse
Affiliation(s)
- Xiaozhe Yang
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China.,Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Shen Shen
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China.,Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yuzhoujia Deng
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China.,Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Chengshuo Wang
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China.,Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Luo Zhang
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China.,Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
18
|
Peladarinos N, Cheimaras V, Piromalis D, Arvanitis KG, Papageorgas P, Monios N, Dogas I, Stojmenovic M, Tsaramirsis G. Early Warning Systems for COVID-19 Infections Based on Low-Cost Indoor Air-Quality Sensors and LPWANs. SENSORS (BASEL, SWITZERLAND) 2021; 21:6183. [PMID: 34577400 PMCID: PMC8473455 DOI: 10.3390/s21186183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/06/2021] [Accepted: 09/12/2021] [Indexed: 11/26/2022]
Abstract
During the last two years, the COVID-19 pandemic continues to wreak havoc in many areas of the world, as the infection spreads through person-to-person contact. Transmission and prognosis, once infected, are potentially influenced by many factors, including indoor air pollution. Particulate Matter (PM) is a complex mixture of solid and/or liquid particles suspended in the air that can vary in size, shape, and composition and recent scientific work correlate this index with a considerable risk of COVID-19 infections. Early Warning Systems (EWS) and the Internet of Things (IoT) have given rise to the development of Low Power Wide Area Networks (LPWAN) based on sensors, which measure PM levels and monitor In-door Air pollution Quality (IAQ) in real-time. This article proposes an open-source platform architecture and presents the development of a Long Range (LoRa) based sensor network for IAQ and PM measurement. A few air quality sensors were tested, a network platform was implemented after simulating setup topologies, emphasizing feasible low-cost open platform architecture.
Collapse
Affiliation(s)
- Nikolaos Peladarinos
- Department of Electrical and Electronics Engineering, University of West Attica, 12244 Athens, Greece; (N.P.); (V.C.); (P.P.); (N.M.); (I.D.)
| | - Vasileios Cheimaras
- Department of Electrical and Electronics Engineering, University of West Attica, 12244 Athens, Greece; (N.P.); (V.C.); (P.P.); (N.M.); (I.D.)
| | - Dimitrios Piromalis
- Department of Industrial Design and Production Engineering, University of West Attica, 12244 Athens, Greece;
| | - Konstantinos G. Arvanitis
- Department of Natural Resources Management and Agricultural Engineering, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Panagiotis Papageorgas
- Department of Electrical and Electronics Engineering, University of West Attica, 12244 Athens, Greece; (N.P.); (V.C.); (P.P.); (N.M.); (I.D.)
| | - Nikolaos Monios
- Department of Electrical and Electronics Engineering, University of West Attica, 12244 Athens, Greece; (N.P.); (V.C.); (P.P.); (N.M.); (I.D.)
| | - Ioannis Dogas
- Department of Electrical and Electronics Engineering, University of West Attica, 12244 Athens, Greece; (N.P.); (V.C.); (P.P.); (N.M.); (I.D.)
| | - Milos Stojmenovic
- Computer Science Department, Singidunum University, 160622 Beograd, Serbia;
| | - Georgios Tsaramirsis
- Higher Colleges of Technology, Abu Dhabi Women’s College, Abu Dhabi 25026, United Arab Emirates;
| |
Collapse
|
19
|
Shim I, Kim W, Kim H, Lim YM, Shin H, Park KS, Yu SM, Kim YH, Sung HK, Eom IC, Kim P, Yu SD. Comparative Cytotoxicity Study of PM2.5 and TSP Collected from Urban Areas. TOXICS 2021; 9:toxics9070167. [PMID: 34357910 PMCID: PMC8309706 DOI: 10.3390/toxics9070167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 01/21/2023]
Abstract
Ambient particulate matter 2.5 (PM2.5) and total suspended particles (TSPs) are common airborne pollutants that cause respiratory and cardiovascular diseases. We investigated the differences of cytotoxicity and mechanism between PM2.5 and TSP activity in human alveolar epithelial A549 cells. Atmospheric samples from the central district of Seoul were collected and their chemical compositions were analyzed by inductively-coupled plasma mass spectrometry and ion chromatography. PM2.5 and TSP contained high concentrations of heavy metals (Cu, Fe, Zn, and Pb). The most abundant ions in PM2.5 were SO42-, NH4+, and NO3-. A549 cells were exposed to PM2.5 and TSP (25-200 µg/mL) for 24 h. TSP was more cytotoxic than PM2.5 per unit mass. PM2.5 induced oxidative stress, as evidenced by increased levels of a glutamate-cysteine ligase modifier, whereas low-concentration TSP increased hemeoxygenase-1 levels. PM2.5 and TSP did not affect c-Jun N-terminal kinase expression. The levels of nuclear factor erythroid 2-related factor 2 (Nrf2) in PM2.5- and TSP-treated cells decreased significantly in the cytosol and increased in the nucleus. Thus, Nrf2 may be a key transcription factor for detoxifying environmental airborne particles in A549 cells. TSP and PM2.5 could activate the protective Kelch-like ECH-associated protein 1/Nrf2 pathway in A549 cells.
Collapse
Affiliation(s)
- Ilseob Shim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 404-708, Korea; (W.K.); (H.K.); (Y.-M.L.); (K.S.P.); (S.M.Y.); (Y.H.K.); (H.K.S.); (I.-C.E.); (P.K.); (S.-D.Y.)
- Correspondence: ; Tel.: +82-032-560-8474
| | - Woong Kim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 404-708, Korea; (W.K.); (H.K.); (Y.-M.L.); (K.S.P.); (S.M.Y.); (Y.H.K.); (H.K.S.); (I.-C.E.); (P.K.); (S.-D.Y.)
| | - Haewon Kim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 404-708, Korea; (W.K.); (H.K.); (Y.-M.L.); (K.S.P.); (S.M.Y.); (Y.H.K.); (H.K.S.); (I.-C.E.); (P.K.); (S.-D.Y.)
| | - Yeon-Mi Lim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 404-708, Korea; (W.K.); (H.K.); (Y.-M.L.); (K.S.P.); (S.M.Y.); (Y.H.K.); (H.K.S.); (I.-C.E.); (P.K.); (S.-D.Y.)
| | - Hyejung Shin
- Climate and Air Quality Research Department, National Institute of Environmental Research, Incheon 404-708, Korea;
| | - Kwang Su Park
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 404-708, Korea; (W.K.); (H.K.); (Y.-M.L.); (K.S.P.); (S.M.Y.); (Y.H.K.); (H.K.S.); (I.-C.E.); (P.K.); (S.-D.Y.)
| | - Seok Min Yu
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 404-708, Korea; (W.K.); (H.K.); (Y.-M.L.); (K.S.P.); (S.M.Y.); (Y.H.K.); (H.K.S.); (I.-C.E.); (P.K.); (S.-D.Y.)
| | - Young Hee Kim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 404-708, Korea; (W.K.); (H.K.); (Y.-M.L.); (K.S.P.); (S.M.Y.); (Y.H.K.); (H.K.S.); (I.-C.E.); (P.K.); (S.-D.Y.)
| | - Hwa Kyung Sung
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 404-708, Korea; (W.K.); (H.K.); (Y.-M.L.); (K.S.P.); (S.M.Y.); (Y.H.K.); (H.K.S.); (I.-C.E.); (P.K.); (S.-D.Y.)
| | - Ig-Chun Eom
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 404-708, Korea; (W.K.); (H.K.); (Y.-M.L.); (K.S.P.); (S.M.Y.); (Y.H.K.); (H.K.S.); (I.-C.E.); (P.K.); (S.-D.Y.)
| | - Pilje Kim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 404-708, Korea; (W.K.); (H.K.); (Y.-M.L.); (K.S.P.); (S.M.Y.); (Y.H.K.); (H.K.S.); (I.-C.E.); (P.K.); (S.-D.Y.)
| | - Seung-Do Yu
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 404-708, Korea; (W.K.); (H.K.); (Y.-M.L.); (K.S.P.); (S.M.Y.); (Y.H.K.); (H.K.S.); (I.-C.E.); (P.K.); (S.-D.Y.)
| |
Collapse
|
20
|
Naveed M, Naeem M, ur Rahman M, Gul Hilal M, Kakakhel M, Ali G, Hassan A. Review of potential risk groups for coronavirus disease 2019 (COVID-19). New Microbes New Infect 2021; 41:100849. [PMID: 33614041 PMCID: PMC7879740 DOI: 10.1016/j.nmni.2021.100849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/17/2021] [Accepted: 02/01/2021] [Indexed: 01/08/2023] Open
Abstract
The current pandemic of coronavirus disease 19 (COVID-19) is a global issue caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Studies have revealed that this virus results in poorer consequences and a higher rate of mortality in older adults and those with comorbidities such as cardiovascular disease, hypertension, diabetes and prolonged respiratory illness. In this review, we discuss in detail the potential groups at risk of COVID-19 and outline future recommendations to mitigate community transmission of COVID-19. The rate of COVID-19 was high in healthcare workers, smokers, older adults, travellers and pregnant women. Furthermore, patients with severe medical complications such as heart disease, hypertension, respiratory illness, diabetes mellitus and cancer are at higher risk of disease severity and mortality. Therefore, special effort and devotion are needed to diminish the threat of SARS-CoV-2 infection. Proper vaccination, use of sanitizers for handwashing and complete lockdown are recommended to mitigate the chain of COVID-19 transmission.
Collapse
Affiliation(s)
- M. Naveed
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Tianshui Road No. 222, Lanzhou, 730000, China
| | - M. Naeem
- Department of Microbiology, University of Swabi, Khyber PakhtunKhwa, Pakistan
| | - M. ur Rahman
- College of Life Sciences, Northwest University, Xian, Shaanxi Province, 710069, China
| | - M. Gul Hilal
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - M.A. Kakakhel
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - G. Ali
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - A. Hassan
- Bioengineering College of Chongqing University, Chongqing, China
| |
Collapse
|
21
|
Aesculetin Inhibits Airway Thickening and Mucus Overproduction Induced by Urban Particulate Matter through Blocking Inflammation and Oxidative Stress Involving TLR4 and EGFR. Antioxidants (Basel) 2021; 10:antiox10030494. [PMID: 33809902 PMCID: PMC8004275 DOI: 10.3390/antiox10030494] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 12/28/2022] Open
Abstract
Particulate matter (PM) is a mixture of solid and liquid air pollutant particles suspended in the air, varying in composition, size, and physical features. PM is the most harmful form of air pollution due to its ability to penetrate deep into the lungs and blood streams, causing diverse respiratory diseases. Aesculetin, a coumarin derivative present in the Sancho tree and chicory, is known to have antioxidant and anti-inflammatory effects in the vascular and immune system. However, its effect on PM-induced airway thickening and mucus hypersecretion is poorly understood. The current study examined whether naturally-occurring aesculetin inhibited airway thickening and mucus hypersecretion caused by urban PM10 (uPM10, particles less than 10 μm). Mice were orally administrated with 10 mg/kg aesculetin and exposed to 6 μg/mL uPM10 for 8 weeks. To further explore the mechanism(s) involved in inhibition of uPM10-induced mucus hypersecretion by aesculetin, bronchial epithelial BEAS-2B cells were treated with 1–20 µM aesculetin in the presence of 2 μg/mL uPM10. Oral administration of aesculetin attenuated collagen accumulation and mucus hypersecretion in the small airways inflamed by uPM10. In addition, aesculetin inhibited uPM10-evoked inflammation and oxidant production in lung tissues. Further, aesculetin accompanied the inhibition of induction of bronchial epithelial toll-like receptor 4 (TLR4) and epidermal growth factor receptor (EFGR) elevated by uPM10. The inhibition of TLR4 and EGFR accompanied bronchial mucus hypersecretion in the presence of uPM10. Oxidative stress was responsible for the epithelial induction of TLR4 and EGFR, which was disrupted by aesculetin. These results demonstrated that aesculetin ameliorated airway thickening and mucus hypersecretion by uPM10 inhalation by inhibiting pulmonary inflammation via oxidative stress-stimulated TLR4 and EGFR. Therefore, aesculetin may be a promising agent for treating airway mucosa-associated disorders elicited by urban coarse particulates.
Collapse
|
22
|
van der Valk JPM, In 't Veen JCCM. The Interplay Between Air Pollution and Coronavirus Disease (COVID-19). J Occup Environ Med 2021; 63:e163-e167. [PMID: 33443394 PMCID: PMC7934331 DOI: 10.1097/jom.0000000000002143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
| | - Johannes C C M In 't Veen
- Department of Pulmonary Medicine, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands, Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
23
|
The Impact of Air Pollution on Neurodegenerative Diseases. Ther Drug Monit 2021; 43:69-78. [PMID: 33009291 DOI: 10.1097/ftd.0000000000000818] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 09/23/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND With the development of industrialization in human society, ambient pollutants are becoming more harmful to human health. Epidemiological and toxicological studies indicate that a close relationship exists between particulate matter with a diameter ≤2.5 µm (PM2.5) and neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). To further confirm the relationship, we focus on possible relevant mechanisms of oxidative stress and neuroinflammation underlying the association between PM2.5 and neurodegenerative diseases in the review. METHODS A literature search was performed on the studies about PM2.5 and neurodegenerative diseases via PubMed. A total of 113 articles published were selected, and 31 studies were included. RESULTS PM2.5 can enter the central nervous system through 2 main pathways, the blood-brain barrier and olfactory neurons. The inflammatory response and oxidative stress are 2 primary mechanisms via which PM2.5 leads to toxicity in the brain. PM2.5 abnormally activates microglia, inducing the neuroinflammatory process. Inflammatory markers such as IL-1β play an essential role in neurodegenerative diseases such as AD and PD. Moreover, the association between lipid mechanism disorders related to PM2.5 and neurodegenerative diseases has been gaining momentum. CONCLUSIONS In conclusion, PM2.5 could significantly increase the risk of neurological disorders, such as AD and PD. Furthermore, any policy aimed at reducing air-polluting emissions and increasing air quality would be protective in human beings.
Collapse
|
24
|
The Inducible Role of Ambient Particulate Matter in Cancer Progression via Oxidative Stress-Mediated Reactive Oxygen Species Pathways: A Recent Perception. Cancers (Basel) 2020; 12:cancers12092505. [PMID: 32899327 PMCID: PMC7563781 DOI: 10.3390/cancers12092505] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Particulate matter, especially the fine fraction PM2.5, is officially stated as carcinogenic to human. There are compelling evidences on the association between PM2.5 exposure and lung cancer, and there are also some preliminary data reporting the significant links between this fraction with non-lung cancers. The underlying mechanisms remain unclear. Further studies related to such scope are highly required. The purpose of this work is to systemically analyze recent findings concerning the relationship between PM2.5 and cancer, and to thoroughly present the oxidative stress pathways mediated by reactive oxygen species as the key mechanism for carcinogenesis induced by PM2.5. This will provide a more comprehensive and updated knowledge regarding carcinogenic capacity of PM2.5 to both clinicians and public health workers, contributing to preventive and therapeutic strategies to fight against cancer in human. Abstract Cancer is one of the leading causes of premature death and overall death in the world. On the other hand, fine particulate matter, which is less than 2.5 microns in aerodynamic diameter, is a global health problem due to its small diameter but high toxicity. Accumulating evidence has demonstrated the positive associations between this pollutant with both lung and non-lung cancer processes. However, the underlying mechanisms are yet to be elucidated. The present review summarizes and analyzes the most recent findings on the relationship between fine particulate matter and various types of cancer along with the oxidative stress mechanisms as its possible carcinogenic mechanisms. Also, promising antioxidant therapies against cancer induced by this poison factor are discussed.
Collapse
|
25
|
Comunian S, Dongo D, Milani C, Palestini P. Air Pollution and Covid-19: The Role of Particulate Matter in the Spread and Increase of Covid-19's Morbidity and Mortality. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E4487. [PMID: 32580440 PMCID: PMC7345938 DOI: 10.3390/ijerph17124487] [Citation(s) in RCA: 256] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023]
Abstract
Sars-cov-2 virus (Covid-19) is a member of the coronavirus family and is responsible for the pandemic recently declared by the World Health Organization. A positive correlation has been observed between the spread of the virus and air pollution, one of the greatest challenges of our millennium. Covid-19 could have an air transmission and atmospheric particulate matter (PM) could create a suitable environment for transporting the virus at greater distances than those considered for close contact. Moreover, PM induces inflammation in lung cells and exposure to PM could increase the susceptibility and severity of the Covid-19 patient symptoms. The new coronavirus has been shown to trigger an inflammatory storm that would be sustained in the case of pre-exposure to polluting agents. In this review, we highlight the potential role of PM in the spread of Covid-19, focusing on Italian cities whose PM daily concentrations were found to be higher than the annual average allowed during the months preceding the epidemic. Furthermore, we analyze the positive correlation between the virus spread, PM, and angiotensin-converting enzyme 2 (ACE2), a receptor involved in the entry of the virus into pulmonary cells and inflammation.
Collapse
Affiliation(s)
- Silvia Comunian
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy;
| | | | - Chiara Milani
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
- NeuroMi, Milan Centre for Neuroscience, University of Milano-Bicocca, 20900 Monza, Italy
| | - Paola Palestini
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
- NeuroMi, Milan Centre for Neuroscience, University of Milano-Bicocca, 20900 Monza, Italy
- POLARIS Research Centre, University of Milano-Bicocca, 20900 Monza, Italy
| |
Collapse
|
26
|
Exposure to Air Pollution Exacerbates Inflammation in Rats with Preexisting COPD. Mediators Inflamm 2020; 2020:4260204. [PMID: 32454790 PMCID: PMC7231193 DOI: 10.1155/2020/4260204] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022] Open
Abstract
Particulate matter with an aerodynamic diameter equal or less than 2.5 micrometers (PM2.5) is associated with the development of chronic obstructive pulmonary disease (COPD). The mechanisms by which PM2.5 accelerates disease progression in COPD are poorly understood. In this study, we aimed to investigate the effect of PM2.5 on lung injury in rats with hallmark features of COPD. Cardinal features of human COPD were induced in a rat model by repeated cigarette smoke inhalation and bacterial infection for 8 weeks. Then, from week 9 to week 16, some of these rats with COPD were subjected to real-time concentrated atmospheric PM2.5. Lung function, pathology, inflammatory cytokines, oxidative stress, and mucus and collagen production were measured. As expected, the COPD rats had developed emphysema, inflammation, and deterioration in lung function. PM2.5 exposure resulted in greater lung function decline and histopathological changes, as reflected by increased Mucin (MUC) 5ac, MUC5b, Collagen I, Collagen III, and the profibrotic cytokine α-smooth muscle-actin (SMA), transforming growth factor- (TGF-) β1 in lung tissues. PM2.5 also aggravated inflammation, increasing neutrophils and eosinophils in bronchoalveolar lavage fluid (BALF) and cytokines including Interleukin- (IL-) 1β, granulocyte-macrophage colony-stimulating factor (GM-CSF), and IL-4. The likely mechanism is through oxidative stress as antioxidants levels were decreased, whereas oxidants were increased, indicating a detrimental shift in the oxidant-antioxidant balance. Altogether, these results suggest that PM2.5 exposure could promote the development of COPD by impairing lung function and exacerbating pulmonary injury, and the potential mechanisms are related to inflammatory response and oxidative stress.
Collapse
|
27
|
Wang C, Yan B, Zhang L. The epithelium-derived inflammatory mediators of chronic rhinosinusitis with nasal polyps. Expert Rev Clin Immunol 2020; 16:293-310. [PMID: 31986923 DOI: 10.1080/1744666x.2020.1723417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Chengshuo Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Bing Yan
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Luo Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
28
|
dos Santos JDMB, Foster R, Jonckheere AC, Rossi M, Luna Junior LA, Katekaru CM, de Sá MC, Pagani LG, de Almeida FM, Amaral JDB, Vieira RDP, Bachi ALL, Bullens DMA, Vaisberg M. Outdoor Endurance Training with Air Pollutant Exposure Versus Sedentary Lifestyle: A Comparison of Airway Immune Responses. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:4418. [PMID: 31726719 PMCID: PMC6887780 DOI: 10.3390/ijerph16224418] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/07/2019] [Accepted: 11/09/2019] [Indexed: 12/26/2022]
Abstract
Although regular exercise-training improves immune/inflammatory status, the influence of air pollutants exposure during outdoor endurance training compared to a sedentary lifestyle has not yet been clarified. This study aimed to compare the immune/inflammatory responses in the airways of street runners and sedentary people after acute and chronic particulate matter (PM) exposure. Forty volunteers (street runners (RUN, n = 20); sedentary people (SED, n = 20)) were evaluated 1 (acute) and 10 (chronic) weeks after PM exposure. Cytokines [interferon (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-10, IL-13, and IL-17A] in nasal lavage fluid, salivary antibacterial peptides (lactoferrin (LTF), cathelicidin (LL-37), defensin-α 1-3), and secretory immunoglobulin A (SIgA), plasma club cell protein (CC16), and fractional exhaled nitric oxide (FeNO) were analyzed. After acute exposure, the RUN group showed lower levels of IL-13, IL-10, and FeNO, but higher defensin-α than the SED group. After chronic exposure, the RUN group showed elevation of IFN-γ, IL-10, IL-17A, and a decrease of FeNO levels, whereas the SED group showed elevation of TNF-α, IL-6, IL-10, and a decrease of IL-13 levels. Comparing these groups, the RUN group showed higher levels of SIgA and LTF, and lower FeNO levels than the SED group. In relation to the Th immune response analysis after acute and chronic PM exposure, the RUN group showed a pattern associated with Th1, while in the SED group, a Th2 pattern was found. Both groups showed also a Th17 immune response pattern. Our results allow us to suggest that the immune/inflammatory status of the respiratory tract after acute and chronic PM exposure was improved by the long-standing regular practice of outdoor endurance exercise compared to a sedentary lifestyle.
Collapse
Affiliation(s)
- Juliana de Melo Batista dos Santos
- ENT Lab, Department of Otorhinolaryngology, Federal University of São Paulo (UNIFESP), Rua dos Otonis, 700, Piso superior/Second floor, Sao Paulo SP CEP 04025-002, Brazil
| | - Roberta Foster
- ENT Lab, Department of Otorhinolaryngology, Federal University of São Paulo (UNIFESP), Rua dos Otonis, 700, Piso superior/Second floor, Sao Paulo SP CEP 04025-002, Brazil
- Method Faculty of Sao Paulo (FAMESP), Av. Jabaquara, 1314, Sao Paulo SP 04046-200, Brazil
| | - Anne-Charlotte Jonckheere
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, UZ Herestraat 49 box 811, 3000 Leuven, Belgium
| | - Marcelo Rossi
- ENT Lab, Department of Otorhinolaryngology, Federal University of São Paulo (UNIFESP), Rua dos Otonis, 700, Piso superior/Second floor, Sao Paulo SP CEP 04025-002, Brazil
| | - Luiz Antonio Luna Junior
- ENT Lab, Department of Otorhinolaryngology, Federal University of São Paulo (UNIFESP), Rua dos Otonis, 700, Piso superior/Second floor, Sao Paulo SP CEP 04025-002, Brazil
| | - Catherine Machado Katekaru
- ENT Lab, Department of Otorhinolaryngology, Federal University of São Paulo (UNIFESP), Rua dos Otonis, 700, Piso superior/Second floor, Sao Paulo SP CEP 04025-002, Brazil
| | - Matheus Cavalcante de Sá
- ENT Lab, Department of Otorhinolaryngology, Federal University of São Paulo (UNIFESP), Rua dos Otonis, 700, Piso superior/Second floor, Sao Paulo SP CEP 04025-002, Brazil
| | - Lucas Guimarães Pagani
- ENT Lab, Department of Otorhinolaryngology, Federal University of São Paulo (UNIFESP), Rua dos Otonis, 700, Piso superior/Second floor, Sao Paulo SP CEP 04025-002, Brazil
| | - Francine Maria de Almeida
- Medicine School, São Paulo University, Av. Dr. Arnaldo, 455—Cerqueira César, São Paulo SP CEP 01246-903, Brazil
| | - Jônatas do Bussador Amaral
- ENT Lab, Department of Otorhinolaryngology, Federal University of São Paulo (UNIFESP), Rua dos Otonis, 700, Piso superior/Second floor, Sao Paulo SP CEP 04025-002, Brazil
| | - Rodolfo de Paula Vieira
- Post-graduation Program in Science of Human and Rehabilitation, Federal University of São Paulo (UNIFESP), Av. Ana Costa, 95—Vila Mathias, Santos SP CEP 11060-001, Brazil
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), Rua Pedro Ernesto 240, São José dos Campos SP CEP 12245-520, Brazil
- Post-graduation Program in Bioengineering and Biomedical Engineering, Universidade Brasil, Rua Carolina Fonseca, 584—Itaquera, São Paulo SP CEP 08230-030, Brazil
- School of Medicine, Anhembi Morumbi University, R. Jaceru, 247, São José dos Campos SP CEP 04705-000, Brazil
| | - Andre Luis Lacerda Bachi
- ENT Lab, Department of Otorhinolaryngology, Federal University of São Paulo (UNIFESP), Rua dos Otonis, 700, Piso superior/Second floor, Sao Paulo SP CEP 04025-002, Brazil
- Method Faculty of Sao Paulo (FAMESP), Av. Jabaquara, 1314, Sao Paulo SP 04046-200, Brazil
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), Rua Pedro Ernesto 240, São José dos Campos SP CEP 12245-520, Brazil
- Post-graduation Program in Bioengineering and Biomedical Engineering, Universidade Brasil, Rua Carolina Fonseca, 584—Itaquera, São Paulo SP CEP 08230-030, Brazil
| | - Dominique Magdalena A Bullens
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, UZ Herestraat 49 box 811, 3000 Leuven, Belgium
- Clinical Division of Pediatrics, UZ Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Mauro Vaisberg
- ENT Lab, Department of Otorhinolaryngology, Federal University of São Paulo (UNIFESP), Rua dos Otonis, 700, Piso superior/Second floor, Sao Paulo SP CEP 04025-002, Brazil
| |
Collapse
|