1
|
Zhou M, Liu S, Yuan F, Li J, Zhou M, Huang J, Zhang Y, Liang Q. Isomeric 2-isobutylmalate derivatives with anti-pulmonary fibrosis effects from the leaves of Bletilla striata via LC-MS/MS-based molecular networking. Bioorg Chem 2025; 159:108351. [PMID: 40117752 DOI: 10.1016/j.bioorg.2025.108351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/23/2025]
Abstract
Based on the LC-MS/MS molecular networking strategy, nine undescribed 2-isobutylmalate derivatives, namely bletistrosides M-U (compounds 1-7, 9, and 11), together with two known analogues (compounds 8 and 10), were isolated and identified from the leaves of Bletilla striata. Their structures with absolute configurations were deduced from spectroscopic data, acidic hydrolysis, and comparison with reported compounds. Compounds 1/2, 3/4, 5/6, and 7/8 represented four pairs of Z/E isomers regarding cinnamoyl groups, and each pair underwent interconversion under UV radiation at 254 nm. Biologically, compounds 1, 2, and 10 exhibited anti-pulmonary fibrosis effects against bleomycin-stimulated cell injury in A549 cells. Further investigations demonstrated that the anti-pulmonary fibrosis potential of 2 was related to the inhibition of apoptosis and epithelial-mesenchymal transition by blocking the Bax/Bcl-2, TGF-β1/Smad2/3, and PI3K/AKT signaling pathways, while concurrently enhancing the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Ming Zhou
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, People's Republic of China
| | - Si Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, People's Republic of China
| | - Fang Yuan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, People's Republic of China
| | - Jun Li
- College of Pharmacy, South-Central Minzu University, Wuhan 430074, People's Republic of China
| | - Mengchen Zhou
- National Demonstration Center for Experimental Basic Medical Education, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Junfeng Huang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, People's Republic of China
| | - Yanjun Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, People's Republic of China
| | - Qiong Liang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, People's Republic of China.
| |
Collapse
|
2
|
Yang C, Lian H, Luo H, Song C, Lin J, Liang Z, Yang Y, Hong X, Li S, Chen Y, Wu L, Yan L, Chen S, Ren M. The Diminution of R-Loops Generated by LncRNA DSP-AS1 Inhibits DSP Gene Transcription to Impede the Re-Epithelialization During Diabetic Wound Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406021. [PMID: 39921255 PMCID: PMC11948065 DOI: 10.1002/advs.202406021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 11/26/2024] [Indexed: 02/10/2025]
Abstract
Re-epithelialization constitutes a critical stage in the intricate process of wound healing, yet its mechanisms in the context of diabetic wounds remain elusive. In this study, the role of the mesenchymal-epithelial transition (MET) vis-à-vis the epithelial-mesenchymal transition (EMT) of keratinocytes in diabetic wound re-epithelialization is investigated. The findings reveal an impediment in the MET process, rather than EMT, which significantly compromised re-epithelialization in diabetic wounds. Furthermore, Desmoplakin (DSP) gene expression, encoding a key desmosome protein, is down-regulated in diabetic rats. This down-regulation coincided with aberrant hypo-demethylation of the DSP promoter. The inhibition of DSP expression is linked to reduced occupancy of Ten-eleven translocation 3 (TET3) at the DSP promoter, consequently suppressing TET3-dependent DNA demethylation. Additionally, a novel lncRNA termed DSP-AS1is identified, which is antisense to DSP. Notably, DSP-AS1 expression is down-regulated in diabetic skin wounds, and it interacted with TET3, a DNA demethylase. Notably, DSP-AS1 is found to form R-loops, triple-stranded DNA:RNA hybrids, at the DSP promoter, facilitating TET3 localization to the DSP promoter. Collectively, the findings suggest that reduced R-loop formation by DSP-AS1 impairs DSP gene transcription by repressing TET3-mediated DNA demethylation. This disruption of the orchestrated re-epithelialization process contributes to refractory diabetic wound healing.
Collapse
Affiliation(s)
- Chen Yang
- Department of EndocrinologySun Yat‐sen Memorial HospitalSun Yat‐sen University107 Yanjiang West RoadGuangzhou510120China
- Guang Dong Clinical Research Center for Metabolic DiseasesGuangzhou510120China
- Department of Endocrinology and MetabolismZhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University)Zhuhai519000China
| | - Hong Lian
- Department of EndocrinologySun Yat‐sen Memorial HospitalSun Yat‐sen University107 Yanjiang West RoadGuangzhou510120China
- Guang Dong Clinical Research Center for Metabolic DiseasesGuangzhou510120China
| | - Hengli Luo
- Department of EndocrinologySun Yat‐sen Memorial HospitalSun Yat‐sen University107 Yanjiang West RoadGuangzhou510120China
- Guang Dong Clinical Research Center for Metabolic DiseasesGuangzhou510120China
| | - Chenlin Song
- Department of Chemical and Systems BiologyStanford UniversityStanfordCA94305USA
| | - Jianghong Lin
- Department of EndocrinologySun Yat‐sen Memorial HospitalSun Yat‐sen University107 Yanjiang West RoadGuangzhou510120China
- Guang Dong Clinical Research Center for Metabolic DiseasesGuangzhou510120China
| | - Zhuoxian Liang
- Department of EndocrinologySun Yat‐sen Memorial HospitalSun Yat‐sen University107 Yanjiang West RoadGuangzhou510120China
- Guang Dong Clinical Research Center for Metabolic DiseasesGuangzhou510120China
| | - Yulin Yang
- Department of EndocrinologySun Yat‐sen Memorial HospitalSun Yat‐sen University107 Yanjiang West RoadGuangzhou510120China
- Guang Dong Clinical Research Center for Metabolic DiseasesGuangzhou510120China
| | - Xiaosi Hong
- Department of EndocrinologySun Yat‐sen Memorial HospitalSun Yat‐sen University107 Yanjiang West RoadGuangzhou510120China
- Guang Dong Clinical Research Center for Metabolic DiseasesGuangzhou510120China
| | - Shaohua Li
- Wards of CadresZhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University)Zhuhai519000China
| | - Yanbo Chen
- Department of EndocrinologySun Yat‐sen Memorial HospitalSun Yat‐sen University107 Yanjiang West RoadGuangzhou510120China
- Guang Dong Clinical Research Center for Metabolic DiseasesGuangzhou510120China
| | - Liangyan Wu
- Department of EndocrinologySun Yat‐sen Memorial HospitalSun Yat‐sen University107 Yanjiang West RoadGuangzhou510120China
- Guang Dong Clinical Research Center for Metabolic DiseasesGuangzhou510120China
| | - Li Yan
- Department of EndocrinologySun Yat‐sen Memorial HospitalSun Yat‐sen University107 Yanjiang West RoadGuangzhou510120China
- Guang Dong Clinical Research Center for Metabolic DiseasesGuangzhou510120China
| | - Sifan Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineMedical Research CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Nanhai Translational Innovation Center of Precision ImmunologySun Yat‐sen Memorial HospitalFoshan528200China
| | - Meng Ren
- Department of EndocrinologySun Yat‐sen Memorial HospitalSun Yat‐sen University107 Yanjiang West RoadGuangzhou510120China
- Guang Dong Clinical Research Center for Metabolic DiseasesGuangzhou510120China
| |
Collapse
|
3
|
Fricke-Galindo I, García-Carmona S, Bautista-Becerril B, Pérez-Rubio G, Buendia-Roldan I, Chávez-Galán L, Nava-Quiroz KJ, Alanis-Ponce J, Reséndiz-Hernández JM, Blanco-Aguilar E, Erives-Sedano JI, Méndez-Velasco Y, Osuna-Espinoza GE, Salvador-Hernández F, Segura-Castañeda R, Solano-Candia UN, Falfán-Valencia R. Genetic Variants in Genes Related to Lung Function and Interstitial Lung Diseases Are Associated with Worse Outcomes in Severe COVID-19 and Lung Performance in the Post-COVID-19 Condition. Int J Mol Sci 2025; 26:2046. [PMID: 40076669 PMCID: PMC11900979 DOI: 10.3390/ijms26052046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Genetic variants related to susceptibility to chronic respiratory conditions such as interstitial lung disease (ILD) could share critical pathways in the pathogenesis of COVID-19 and be implicated in COVID-19 outcomes and post-COVID-19. We aimed to identify the participation of genetic variants in lung function and ILD genes in severe COVID-19 outcomes and post-COVID-19 condition. We studied 936 hospitalized patients with COVID-19. The requirement of invasive mechanical ventilation (IMV) and the acute respiratory distress syndrome (ARDS) classification were considered. The mortality was assessed as the in-hospital death. The post-COVID-19 group included 102 patients evaluated for pulmonary function tests four times during the year after discharge. Five variants (FAM13A rs2609255, DSP rs2076295, TOLLIP rs111521887, TERT rs2736100, and THSD4 rs872471) were genotyped using TaqMan assays. A multifactor dimensionality reduction method (MDR) was performed for epistasis estimation. The TERT rs2736100 and THSD4 rs872471 variants were associated with differential risk for ARDS severity (moderate vs. severe, CC + CA, p = 0.044, OR = 0.66, 95% CI = 0.44-0.99; and GG p = 0.034, OR = 2.22, 95% CI = 1.04-4.72, respectively). These variants and FAM13A rs2609255 were also related to pulmonary function post-COVID-19. The MDR analysis showed differential epistasis and correlation of the genetic variants included in this study. The well-known variants in recognized genes related to pulmonary function worsening and interstitial disorders are related to the severity and mortality of COVID-19 and lung performance in the post-COVID-19 condition.
Collapse
Affiliation(s)
- Ingrid Fricke-Galindo
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (S.G.-C.); (B.B.-B.); (G.P.-R.); (J.A.-P.)
| | - Salvador García-Carmona
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (S.G.-C.); (B.B.-B.); (G.P.-R.); (J.A.-P.)
| | - Brandon Bautista-Becerril
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (S.G.-C.); (B.B.-B.); (G.P.-R.); (J.A.-P.)
| | - Gloria Pérez-Rubio
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (S.G.-C.); (B.B.-B.); (G.P.-R.); (J.A.-P.)
| | - Ivette Buendia-Roldan
- Translational Research Laboratory on Aging and Pulmonary Fibrosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico;
| | - Leslie Chávez-Galán
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico;
| | - Karol J. Nava-Quiroz
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (S.G.-C.); (B.B.-B.); (G.P.-R.); (J.A.-P.)
| | - Jesús Alanis-Ponce
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (S.G.-C.); (B.B.-B.); (G.P.-R.); (J.A.-P.)
| | - Juan M. Reséndiz-Hernández
- Laboratorio Clínico, Centro Especializado de Atención a Personas con Discapacidad Visual, Instituto de Salud del Estado de México, Naucalpan 53000, Mexico State, Mexico;
| | - Esther Blanco-Aguilar
- Facultad de Medicina Benemérita, Universidad Autónoma de Puebla, Puebla de Zaragoza 72420, Puebla, Mexico;
| | - Jessica I. Erives-Sedano
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Chihuahua, Mexico;
| | - Yashohara Méndez-Velasco
- Unidad Académica Profesional Chimalhuacán, Universidad Autónoma del Estado de México, Nezahualcóyotl 56353, Mexico State, Mexico;
| | - Grecia E. Osuna-Espinoza
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán Rosales 80030, Sinaloa, Mexico;
| | - Fidel Salvador-Hernández
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico;
| | - Rubén Segura-Castañeda
- Facultad Interdisciplinaria de Ciencias Biológicas y de Salud, Universidad de Sonora, Hermosillo Sonora 83000, Sonora, Mexico;
| | - Uriel N. Solano-Candia
- Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58000, Michoacán, Mexico;
| | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (S.G.-C.); (B.B.-B.); (G.P.-R.); (J.A.-P.)
| |
Collapse
|
4
|
Bridges JP, Vladar EK, Kurche JS, Krivoi A, Stancil IT, Dobrinskikh E, Hu Y, Sasse SK, Lee JS, Blumhagen RZ, Yang IV, Gerber AN, Peljto AL, Evans CM, Redente EF, Riches DW, Schwartz DA. Progressive lung fibrosis: reprogramming a genetically vulnerable bronchoalveolar epithelium. J Clin Invest 2025; 135:e183836. [PMID: 39744946 PMCID: PMC11684817 DOI: 10.1172/jci183836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is etiologically complex, with well-documented genetic and nongenetic origins. In this Review, we speculate that the development of IPF requires two hits: the first establishes a vulnerable bronchoalveolar epithelium, and the second triggers mechanisms that reprogram distal epithelia to initiate and perpetuate a profibrotic phenotype. While vulnerability of the bronchoalveolar epithelia is most often driven by common or rare genetic variants, subsequent injury of the bronchoalveolar epithelia results in persistent changes in cell biology that disrupt tissue homeostasis and activate fibroblasts. The dynamic biology of IPF can best be contextualized etiologically and temporally, including stages of vulnerability, early disease, and persistent and progressive lung fibrosis. These dimensions of IPF highlight critical mechanisms that adversely disrupt epithelial function, activate fibroblasts, and lead to lung remodeling. Together with better recognition of early disease, this conceptual approach should lead to the development of novel therapeutics directed at the etiologic and temporal drivers of lung fibrosis that will ultimately transform the care of patients with IPF from palliative to curative.
Collapse
Affiliation(s)
- James P. Bridges
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Eszter K. Vladar
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jonathan S. Kurche
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veteran Affairs Medical Center, Aurora, Colorado, USA
| | - Andrei Krivoi
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ian T. Stancil
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, School of Medicine, Stanford, California, USA
| | - Evgenia Dobrinskikh
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Yan Hu
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sarah K. Sasse
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Joyce S. Lee
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rachel Z. Blumhagen
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, USA
| | - Ivana V. Yang
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Anthony N. Gerber
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Anna L. Peljto
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Christopher M. Evans
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veteran Affairs Medical Center, Aurora, Colorado, USA
| | - Elizabeth F. Redente
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - David W.H. Riches
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veteran Affairs Medical Center, Aurora, Colorado, USA
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - David A. Schwartz
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veteran Affairs Medical Center, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
5
|
Yao J, Li Y, Wang S, Dong X, Feng L, Gong X, Chen T, Lai L, Xu H, Jiang Z, Chen J, Xia H, Li G, Lou J. Exosomal proteomics and cytokine analysis distinguish silicosis cases from controls. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124469. [PMID: 38945194 DOI: 10.1016/j.envpol.2024.124469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Occupational silica exposure caused a serious disease burden of silicosis. There is currently a lack of sensitive and effective biomarkers for silicosis, and the pathogenesis of silicosis is unclear. Exosomes were significant in the pathogenesis of silicosis, and our study was carried out from exosomal proteomics and cytokine analysis. Firstly, the plasma levels of cytokines were detected using a Luminex multiplex assay, and the results indicated that the plasma levels of TNF-α, IL-6, CCL2, CXCL10, and PDGF-AB were significantly higher in silicosis patients than in silica-exposed workers and controls (p < 0.05). After correlation analysis, the plasma levels of cytokines were positively correlated with exosomal protein concentration. Secondly, data-independent acquisition (DIA) was performed on plasma-derived exosomes in the screening population, which identified 88, 151, 293, and 53 differentially expressed proteins (DEPs) in exposure/control, silicosis/control, silicosis/exposure, and silicosis stage Ⅲ/silicosis stage Ⅰ groups respectively. After parallel reaction monitoring (PRM) in an independent verification population, the results indicated that the changing trend of 15 DEPs was coincident in screening and verification results. The result of correlation analysis indicated that the plasma level of TNF-α was negatively correlated with the expression of exosomal DSP, KRT78, SERPINB12, and CALML5. The AUC of combined determination of TNF-α and CALML5 reached 0.900, with a sensitivity of 0.714 and a specificity of 0.933. Overall, our study revealed the exosomal proteomic profiling of silicosis patients, silica-exposed workers, and controls, indicating that exosomes were significant in the pathogenesis of silicosis. It also revealed that the combined of the plasma levels of cytokines and the expression of exosomal DEPs could increase determination efficiency. This study provided directions for the development of silicosis biomarkers and a scientific basis for the pathogenesis research of silicosis in the future.
Collapse
Affiliation(s)
- Jiahui Yao
- School of Public Health, Hangzhou Medical Collage, Hangzhou, Zhejiang Province, China
| | - Yongxin Li
- School of Public Health, Hangzhou Medical Collage, Hangzhou, Zhejiang Province, China
| | - Shujuan Wang
- Department of Occupational Medicine, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang Province, China
| | - Xiaowen Dong
- School of Public Health, Hangzhou Medical Collage, Hangzhou, Zhejiang Province, China
| | - Lingfang Feng
- School of Public Health, Hangzhou Medical Collage, Hangzhou, Zhejiang Province, China
| | - Xiaoxue Gong
- School of Public Health, Hangzhou Medical Collage, Hangzhou, Zhejiang Province, China
| | - Tiancheng Chen
- School of Public Health, Hangzhou Medical Collage, Hangzhou, Zhejiang Province, China
| | - Luqiao Lai
- School of Public Health, Hangzhou Medical Collage, Hangzhou, Zhejiang Province, China
| | - Huadong Xu
- School of Public Health, Hangzhou Medical Collage, Hangzhou, Zhejiang Province, China
| | - Zhaoqiang Jiang
- School of Public Health, Hangzhou Medical Collage, Hangzhou, Zhejiang Province, China
| | - Junfei Chen
- School of Public Health, Hangzhou Medical Collage, Hangzhou, Zhejiang Province, China
| | - Hailing Xia
- School of Public Health, Hangzhou Medical Collage, Hangzhou, Zhejiang Province, China
| | - Guohui Li
- Department of Occupational Medicine, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang Province, China.
| | - Jianlin Lou
- School of Public Health, Hangzhou Medical Collage, Hangzhou, Zhejiang Province, China; School of Medicine, and The First Affiliated Hospital, Huzhou University, Huzhou, China.
| |
Collapse
|
6
|
Wei C, Chan SF, Saguner AM, Brunckhorst C, Duru F, Marine JE, James CA, Calkins H, Judge DP, Shou W, Chen HSV. Desmoplakin mutations in cardiac fibroblasts cause TGFβ1-mediated pathological fibrogenesis in desmoplakin cardiomyopathy via beclin-1 regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612149. [PMID: 39314404 PMCID: PMC11418989 DOI: 10.1101/2024.09.09.612149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Background Pathological fibrosis is a major finding in cardiovascular diseases and can result in arrhythmia and heart failure. Desmosome gene mutations can lead to arrhythmogenic cardiomyopathy (ACM). Among ACM, pathogenic desmoplakin ( DSP ) variants cause a distinctive cardiomyopathy with excessive cardiac fibrosis that could precede ventricular dysfunction. DSP variants are also linked to other fibrotic diseases. Whether DSP plays any role in pathological fibrosis remain unknown. Methods Mesenchymal stromal cells (MSCs) are resident fibroblast-like cells that are responsible for fibrogenesis in most organs, including hearts. We first used unbiased genome-wide analyses to generate cardiac fibroblasts-like, induced pluripotent stem cell-derived MSCs from normal donors and ACM patients with DSP mutations. We then studied the fibrogenic responses of cardiac MSCs to transforming growth factor beta-1 (TGF-β1) using Western/Co-IP, autophagy assay, gene knockdowns/over-expressions, genomic analyses, mouse DSP knockdown models, immunostaining, and qPCR. Results TGFβ1 induced excessive accumulations of vimentin (VIM)/fibrillar collagens, and over-activated fibrotic genes in DSP- mutant MSCs when compared to normal MSCs. In normal MSCs, VIMs bind to wild-type DSP during normal fibrogenesis after TGFβ1. DSP- mutant MSCs exhibited a haplo-insufficient phenotype with increased DSP-unbound VIMs that sequestered beclin-1 (BECN1) from activating autophagy and caveolin-1 (CAV1)-mediated endocytosis. Decreased autophagy caused collagen accumulations and diminished CAV1 endocytosis resulted in abnormal CAV1 plaque formation that over-activated fibrotic genes [ COL1A1, COL3A1, and fibronectin ( FN )] via heightened p38 activities after TGFβ1. Genome-wide analysis and DSP knockdown in mouse fibroblasts confirmed this novel role of DSP mutations in pathological fibrosis. Overexpression of VIM-binding domains of DSP could suppress pathological fibrosis by increasing collagen autophagic degradation and decreasing fibrotic gene expressions. Conclusions Our data reveal that DSP deficiency in MSCs/fibroblasts leads to exaggerated fibrogenesis in DSP-cardiomyopathy by decreasing BECN1 availability for autophagy and CAV1-endocytosis. Overexpression of VIM binding domains of DSP could be a new strategy to treat pathological fibrosis.
Collapse
|
7
|
Adegunsoye A, Kropski JA, Behr J, Blackwell TS, Corte TJ, Cottin V, Glanville AR, Glassberg MK, Griese M, Hunninghake GM, Johannson KA, Keane MP, Kim JS, Kolb M, Maher TM, Oldham JM, Podolanczuk AJ, Rosas IO, Martinez FJ, Noth I, Schwartz DA. Genetics and Genomics of Pulmonary Fibrosis: Charting the Molecular Landscape and Shaping Precision Medicine. Am J Respir Crit Care Med 2024; 210:401-423. [PMID: 38573068 PMCID: PMC11351799 DOI: 10.1164/rccm.202401-0238so] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/04/2024] [Indexed: 04/05/2024] Open
Abstract
Recent genetic and genomic advancements have elucidated the complex etiology of idiopathic pulmonary fibrosis (IPF) and other progressive fibrotic interstitial lung diseases (ILDs), emphasizing the contribution of heritable factors. This state-of-the-art review synthesizes evidence on significant genetic contributors to pulmonary fibrosis (PF), including rare genetic variants and common SNPs. The MUC5B promoter variant is unusual, a common SNP that markedly elevates the risk of early and established PF. We address the utility of genetic variation in enhancing understanding of disease pathogenesis and clinical phenotypes, improving disease definitions, and informing prognosis and treatment response. Critical research gaps are highlighted, particularly the underrepresentation of non-European ancestries in PF genetic studies and the exploration of PF phenotypes beyond usual interstitial pneumonia/IPF. We discuss the role of telomere length, often critically short in PF, and its link to progression and mortality, underscoring the genetic complexity involving telomere biology genes (TERT, TERC) and others like SFTPC and MUC5B. In addition, we address the potential of gene-by-environment interactions to modulate disease manifestation, advocating for precision medicine in PF. Insights from gene expression profiling studies and multiomic analyses highlight the promise for understanding disease pathogenesis and offer new approaches to clinical care, therapeutic drug development, and biomarker discovery. Finally, we discuss the ethical, legal, and social implications of genomic research and therapies in PF, stressing the need for sound practices and informed clinical genetic discussions. Looking forward, we advocate for comprehensive genetic testing panels and polygenic risk scores to improve the management of PF and related ILDs across diverse populations.
Collapse
Affiliation(s)
- Ayodeji Adegunsoye
- Pulmonary/Critical Care, and
- Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, Illinois
| | - Jonathan A. Kropski
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
| | - Juergen Behr
- Department of Medicine V, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Comprehensive Pneumology Center Munich, member of the German Center for Lung Research (DZL), Munich, Germany
| | - Timothy S. Blackwell
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
| | - Tamera J. Corte
- Centre of Research Excellence in Pulmonary Fibrosis, Camperdown, New South Wales, Australia
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
- University of Sydney, Sydney, New South Wales, Australia
| | - Vincent Cottin
- National Reference Center for Rare Pulmonary Diseases (OrphaLung), Louis Pradel Hospital, Hospices Civils de Lyon, ERN-LUNG (European Reference Network on Rare Respiratory Diseases), Lyon, France
- Claude Bernard University Lyon, Lyon, France
| | - Allan R. Glanville
- Lung Transplant Unit, St. Vincent’s Hospital Sydney, Sydney, New South Wales, Australia
| | - Marilyn K. Glassberg
- Department of Medicine, Loyola Chicago Stritch School of Medicine, Chicago, Illinois
| | - Matthias Griese
- Department of Pediatric Pneumology, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University, German Center for Lung Research, Munich, Germany
| | - Gary M. Hunninghake
- Harvard Medical School, Boston, Massachusetts
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | | | - Michael P. Keane
- Department of Respiratory Medicine, St. Vincent’s University Hospital and School of Medicine, University College Dublin, Dublin, Ireland
| | - John S. Kim
- Department of Medicine, School of Medicine, and
| | - Martin Kolb
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Toby M. Maher
- Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, California
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Justin M. Oldham
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
| | | | | | - Fernando J. Martinez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York; and
| | - Imre Noth
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, Virginia
| | - David A. Schwartz
- Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado
| |
Collapse
|
8
|
Liu Y, Ma L, Riqing D, Qu J, Chen J, Zhandu D, Li B, Jiang M. Microbial Metagenomes and Host Transcriptomes Reveal the Dynamic Changes of Rumen Gene Expression, Microbial Colonization and Co-Regulation of Mineral Element Metabolism in Yaks from Birth to Adulthood. Animals (Basel) 2024; 14:1365. [PMID: 38731369 PMCID: PMC11083404 DOI: 10.3390/ani14091365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Yaks are the main pillar of plateau animal husbandry and the material basis of local herdsmen's survival. The level of mineral elements in the body is closely related to the production performance of yaks. In this study, we performed a comprehensive analysis of rumen epithelial morphology, transcriptomics and metagenomics to explore the dynamics of rumen functions, microbial colonization and functional interactions in yaks from birth to adulthood. Bacteria, eukaryotes, archaea and viruses colonized the rumen of yaks from birth to adulthood, with bacteria being the majority. Bacteroidetes and Firmicutes were the dominant phyla in five developmental stages, and the abundance of genus Lactobacillus and Fusobacterium significantly decreased with age. Glycoside hydrolase (GH) genes were the most highly represented in five different developmental stages, followed by glycosyltransferases (GTs) and carbohydrate-binding modules (CBMs), where the proportion of genes coding for CBMs increased with age. Integrating host transcriptome and microbial metagenome revealed 30 gene modules related to age, muscle layer thickness, nipple length and width of yaks. Among these, the MEmagenta and MEturquoise were positively correlated with these phenotypic traits. Twenty-two host genes involved in transcriptional regulation related to metal ion binding (including potassium, sodium, calcium, zinc, iron) were positively correlated with a rumen bacterial cluster 1 composed of Alloprevotella, Paludibacter, Arcobacter, Lactobacillus, Bilophila, etc. Therefore, these studies help us to understand the interaction between rumen host and microorganisms in yaks at different ages, and further provide a reliable theoretical basis for the development of feed and mineral element supplementation for yaks at different ages.
Collapse
Affiliation(s)
- Yili Liu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (Y.L.); (D.R.); (B.L.)
| | - Liangliang Ma
- College of Grassland Resources, Southwest Minzu University, Chengdu 610041, China;
| | - Daojie Riqing
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (Y.L.); (D.R.); (B.L.)
| | - Jiu Qu
- Agriculture and Rural Affairs Bureau of Naqu City, Naqu 852000, China; (J.Q.); (D.Z.)
| | - Jiyong Chen
- Yushu Prefecture Animal Disease Prevention and Control Center, Yushu 815000, China;
| | - Danzeng Zhandu
- Agriculture and Rural Affairs Bureau of Naqu City, Naqu 852000, China; (J.Q.); (D.Z.)
| | - Biao Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (Y.L.); (D.R.); (B.L.)
| | - Mingfeng Jiang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (Y.L.); (D.R.); (B.L.)
| |
Collapse
|
9
|
Werder RB, Zhou X, Cho MH, Wilson AA. Breathing new life into the study of COPD with genes identified from genome-wide association studies. Eur Respir Rev 2024; 33:240019. [PMID: 38811034 PMCID: PMC11134200 DOI: 10.1183/16000617.0019-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 05/31/2024] Open
Abstract
COPD is a major cause of morbidity and mortality globally. While the significance of environmental exposures in disease pathogenesis is well established, the functional contribution of genetic factors has only in recent years drawn attention. Notably, many genes associated with COPD risk are also linked with lung function. Because reduced lung function precedes COPD onset, this association is consistent with the possibility that derangements leading to COPD could arise during lung development. In this review, we summarise the role of leading genes (HHIP, FAM13A, DSP, AGER and TGFB2) identified by genome-wide association studies in lung development and COPD. Because many COPD genome-wide association study genes are enriched in lung epithelial cells, we focus on the role of these genes in the lung epithelium in development, homeostasis and injury.
Collapse
Affiliation(s)
- Rhiannon B Werder
- Murdoch Children's Research Institute, Melbourne, Australia
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrew A Wilson
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
10
|
Singh P, Guin D, Pattnaik B, Kukreti R. Mapping the genetic architecture of idiopathic pulmonary fibrosis: Meta-analysis and epidemiological evidence of case-control studies. Gene 2024; 895:147993. [PMID: 37977320 DOI: 10.1016/j.gene.2023.147993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/23/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a rare and devastating fibrotic lung disorder with unknown etiology. Although it is believed that genetic component is an important risk factor for IPF, a comprehensive understanding of its genetic landscape is lacking. Hence, we aimed to highlight the susceptibility genes and pathways implicated in IPF pathogenesis through a two-staged systematic literature search of genetic association studies on IPF, followed by meta-analysis and pathway enrichment analysis. METHODS This study was performed based on PRISMA guidelines (PROSPERO, registration number: CRD42022297970). The first search was performed (using PubMed and Web of Science) retrieving a total of 5642 articles, of which 52 were eligible for inclusion in the first stage. The second search was performed (using PubMed, Web of Science and Scopus) for ten polymorphisms, identified from the first search, with 2 or more studies. Finally, seven polymorphisms, [rs35705950/MUC5B, rs2736100/TERT, rs2609255/FAM13A, rs2076295/DSP, rs12610495/DPP9, rs111521887/TOLLIP and rs1800470/TGF-β1] qualified for meta-analyses. The epidemiological credibility was evaluated using Venice criteria. RESULTS From the systematic review, 222 polymorphisms in 118 genes showed a significant association with IPF susceptibility. Meta-analyses findings revealed significant association of rs35705950/T [OR = 3.92(3.26-4.57)], rs2609255/G [OR = 1.50(1.18-1.82)], rs2076295/G [OR = 1.19(0.82-1.756)], rs12610495/G [OR = 1.28(1.12-1.44)], rs2736100/C [OR = 0.68(0.54-0.82), rs111521887/G [OR = 1.34(1.06-1.61)] and suggestive evidence for rs1800470/T [OR = 1.08(0.82-1.34)] with IPF susceptibility. Four polymorphisms- rs35705950/MUC5B, rs2736100/TERT, rs2076295/DSP and rs111521887/TOLLIP, exhibited substantial epidemiological evidence supporting their association with IPF risk. Gene ontology and pathway enrichment analysis performed on IPF risk-associated genes identified a critical role of genes in mucin production, immune response and inflammation, host defence, cell-cell adhesion and telomere maintenance. CONCLUSIONS Our findings present the most prominent IPF-associated genetic risk variants involved in alveolar epithelial injuries (MUC5B, TERT, FAM13A, DSP, DPP9) and epithelial-mesenchymal transition (TOLLIP, TGF-β1), providing genetic and biological insights into IPF pathogenesis. However, further experimental research and human studies with larger sample sizes, diverse ethnic representation, and rigorous design are warranted.
Collapse
Affiliation(s)
- Pooja Singh
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC, Ghaziabad, Uttar Pradesh, India; Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
| | - Debleena Guin
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, New Delhi, India; Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
| | - Bijay Pattnaik
- Centre of Excellence for Translational Research in Asthma and Lung Diseases, CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India; Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Ritushree Kukreti
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC, Ghaziabad, Uttar Pradesh, India; Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India.
| |
Collapse
|
11
|
Toivola DM, Polari L, Schwerd T, Schlegel N, Strnad P. The keratin-desmosome scaffold of internal epithelia in health and disease - The plot is thickening. Curr Opin Cell Biol 2024; 86:102282. [PMID: 38000362 DOI: 10.1016/j.ceb.2023.102282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/11/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023]
Abstract
Keratin (K) intermediate filaments are attached to desmosomes and constitute the orchestrators of epithelial cell and tissue architecture. While their relevance in the epidermis is well recognized, our review focuses on their emerging importance in internal epithelia. The significance of keratin-desmosome scaffolds (KDSs) in the intestine is highlighted by transgenic mouse models and individuals with inflammatory bowel disease who display profound KDS alterations. In lung, high K8 expression defines a transitional cell subset during regeneration, and K8 variants are associated with idiopathic pulmonary fibrosis. Inherited variants in desmosomal proteins are overrepresented in idiopathic lung fibrosis, and familiar eosinophilic esophagitis. K18 serum fragments are established hepatocellular injury markers that correlate with the extent of histological inflammation. K17 expression is modified in multiple tumors, and K17 levels might be of prognostic relevance. These data should spur further studies on biological roles of these versatile tissue protectors and efforts on their therapeutic targeting.
Collapse
Affiliation(s)
- Diana M Toivola
- Cell Biology, Biosciences and InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland.
| | - Lauri Polari
- Cell Biology, Biosciences and InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland
| | - Tobias Schwerd
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Nicolas Schlegel
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Pavel Strnad
- Department of Internal Medicine III, University Hospital, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
12
|
Luo W, Gu Y, Fu S, Wang J, Zhang J, Wang Y. Emerging opportunities to treat idiopathic pulmonary fibrosis: Design, discovery, and optimizations of small-molecule drugs targeting fibrogenic pathways. Eur J Med Chem 2023; 260:115762. [PMID: 37683364 DOI: 10.1016/j.ejmech.2023.115762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common fibrotic form of idiopathic diffuse lung disease. Due to limited treatment options, IPF patients suffer from poor survival. About ten years ago, Pirfenidone (Shionogi, 2008; InterMune, 2011) and Nintedanib (Boehringer Ingelheim, 2014) were approved, greatly changing the direction of IPF drug design. However, limited efficacy and side effects indicate that neither can reverse the process of IPF. With insights into the occurrence of IPF, novel targets and agents have been proposed, which have fundamentally changed the treatment of IPF. With the next-generation agents, targeting pro-fibrotic pathways in the epithelial-injury model offers a promising approach. Besides, several next-generation IPF drugs have entered phase II/III clinical trials with encouraging results. Due to the rising IPF treatment requirements, there is an urgent need to completely summarize the mechanisms, targets, problems, and drug design strategies over the past ten years. In this review, we summarize known mechanisms, target types, drug design, and novel technologies of IPF drug discovery, aiming to provide insights into the future development and clinical application of next-generation IPF drugs.
Collapse
Affiliation(s)
- Wenxin Luo
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yilin Gu
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Siyu Fu
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Jifa Zhang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China.
| | - Yuxi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China.
| |
Collapse
|
13
|
Menon AA, Lee M, Ke X, Putman RK, Hino T, Rose JA, Duan F, Ash SY, Cho MH, O'Connor GT, Dupuis J, Hatabu H, Lenburg ME, Billatos ES, Hunninghake GM. Bronchial epithelial gene expression and interstitial lung abnormalities. Respir Res 2023; 24:245. [PMID: 37817229 PMCID: PMC10566143 DOI: 10.1186/s12931-023-02536-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/09/2023] [Indexed: 10/12/2023] Open
Abstract
INTRODUCTION Interstitial lung abnormalities (ILA) often represent early fibrotic changes that can portend a progressive fibrotic phenotype. In particular, the fibrotic subtype of ILA is associated with increased mortality and rapid decline in lung function. Understanding the differential gene expression that occurs in the lungs of participants with fibrotic ILA may provide insight into development of a useful biomarker for early detection and therapeutic targets for progressive pulmonary fibrosis. METHODS Measures of ILA and gene expression data were available in 213 participants in the Detection of Early Lung Cancer Among Military Personnel (DECAMP1 and DECAMP2) cohorts. ILA was defined using Fleischner Society guidelines and determined by sequential reading of computed tomography (CT) scans. Primary analysis focused on comparing gene expression in ILA with usual interstitial pneumonia (UIP) pattern with those with no ILA. RESULTS ILA was present in 51 (24%) participants, of which 16 (7%) were subtyped as ILA with a UIP pattern. One gene, pro platelet basic protein (PPBP) and seventeen pathways (e.g. TNF-α signalling) were significantly differentially expressed between those with a probable or definite UIP pattern of ILA compared to those without ILA. 16 of these 17 pathways, but no individual gene, met significance when comparing those with ILA to those without ILA. CONCLUSION Our study demonstrates that abnormal inflammatory processes are apparent in the bronchial airway gene expression profiles of smokers with and without lung cancer with ILA. Future studies with larger and more diverse populations will be needed to confirm these findings.
Collapse
Affiliation(s)
- Aravind A Menon
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Minyi Lee
- Section of Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| | - Xu Ke
- Section of Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| | - Rachel K Putman
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Takuya Hino
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jonathan A Rose
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Fenghai Duan
- Department of Biostatistics and Center for Statistical Sciences, Brown University School of Public Health, Providence, RI, USA
| | - Samuel Y Ash
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - George T O'Connor
- Pulmonary Center, Boston University School of Medicine, Boston, MA, USA
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Hiroto Hatabu
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marc E Lenburg
- Section of Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| | - Ehab S Billatos
- Pulmonary Center, Boston University School of Medicine, Boston, MA, USA
| | - Gary M Hunninghake
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
14
|
Singh P, Ali SN, Zaheer S, Singh M. Cellular mechanisms in the pathogenesis of interstitial lung diseases. Pathol Res Pract 2023; 248:154691. [PMID: 37480596 DOI: 10.1016/j.prp.2023.154691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/24/2023]
Abstract
The interstitial lung diseases (ILDs) are a large, heterogeneous group of several hundred generally rare pulmonary pathologies, which show injury, inflammation and/or scarring in the lung. Although the aetiology of these disorders remains largely unknown, various cellular mechanisms have an important role in pathogenesis of fibrosis on the background of occupational, environmental and genetic factors. We have tried to provide new insights into the interactions and cellular contributions, analysing the roles of various cells in the pathogenesis of idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Priyanka Singh
- Department of Pathology, VMMC, and Safdarjang Hospital, New Delhi, India
| | - Saba Naaz Ali
- Department of Pathology, VMMC, and Safdarjang Hospital, New Delhi, India
| | - Sufian Zaheer
- Department of Pathology, VMMC, and Safdarjang Hospital, New Delhi, India.
| | - Mukul Singh
- Department of Pathology, VMMC, and Safdarjang Hospital, New Delhi, India
| |
Collapse
|
15
|
Buschur KL, Riley C, Saferali A, Castaldi P, Zhang G, Aguet F, Ardlie KG, Durda P, Craig Johnson W, Kasela S, Liu Y, Manichaikul A, Rich SS, Rotter JI, Smith J, Taylor KD, Tracy RP, Lappalainen T, Graham Barr R, Sciurba F, Hersh CP, Benos PV. Distinct COPD subtypes in former smokers revealed by gene network perturbation analysis. Respir Res 2023; 24:30. [PMID: 36698131 PMCID: PMC9875487 DOI: 10.1186/s12931-023-02316-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/05/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) varies significantly in symptomatic and physiologic presentation. Identifying disease subtypes from molecular data, collected from easily accessible blood samples, can help stratify patients and guide disease management and treatment. METHODS Blood gene expression measured by RNA-sequencing in the COPDGene Study was analyzed using a network perturbation analysis method. Each COPD sample was compared against a learned reference gene network to determine the part that is deregulated. Gene deregulation values were used to cluster the disease samples. RESULTS The discovery set included 617 former smokers from COPDGene. Four distinct gene network subtypes are identified with significant differences in symptoms, exercise capacity and mortality. These clusters do not necessarily correspond with the levels of lung function impairment and are independently validated in two external cohorts: 769 former smokers from COPDGene and 431 former smokers in the Multi-Ethnic Study of Atherosclerosis (MESA). Additionally, we identify several genes that are significantly deregulated across these subtypes, including DSP and GSTM1, which have been previously associated with COPD through genome-wide association study (GWAS). CONCLUSIONS The identified subtypes differ in mortality and in their clinical and functional characteristics, underlining the need for multi-dimensional assessment potentially supplemented by selected markers of gene expression. The subtypes were consistent across cohorts and could be used for new patient stratification and disease prognosis.
Collapse
Affiliation(s)
- Kristina L Buschur
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Joint CMU-Pitt PhD Program in Computational Biology, Pittsburgh, PA, USA
- Division of General Medicine, Columbia University Medical Center, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Craig Riley
- Division of Pulmonary Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aabida Saferali
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Peter Castaldi
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Grace Zhang
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Francois Aguet
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Peter Durda
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - W Craig Johnson
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Silva Kasela
- New York Genome Center, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Yongmei Liu
- Department of Medicine, Division of Cardiology, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Josh Smith
- Northwest Genome Center, University of Washington, Seattle, WA, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Russell P Tracy
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Tuuli Lappalainen
- New York Genome Center, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - R Graham Barr
- Division of General Medicine, Columbia University Medical Center, New York, NY, USA
| | - Frank Sciurba
- Division of Pulmonary Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Craig P Hersh
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Panayiotis V Benos
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Joint CMU-Pitt PhD Program in Computational Biology, Pittsburgh, PA, USA.
- Department of Epidemiology, University of Florida, 2004 Mowry Rd, Gainesville, FL, 32603, USA.
| |
Collapse
|
16
|
Glenn LM, Troy LK, Corte TJ. Novel diagnostic techniques in interstitial lung disease. Front Med (Lausanne) 2023; 10:1174443. [PMID: 37188089 PMCID: PMC10175799 DOI: 10.3389/fmed.2023.1174443] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Research into novel diagnostic techniques and targeted therapeutics in interstitial lung disease (ILD) is moving the field toward increased precision and improved patient outcomes. An array of molecular techniques, machine learning approaches and other innovative methods including electronic nose technology and endobronchial optical coherence tomography are promising tools with potential to increase diagnostic accuracy. This review provides a comprehensive overview of the current evidence regarding evolving diagnostic methods in ILD and to consider their future role in routine clinical care.
Collapse
Affiliation(s)
- Laura M. Glenn
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- Central Clinical School, The University of Sydney School of Medicine, Sydney, NSW, Australia
- NHMRC Centre of Research Excellence in Pulmonary Fibrosis, Camperdown, NSW, Australia
- *Correspondence: Laura M. Glenn,
| | - Lauren K. Troy
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- Central Clinical School, The University of Sydney School of Medicine, Sydney, NSW, Australia
- NHMRC Centre of Research Excellence in Pulmonary Fibrosis, Camperdown, NSW, Australia
| | - Tamera J. Corte
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- Central Clinical School, The University of Sydney School of Medicine, Sydney, NSW, Australia
- NHMRC Centre of Research Excellence in Pulmonary Fibrosis, Camperdown, NSW, Australia
| |
Collapse
|
17
|
Bonham CA, Noth I. Idiopathic Pulmonary Fibrosis Genetic Risk Factors, Function, and Mechanisms? The Concepts Are Starting to Gel. Am J Respir Crit Care Med 2022; 206:1197-1199. [PMID: 36075070 PMCID: PMC9746834 DOI: 10.1164/rccm.202208-1591ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Catherine A Bonham
- Division of Pulmonary & Critical Care Medicine University of Virginia Charlottesville, Virginia
| | - Imre Noth
- Division of Pulmonary & Critical Care Medicine University of Virginia Charlottesville, Virginia
| |
Collapse
|
18
|
Borie R, Cardwell J, Konigsberg IR, Moore CM, Zhang W, Sasse SK, Gally F, Dobrinskikh E, Walts A, Powers J, Brancato J, Rojas M, Wolters PJ, Brown KK, Blackwell TS, Nakanishi T, Richards JB, Gerber AN, Fingerlin TE, Sachs N, Pulit SL, Zappala Z, Schwartz DA, Yang IV. Colocalization of Gene Expression and DNA Methylation with Genetic Risk Variants Supports Functional Roles of MUC5B and DSP in Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med 2022; 206:1259-1270. [PMID: 35816432 PMCID: PMC9746850 DOI: 10.1164/rccm.202110-2308oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Rationale: Common genetic variants have been associated with idiopathic pulmonary fibrosis (IPF). Objectives: To determine functional relevance of the 10 IPF-associated common genetic variants we previously identified. Methods: We performed expression quantitative trait loci (eQTL) and methylation quantitative trait loci (mQTL) mapping, followed by co-localization of eQTL and mQTL with genetic association signals and functional validation by luciferase reporter assays. Illumina multi-ethnic genotyping arrays, mRNA sequencing, and Illumina 850k methylation arrays were performed on lung tissue of participants with IPF (234 RNA and 345 DNA samples) and non-diseased controls (188 RNA and 202 DNA samples). Measurements and Main Results: Focusing on genetic variants within 10 IPF-associated genetic loci, we identified 27 eQTLs in controls and 24 eQTLs in cases (false-discovery-rate-adjusted P < 0.05). Among these signals, we identified associations of lead variants rs35705950 with expression of MUC5B and rs2076295 with expression of DSP in both cases and controls. mQTL analysis identified CpGs in gene bodies of MUC5B (cg17589883) and DSP (cg08964675) associated with the lead variants in these two loci. We also demonstrated strong co-localization of eQTL/mQTL and genetic signal in MUC5B (rs35705950) and DSP (rs2076295). Functional validation of the mQTL in MUC5B using luciferase reporter assays demonstrates that the CpG resides within a putative internal repressor element. Conclusions: We have established a relationship of the common IPF genetic risk variants rs35705950 and rs2076295 with respective changes in MUC5B and DSP expression and methylation. These results provide additional evidence that both MUC5B and DSP are involved in the etiology of IPF.
Collapse
Affiliation(s)
| | | | | | - Camille M. Moore
- Department of Biostatistics and Bioinformatics and
- Center for Genes, Environment, and Health
| | | | | | - Fabienne Gally
- Department of Medicine
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado
| | | | | | | | | | - Mauricio Rojas
- Department of Internal Medicine, Ohio State College of Medicine, The Ohio State University, Columbus, Ohio
| | - Paul J. Wolters
- Department of Medicine, University of California, San Francisco, California
| | | | - Timothy S. Blackwell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Tomoko Nakanishi
- Department of Human Genetics, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Canada
| | - J. Brent Richards
- Department of Human Genetics, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Canada
| | - Anthony N. Gerber
- Department of Medicine
- Department of Medicine, and
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado
| | - Tasha E. Fingerlin
- Department of Biostatistics and Bioinformatics and
- Center for Genes, Environment, and Health
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado
| | - Norman Sachs
- Cell Biology, Vertex Pharmaceuticals, San Diego, California; and
| | - Sara L. Pulit
- Computational Genomics, Vertex Pharmaceuticals, Boston, Massachusetts
| | - Zachary Zappala
- Computational Genomics, Vertex Pharmaceuticals, Boston, Massachusetts
| | - David A. Schwartz
- Department of Medicine
- Department of Microbiology and Immunology, University of Colorado Anschutz Medical Campus; Aurora, Colorado
| | - Ivana V. Yang
- Department of Medicine
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado
| |
Collapse
|
19
|
Stancil IT, Michalski JE, Schwartz DA. An Airway-Centric View of Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med 2022; 206:410-416. [PMID: 35446237 PMCID: PMC12039158 DOI: 10.1164/rccm.202109-2219pp] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/20/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
| | | | - David A Schwartz
- Department of Medicine and
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
20
|
Werder RB, Liu T, Abo KM, Lindstrom-Vautrin J, Villacorta-Martin C, Huang J, Hinds A, Boyer N, Bullitt E, Liesa M, Silverman EK, Kotton DN, Cho MH, Zhou X, Wilson AA. CRISPR interference interrogation of COPD GWAS genes reveals the functional significance of desmoplakin in iPSC-derived alveolar epithelial cells. SCIENCE ADVANCES 2022; 8:eabo6566. [PMID: 35857525 PMCID: PMC9278866 DOI: 10.1126/sciadv.abo6566] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Genome-wide association studies (GWAS) have identified dozens of loci associated with chronic obstructive pulmonary disease (COPD) susceptibility; however, the function of associated genes in the cell type(s) affected in disease remains poorly understood, partly due to a lack of cell models that recapitulate human alveolar biology. Here, we apply CRISPR interference to interrogate the function of nine genes implicated in COPD by GWAS in induced pluripotent stem cell-derived type 2 alveolar epithelial cells (iAT2s). We find that multiple genes implicated by GWAS affect iAT2 function, including differentiation potential, maturation, and/or proliferation. Detailed characterization of the GWAS gene DSP demonstrates that it regulates iAT2 cell-cell junctions, proliferation, mitochondrial function, and response to cigarette smoke-induced injury. Our approach thus elucidates the biological function, as well as disease-relevant consequences of dysfunction, of genes implicated in COPD by GWAS in type 2 alveolar epithelial cells.
Collapse
Affiliation(s)
- Rhiannon B. Werder
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
- Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Tao Liu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kristine M. Abo
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
- Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | | | - Carlos Villacorta-Martin
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Jessie Huang
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
- Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Anne Hinds
- Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Nathan Boyer
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Esther Bullitt
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Marc Liesa
- Department of Medicine, Endocrinology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095, USA
- Institut de Biologia Molecular De Barcelona (IBMB-CSIC), Barcelona, Catalonia 08028, Spain
| | - Edwin K. Silverman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Darrell N. Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
- Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Michael H. Cho
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew A. Wilson
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
- Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
21
|
Furusawa H, Peljto AL, Walts AD, Cardwell J, Molyneaux PL, Lee JS, Fernández Pérez ER, Wolters PJ, Yang IV, Schwartz DA. Common idiopathic pulmonary fibrosis risk variants are associated with hypersensitivity pneumonitis. Thorax 2022; 77:508-510. [PMID: 34996848 PMCID: PMC9013199 DOI: 10.1136/thoraxjnl-2021-217693] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/05/2021] [Indexed: 01/26/2023]
Abstract
A subset of patients with hypersensitivity pneumonitis (HP) develop lung fibrosis that is clinically similar to idiopathic pulmonary fibrosis (IPF). To address the aetiological determinants of fibrotic HP, we investigated whether the common IPF genetic risk variants were also relevant in study subjects with fibrotic HP. Our findings indicate that common genetic variants in TERC, DSP, MUC5B and IVD were significantly associated with fibrotic HP. These findings provide support for a shared etiology and pathogenesis between fibrotic HP and IPF.
Collapse
Affiliation(s)
- Haruhiko Furusawa
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA,Department of Respiratory Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Anna L Peljto
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Avram D Walts
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jonathan Cardwell
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | - Joyce S Lee
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Evans R Fernández Pérez
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, Colorado, USA
| | - Paul J Wolters
- Pulmonary and Critical Care, University of California San Francisco, San Francisco, California, USA
| | - Ivana V Yang
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - David A Schwartz
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
22
|
Chakraborty A, Mastalerz M, Ansari M, Schiller HB, Staab-Weijnitz CA. Emerging Roles of Airway Epithelial Cells in Idiopathic Pulmonary Fibrosis. Cells 2022; 11:cells11061050. [PMID: 35326501 PMCID: PMC8947093 DOI: 10.3390/cells11061050] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal disease with incompletely understood aetiology and limited treatment options. Traditionally, IPF was believed to be mainly caused by repetitive injuries to the alveolar epithelium. Several recent lines of evidence, however, suggest that IPF equally involves an aberrant airway epithelial response, which contributes significantly to disease development and progression. In this review, based on recent clinical, high-resolution imaging, genetic, and single-cell RNA sequencing data, we summarize alterations in airway structure, function, and cell type composition in IPF. We furthermore give a comprehensive overview on the genetic and mechanistic evidence pointing towards an essential role of airway epithelial cells in IPF pathogenesis and describe potentially implicated aberrant epithelial signalling pathways and regulation mechanisms in this context. The collected evidence argues for the investigation of possible therapeutic avenues targeting these processes, which thus represent important future directions of research.
Collapse
|
23
|
Moss BJ, Ryter SW, Rosas IO. Pathogenic Mechanisms Underlying Idiopathic Pulmonary Fibrosis. ANNUAL REVIEW OF PATHOLOGY 2022; 17:515-546. [PMID: 34813355 DOI: 10.1146/annurev-pathol-042320-030240] [Citation(s) in RCA: 365] [Impact Index Per Article: 121.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The pathogenesis of idiopathic pulmonary fibrosis (IPF) involves a complex interplay of cell types and signaling pathways. Recurrent alveolar epithelial cell (AEC) injury may occur in the context of predisposing factors (e.g., genetic, environmental, epigenetic, immunologic, and gerontologic), leading to metabolic dysfunction, senescence, aberrant epithelial cell activation, and dysregulated epithelial repair. The dysregulated epithelial cell interacts with mesenchymal, immune, and endothelial cells via multiple signaling mechanisms to trigger fibroblast and myofibroblast activation. Recent single-cell RNA sequencing studies of IPF lungs support the epithelial injury model. These studies have uncovered a novel type of AEC with characteristics of an aberrant basal cell, which may disrupt normal epithelial repair and propagate a profibrotic phenotype. Here, we review the pathogenesis of IPF in the context of novel bioinformatics tools as strategies to discover pathways of disease, cell-specific mechanisms, and cell-cell interactions that propagate the profibrotic niche.
Collapse
Affiliation(s)
- Benjamin J Moss
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA; ,
| | - Stefan W Ryter
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA;
| | - Ivan O Rosas
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA; ,
| |
Collapse
|
24
|
Mei Q, Liu Z, Zuo H, Yang Z, Qu J. Idiopathic Pulmonary Fibrosis: An Update on Pathogenesis. Front Pharmacol 2022; 12:797292. [PMID: 35126134 PMCID: PMC8807692 DOI: 10.3389/fphar.2021.797292] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, lethal fibrotic lung disease that occurs primarily in middle-aged and elderly adults. It is a major cause of morbidity and mortality. With an increase in life expectancy, the economic burden of IPF is expected to continuously rise in the near future. Although the exact pathophysiological mechanisms underlying IPF remain not known. Significant progress has been made in our understanding of the pathogenesis of this devastating disease in last decade. The current paradigm assumes that IPF results from sustained or repetitive lung epithelial injury and subsequent activation of fibroblasts and myofibroblast differentiation. Persistent myofibroblast phenotype contributes to excessive deposition of the extracellular matrix (ECM) and aberrant lung repair, leading to tissue scar formation, distortion of the alveolar structure, and irreversible loss of lung function. Treatments of patients with IPF by pirfenidone and nintedanib have shown significant reduction of lung function decline and slowing of disease progression in patients with IPF. However, these drugs do not cure the disease. In this review, we discuss recent advances on the pathogenesis of IPF and highlight the development of novel therapeutic strategies against the disease.
Collapse
Affiliation(s)
| | | | | | | | - Jing Qu
- *Correspondence: Zhenhua Yang, ; Jing Qu,
| |
Collapse
|
25
|
Samarelli AV, Tonelli R, Marchioni A, Bruzzi G, Gozzi F, Andrisani D, Castaniere I, Manicardi L, Moretti A, Tabbì L, Cerri S, Beghè B, Dominici M, Clini E. Fibrotic Idiopathic Interstitial Lung Disease: The Molecular and Cellular Key Players. Int J Mol Sci 2021; 22:8952. [PMID: 34445658 PMCID: PMC8396471 DOI: 10.3390/ijms22168952] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Interstitial lung diseases (ILDs) that are known as diffuse parenchymal lung diseases (DPLDs) lead to the damage of alveolar epithelium and lung parenchyma, culminating in inflammation and widespread fibrosis. ILDs that account for more than 200 different pathologies can be divided into two groups: ILDs that have a known cause and those where the cause is unknown, classified as idiopathic interstitial pneumonia (IIP). IIPs include idiopathic pulmonary fibrosis (IPF), non-specific interstitial pneumonia (NSIP), cryptogenic organizing pneumonia (COP) known also as bronchiolitis obliterans organizing pneumonia (BOOP), acute interstitial pneumonia (AIP), desquamative interstitial pneumonia (DIP), respiratory bronchiolitis-associated interstitial lung disease (RB-ILD), and lymphocytic interstitial pneumonia (LIP). In this review, our aim is to describe the pathogenic mechanisms that lead to the onset and progression of the different IIPs, starting from IPF as the most studied, in order to find both the common and standalone molecular and cellular key players among them. Finally, a deeper molecular and cellular characterization of different interstitial lung diseases without a known cause would contribute to giving a more accurate diagnosis to the patients, which would translate to a more effective treatment decision.
Collapse
Affiliation(s)
- Anna Valeria Samarelli
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (B.B.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, 41100 Modena, Italy;
| | - Roberto Tonelli
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (B.B.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, 41100 Modena, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41100 Modena, Italy
| | - Alessandro Marchioni
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (B.B.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, 41100 Modena, Italy;
| | - Giulia Bruzzi
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (B.B.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, 41100 Modena, Italy;
| | - Filippo Gozzi
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (B.B.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, 41100 Modena, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41100 Modena, Italy
| | - Dario Andrisani
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (B.B.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, 41100 Modena, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41100 Modena, Italy
| | - Ivana Castaniere
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (B.B.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, 41100 Modena, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41100 Modena, Italy
| | - Linda Manicardi
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (B.B.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, 41100 Modena, Italy;
| | - Antonio Moretti
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (B.B.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, 41100 Modena, Italy;
| | - Luca Tabbì
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, 41100 Modena, Italy;
| | - Stefania Cerri
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (B.B.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, 41100 Modena, Italy;
| | - Bianca Beghè
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (B.B.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, 41100 Modena, Italy;
| | - Massimo Dominici
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (B.B.); (M.D.)
- Oncology Unit, University Hospital of Modena, University of Modena and Reggio Emilia, 41100 Modena, Italy
| | - Enrico Clini
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (B.B.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, 41100 Modena, Italy;
| |
Collapse
|
26
|
Michalski JE, Schwartz DA. Genetic Risk Factors for Idiopathic Pulmonary Fibrosis: Insights into Immunopathogenesis. J Inflamm Res 2021; 13:1305-1318. [PMID: 33447070 PMCID: PMC7801923 DOI: 10.2147/jir.s280958] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
Idiopathic pulmonary fibrosis is an etiologically complex interstitial lung disease characterized by progressive scarring of the lungs with a subsequent decline in lung function. While much of the pathogenesis of IPF still remains unclear, it is now understood that genetic variation accounts for at least one-third of the risk of developing the disease. The single-most validated and most significant risk factor, genetic or otherwise, is a gain-of-function promoter variant in the MUC5B gene. While the functional impact of these IPF risk variants at the cellular and tissue levels are areas of active investigation, there is a growing body of evidence that these genetic variants may influence disease pathogenesis through modulation of innate immune processes.
Collapse
Affiliation(s)
- Jacob E Michalski
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - David A Schwartz
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
27
|
van Moorsel CHM. Desmoplakin: An Important Player in Aging Lung Disease. Am J Respir Crit Care Med 2020; 202:1201-1202. [PMID: 32716632 PMCID: PMC7605188 DOI: 10.1164/rccm.202006-2457ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
28
|
Wang W, Wang X. A refocus on the advances of single-cell biomedicine. Cell Biol Toxicol 2020; 36:395-398. [PMID: 32779088 PMCID: PMC7417105 DOI: 10.1007/s10565-020-09551-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/31/2020] [Indexed: 12/26/2022]
Affiliation(s)
- William Wang
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai, China
| | - Xiangdong Wang
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai, China.
| |
Collapse
|