1
|
Zhang X, Kang L, Du P, Xu D, Li H, Jiang Z. Association between nutritional status and pneumonia in patients with spontaneous intracerebral hemorrhage. Front Nutr 2025; 12:1547655. [PMID: 40144568 PMCID: PMC11936809 DOI: 10.3389/fnut.2025.1547655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
Background Stroke-associated pneumonia (SAP) is a common and serious complication in patients with spontaneous intracerebral hemorrhage (SICH), contributing to prolonged hospital stays and poor outcomes. Nutritional status has been linked to the development of SAP in patients with ischemic stroke, but its role in SICH patients remains understudied. This study aims to evaluate the predictive value of the Nutritional Risk Screening-2002 (NRS-2002) score for SAP in SICH patients and to compare it with other nutritional assessment tools. Methods This retrospective observational study included 404 consecutive SICH patients admitted to Dongyang People's Hospital from January 2023 to May 2024. Nutritional risk was assessed using the NRS-2002 score upon admission, and SAP was diagnosed within the first 7 days of hospitalization. Univariate and multivariate logistic regression analyses identified risk factors for SAP, and receiver operating characteristic (ROC) curves were used to compare the predictive accuracy of the NRS-2002, Controlling Nutritional Status (CONUT) score, and Prognostic Nutritional Index (PNI) for SAP. Results Among the 404 patients, 97 developed SAP. A higher NRS-2002 score was significantly associated with an increased risk of SAP (OR: 1.575, 95% CI: 1.134-2.186, p = 0.007). ROC analysis showed that the NRS-2002 score (AUC: 0.768, 95% CI: 0.716-0.820) outperformed the CONUT (AUC: 0.597, 95% CI: 0.530-0.663) and PNI (AUC: 0.588, 95% CI: 0.519-0.657) in predicting SAP (p < 0.05). Subgroup analysis revealed that the NRS-2002 score ≥ 3 was particularly predictive of SAP in patients with weight loss, severe stroke, and those without hypertension or with diabetes. Conclusion The NRS-2002 score is a valuable predictor of pneumonia in SICH patients, with higher scores correlating with a significantly increased risk of SAP. This highlights the importance of early nutritional assessment in identifying high-risk patients and potentially guiding clinical interventions to reduce SAP incidence.
Collapse
Affiliation(s)
| | - Lele Kang
- Department of Neurology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, China
| | | | | | | | | |
Collapse
|
2
|
Tanabe N, Nakagawa H, Sakao S, Ohno Y, Shimizu K, Nakamura H, Hanaoka M, Nakano Y, Hirai T. Lung imaging in COPD and asthma. Respir Investig 2024; 62:995-1005. [PMID: 39213987 DOI: 10.1016/j.resinv.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/04/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) and asthma are common lung diseases with heterogeneous clinical presentations. Lung imaging allows evaluations of underlying pathophysiological changes and provides additional personalized approaches for disease management. This narrative review provides an overview of recent advances in chest imaging analysis using various modalities, such as computed tomography (CT), dynamic chest radiography, and magnetic resonance imaging (MRI). Visual CT assessment localizes emphysema subtypes and mucus plugging in the airways. Dedicated software quantifies the severity and spatial distribution of emphysema and the airway tree structure, including the central airway wall thickness, branch count and fractal dimension of the tree, and airway-to-lung size ratio. Nonrigid registration of inspiratory and expiratory CT scans quantifies small airway dysfunction, local volume changes and shape deformations in specific regions. Lung ventilation and diaphragm movement are also evaluated on dynamic chest radiography. Functional MRI detects regional oxygen transfer across the alveolus using inhaled oxygen and ventilation defects and gas diffusion into the alveolar-capillary barrier tissue and red blood cells using inhaled hyperpolarized 129Xe gas. These methods have the potential to determine local functional properties in the lungs that cannot be detected by lung function tests in patients with COPD and asthma. Further studies are needed to apply these technologies in clinical practice, particularly for early disease detection and tailor-made interventions, such as the efficient selection of patients likely to respond to biologics. Moreover, research should focus on the extension of healthy life expectancy in patients at higher risk and with established diseases.
Collapse
Affiliation(s)
- Naoya Tanabe
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, 54 Shogo-in Kawahara-cho, Sakyo-ku, Kyoto, Kyoto, 606-8507, Japan.
| | - Hiroaki Nakagawa
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Seiichiro Sakao
- Department of Pulmonary Medicine, School of Medicine, International University of Health and Welfare, 4-3 Kozunomori, Narita, Chiba, 286-8686 Japan
| | - Yoshiharu Ohno
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, Japan
| | - Kaoruko Shimizu
- Division of Emergent Respiratory and Cardiovascular medicine, Hokkaido University Hospital, Hokkaido University Hospital, Kita14, Nishi5, Kita-Ku, Sapporo, Hokkaido, 060-8648, Japan
| | - Hidetoshi Nakamura
- Department of Respiratory Medicine, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Masayuki Hanaoka
- First Department of Internal Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Yasutaka Nakano
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, 54 Shogo-in Kawahara-cho, Sakyo-ku, Kyoto, Kyoto, 606-8507, Japan
| |
Collapse
|
3
|
Murphy MP, Zieger M, Henry M, Meleady P, Mueller C, McElvaney NG, Reeves EP. Citrullination, a novel posttranslational modification of elastin, is involved in COPD pathogenesis. Am J Physiol Lung Cell Mol Physiol 2024; 327:L600-L606. [PMID: 39137524 DOI: 10.1152/ajplung.00185.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024] Open
Abstract
Elastin is an extracellular matrix protein (ECM) that supports elasticity of the lung, and in patients with chronic obstructive pulmonary disease (COPD) and emphysema, the structural changes that reduce the amount of elastic recoil, lead to loss of pulmonary function. We recently demonstrated that elastin is a target of peptidyl arginine deiminase (PAD) enzyme-induced citrullination, thereby leading to enhanced susceptibility of this ECM protein to proteolysis. This study aimed to investigate the impact of PAD activity in vivo and furthermore assessed whether pharmacological inhibition of PAD activity protects against pulmonary emphysema. Using a Serpina1a-e knockout mouse model, previously shown to develop inflammation-mediated emphysema, we validated the involvement of PADs in airway disease. In line with emphysema development, intratracheal administration of lipopolysaccharide in combination with PADs provoked significant airspace enlargement (P < 0.001) and diminished lung function, including loss of lung tissue elastance (P = 0.0217) and increases in lung volumes (P = 0.0463). Intraperitoneal treatment of mice with the PAD inhibitor, BB-Cl-amidine, prevented PAD/LPS-mediated lung function decline and emphysema and reduced levels of citrullinated airway elastin (P = 0.0199). These results provide evidence for the impact of PADs on lung function decline, indicating promising potential for the future development of PAD-based therapeutics for preserving lung function in patients with COPD.NEW & NOTEWORTHY This study provides evidence for the impact of peptidyl arginine deiminase (PAD) enzymes on lung function decline, indicating promising potential for the future development of PAD-based therapeutics for preserving lung function in patients with COPD.
Collapse
Affiliation(s)
- Mark P Murphy
- Department of Medicine, Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Marina Zieger
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States
- Department of Ophthalmology, Tufts Medical Center, Center for Translational Ocular Immunology, Boston, Massachusetts, United States
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Christian Mueller
- Genomic Medicine Unit, Sanofi, Waltham, Massachusetts, United States
| | - Noel G McElvaney
- Department of Medicine, Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Emer P Reeves
- Department of Anaesthesia and Critical Care Medicine, Pulmonary Clinical Science, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
4
|
Vuković D, Budimir Mršić D, Ordulj I, Šarić F, Tandara M, Jerković K, Matana A, Tadić T. Is Type and Grade of Emphysema Important for Bone Mineral Density and Aortic Calcifications? J Clin Med 2024; 13:3947. [PMID: 38999515 PMCID: PMC11242253 DOI: 10.3390/jcm13133947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
Background: Chronic obstructive pulmonary disease has extrapulmonary manifestations, such as cardiovascular diseases and osteoporosis. The purpose of this research was to determine the relationship between the type and extent of emphysema with thoracic aorta calcification (TAC) and bone mineral density (BMD) at Th4, Th8, and L1 vertebrae. Methods: Emphysema was described by computed tomography parameters (both Fleischner classification and low attenuation value percentage, LAV%) and the clinical FEV1/FVC ratio (Tiffeneau-Pinelli index, TI, TI < 0.7; TI > 0.7). Results: Of 200 included patients (median age 64, 33% women), signs of clinical obstruction (TI) were observed in 104 patients, which had significantly lower BMD and more heavy TAC. BMD correlated negatively with LAV%, Rho = -0.16 to -0.23, while a positive correlation of aortic calcification with LAV% was observed, Rho = 0.30 to 0.33. Multiple linear regression showed that age and TI < 0.7 were independent predictors of BMD, β = -0.20 to -0.40, and β = -0.21 to -0.25; age and hypercholesterolemia were independent predictors of TCA, β = 0.61 and β = 0.19. Conclusions: Clinical TI and morphological LAV% parameters correlated with BMD and TAC, in contrast to Fleischer-graded emphysema, which showed no correlation. However, only TI was an independent predictor of BMD, while the morphologically described type and extent of emphysema could not independently predict any extrapulmonary manifestation.
Collapse
Affiliation(s)
- Danica Vuković
- Clinical Department of Diagnostic and Interventional Radiology, University Hospital Split, Šoltanska 2, 21000 Split, Croatia; (D.V.); (I.O.); (F.Š.); (M.T.); (K.J.)
| | - Danijela Budimir Mršić
- Clinical Department of Diagnostic and Interventional Radiology, University Hospital Split, Šoltanska 2, 21000 Split, Croatia; (D.V.); (I.O.); (F.Š.); (M.T.); (K.J.)
- School of Medicine, University of Split, Šoltanska 2, 21000 Split, Croatia
- University Department of Health Studies, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia;
| | - Ivan Ordulj
- Clinical Department of Diagnostic and Interventional Radiology, University Hospital Split, Šoltanska 2, 21000 Split, Croatia; (D.V.); (I.O.); (F.Š.); (M.T.); (K.J.)
| | - Frano Šarić
- Clinical Department of Diagnostic and Interventional Radiology, University Hospital Split, Šoltanska 2, 21000 Split, Croatia; (D.V.); (I.O.); (F.Š.); (M.T.); (K.J.)
| | - Mirko Tandara
- Clinical Department of Diagnostic and Interventional Radiology, University Hospital Split, Šoltanska 2, 21000 Split, Croatia; (D.V.); (I.O.); (F.Š.); (M.T.); (K.J.)
| | - Kristian Jerković
- Clinical Department of Diagnostic and Interventional Radiology, University Hospital Split, Šoltanska 2, 21000 Split, Croatia; (D.V.); (I.O.); (F.Š.); (M.T.); (K.J.)
| | - Antonela Matana
- University Department of Health Studies, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia;
| | - Tade Tadić
- Clinical Department of Diagnostic and Interventional Radiology, University Hospital Split, Šoltanska 2, 21000 Split, Croatia; (D.V.); (I.O.); (F.Š.); (M.T.); (K.J.)
- School of Medicine, University of Split, Šoltanska 2, 21000 Split, Croatia
| |
Collapse
|
5
|
Murphy MP, Hunt D, Herron M, McDonnell J, Alshuhoumi R, McGarvey LP, Fabré A, O’Brien H, McCarthy C, Martin SL, McElvaney NG, Reeves EP. Neutrophil-Derived Peptidyl Arginine Deiminase Activity Contributes to Pulmonary Emphysema by Enhancing Elastin Degradation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:75-85. [PMID: 38758115 PMCID: PMC11212725 DOI: 10.4049/jimmunol.2300658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/12/2024] [Indexed: 05/18/2024]
Abstract
In chronic obstructive pulmonary disease (COPD), inflammation gives rise to protease-mediated degradation of the key extracellular matrix protein, elastin, which causes irreversible loss of pulmonary function. Intervention against proteolysis has met with limited success in COPD, due in part to our incomplete understanding of the mechanisms that underlie disease pathogenesis. Peptidyl arginine deiminase (PAD) enzymes are a known modifier of proteolytic susceptibility, but their involvement in COPD in the lungs of affected individuals is underexplored. In this study, we showed that enzyme isotypes PAD2 and PAD4 are present in primary granules of neutrophils and that cells from people with COPD release increased levels of PADs when compared with neutrophils of healthy control subjects. By examining bronchoalveolar lavage and lung tissue samples of patients with COPD or matched smoking and nonsmoking counterparts with normal lung function, we reveal that COPD presents with markedly increased airway concentrations of PADs. Ex vivo, we established citrullinated elastin in the peripheral airways of people with COPD, and in vitro, elastin citrullination significantly enhanced its proteolytic degradation by serine and matrix metalloproteinases, including neutrophil elastase and matrix metalloprotease-12, respectively. These results provide a mechanism by which neutrophil-released PADs affect lung function decline, indicating promise for the future development of PAD-based therapeutics for preserving lung function in patients with COPD.
Collapse
Affiliation(s)
- Mark P. Murphy
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - David Hunt
- Pulmonary Clinical Science, Department of Anaesthesia and Critical Care Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Malcolm Herron
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Jake McDonnell
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Rashed Alshuhoumi
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Lorcan P. McGarvey
- Wellcome–Wolfson Centre for Experimental Medicine, School of Medicine Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
- Department of Respiratory Medicine, Royal Victoria Hospital; Belfast Health Social Care Trust, Belfast, United Kingdom
| | - Aurelie Fabré
- Department of Histopathology, St. Vincent’s University Hospital and Department of Medicine, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Helen O’Brien
- Department of Respiratory Medicine, St. Vincent’s University Hospital, Elm Park, Dublin, Ireland
| | - Cormac McCarthy
- School of Medicine, University College Dublin, Dublin, Ireland
- Department of Respiratory Medicine, St. Vincent’s University Hospital, Elm Park, Dublin, Ireland
| | - S. Lorraine Martin
- Biomolecular Sciences Research Group, School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
| | - Noel G. McElvaney
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Emer P. Reeves
- Pulmonary Clinical Science, Department of Anaesthesia and Critical Care Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
6
|
Tanabe N. Increase Attention to Computed Tomography Findings of Emphysema without Airflow Limitation: Small Airway Disease Is Already There. Am J Respir Crit Care Med 2024; 209:619-621. [PMID: 38207095 PMCID: PMC10945056 DOI: 10.1164/rccm.202312-2245ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/10/2024] [Indexed: 01/13/2024] Open
Affiliation(s)
- Naoya Tanabe
- Department of Respiratory Medicine Kyoto University Kyoto, Japan
| |
Collapse
|
7
|
Mochizuki F, Tanabe N, Shimada T, Iijima H, Sakamoto R, Shiraishi Y, Maetani T, Shimizu K, Suzuki M, Chubachi S, Ishikawa H, Naito T, Kanasaki M, Masuda I, Oguma T, Sato S, Hizawa N, Hirai T. Centrilobular emphysema and airway dysanapsis: factors associated with low respiratory function in younger smokers. ERJ Open Res 2024; 10:00695-2023. [PMID: 38444662 PMCID: PMC10910308 DOI: 10.1183/23120541.00695-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/18/2024] [Indexed: 03/07/2024] Open
Abstract
Background Low respiratory function in young adulthood is one of the important factors in the trajectory leading to the future development of COPD, but its morphological characteristics are not well characterised. Methods We retrospectively enrolled 172 subjects aged 40-49 years with ≥10 pack-years smoking history who underwent lung cancer screening by computed tomography (CT) and spirometry at two Japanese hospitals. Emphysema was visually assessed according to the Fleischner Society guidelines and classified into two types: centrilobular emphysema (CLE) and paraseptal emphysema (PSE). Airway dysanapsis was assessed with the airway/lung ratio (ALR), which was calculated by the geometric mean of the lumen diameters of the 14 branching segments divided by the cube root of total lung volume on a CT scan. Results Among the subjects, CLE and PSE were observed in 20.9% and 30.8%, respectively. The mean ALR was 0.04 and did not differ between those with and without each type of emphysema. Multivariable regression analysis models adjusted for age, sex, body mass index and smoking status indicated that CLE and a low ALR were independently associated with lower forced expiratory volume in 1 s (FEV1)/forced vital capacity (estimate -1.64 (95% CI -2.68- -0.60) and 6.73 (95% CI 4.24-9.24), respectively) and FEV1 % pred (estimate -2.81 (95% CI -5.10- -0.52) and 10.9 (95% CI 5.36-16.4), respectively). Conclusions CLE and airway dysanapsis on CT were independently associated with low respiratory function in younger smokers.
Collapse
Affiliation(s)
- Fumi Mochizuki
- Department of Respiratory Medicine, Tsukuba Medical Center Hospital, Tsukuba, Japan
| | - Naoya Tanabe
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takafumi Shimada
- Department of Respiratory Medicine, Tsukuba Medical Center Hospital, Tsukuba, Japan
| | - Hiroaki Iijima
- Department of Respiratory Medicine, Tsukuba Medical Center Hospital, Tsukuba, Japan
| | - Ryo Sakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yusuke Shiraishi
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoki Maetani
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kaoruko Shimizu
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaru Suzuki
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Shotaro Chubachi
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiroichi Ishikawa
- Department of Respiratory Medicine, Tsukuba Medical Center Hospital, Tsukuba, Japan
| | - Takashi Naito
- Department of Respiratory Medicine, Tsukuba Medical Center Hospital, Tsukuba, Japan
| | | | - Izuru Masuda
- Clinical Research Institute, National Hospital Organization, Kyoto Medical Center, Kyoto, Japan
| | - Tsuyoshi Oguma
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Respiratory Medicine, Kyoto City Hospital, Kyoto, Japan
| | - Susumu Sato
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobuyuki Hizawa
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
8
|
Tanabe N, Sato S, Shimada T, Kaji S, Shiraishi Y, Terada S, Maetani T, Mochizuki F, Shimizu K, Suzuki M, Chubachi S, Terada K, Tanimura K, Sakamoto R, Oguma T, Sato A, Kanasaki M, Muro S, Masuda I, Iijima H, Hirai T. A reference equation for lung volume on computed tomography in Japanese middle-aged and elderly adults. Respir Investig 2024; 62:121-127. [PMID: 38101279 DOI: 10.1016/j.resinv.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/06/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Effective use of lung volume data measured on computed tomography (CT) requires reference values for specific populations. This study examined whether an equation previously generated for multiple ethnic groups in the United States, including Asians predominantly composed of Chinese people, in the Multi-Ethnic Study of Atherosclerosis (MESA) could be used for Japanese people and, if necessary, to optimize this equation. Moreover, the equation was used to characterize patients with chronic obstructive pulmonary disease (COPD) and lung hyperexpansion. METHODS This study included a lung cancer screening CT cohort of asymptomatic never smokers aged ≥40 years from two institutions (n = 364 and 419) to validate and optimize the MESA equation and a COPD cohort (n = 199) to test its applicability. RESULTS In all asymptomatic never smokers, the variance explained by the predicted values (R2) based on the original MESA equation was 0.60. The original equation was optimized to minimize the root mean squared error (RMSE) by adjusting the scaling factor but not the age, sex, height, or body mass index terms of the equation. The RMSE changed from 714 ml in the original equation to 637 ml in the optimized equation. In the COPD cohort, lung hyperexpansion, defined based on the 95th percentile of the ratio of measured lung volume to predicted lung volume in never smokers (122 %), was observed in 60 (30 %) patients and was associated with centrilobular emphysema and air trapping on inspiratory/expiratory CT. CONCLUSIONS The MESA equation was optimized for Japanese middle-aged and elderly adults.
Collapse
Affiliation(s)
- Naoya Tanabe
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Susumu Sato
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takafumi Shimada
- Department of Respiratory Medicine, Tsukuba Medical Center, Ibaraki, Japan
| | - Shizuo Kaji
- Institute of Mathematics for Industry, Kyushu University, Fukuoka, Japan
| | - Yusuke Shiraishi
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Satoru Terada
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan; Terada Clinic, Respiratory Medicine and General Practice, Himeji, Hyogo, Japan
| | - Tomoki Maetani
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Fumi Mochizuki
- Department of Respiratory Medicine, Tsukuba Medical Center, Ibaraki, Japan
| | - Kaoruko Shimizu
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaru Suzuki
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Shotaro Chubachi
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kunihiko Terada
- Terada Clinic, Respiratory Medicine and General Practice, Himeji, Hyogo, Japan
| | - Kazuya Tanimura
- Department of Respiratory Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Ryo Sakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tsuyoshi Oguma
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Atsuyasu Sato
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Shigeo Muro
- Department of Respiratory Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Izuru Masuda
- Medical Examination Center, Takeda Hospital, Kyoto, Japan
| | - Hiroaki Iijima
- Department of Respiratory Medicine, Tsukuba Medical Center, Ibaraki, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
9
|
Haraguchi T, Matsuoka S, Yagihashi K, Matsushita S, Yamashiro T, Kobayashi Y, Mimura H. Quantitative Computed Tomography Analysis of the Longitudinal Change Between Centrilobular and Paraseptal Emphysema Subtypes: A Retrospective Study. J Comput Assist Tomogr 2023; 47:746-752. [PMID: 37707404 DOI: 10.1097/rct.0000000000001482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
OBJECTIVE This study aimed to investigate the difference between the extent of centrilobular emphysema (CLE) and paraseptal emphysema (PSE) on follow-up chest CT scans and their relationship to the cross-sectional area (CSA) of small pulmonary vessels. METHODS Sixty-two patients (36 CLE and 26 PSE) who underwent 2 chest CT scans were enrolled in this study. The percentage of low attenuation volume (%LAV) and total CSA of the small pulmonary vessels <5 mm 2 (%CSA < 5) were measured at the 2 time points. Analysis of the initial %CSA < 5 and the change in the %LAV and %CSA < 5 on follow-up imaging was performed. RESULTS The initial %CSA < 5 was not significantly different between the CLE and the PSE groups (CLE, 0.66 vs. PSE, 0.71; P = 0.78). There was no significant difference in the longitudinal change in the %LAV between the 2 groups (CLE, -0.048% vs. PSE, 0.005%; P = 0.26). The longitudinal change in the %CSA < 5 in patients with PSE significantly decreased compared with those with CLE (CLE, 0.025% vs. PSE, -0.018%; P = 0.02). CONCLUSIONS The longitudinal change in the %CSA < 5 was significantly different for patients with CLE and PSE, demonstrating an important pathophysiological difference between the subtypes.
Collapse
Affiliation(s)
| | - Shin Matsuoka
- From the Department of Radiology, St. Marianna University School of Medicine, Sugao 2-16-1, Miyamae-ku, Kawasaki, Japan
| | - Kunihiro Yagihashi
- From the Department of Radiology, St. Marianna University School of Medicine, Sugao 2-16-1, Miyamae-ku, Kawasaki, Japan
| | | | | | | | - Hidefumi Mimura
- From the Department of Radiology, St. Marianna University School of Medicine, Sugao 2-16-1, Miyamae-ku, Kawasaki, Japan
| |
Collapse
|
10
|
Shiraishi Y, Tanabe N, Shimizu K, Oguma A, Shima H, Sakamoto R, Yamazaki H, Oguma T, Sato A, Suzuki M, Makita H, Muro S, Nishimura M, Sato S, Konno S, Hirai T. Stronger Associations of Centrilobular Than Paraseptal Emphysema With Longitudinal Changes in Diffusing Capacity and Mortality in COPD. Chest 2023; 164:327-338. [PMID: 36736486 DOI: 10.1016/j.chest.2023.01.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/27/2022] [Accepted: 01/24/2023] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The factors associated with longitudinal changes in diffusing capacity remain unclear among patients with COPD. Centrilobular emphysema (CLE) and paraseptal emphysema (PSE) are major emphysema subtypes that may have distinct clinical-physiological impacts in these patients. RESEARCH QUESTION Are CLE and PSE differently associated with longitudinal changes in diffusing capacity and mortality in patients with COPD? STUDY DESIGN AND METHODS This pooled analysis included 399 patients with COPD from two prospective observational COPD cohorts. CLE and PSE were visually assessed on CT scan according to the Fleischner Society statement. The diffusing capacity and transfer coefficient of the lung for carbon monoxide (Dlco and KCO) and FEV1 were evaluated at least annually over a 5-year period. Mortality was recorded over 10 years. Longitudinal changes in FEV1, Dlco, and KCO and mortality were compared between mild or less severe and moderate or more severe CLE and between present and absent PSE in each Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage. RESULTS The Dlco and KCO decline was weakly associated with FEV1 and greater in GOLD stage 3 or higher than in GOLD stages 1 and 2. Furthermore, moderate or more severe CLE, but not present PSE, was associated with steeper declines in Dlco for GOLD stages 1 and 3 or higher and KCO for all GOLD stages independent of age, sex, height, and smoking history. The moderate or more severe CLE, but not present PSE, was associated with additional FEV1 decline and higher 10-year mortality among patients with GOLD stage 3 or higher. INTERPRETATION A CT scan finding of moderate or more severe CLE, but not PSE, was associated with a subsequent accelerated impairment in diffusing capacity and higher long-term mortality in severe GOLD stage among patients with COPD.
Collapse
Affiliation(s)
- Yusuke Shiraishi
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naoya Tanabe
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Kaoruko Shimizu
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Akira Oguma
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroshi Shima
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryo Sakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hajime Yamazaki
- Section of Clinical Epidemiology, Department of Community Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tsuyoshi Oguma
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Atsuyasu Sato
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masaru Suzuki
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Hironi Makita
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan; Hokkaido Medical Research Institute for Respiratory Diseases, Sapporo, Japan
| | - Shigeo Muro
- Department of Respiratory Medicine, Nara Medical University, Kashihara, Japan
| | - Masaharu Nishimura
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan; Hokkaido Medical Research Institute for Respiratory Diseases, Sapporo, Japan
| | - Susumu Sato
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoshi Konno
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
11
|
Raoof S, Shah M, Braman S, Agrawal A, Allaqaband H, Bowler R, Castaldi P, DeMeo D, Fernando S, Hall CS, Han MK, Hogg J, Humphries S, Lee HY, Lee KS, Lynch D, Machnicki S, Mehta A, Mehta S, Mina B, Naidich D, Naidich J, Ohno Y, Regan E, van Beek EJR, Washko G, Make B. Lung Imaging in COPD Part 2: Emerging Concepts. Chest 2023; 164:339-354. [PMID: 36907375 PMCID: PMC10475822 DOI: 10.1016/j.chest.2023.02.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/13/2023] Open
Abstract
The diagnosis, prognostication, and differentiation of phenotypes of COPD can be facilitated by CT scan imaging of the chest. CT scan imaging of the chest is a prerequisite for lung volume reduction surgery and lung transplantation. Quantitative analysis can be used to evaluate extent of disease progression. Evolving imaging techniques include micro-CT scan, ultra-high-resolution and photon-counting CT scan imaging, and MRI. Potential advantages of these newer techniques include improved resolution, prediction of reversibility, and obviation of radiation exposure. This article discusses important emerging techniques in imaging patients with COPD. The clinical usefulness of these emerging techniques as they stand today are tabulated for the benefit of the practicing pulmonologist.
Collapse
Affiliation(s)
- Suhail Raoof
- Northwell Health, Lenox Hill Hospital, New York, NY.
| | - Manav Shah
- Northwell Health, Lenox Hill Hospital, New York, NY
| | - Sidney Braman
- Icahn School of Medicine at Mount Sinai, New York, NY
| | | | | | | | | | - Dawn DeMeo
- Brigham and Women's Hospital, Boston, MA
| | | | | | | | - James Hogg
- University of British Columbia, Vancouver, BC, Canada
| | | | - Ho Yun Lee
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Department of Health Sciences and Technology, Sungkyunkwan University, ChangWon, South Korea
| | - Kyung Soo Lee
- Sungkyunkwan University School of Medicine, Samsung ChangWon Hospital, ChangWon, South Korea
| | | | | | | | | | - Bushra Mina
- Northwell Health, Lenox Hill Hospital, New York, NY
| | | | | | | | | | | | | | | |
Collapse
|
12
|
CT-based emphysema characterization per lobe: A proof of concept. Eur J Radiol 2023; 160:110709. [PMID: 36731401 DOI: 10.1016/j.ejrad.2023.110709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023]
Abstract
PURPOSE The Fleischner society criteria are global criteria to visually evaluate and classify pulmonary emphysema on CT. It may group heterogeneous disease severity within the same category, potentially obscuring clinically relevant differences in emphysema severity. This proof-of-concept study proposes to split emphysema into more categories and to assess each lobe separately, and applies this to two general population-based cohort samples to assess what information such an extension adds. METHOD From a consecutive sample in two general population-based cohorts with low-dose chest CT, 117 participants with more than a trace of emphysema were included. Two independent readers performed an extended per-lobe classification and assessed overall severity semi-quantitatively. An emphysema sum score was determined by adding the severity score of all lobes. Inter-reader agreement was quantified with Krippendorff Alpha. RESULTS Based on Fleischner society criteria, 69 cases had mild to severe centrilobular emphysema, and 90 cases had mild or moderate paraseptal emphysema (42 had both types of emphysema). The emphysema sum score was significantly different between mild (10.7 ± 4.3, range 2-22), moderate (20.1 ± 3.1, range: 15-24), and severe emphysema (23.6 ± 3.4, range: 17-28, p < 0.001), but ranges showed significant overlap. Inter-reader agreement for the extended classification and sum score was substantial (alpha 0.79 and 0.85, respectively). Distribution was homogenous across lobes in never-smokers, yet heterogenous in current smokers, with upper-lobe predominance. CONCLUSIONS The proposed emphysema evaluation method adds information to the original Fleischner society classification. Individuals in the same Fleischner category have diverse emphysema sum scores, and lobar emphysema distribution differs between smoking groups.
Collapse
|
13
|
Inoue C, Ohkouchi S, Chonan T, Amata A, Hirama T, Saito-Koyama R, Kawabata Y, Suzuki T, Okada Y, Tanaka A, Kurosawa H. A case report of Indium lung with progressive emphysema and fibrosis underwent lung unilateral transplantation 20 years after the end of the exposure. Diagn Pathol 2023; 18:10. [PMID: 36709285 PMCID: PMC9883848 DOI: 10.1186/s13000-023-01303-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/23/2023] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Indium lung is characterized by interstitial pneumonia and/or emphysema which occurs in indium-tin oxide (ITO) workers. Indium lung is now known to progress after stopping exposure to ITO, but the long-term influences of ITO remain unclear. CASE PRESENTATION Forty seven years old, a never-smoker, who had been engaged in an ITO manufacturing process for 8 years. Emphysema was indicated by the medical check-up for ex-ITO workers, and he was diagnosed with indium lung. He underwent partial lung resections for pneumothorax two times, and obstructive pulmonary dysfunction had progressed through the years. He underwent right single lung transplant 20 years after ITO exposure. Pathologically, his lung showed severe distal acinar emphysema and honeycomb change. Fibrosis and destruction of the lung tissue significantly progressed compared to the previous partial resections. Scanning electron microscopy combined with energy dispersive spectroscopy revealed that the deposited particles contained indium and tin. After the transplantation, his respiratory function was improved. CONCLUSIONS In this case, ITO resided in the lung tissue for 20 years, and lung tissue destruction kept progressing. Careful medical follow-up is recommended for ITO-workers even if they are asymptomatic.
Collapse
Affiliation(s)
- Chihiro Inoue
- grid.69566.3a0000 0001 2248 6943Department of Anatomic Pathology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Shinya Ohkouchi
- grid.69566.3a0000 0001 2248 6943Department of Occupational Health, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Tatsuya Chonan
- grid.416238.aDepartment of Medicine, Nikko Memorial Hospital, Hitachi, Japan
| | - Atsuko Amata
- grid.416238.aDepartment of Medicine, Nikko Memorial Hospital, Hitachi, Japan
| | - Takashi Hirama
- grid.69566.3a0000 0001 2248 6943Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Ryoko Saito-Koyama
- grid.415495.80000 0004 1772 6692Department of Pathology, National Hospital Organization, Sendai Medical Center, Sendai, Japan
| | - Yoshinori Kawabata
- Division of Diagnostic Pathology, Saitama Prefectural Cardiovascular and Respiratory Center, Kumagaya, Japan
| | - Takashi Suzuki
- grid.69566.3a0000 0001 2248 6943Department of Anatomic Pathology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Yoshinori Okada
- grid.69566.3a0000 0001 2248 6943Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Akiyo Tanaka
- grid.177174.30000 0001 2242 4849Environmental Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hajime Kurosawa
- grid.69566.3a0000 0001 2248 6943Department of Occupational Health, Graduate School of Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|
14
|
Shiraishi Y, Shimada T, Tanabe N, Terada K, Sakamoto R, Maetani T, Shima H, Mochizuki F, Oguma T, Shimizu K, Sato S, Muro S, Hizawa N, Fukui M, Iijima H, Masuda I, Hirai T. The prevalence and physiological impacts of centrilobular and paraseptal emphysema on CT in smokers with Preserved Ratio Impaired Spirometry. ERJ Open Res 2022; 8:00063-2022. [PMID: 35769415 PMCID: PMC9234440 DOI: 10.1183/23120541.00063-2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/26/2022] [Indexed: 11/05/2022] Open
Abstract
Centrilobular emphysema (CLE) and paraseptal emphysema (PSE) are observed in smokers with Preserved Ratio Impaired Spirometry (PRISm, defined as the ratio of forced expiratory volume in 1 s (FEV1) to forced vital capacity (FVC)≥0.7 and FEV1<80%), but their prevalence and physiological impacts remain unestablished. This multicenter study aimed to investigate its prevalence and to test whether emphysema subtypes are differently associated with physiological impairments in smokers with PRISm.Both never and ever smokers aged at ≥40 years who underwent CT for lung cancer screening and spirometry were retrospectively and consecutively enrolled at three hospitals and a clinic. Emphysema subtypes were visually classified according to the Fleischner system. Air-trapping was assessed as the ratio of FVC to total lung capacity on CT (FVC/TLCCT).Of 1046 never-smokers and 772 smokers with >10 pack-years, the prevalence of PRISm was 8.2% and 11.3%, respectively. The prevalence of PSE and CLE in smokers with PRISm was comparable to that in smokers with normal spirometry (PSE 43.7% versus 36.2%, p=1.00, CLE 46.0% versus 31.8%, p=0.21), but higher than that in never-smokers with PRISm (PSE, versus 1.2%, p<0.01, CLE, versus 4.7%, p<0.01) and lower than that in smokers with airflow limitation (PSE, versus 71.0%, p<0.01, CLE, versus 79.3%, p<0.01). The presence of CLE but not PSE was independently associated with reduced FVC/TLCCT in smokers with PRISm.Both PSE and CLE were common, but only CLE was associated with air-trapping in smokers with PRISm, suggesting different physiological roles of these emphysema subtypes.
Collapse
|
15
|
Ghosh AJ, Hobbs BD, Yun JH, Saferali A, Moll M, Xu Z, Chase RP, Morrow J, Ziniti J, Sciurba F, Barwick L, Limper AH, Flaherty K, Criner G, Brown KK, Wise R, Martinez FJ, McGoldrick D, Cho MH, DeMeo DL, Silverman EK, Castaldi PJ, Hersh CP. Lung tissue shows divergent gene expression between chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Respir Res 2022; 23:97. [PMID: 35449067 PMCID: PMC9026726 DOI: 10.1186/s12931-022-02013-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/04/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF) are characterized by shared exposures and clinical features, but distinct genetic and pathologic features exist. These features have not been well-studied using large-scale gene expression datasets. We hypothesized that there are divergent gene, pathway, and cellular signatures between COPD and IPF. METHODS We performed RNA-sequencing on lung tissues from individuals with IPF (n = 231) and COPD (n = 377) compared to control (n = 267), defined as individuals with normal spirometry. We grouped the overlapping differential expression gene sets based on direction of expression and examined the resultant sets for genes of interest, pathway enrichment, and cell composition. Using gene set variation analysis, we validated the overlap group gene sets in independent COPD and IPF data sets. RESULTS We found 5010 genes differentially expressed between COPD and control, and 11,454 genes differentially expressed between IPF and control (1% false discovery rate). 3846 genes overlapped between IPF and COPD. Several pathways were enriched for genes upregulated in COPD and downregulated in IPF; however, no pathways were enriched for genes downregulated in COPD and upregulated in IPF. There were many myeloid cell genes with increased expression in COPD but decreased in IPF. We found that the genes upregulated in COPD but downregulated in IPF were associated with lower lung function in the independent validation cohorts. CONCLUSIONS We identified a divergent gene expression signature between COPD and IPF, with increased expression in COPD and decreased in IPF. This signature is associated with worse lung function in both COPD and IPF.
Collapse
Affiliation(s)
- Auyon J. Ghosh
- grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA ,grid.62560.370000 0004 0378 8294Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA USA
| | - Brian D. Hobbs
- grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA ,grid.62560.370000 0004 0378 8294Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA USA ,grid.38142.3c000000041936754XHarvard Medical School, Boston, MA USA
| | - Jeong H. Yun
- grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA ,grid.62560.370000 0004 0378 8294Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA USA ,grid.38142.3c000000041936754XHarvard Medical School, Boston, MA USA
| | - Aabida Saferali
- grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA
| | - Matthew Moll
- grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA ,grid.62560.370000 0004 0378 8294Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA USA
| | - Zhonghui Xu
- grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA
| | - Robert P. Chase
- grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA
| | - Jarrett Morrow
- grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA ,grid.38142.3c000000041936754XHarvard Medical School, Boston, MA USA
| | - John Ziniti
- grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA
| | - Frank Sciurba
- grid.21925.3d0000 0004 1936 9000Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA USA
| | - Lucas Barwick
- grid.280434.90000 0004 0459 5494The Emmes Company, Rockville, MD USA
| | - Andrew H. Limper
- grid.66875.3a0000 0004 0459 167XDivision of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, MN USA
| | - Kevin Flaherty
- grid.214458.e0000000086837370Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Healthy System, Ann Arbor, MI USA
| | - Gerard Criner
- grid.264727.20000 0001 2248 3398Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA USA
| | - Kevin K. Brown
- grid.240341.00000 0004 0396 0728Department of Medicine, National Jewish Health, Denver, CO USA
| | - Robert Wise
- grid.21107.350000 0001 2171 9311Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD USA
| | - Fernando J. Martinez
- grid.5386.8000000041936877XDivision of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY USA
| | - Daniel McGoldrick
- grid.34477.330000000122986657Northwest Genomics Center, University of Washington, Seattle, WA USA
| | - Michael H. Cho
- grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA ,grid.62560.370000 0004 0378 8294Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA USA ,grid.38142.3c000000041936754XHarvard Medical School, Boston, MA USA
| | - Dawn L. DeMeo
- grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA ,grid.62560.370000 0004 0378 8294Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA USA ,grid.38142.3c000000041936754XHarvard Medical School, Boston, MA USA
| | - Edwin K. Silverman
- grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA ,grid.62560.370000 0004 0378 8294Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA USA ,grid.38142.3c000000041936754XHarvard Medical School, Boston, MA USA
| | - Peter J. Castaldi
- grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA ,grid.38142.3c000000041936754XHarvard Medical School, Boston, MA USA
| | | | - Craig P. Hersh
- grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115 USA ,grid.62560.370000 0004 0378 8294Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA USA ,grid.38142.3c000000041936754XHarvard Medical School, Boston, MA USA
| |
Collapse
|
16
|
Ghosh AJ, Hobbs BD, Moll M, Saferali A, Boueiz A, Yun JH, Sciurba F, Barwick L, Limper AH, Flaherty K, Criner G, Brown KK, Wise R, Martinez FJ, Lomas D, Castaldi PJ, Carey VJ, DeMeo DL, Cho MH, Silverman EK, Hersh CP. Alpha-1 Antitrypsin MZ Heterozygosity Is an Endotype of Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2022; 205:313-323. [PMID: 34762809 PMCID: PMC8886988 DOI: 10.1164/rccm.202106-1404oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/09/2021] [Indexed: 02/03/2023] Open
Abstract
Rationale: Multiple studies have demonstrated an increased risk of chronic obstructive pulmonary disease (COPD) in heterozygous carriers of the AAT (alpha-1 antitrypsin) Z allele. However, it is not known if MZ subjects with COPD are phenotypically different from noncarriers (MM genotype) with COPD. Objectives: To assess if MZ subjects with COPD have different clinical features compared with MM subjects with COPD. Methods: Genotypes of SERPINA1 were ascertained by using whole-genome sequencing data in three independent studies. We compared outcomes between MM subjects with COPD and MZ subjects with COPD in each study and combined the results in a meta-analysis. We performed longitudinal and survival analyses to compare outcomes in MM and MZ subjects with COPD over time. Measurements and Main Results: We included 290 MZ subjects with COPD and 6,184 MM subjects with COPD across the three studies. MZ subjects had a lower FEV1% predicted and greater quantitative emphysema on chest computed tomography scans compared with MM subjects. In a meta-analysis, the FEV1 was 3.9% lower (95% confidence interval [CI], -6.55% to -1.26%) and emphysema (the percentage of lung attenuation areas <-950 HU) was 4.14% greater (95% CI, 1.44% to 6.84%) in MZ subjects. We found one gene, PGF (placental growth factor), to be differentially expressed in lung tissue from one study between MZ subjects and MM subjects. Conclusions: Carriers of the AAT Z allele (those who were MZ heterozygous) with COPD had lower lung function and more emphysema than MM subjects with COPD. Taken with the subtle differences in gene expression between the two groups, our findings suggest that MZ subjects represent an endotype of COPD.
Collapse
Affiliation(s)
- Auyon J. Ghosh
- Channing Division of Network Medicine and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Brian D. Hobbs
- Channing Division of Network Medicine and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Matthew Moll
- Channing Division of Network Medicine and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | | | - Adel Boueiz
- Channing Division of Network Medicine and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Jeong H. Yun
- Channing Division of Network Medicine and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Frank Sciurba
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Andrew H. Limper
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Kevin Flaherty
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan
| | - Gerard Criner
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, Pennsylvania
| | - Kevin K. Brown
- Department of Medicine, National Jewish Health, Denver, Colorado
| | - Robert Wise
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Fernando J. Martinez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York; and
| | - David Lomas
- University College London Respiratory Division of Medicine, University College London, London, United Kingdom
| | - Peter J. Castaldi
- Channing Division of Network Medicine and
- Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Vincent J. Carey
- Channing Division of Network Medicine and
- Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Dawn L. DeMeo
- Channing Division of Network Medicine and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Michael H. Cho
- Channing Division of Network Medicine and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Edwin K. Silverman
- Channing Division of Network Medicine and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Craig P. Hersh
- Channing Division of Network Medicine and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Harvard University, Boston, Massachusetts
| |
Collapse
|
17
|
Yun T, Choi H, Kim H, Na KJ, Park S, Park IK, Kang CH, Goo JM, Kim YT. CT-defined visual emphysema in smokers with normal spirometry: association with prolonged air leak and other respiratory complications after lobectomy for lung cancer. Eur Radiol 2022; 32:4395-4404. [DOI: 10.1007/s00330-022-08540-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/01/2021] [Accepted: 12/28/2021] [Indexed: 11/24/2022]
|
18
|
Sugawara H, Watanabe H, Kunimatsu A, Abe O, Watanabe SI, Yatabe Y, Kusumoto M. Adenocarcinoma in situ and minimally invasive adenocarcinoma in lungs of smokers: image feature differences from those in lungs of non-smokers. BMC Med Imaging 2021; 21:172. [PMID: 34798844 PMCID: PMC8603503 DOI: 10.1186/s12880-021-00705-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/09/2021] [Indexed: 11/10/2022] Open
Abstract
PURPOSE We aimed to examine the characteristics of imaging findings of adenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma (MIA) in the lungs of smokers compared with those of non-smokers. MATERIALS AND METHODS We included seven cases of AIS and 20 cases of MIA in lungs of smokers (pack-years ≥ 20) and the same number of cases of AIS and MIA in lungs of non-smokers (pack-years = 0). We compared the diameter of the entire lesion and solid component measured on computed tomography (CT) images, pathological size and invasive component diameter measured from pathological specimens, and CT values of the entire lesion and ground-glass opacity (GGO) portions between the smoker and non-smoker groups. RESULTS The diameters of AIS and MIA on CT images and pathological specimens of the smoker group were significantly larger than those of the non-smoker group (p = 0.036 and 0.008, respectively), whereas there was no significant difference in the diameter of the solid component on CT images or invasive component of pathological specimens between the two groups. Additionally, mean CT values of the entire lesion and GGO component of the lesions in the smoker group were significantly lower than those in the non-smoker group (p = 0.036 and 0.040, respectively). CONCLUSION AIS and MIA in smoker's lung tended to have larger lesion diameter and lower internal CT values compared with lesions in non-smoker's lung. This study calls an attention on smoking status in CT-based diagnosis for early stage adenocarcinoma.
Collapse
Affiliation(s)
- Haruto Sugawara
- Department of Diagnostic Radiology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
- Department of Radiology, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| | - Hirokazu Watanabe
- Department of Diagnostic Radiology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akira Kunimatsu
- Department of Radiology, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shun-Ichi Watanabe
- Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Yasushi Yatabe
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Masahiko Kusumoto
- Department of Diagnostic Radiology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| |
Collapse
|
19
|
Tanabe N, Hirai T. Recent advances in airway imaging using micro-computed tomography and computed tomography for chronic obstructive pulmonary disease. Korean J Intern Med 2021; 36:1294-1304. [PMID: 34607419 PMCID: PMC8588974 DOI: 10.3904/kjim.2021.124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a complex lung disease characterized by a combination of airway disease and emphysema. Emphysema is classified as centrilobular emphysema (CLE), paraseptal emphysema (PSE), or panlobular emphysema (PLE), and airway disease extends from the respiratory, terminal, and preterminal bronchioles to the central segmental airways. Although clinical computed tomography (CT) cannot be used to visualize the small airways, micro-CT has shown that terminal bronchiole disease is more severe in CLE than in PSE and PLE, and micro-CT findings suggest that the loss and luminal narrowing of terminal bronchioles is an early pathological change in CLE. Furthermore, the introduction of ultra-high-resolution CT has enabled direct evaluation of the proximal small (1 to 2-mm diameter) airways, and new CT analytical methods have enabled estimation of small airway disease and prediction of future COPD onset and lung function decline in smokers with and without COPD. This review discusses the literature on micro-CT and the technical advancements in clinical CT analysis for COPD. Hopefully, novel micro-CT findings will improve our understanding of the distinct pathogeneses of the emphysema subtypes to enable exploration of new therapeutic targets, and sophisticated CT imaging methods will be integrated into clinical practice to achieve more personalized management.
Collapse
Affiliation(s)
- Naoya Tanabe
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
20
|
Ritchie AI, Baker JR, Parekh TM, Allinson JP, Bhatt SP, Donnelly LE, Donaldson GC. Update in Chronic Obstructive Pulmonary Disease 2020. Am J Respir Crit Care Med 2021; 204:14-22. [PMID: 33856972 DOI: 10.1164/rccm.202102-0253up] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Andy I Ritchie
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Jonathon R Baker
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Trisha M Parekh
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - James P Allinson
- National Heart and Lung Institute, Imperial College London, London, United Kingdom.,Royal Brompton Hospital, Royal Brompton and Harefield National Health Service Foundation Trust, London, United Kingdom
| | - Surya P Bhatt
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Louise E Donnelly
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Gavin C Donaldson
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
21
|
Tanabe N, Shimizu K, Terada K, Sato S, Suzuki M, Shima H, Oguma A, Oguma T, Konno S, Nishimura M, Hirai T. Central airway and peripheral lung structures in airway disease-dominant COPD. ERJ Open Res 2021; 7:00672-2020. [PMID: 33778061 PMCID: PMC7983277 DOI: 10.1183/23120541.00672-2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/21/2020] [Indexed: 01/14/2023] Open
Abstract
The concept that the small airway is a primary pathological site for all COPD phenotypes has been challenged by recent findings that the disease starts from the central airways in COPD subgroups and that a smaller central airway tree increases COPD risk. This study aimed to examine whether the computed tomography (CT)-based airway disease-dominant (AD) subtype, defined using the central airway dimension, was less associated with small airway dysfunction (SAD) on CT, compared to the emphysema-dominant (ED) subtype. COPD patients were categorised into mild, AD, ED and mixed groups based on wall area per cent (WA%) of the segmental airways and low attenuation volume per cent in the Kyoto–Himeji (n=189) and Hokkaido COPD cohorts (n=93). The volume per cent of SAD regions (SAD%) was obtained by nonrigidly registering inspiratory and expiratory CT. The AD group had a lower SAD% than the ED group and similar SAD% to the mild group. The AD group had a smaller lumen size of airways proximal to the segmental airways and more frequent asthma history before age 40 years than the ED group. In multivariable analyses, while the AD and ED groups were similarly associated with greater airflow limitation, the ED, but not the AD, group was associated with greater SAD%, whereas the AD, but not the ED, group was associated with a smaller central airway size. The CT-based AD COPD subtype might be associated with a smaller central airway tree and asthma history, but not with peripheral lung pathologies including small airway disease, unlike the ED subtype. This study shows that airway disease-dominant COPD, defined using central airway dimension on CT, is associated with a smaller central airway tree, less small airway dysfunction and slower lung function decline than the emphysema-dominant COPDhttps://bit.ly/3nNwxIC
Collapse
Affiliation(s)
- Naoya Tanabe
- Dept of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.,These authors contributed equally
| | - Kaoruko Shimizu
- Dept of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan.,These authors contributed equally
| | - Kunihiko Terada
- Terada Clinic, Respiratory Medicine and General Practice, Himeji, Japan
| | - Susumu Sato
- Dept of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masaru Suzuki
- Dept of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroshi Shima
- Dept of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akira Oguma
- Dept of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Tsuyoshi Oguma
- Dept of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Satoshi Konno
- Dept of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaharu Nishimura
- Dept of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan.,Hokkaido Institute of Respiratory Diseases, Sapporo, Japan
| | - Toyohiro Hirai
- Dept of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
22
|
Henkle BE, Colangelo LA, Dransfield MT, Hou L, Jacobs DR, Joyce BT, Pistenmaa CL, Putman RK, Sidney S, Thyagarajan B, Washko GR, Yaffe K, Kalhan R, Kunisaki KM. The presence of emphysema on chest imaging and mid-life cognition. ERJ Open Res 2021; 7:00048-2021. [PMID: 33748259 PMCID: PMC7957295 DOI: 10.1183/23120541.00048-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 02/04/2021] [Indexed: 11/05/2022] Open
Abstract
Background Airflow obstruction is associated with cognitive dysfunction but studies have not assessed how emphysema, a structural phenotype of lung disease, might be associated with cognitive function independent from pulmonary function measured by spirometry. We aimed to determine the relationship between the presence of visually detectable emphysema on chest computed tomography (CT) imaging and cognitive function. Methods We examined 2491 participants, mean age of 50 years, from the Coronary Artery Risk Development in Young Adults study who were assessed for the presence of emphysema on chest CT imaging and had cognitive function measured 5 years later with a battery of six cognitive tests. Results Of those assessed, 172 (7%) had emphysema. After adjusting for age, sex, height, study centre, race, body mass index, education and smoking, visual emphysema was significantly associated with worse performance on most cognitive tests. Compared to those without emphysema, participants with emphysema performed worse on cognitive testing: 0.39 sd units lower (95% CI -0.53- -0.25) on the Montreal Cognitive Assessment, 0.27 sd units lower (95% CI -0.42- -0.12) on the Rey Auditory Verbal Learning Test, 0.29 sd units lower (95% CI -0.43- -0.14) on the Digit Symbol Substitution Test and 0.25 sd units lower (95% CI -0.42- -0.09) on letter fluency. Further adjustment for forced expiratory volume in 1 s (FEV1), peak FEV1 and annualised FEV1 decline did not attenuate these associations. Conclusions The presence of emphysema on chest CT is associated with worse cognitive function, independent of airflow obstruction. These data suggest that emphysema may be a novel risk factor for cognitive impairment.
Collapse
Affiliation(s)
- Benjamin E Henkle
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA.,Division of Pulmonary, Allergy, Critical Care and Sleep, University of Minnesota, Minneapolis, MN, USA
| | - Laura A Colangelo
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mark T Dransfield
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Lung Health Center, Birmingham, AL, USA
| | - Lifang Hou
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - David R Jacobs
- Division of Epidemiology and Community Health, University of Minnesota, School of Public Health, Minneapolis, MN, USA
| | - Brian T Joyce
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Carrie L Pistenmaa
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Rachel K Putman
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Steve Sidney
- Division of Research, Kaiser Permanente, Oakland, CA, USA
| | - Bharat Thyagarajan
- Dept of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - George R Washko
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Kristine Yaffe
- Depts of Psychiatry, Neurology and Epidemiology, University of California San Francisco, San Francisco, CA, USA
| | - Ravi Kalhan
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,These authors contributed equally
| | - Ken M Kunisaki
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA.,Division of Pulmonary, Allergy, Critical Care and Sleep, University of Minnesota, Minneapolis, MN, USA.,These authors contributed equally
| |
Collapse
|
23
|
Kang HS, Bak SH, Oh HY, Lim MN, Cha YK, Yoon HJ, Kim WJ. Computed tomography-based visual assessment of chronic obstructive pulmonary disease: comparison with pulmonary function test and quantitative computed tomography. J Thorac Dis 2021; 13:1495-1506. [PMID: 33841942 PMCID: PMC8024830 DOI: 10.21037/jtd-20-3041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Chronic obstructive pulmonary disease (COPD) has variable subtypes involving mixture of large airway inflammation, small airway disease, and emphysema. This study evaluated the relationship between visually assessed computed tomography (CT) subtypes and clinical/imaging characteristics. Methods In total, 452 participants were enrolled in this study between 2012 and 2017. Seven subtypes were defined by visual evaluation of CT images using Fleischner Society classification: normal, paraseptal emphysema (PSE), bronchial disease, and centrilobular emphysema (trace, mild, moderate and confluent/advanced destructive). The differences in several variables, including clinical, laboratory, spirometric, and quantitative CT features among CT-based visual subtypes, were compared using the chi-square tests and one-way analysis of variance. Results Subjects who had PSE had better forced expiratory volume in 1 second (FEV1) (P=0.03) percentage and higher lung density (P<0.05) than those with moderate to confluent/advanced destructive centrilobular emphysema. As the visual grade of centrilobular emphysema worsened, pulmonary function declined and modified Medical Research Council, COPD assessment test (CAT) score, and quantitative assessment (emphysema index and air trapping) increased. The bronchial subtype was associated with higher body mass index (BMI), better lung function and higher lung density. Participants with trace emphysema showed a rapid increase in functional small airway disease. Conclusions Classifying subtypes using visual CT imaging features can reflect heterogeneity and pathological processes of COPD.
Collapse
Affiliation(s)
- Han Sol Kang
- Department of Radiology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| | - So Hyeon Bak
- Department of Radiology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| | - Ha Yeun Oh
- Department of Radiology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| | - Myoung-Nam Lim
- Biomedical Research Institute, Kangwon National University Hospital, Chuncheon, Republic of Korea
| | - Yoon Ki Cha
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyun Jung Yoon
- Department of Radiology, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Woo Jin Kim
- Department of Internal Medicine and Environmental Health Center, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
24
|
Tantucci C. Assessment and treatment of airflow obstruction in patients with chronic obstructive pulmonary disorder: a guide for the clinician. Expert Rev Respir Med 2021; 15:385-391. [PMID: 33215956 DOI: 10.1080/17476348.2021.1851602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Introduction: Chronic obstructive pulmonary disorder (COPD) is a common cause of disability, morbidity and mortality worldwide. Early diagnosis and adequate treatment maintained over time are crucial to reducing these harmful consequences.Areas covered Persistent, not reversible and naturally progressive airflow obstruction is the functional hallmark of COPD. Therefore, in the presence of individual and environmental risk factors, with or without reported suggestive symptoms, simple spirometry must be performed enough quickly to objectify an obstructive ventilatory defect and assist physicians in making a diagnosis of COPD. Then, to cope with the heterogeneity of COPD patients, more specific functional tests and imaging techniques should be implemented to better define the underlying prevalent disease and its severity. That is necessary to decide whether to introduce ICS and establish the initial level of the treatment with just one or two bronchodilators, to control and freeze, when possible, the underlying pathological process.Expert opinion: The objective assessment of airflow obstruction is mandatory to make a diagnosis of COPD, but the prevalent disease sustaining the disorder should also be investigated to select a targeted therapy, because main determinants of airflow obstruction can be different in COPD patients and may differently respond to treatment.
Collapse
Affiliation(s)
- Claudio Tantucci
- Department of Clinical and Experimental Sciences, Respiratory Medicine Unit, Spedali Civili Brescia, University of Brescia, Brescia, Italy
| |
Collapse
|
25
|
Tanabe N, Sato S, Suki B, Hirai T. Fractal Analysis of Lung Structure in Chronic Obstructive Pulmonary Disease. Front Physiol 2021; 11:603197. [PMID: 33408642 PMCID: PMC7779609 DOI: 10.3389/fphys.2020.603197] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
Chest CT is often used for localizing and quantitating pathologies associated with chronic obstructive pulmonary disease (COPD). While simple measurements of areas and volumes of emphysema and airway structure are common, these methods do not capture the structural complexity of the COPD lung. Since the concept of fractals has been successfully applied to evaluate complexity of the lung, this review is aimed at describing the fractal properties of airway disease, emphysema, and vascular abnormalities in COPD. An object forms a fractal if it exhibits the property of self-similarity at different length scales of evaluations. This fractal property is governed by power-law functions characterized by the fractal dimension (FD). Power-laws can also manifest in other statistical descriptors of structure such as the size distribution of emphysema clusters characterized by the power-law exponent D. Although D is not the same as FD of emphysematous clusters, it is a useful index to characterize the spatial pattern of disease progression and predict clinical outcomes in patients with COPD. The FD of the airway tree shape and the D of the size distribution of airway branches have been proposed indexes of structural assessment and clinical predictions. Simulations are also useful to understand the mechanism of disease progression. Therefore, the power-law and fractal analysis of the parenchyma and airways, especially when combined with computer simulations, could lead to a better understanding of the structural alterations during the progression of COPD and help identify subjects at a high risk of severe COPD.
Collapse
Affiliation(s)
- Naoya Tanabe
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Susumu Sato
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Béla Suki
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
26
|
Tanabe N, Rhee CK, Sato S, Muro S, Shima H, Tanimura K, Jung KS, Yoo KH, Hirai T. Disproportionally Impaired Diffusion Capacity Relative to Airflow Limitation in COPD. COPD 2020; 17:627-634. [PMID: 33222554 DOI: 10.1080/15412555.2020.1845639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Forced expiratory volume in 1 s (FEV1) is a standard physiological index of chronic obstructive pulmonary disease (COPD), but reflects emphysema and vascular abnormalities less sensitively than diffusion capacity for carbon monoxide (DLCO). This study tested whether a disproportionally impaired DLCO relative to FEV1 (FEV1 z-score>-3 and DLCO z-score≤-3) is a common functional COPD phenotype associated with distinct clinical and structural features and the prognosis of two cohorts. The cross-sectional analyses of the Korea COPD Subgroup Study (KOCOSS) cohort (multicenter study in Korea) included 743 males with COPD whose DLCO was available. The cross-sectional and longitudinal analyses of the Kyoto University Cohort (single-center study in Japan) included 195 males with COPD who were prospectively followed for 10 years. A disproportionally impaired DLCO relative to FEV1 was observed in 29% and 31% of patients in the KOCOSS and Kyoto University cohorts, respectively. In the multivariable analysis, the disproportionally impaired DLCO was associated with worse symptoms, shorter 6-minute walking distance, paraseptal and centrilobular emphysema on computed tomography, and reduced arterial oxygen and carbon dioxide pressures compared to the reference (FEV1 z-score>-3 and DLCO z-score>-3). In the multivariable Cox proportional hazard model, a higher long-term mortality was observed in the disproportionally impaired DLCO group than in the reference group (hazard ratio [95% confidence interval] = 3.09 [1.52-6.29]) and similar to the DLCO z-score≤-3 and FEV1 z-score≤-3 group. The disproportionally impaired DLCO relative to FEV1 is common and associated with increased symptoms, emphysema, arterial blood gas abnormalities, and increased long-term mortality in patients with COPD.
Collapse
Affiliation(s)
- Naoya Tanabe
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Chin Kook Rhee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Susumu Sato
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shigeo Muro
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Respiratory Medicine, Nara Medical University, Nara, Japan
| | - Hiroshi Shima
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuya Tanimura
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ki-Suck Jung
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Hallym University Medical Center, Hallym University College of Medicine, Anyang, Republic of Korea
| | - Kwang Ha Yoo
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
27
|
Pathology of Idiopathic Pulmonary Fibrosis Assessed by a Combination of Microcomputed Tomography, Histology, and Immunohistochemistry. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:2427-2435. [PMID: 32919981 DOI: 10.1016/j.ajpath.2020.09.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/16/2020] [Accepted: 09/01/2020] [Indexed: 01/08/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fibrotic disease with the histology of usual interstitial pneumonia (UIP). Although the pathologist's visual inspection is central in histologic assessments, three-dimensional microcomputed tomography (microCT) assessment may complement the pathologist's scoring. We examined associations between the histopathologic features of UIP and IPF in explanted lungs and quantitative microCT measurements, including alveolar surface density, total lung volume taken up by tissue (%), and terminal bronchiolar number. Sixty frozen samples from 10 air-inflated explanted lungs with severe IPF and 36 samples from 6 donor control lungs were scanned with microCT and processed for histologic analysis. An experienced pathologist scored three major UIP criteria (patchy fibrosis, honeycomb, and fibroblastic foci), five additional pathologic changes, and immunohistochemical staining for CD68-, CD4-, CD8-, and CD79a-positive cells, graded on a 0 to 3+ scale. The alveolar surface density and terminal bronchiolar number decreased and the tissue percentage increased in lungs with IPF compared with controls. In lungs with IPF, lower alveolar surface density and higher tissue percentage were correlated with greater scores of patchy fibrosis, fibroblastic foci, honeycomb, CD79a-positive cells, and lymphoid follicles. A decreased number of terminal bronchioles was correlated with honeycomb score but not with the other scores. The three-dimensional microCT measurements reflect the pathological UIP and IPF criteria and suggest that the reduction in the terminal bronchioles may be associated with honeycomb cyst formation.
Collapse
|