1
|
Lin CC, Law BF, Hettick JM. New mechanisms in diisocyanate-mediated allergy/toxicity: are microRNAs in play? Curr Opin Allergy Clin Immunol 2025; 25:75-82. [PMID: 39450940 PMCID: PMC11867871 DOI: 10.1097/aci.0000000000001043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
PURPOSE OF REVIEW To describe recent findings of diisocyanate-mediated mechanisms in allergy and toxicology by addressing the role of microRNA (miR) in immune responses that may contribute to the development of occupational asthma (OA). RECENT FINDINGS Studies of diisocyanate asthma have traditionally focused on the immune and inflammatory patterns associated with diisocyanate exposures; however, recognized knowledge gaps exist regarding the detailed molecular mechanism(s) of pathogenesis. Recent studies demonstrate the critical role endogenous microRNAs play as gene regulators in maintaining homeostasis of the human body, and in the pathophysiology of many diseases including asthma. Given that diisocyanate-OA shares many pathophysiological characteristics with asthma, it is likely that miR-mediated mechanisms are involved in the pathophysiology of diisocyanate-OA. Recent reports have shown that changes in expression of endogenous miRs are associated with exposure to the occupationally relevant diisocyanates, toluene diisocyanate (TDI) and methylene diphenyl diisocyanate (MDI). Continued mechanistic study of these relevant miRs may lead to the development of novel biomarkers of occupational exposure and/or provide efficacious targets for therapeutic strategies in diisocyanate asthma. SUMMARY The molecular mechanisms underlying diisocyanate-OA pathophysiology are heterogeneous and complicated. In this review, we highlight recent research into the roles and potential regulation of miRs in diisocyanate-OA.
Collapse
Affiliation(s)
- Chen-Chung Lin
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | | | | |
Collapse
|
2
|
Xia Q, Liu G, Lin W, Zhang J. microRNA-2117 Negatively Regulates Liver Cancer Stem Cells Expansion and Chemoresistance Via Targeting SOX2. Mol Carcinog 2025; 64:33-43. [PMID: 39400383 PMCID: PMC11636587 DOI: 10.1002/mc.23824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024]
Abstract
Cancer stem cells (CSCs) are involved in the regulation of tumor initiation, progression, recurrence, and chemoresistance. However, the role of microRNAs (miRNAs) in liver CSCs has not been fully understood. Here we show that miR-2117 is downregulated in liver CSCs and predicts the poor prognosis of hepatocellular carcinoma (HCC) patients. Biofunction studies found that knockdown miR-2117 facilitates liver CSCs self-renewal and tumorigenesis. Conversely, forced miR-2117 expression suppresses liver CSCs self-renewal and tumorigenesis. Mechanistically, we find that transcription factor SOX2 is required for miR-2117-mediated liver CSCs expansion. The correlation between miR-2117 and SOX2 was confirmed in human HCC tissues. More importantly, miR-2117 overexpression HCC cells are more sensitive to CDDP treatment. Analysis of patients' cohort further demonstrates that miR-2117 may predict transcatheter arterial chemoembolization benefits in HCC patients. Our findings revealed the crucial role of miR-2117 in liver CSCs expansion, rendering miR-2117 as an optimal therapeutic target for HCC.
Collapse
Affiliation(s)
- Qing Xia
- Department of General Surgery, Hwa Mei Hospital (Ningbo No.2 Hospital)University of Chinese Academy of SciencesNingboChina
- Ningbo Institute of Life and Health IndustryUniversity of Chinese Academy of SciencesNingboChina
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang ProvinceNingboChina
| | - Guanghua Liu
- Department of General SurgeryXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Interventional RadiologyXinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Wenbo Lin
- Department of Orthopedic Surgery, Changzheng HospitalNavy Medical UniversityShanghaiChina
| | - Jin Zhang
- Department of General SurgeryThird Affiliated Hospital of Second Military Medical UniversityShanghaiChina
| |
Collapse
|
3
|
Zein JG, Zounemat-Kerman N, Adcock IM, Hu B, Attaway A, Castro M, Dahlén SE, Denlinger LC, Erzurum SC, Fahy JV, Gaston B, Hastie AT, Israel E, Jarjour NN, Levy BD, Mauger DT, Moore W, Peters MC, Sumino K, Townsend E, Woodruff P, Ortega VE, Wenzel SE, Meyers DA, Chung KF, Bleecker ER. Development of an asthma health-care burden score as a measure of severity and predictor of remission in SARP III and U-BIOPRED: results from two major longitudinal asthma cohorts. THE LANCET. RESPIRATORY MEDICINE 2025; 13:35-46. [PMID: 39586307 PMCID: PMC11700758 DOI: 10.1016/s2213-2600(24)00250-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/15/2024] [Accepted: 08/02/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND Current asthma guidelines, including those of the European Respiratory Society (ERS) and American Thoracic Society (ATS), suboptimally predict asthma remission, disease severity, and health-care utilisation. We aimed to establish a novel approach to assess asthma severity based on asthma health-care burden data. METHODS We analysed prospectively collected data from the Severe Asthma Research Program III (SARP III; USA) and the European Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes (U-BIOPRED; 11 European countries) to calculate a composite burden score based on asthma exacerbations and health-care utilisation, which was modified to include the use of short-acting beta agonists (SABAs) to reflect asthma symptom burden. FINDINGS In SARP III, 528 adult participants with asthma were followed up for a mean of 4·4 (SD 1·6) years, and 312 (59%) had severe asthma according to the ERS-ATS definition. Among the 205 participants with asthma who used rescue SABAs daily, 90 used these two or more times a day. In U-BIOPRED, 509 adult participants with asthma were followed up for 1 year, and 421 (83%) had severe asthma. The burden score was less than 1·29 per patient-year in 106 (34%) of 312 SARP III participants and in 80 (19%) of 421 U-BIOPRED participants with severe asthma. By contrast, the burden score was above the median value in 58 (28%) SARP III and 24 (27%) U-BIOPRED participants with non-severe asthma. In both cohorts, the burden score negatively correlated with lung function, asthma control, and quality of life. A burden score of 0·15 or lower predicted asthma remission with a sensitivity greater than 91% and a specificity of 99%. INTERPRETATION Our findings highlight considerable discrepancies between the current definition of asthma severity and our burden score. Although the definition of severe asthma proposed by the ERS-ATS and the and Global Initiative for Asthma (GINA) is based on prescribed asthma medications, our personalised health-care burden score includes patient-centred data that reflect disease severity and accurately predicts asthma remission. Subject to prospective validation, the burden score could help to optimise the management of high-risk individuals with asthma. FUNDING SARP III: US National Heart, Lung, and Blood Institute; AstraZeneca; Boehringer Ingelheim; Genentech; GlaxoSmithKline; Sanofi Genzyme/Regeneron; and Teva Pharmaceuticals. U-BIOPRED Innovative Medicines Initiative Joint Undertaking (EU's Seventh Framework Programme and European Federation of Pharmaceutical Industries and Associations) and eTRIKS project.
Collapse
Affiliation(s)
- Joe G Zein
- Division of Pulmonary Medicine, Department of Medicine, Mayo Clinic, Scottsdale, AZ, USA.
| | - Nazanin Zounemat-Kerman
- Data Science Institute and National Heart & Lung Institute, Imperial College London, London, UK
| | - Ian M Adcock
- Data Science Institute and National Heart & Lung Institute, Imperial College London, London, UK
| | - Bo Hu
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Amy Attaway
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Respiratory Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Mario Castro
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Sven-Erik Dahlén
- The National Institute of Environmental Medicine, Karolinska Institutet, Solna, Sweden
| | - Loren C Denlinger
- Department of Medicine, University of Wisconsin School of Medicine, Madison, WI, USA
| | - Serpil C Erzurum
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Respiratory Institute, Cleveland Clinic, Cleveland, OH, USA
| | - John V Fahy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California at San Francisco, San Francisco, CA, USA
| | - Benjamin Gaston
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Annette T Hastie
- Department of Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - Elliot Israel
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Nizar N Jarjour
- Department of Medicine, University of Wisconsin School of Medicine, Madison, WI, USA
| | - Bruce D Levy
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - David T Mauger
- Center for Biostatistics and Epidemiology, Pennsylvania State University School of Medicine, Hershey, PA, USA
| | - Wendy Moore
- Department of Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - Michael C Peters
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California at San Francisco, San Francisco, CA, USA
| | - Kaharu Sumino
- Division of Pulmonary and Critical Care Medicine, Washington University College of Medicine, Saint Louis, MO, USA
| | - Elizabeth Townsend
- Department of Medicine, University of Wisconsin School of Medicine, Madison, WI, USA
| | - Prescott Woodruff
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California at San Francisco, San Francisco, CA, USA
| | - Victor E Ortega
- Division of Pulmonary Medicine, Department of Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - Sally E Wenzel
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Deborah A Meyers
- Division of Pulmonary Medicine, Department of Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - Kian Fan Chung
- Data Science Institute and National Heart & Lung Institute, Imperial College London, London, UK
| | - Eugene R Bleecker
- Division of Pulmonary Medicine, Department of Medicine, Mayo Clinic, Scottsdale, AZ, USA
| |
Collapse
|
4
|
Escolar-Peña A, Delgado-Dolset MI, Pablo-Torres C, Tarin C, Mera-Berriatua L, Cuesta Apausa MDP, González Cuervo H, Sharma R, Kho AT, Tantisira KG, McGeachie MJ, Rebollido-Rios R, Barber D, Carrillo T, Izquierdo E, Escribese MM. Specific microRNA Profile Associated with Inflammation and Lipid Metabolism for Stratifying Allergic Asthma Severity. Int J Mol Sci 2024; 25:9425. [PMID: 39273372 PMCID: PMC11394998 DOI: 10.3390/ijms25179425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
The mechanisms underlying severe allergic asthma are complex and unknown, meaning it is a challenge to provide the most appropriate treatment. This study aimed to identify novel biomarkers for stratifying allergic asthmatic patients according to severity, and to uncover the biological mechanisms that lead to the development of the severe uncontrolled phenotype. By using miRNA PCR panels, we analyzed the expression of 752 miRNAs in serum samples from control subjects (n = 15) and mild (n = 11) and severe uncontrolled (n = 10) allergic asthmatic patients. We identified 40 differentially expressed miRNAs between severe uncontrolled and mild allergic asthmatic patients. Functional enrichment analysis revealed signatures related to inflammation, angiogenesis, lipid metabolism and mRNA regulation. A random forest classifier trained with DE miRNAs achieved a high accuracy of 97% for severe uncontrolled patient stratification. Validation of the identified biomarkers was performed on a subset of allergic asthmatic patients from the CAMP cohort at Brigham and Women's Hospital, Harvard Medical School. Four of these miRNAs (hsa-miR-99b-5p, hsa-miR-451a, hsa-miR-326 and hsa-miR-505-3p) were validated, pointing towards their potential as biomarkers for stratifying allergic asthmatic patients by severity and providing insights into severe uncontrolled asthma molecular pathways.
Collapse
Affiliation(s)
- Andrea Escolar-Peña
- Department of Basic Medical Sciences, Institute for Applied Molecular Medicine Nemesio Díez, School of Medicine, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Spain
| | - María Isabel Delgado-Dolset
- Department of Basic Medical Sciences, Institute for Applied Molecular Medicine Nemesio Díez, School of Medicine, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Spain
| | - Carmela Pablo-Torres
- Department of Basic Medical Sciences, Institute for Applied Molecular Medicine Nemesio Díez, School of Medicine, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Spain
| | - Carlos Tarin
- R+D Department, Atrys Health, 08025 Madrid, Spain
| | - Leticia Mera-Berriatua
- Department of Basic Medical Sciences, Institute for Applied Molecular Medicine Nemesio Díez, School of Medicine, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Spain
| | | | - Heleia González Cuervo
- Allergy Service, Hospital Universitario de Gran Canaria Doctor Negrín, 35010 Las Palmas de Gran Canaria, Spain
| | - Rinku Sharma
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alvin T Kho
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Kelan G Tantisira
- Division of Pediatric Respiratory Medicine, University of California San Diego and Rady Children's Hospital, San Diego, CA 92123, USA
| | - Michael J McGeachie
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rocio Rebollido-Rios
- Department I of Internal Medicine, Centre of Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50923 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50923 Cologne, Germany
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50923 Cologne, Germany
| | - Domingo Barber
- Department of Basic Medical Sciences, Institute for Applied Molecular Medicine Nemesio Díez, School of Medicine, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Spain
| | - Teresa Carrillo
- Allergy Service, Hospital Universitario de Gran Canaria Doctor Negrín, 35010 Las Palmas de Gran Canaria, Spain
| | - Elena Izquierdo
- Department of Basic Medical Sciences, Institute for Applied Molecular Medicine Nemesio Díez, School of Medicine, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Spain
| | - María M Escribese
- Department of Basic Medical Sciences, Institute for Applied Molecular Medicine Nemesio Díez, School of Medicine, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Spain
| |
Collapse
|
5
|
Soccio P, Quarato CMI, Tondo P, Lacedonia D, Hoxhallari A, Foschino Barbaro MP, Scioscia G. Breath and Sputum Analyses in Asthmatic Patients: An Overview. Cells 2024; 13:1355. [PMID: 39195245 PMCID: PMC11353195 DOI: 10.3390/cells13161355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Recent advancements in asthma management include non-invasive methodologies such as sputum analysis, exhaled breath condensate (EBC), and fractional exhaled nitric oxide (FeNO). These techniques offer a means to assess airway inflammation, a critical feature of asthma, without invasive procedures. Sputum analysis provides detailed insights into airway inflammation patterns and cellular composition, guiding personalized treatment strategies. EBC collection, reflecting bronchoalveolar lining fluid composition, provides a non-invasive window into airway physiology. FeNO emerges as a pivotal biomarker, offering insights into eosinophilic airway inflammation and aiding in asthma diagnosis, treatment monitoring, and the prediction of exacerbation risks. Despite inherent limitations, each method offers valuable tools for a more comprehensive assessment of asthma. Combining these techniques with traditional methods like spirometry may lead to more personalized treatment plans and improved patient outcomes. Future research is crucial to refine protocols, validate biomarkers, and establish comprehensive guidelines in order to enhance asthma management with tailored therapeutic strategies and improved patient outcomes.
Collapse
Affiliation(s)
- Piera Soccio
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (P.T.); (D.L.); (A.H.); (M.P.F.B.); (G.S.)
| | | | - Pasquale Tondo
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (P.T.); (D.L.); (A.H.); (M.P.F.B.); (G.S.)
- Institute of Respiratory Diseases, Policlinico Riuniti of Foggia, 71122 Foggia, Italy;
| | - Donato Lacedonia
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (P.T.); (D.L.); (A.H.); (M.P.F.B.); (G.S.)
- Institute of Respiratory Diseases, Policlinico Riuniti of Foggia, 71122 Foggia, Italy;
| | - Anela Hoxhallari
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (P.T.); (D.L.); (A.H.); (M.P.F.B.); (G.S.)
- Institute of Respiratory Diseases, Policlinico Riuniti of Foggia, 71122 Foggia, Italy;
| | - Maria Pia Foschino Barbaro
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (P.T.); (D.L.); (A.H.); (M.P.F.B.); (G.S.)
- Institute of Respiratory Diseases, Policlinico Riuniti of Foggia, 71122 Foggia, Italy;
| | - Giulia Scioscia
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (P.T.); (D.L.); (A.H.); (M.P.F.B.); (G.S.)
- Institute of Respiratory Diseases, Policlinico Riuniti of Foggia, 71122 Foggia, Italy;
| |
Collapse
|
6
|
Liu T, Woodruff PG, Zhou X. Advances in non-type 2 severe asthma: from molecular insights to novel treatment strategies. Eur Respir J 2024; 64:2300826. [PMID: 38697650 PMCID: PMC11325267 DOI: 10.1183/13993003.00826-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
Asthma is a prevalent pulmonary disease that affects more than 300 million people worldwide and imposes a substantial economic burden. While medication can effectively control symptoms in some patients, severe asthma attacks, driven by airway inflammation induced by environmental and infectious exposures, continue to be a major cause of asthma-related mortality. Heterogeneous phenotypes of asthma include type 2 (T2) and non-T2 asthma. Non-T2 asthma is often observed in patients with severe and/or steroid-resistant asthma. This review covers the molecular mechanisms, clinical phenotypes, causes and promising treatments of non-T2 severe asthma. Specifically, we discuss the signalling pathways for non-T2 asthma including the activation of inflammasomes, interferon responses and interleukin-17 pathways, and their contributions to the subtypes, progression and severity of non-T2 asthma. Understanding the molecular mechanisms and genetic determinants underlying non-T2 asthma could form the basis for precision medicine in severe asthma treatment.
Collapse
Affiliation(s)
- Tao Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine and Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Nanjing, China
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Prescott G Woodruff
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine and Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Mason P, Biasioli M, Liviero F. Endotypes of occupational asthma. Curr Opin Allergy Clin Immunol 2024; 24:58-63. [PMID: 38295127 PMCID: PMC10916750 DOI: 10.1097/aci.0000000000000969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
PURPOSE OF REVIEW To describe recent findings in endotyping occupational asthma by addressing the role of specific biomarkers. RECENT FINDINGS Studies on occupational asthma endotypes have focused on immune and inflammatory patterns associated with different occupational exposures to sensitizers or irritants.Sputum neutrophilia has been found in 58.5% patients with occupational asthma caused by high molecular weight (HMW) agents, and work-related dysphonia in patients with occupational asthma was described as associated with sputum neutrophilia too. Neutrophils have been associated also with irritant-induced asthma. The measurement of specific IgE has been confirmed as a valuable diagnostic tool in occupational asthma caused by HMW agents, on the contrary, for most low-molecular-weight agents, the presence of specific IgE has been proven in a small subset of affected workers. Fractional exhaled nitric oxide has been confirmed as a marker of type 2 (T2) inflammation in occupational asthma, mostly when induced by HMW agents (e.g. flour), and it has proved to be more sensitive than spirometry in measuring the efficacy of an intervention.MicroRNA-155 has been shown to contribute to airway inflammation in occupational asthma induced by toluene diisocyanate. SUMMARY Occupational asthma is heterogeneous, thus monitoring multiple biomarkers is crucial to understand, which inflammatory responses are prevalent.
Collapse
Affiliation(s)
- Paola Mason
- Department of Cardiac-Thoracic-Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | | | | |
Collapse
|
8
|
Zheng Z, Xu J, Chen J, Jiang B, Ma H, Li L, Li Y, Dai Y, Wang B. Integrated DNA methylation analysis reveals a potential role for PTPRN2 in Marfan syndrome scoliosis. JOR Spine 2024; 7:e1304. [PMID: 38304329 PMCID: PMC10831201 DOI: 10.1002/jsp2.1304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 02/03/2024] Open
Abstract
Background Marfan syndrome (MFS) is a rare genetic disorder caused by mutations in the Fibrillin-1 gene (FBN1) with significant clinical features in the skeletal, cardiopulmonary, and ocular systems. To gain deeper insights into the contribution of epigenetics in the variability of phenotypes observed in MFS, we undertook the first analysis of integrating DNA methylation and gene expression profiles in whole blood from MFS and healthy controls (HCs). Methods The Illumina 850K (EPIC) DNA methylation array was used to detect DNA methylation changes on peripheral blood samples of seven patients with MFS and five HCs. Associations between methylation levels and clinical features of MFS were analyzed. Subsequently, we conducted an integrated analysis of the outcomes of the transcriptome data to analyze the correlation between differentially methylated positions (DMPs) and differentially expressed genes (DEGs) and explore the potential role of methylation-regulated DEGs (MeDEGs) in MFS scoliosis. The weighted gene co-expression network analysis was used to find gene modules with the highest correlation coefficient with target MeDEGs to annotate their functions in MFS. Results Our study identified 1253 DMPs annotated to 236 genes that were primarily associated with scoliosis, cardiomyopathy, and vital capacity. These conditions are typically associated with reduced lifespan in untreated MFS. We calculated correlations between DMPs and clinical features, such as cobb angle to evaluate scoliosis and FEV1% to assess pulmonary function. Notably, cg20223687 (PTPRN2) exhibited a positive correlation with cobb angle of scoliosis, potentially playing a role in ERKs inactivation. Conclusions Taken together, our systems-level approach sheds light on the contribution of epigenetics to MFS and offers a plausible explanation for the complex phenotypes that are linked to reduced lifespan in untreated MFS patients.
Collapse
Affiliation(s)
- Zhen‐zhong Zheng
- Department of Spine Surgery, The Second Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Digital Spine Research InstituteCentral South UniversityChangshaChina
| | - Jing‐hong Xu
- Department of Spine Surgery, The Second Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Digital Spine Research InstituteCentral South UniversityChangshaChina
| | - Jia‐lin Chen
- Department of Spine Surgery, The Second Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Digital Spine Research InstituteCentral South UniversityChangshaChina
| | - Bin Jiang
- Department of Spine Surgery, The Second Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Digital Spine Research InstituteCentral South UniversityChangshaChina
| | - Hong Ma
- Department of Spine Surgery, The Second Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Digital Spine Research InstituteCentral South UniversityChangshaChina
| | - Lei Li
- Department of Spine Surgery, The Second Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Digital Spine Research InstituteCentral South UniversityChangshaChina
| | - Ya‐wei Li
- Department of Spine Surgery, The Second Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Digital Spine Research InstituteCentral South UniversityChangshaChina
| | - Yu‐liang Dai
- Department of Spine Surgery, The Second Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Digital Spine Research InstituteCentral South UniversityChangshaChina
| | - Bing Wang
- Department of Spine Surgery, The Second Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Digital Spine Research InstituteCentral South UniversityChangshaChina
| |
Collapse
|
9
|
Chang YP, Tsai YH, Chen YM, Huang KT, Lee CP, Hsu PY, Chen HC, Lin MC, Chen YC. Upregulated microRNA-125b-5p in patients with asthma-COPD overlap mediates oxidative stress and late apoptosis via targeting IL6R/TRIAP1 signaling. Respir Res 2024; 25:64. [PMID: 38302925 PMCID: PMC10835813 DOI: 10.1186/s12931-024-02703-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/24/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Among patients with chronic obstructive pulmonary disease (COPD), some have features of both asthma and COPD-a condition categorized as asthma-COPD overlap (ACO). Our aim was to determine whether asthma- or COPD-related microRNAs (miRNAs) play a role in the pathogenesis of ACO. METHODS A total of 22 healthy subjects and 27 patients with ACO were enrolled. We selected 6 miRNAs that were found to correlate with COPD and asthma. The expression of miRNAs and target genes was analyzed using quantitative reverse-transcriptase polymerase chain reaction. Cell apoptosis and intracellular reactive oxygen species production were evaluated using flow cytometry. In vitro human monocytic THP-1 cells and primary normal human bronchial epithelial (NHBE) cells under stimuli with cigarette smoke extract (CSE) or ovalbumin (OVA) allergen or both were used to verify the clinical findings. RESULTS We identified the upregulation of miR-125b-5p in patients with ACO and in THP-1 cells stimulated with CSE plus OVA allergen. We selected 16 genes related to the miR-125b-5p pathway and found that IL6R and TRIAP1 were both downregulated in patients with ACO and in THP-1 cells stimulated with CSE plus OVA. The percentage of late apoptotic cells increased in the THP-1 cell culture model when stimulated with CSE plus OVA, and the effect was reversed by transfection with miR-125b-5p small interfering RNA (siRNA). The percentage of reactive oxygen species-producing cells increased in the NHBE cell culture model when stimulated with CSE plus OVA, and the effect was reversed by transfection with miR-125b-5p siRNA. In NHBE cells, siRNA transfection reversed the upregulation of STAT3 under CSE+OVA stimulation. CONCLUSIONS Our study revealed that upregulation of miR-125b-5p in patients with ACO mediated late apoptosis in THP-1 cells and oxidative stress in NHBE cells via targeting IL6R and TRIAP1. STAT3 expression was also regulated by miR-125b-5p.
Collapse
Affiliation(s)
- Yu-Ping Chang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Dapi Rd., Niaosong Dist., Kaohsiung, 83301, Taiwan (R.O.C.)
| | - Yi-Hsuan Tsai
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Dapi Rd., Niaosong Dist., Kaohsiung, 83301, Taiwan (R.O.C.)
| | - Yu-Mu Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Dapi Rd., Niaosong Dist., Kaohsiung, 83301, Taiwan (R.O.C.)
| | - Kuo-Tung Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Dapi Rd., Niaosong Dist., Kaohsiung, 83301, Taiwan (R.O.C.)
| | - Chiu-Ping Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Dapi Rd., Niaosong Dist., Kaohsiung, 83301, Taiwan (R.O.C.)
| | - Po-Yuan Hsu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Dapi Rd., Niaosong Dist., Kaohsiung, 83301, Taiwan (R.O.C.)
| | - Hung-Chen Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Dapi Rd., Niaosong Dist., Kaohsiung, 83301, Taiwan (R.O.C.)
| | - Meng-Chih Lin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Dapi Rd., Niaosong Dist., Kaohsiung, 83301, Taiwan (R.O.C.).
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Dapi Rd., Niaosong Dist., Kaohsiung, 83301, Taiwan (R.O.C.).
| | - Yung-Che Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Dapi Rd., Niaosong Dist., Kaohsiung, 83301, Taiwan (R.O.C.).
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Dapi Rd., Niaosong Dist., Kaohsiung, 83301, Taiwan (R.O.C.).
| |
Collapse
|
10
|
Elrebehy MA, Abulsoud AI, El-Dakroury WA, Abdel Mageed SS, Elshaer SS, Fathi D, Rizk NI, Moustafa YM, Elballal MS, Mohammed OA, Abdel-Reheim MA, Zaki MB, Mahmoud AMA, Rashad AA, Sawan ES, Al-Noshokaty TM, Saber S, Doghish AS. Tuning into miRNAs: A comprehensive analysis of their impact on diagnosis, and progression in asthma. Pathol Res Pract 2024; 254:155147. [PMID: 38246033 DOI: 10.1016/j.prp.2024.155147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/23/2024]
Abstract
Asthma is a diverse inflammatory illness affecting the respiratory passages, leading to breathing challenges, bouts of coughing and wheezing, and, in severe instances, significant deterioration in quality of life. Epigenetic regulation, which involves the control of gene expression through processes such as post-transcriptional modulation of microRNAs (miRNAs), plays a role in the evolution of various asthma subtypes. In immune-mediated diseases, miRNAs play a regulatory role in the behavior of cells that form the airway structure and those responsible for defense mechanisms in the bronchi and lungs. They control various cellular processes such as survival, growth, proliferation, and the production of chemokines and immune mediators. miRNAs possess chemical and biological characteristics that qualify them as suitable biomarkers for diseases. They allow for the categorization of patients to optimize drug selection, thus streamlining clinical management and decreasing both the economic burden and the necessity for critical care related to the disease. This study provides a concise overview of the functions of miRNAs in asthma and elucidates their regulatory effects on the underlying processes of the disease. We provide a detailed account of the present status of miRNAs as biomarkers for categorizing asthma, identifying specific asthma subtypes, and selecting appropriate treatment options.
Collapse
Affiliation(s)
- Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt.
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Doaa Fathi
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Yasser M Moustafa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Abdulla M A Mahmoud
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed A Rashad
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Eman S Sawan
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Tohada M Al-Noshokaty
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
11
|
Wang B, Zhu Y, Wang S, Li Z, Wang L, Rao W, Cheng N, Chen R, Ying J, Xue L. Gastric tubular adenocarcinoma with diffuse neutrophils infiltrating: characteristics and probable treatment strategy. Gastric Cancer 2024; 27:86-101. [PMID: 38019350 DOI: 10.1007/s10120-023-01446-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 10/09/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Gastric adenocarcinoma is a highly heterogeneous malignancy with varying prognoses. In clinicopathological practice, we noticed a special tubular adenocarcinoma with diffuse neutrophils infiltrating (TADNI). However, the proportion and characteristics of TADNI remain unclear. This study aimed to evaluate the features of TADNI and explore probable treatments. METHODS We divided 289 tubular adenocarcinoma cases into the TADNI and non-TADNI (nTADNI) groups by histological neutrophil quantity and performed immunohistochemistry of treatment-associated markers (CXCR1, CXCR2, PD-L1, CD8, HER2 and VEGFR2). Then we evaluated the clinical and morphological features in these cases. We also compared the value of histological features and peripheral blood neutrophil test. In addition, multiomics bioinformatic analyses were performed using the public datasets. RESULTS In our cohort, TADNI accounted for 10.4% of all tubular adenocarcinoma cases. These cases had worse prognoses (especially the neutrophils mainly outside the tubes) than nTADNI cases. The histological identification of TADNI had more prognostic value than peripheral blood neutrophils. CXCR1/CXCR2 expression was significantly high in TADNI group which indicated that CXCR1/CXCR2 inhibitors might be beneficial for TADNI patients. There were no significant differences in the expression of PD-L1, CD8, HER2 and VEGFR2. The analyses of TCGA data confirmed that TADNI cases had poorer prognoses and higher CXCR1/CXCR2 expression. Bioinformatic results also revealed molecular features (more hsa-mir-223 expression, fewer CD8-positive T cells and regulatory T cells, tighter communication between tumor cells' CXCR1/CXCR2 and neutrophils' CXCL5/CXCL8) of this type. CONCLUSIONS TADNI is a special morphological subtype with poorer prognoses and unique molecular characteristics, which might benefit from CXCR1/CXCR2 inhibitors.
Collapse
Affiliation(s)
- Bingzhi Wang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yongjian Zhu
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shaoming Wang
- Office of National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhuo Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Long Wang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wei Rao
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Na Cheng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Rongshan Chen
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jianming Ying
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Liyan Xue
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
12
|
Jesenak M, Diamant Z, Simon D, Tufvesson E, Seys SF, Mukherjee M, Lacy P, Vijverberg S, Slisz T, Sediva A, Simon HU, Striz I, Plevkova J, Schwarze J, Kosturiak R, Alexis NE, Untersmayr E, Vasakova MK, Knol E, Koenderman L. Eosinophils-from cradle to grave: An EAACI task force paper on new molecular insights and clinical functions of eosinophils and the clinical effects of targeted eosinophil depletion. Allergy 2023; 78:3077-3102. [PMID: 37702095 DOI: 10.1111/all.15884] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/21/2023] [Accepted: 08/27/2023] [Indexed: 09/14/2023]
Abstract
Over the past years, eosinophils have become a focus of scientific interest, especially in the context of their recently uncovered functions (e.g. antiviral, anti-inflammatory, regulatory). These versatile cells display both beneficial and detrimental activities under various physiological and pathological conditions. Eosinophils are involved in the pathogenesis of many diseases which can be classified into primary (clonal) and secondary (reactive) disorders and idiopathic (hyper)eosinophilic syndromes. Depending on the biological specimen, the eosinophil count in different body compartments may serve as a biomarker reflecting the underlying pathophysiology and/or activity of distinct diseases and as a therapy-driving (predictive) and monitoring tool. Personalized selection of an appropriate therapeutic strategy directly or indirectly targeting the increased number and/or activity of eosinophils should be based on the understanding of eosinophil homeostasis including their interactions with other immune and non-immune cells within different body compartments. Hence, restoring as well as maintaining homeostasis within an individual's eosinophil pool is a goal of both specific and non-specific eosinophil-targeting therapies. Despite the overall favourable safety profile of the currently available anti-eosinophil biologics, the effect of eosinophil depletion should be monitored from the perspective of possible unwanted consequences.
Collapse
Affiliation(s)
- Milos Jesenak
- Department of Clinical Immunology and Allergology, University Teaching Hospital in Martin, Martin, Slovak Republic
- Department of Paediatrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovak Republic
- Department of Pulmonology and Phthisiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovak Republic
| | - Zuzana Diamant
- Department of Clinical Sciences Lund, Respiratory Medicine, Allergology and Palliative Medicine, Lund University, Lund, Sweden
- Department Microbiology Immunology & Transplantation, KU Leuven, Catholic University of Leuven, Leuven, Belgium
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Dagmar Simon
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ellen Tufvesson
- Department of Clinical Sciences Lund, Respiratory Medicine, Allergology and Palliative Medicine, Lund University, Lund, Sweden
| | - Sven F Seys
- Laboratory of Clinical Immunology, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Manali Mukherjee
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- The Firestone Institute for Respiratory Health, Research Institute of St. Joe's Hamilton, Hamilton, Ontario, Canada
| | - Paige Lacy
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Susanne Vijverberg
- Amsterdam UMC Location University of Amsterdam, Pulmonary Diseases, Amsterdam, The Netherlands
| | - Tomas Slisz
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Anna Sediva
- Department of Immunology, 2nd Faculty of Medicine, Charles University, Motol University Hospital, Prague, Czech Republic
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Institute of Biochemistry, Brandenburg Medical School, Neuruppin, Germany
| | - Ilja Striz
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jana Plevkova
- Department of Pathophysiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
| | - Jurgen Schwarze
- Child Life and Health and Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Radovan Kosturiak
- Department of Paediatrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovak Republic
- Outpatient Clinic for Clinical Immunology and Allergology, Nitra, Slovak Republic
| | - Neil E Alexis
- Center for Environmental Medicine, Asthma and Lung Biology, Department of Paediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Martina Koziar Vasakova
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Edward Knol
- Department Center of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department Dermatology/Allergology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Leo Koenderman
- Department Center of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department Pulmonary Diseases, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
13
|
Coskunpinar E, Akcesme B, Tas SK, Aynaci A. Investigation of miRNAs that are effective in the pathogenesis of asthma. J Asthma 2023; 60:2145-2152. [PMID: 37314187 DOI: 10.1080/02770903.2023.2225605] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/11/2023] [Indexed: 06/15/2023]
Abstract
OBJECTIVES Asthma is a complex disease characterized by inflammation of the airways, involving epigenetic changes, in which genetic and environmental factors act together. MicroRNAs as candidate biomarkers stand out as target molecules in the diagnosis and treatment of immunological and inflammatory diseases. Our aim of this study is to identify miRNAs that are thought to be effective in the pathogenesis of allergic asthma and to reveal candidate biomarkers associated with the disease. METHODS Fifty patients, aged between 18-80 years, who were diagnosed with allergic asthma and 18 healthy volunteers were included in the study. After the collection 2 mL of total blood from volunteers, RNA isolation and cDNA synthesis were performed. For miRNA profile screening, expression analysis was performed by real-time PCR method using miScript miRNA PCR Array. GeneGlobe Data Analysis Center was used to evaluate dysregulated miRNAs. RESULTS In the allergic asthma group, 9 (18%) of the patients were male and 41 (82%) of them were female. In the control group, 7 (38.89%) were male and 11 (61.1%) were female (P:0.073). As a result of the research, the expression levels of miR-142-5p, miR-376c-3p and miR-22-3p were down-regulated, while miR-27b-3p, miR-26b-5p, miR-15b-5p and miR-29c-3p detected as up-regulated. DISCUSSION The results of our study suggest that miR142-5p, miR376c-3p and miR22-3p promote Ubiquitin-mediated proteolysis by inhibiting TGF-β expression through a mechanism involving the p53 signaling pathway. The deregulated miRNAs may be used as a diagnostic and prognostic biomarker in asthma.
Collapse
Affiliation(s)
- Ender Coskunpinar
- Department of Medical Biology, School of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Betul Akcesme
- Department of Medical Biology, School of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Sevgi Kalkanli Tas
- Department of Immunology, School of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Aysun Aynaci
- Clinic of Chest Diseases, Istanbul Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
14
|
O’Connor LM, O’Connor BA, Zeng J, Lo CH. Data Mining of Microarray Datasets in Translational Neuroscience. Brain Sci 2023; 13:1318. [PMID: 37759919 PMCID: PMC10527016 DOI: 10.3390/brainsci13091318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/04/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
Data mining involves the computational analysis of a plethora of publicly available datasets to generate new hypotheses that can be further validated by experiments for the improved understanding of the pathogenesis of neurodegenerative diseases. Although the number of sequencing datasets is on the rise, microarray analysis conducted on diverse biological samples represent a large collection of datasets with multiple web-based programs that enable efficient and convenient data analysis. In this review, we first discuss the selection of biological samples associated with neurological disorders, and the possibility of a combination of datasets, from various types of samples, to conduct an integrated analysis in order to achieve a holistic understanding of the alterations in the examined biological system. We then summarize key approaches and studies that have made use of the data mining of microarray datasets to obtain insights into translational neuroscience applications, including biomarker discovery, therapeutic development, and the elucidation of the pathogenic mechanisms of neurodegenerative diseases. We further discuss the gap to be bridged between microarray and sequencing studies to improve the utilization and combination of different types of datasets, together with experimental validation, for more comprehensive analyses. We conclude by providing future perspectives on integrating multi-omics, to advance precision phenotyping and personalized medicine for neurodegenerative diseases.
Collapse
Affiliation(s)
- Lance M. O’Connor
- College of Biological Sciences, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Blake A. O’Connor
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA;
| | - Jialiu Zeng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore;
| | - Chih Hung Lo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore;
| |
Collapse
|
15
|
Brigham E, Hashimoto A, Alexis NE. Air Pollution and Diet: Potential Interacting Exposures in Asthma. Curr Allergy Asthma Rep 2023; 23:541-553. [PMID: 37440094 DOI: 10.1007/s11882-023-01101-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2023] [Indexed: 07/14/2023]
Abstract
PURPOSE OF REVIEW To provide a review of emerging literature describing the impact of diet on the respiratory response to air pollution in asthma. RECENT FINDINGS Asthma phenotyping (observable characteristics) and endotyping (mechanistic pathways) have increased the specificity of diagnostic and treatment pathways and opened the doors to the identification of subphenotypes with enhanced susceptibility to exposures and interventions. Mechanisms underlying the airway immune response to air pollution are still being defined but include oxidative stress, inflammation, and activation of adaptive and innate immune responses, with genetic susceptibility highlighted. Of these, neutrophil recruitment and activation appear prominent; however, understanding neutrophil function in response to pollutant exposures is a research gap. Diet may play a role in asthma pathogenesis and morbidity; therefore, diet modification is a potential target opportunity to protect against pollutant-induced lung injury. In particular, in vivo and in vitro data suggest the potential for diet to modify the inflammatory response in the airways, including impacts on neutrophil recruitment and function. Murine models provide compelling results in regard to the potential for dietary components (including fiber, antioxidants, and omega-3 fatty acids) to buffer against the inflammatory response to air pollution in the lung. Precision lifestyle approaches to asthma management and respiratory protection in the context of air pollution exposures may evolve to include diet, pending the results of further epidemiologic and causal investigation and with neutrophil recruitment and activation as a candidate mechanism.
Collapse
Affiliation(s)
- Emily Brigham
- Division of Respirology, University of British Columbia, Vancouver, BC, Canada.
- Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.
| | - Alisa Hashimoto
- Faculty of Science, University of British Columbia, BC, Vancouver, Canada
| | - Neil E Alexis
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Department of Pediatrics, Division of Allergy, Immunology, Rheumatology and Infectious Disease, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
16
|
Zhu Z, Freishtat RJ, Harmon B, Hahn A, Teach SJ, Pérez-Losada M, Hasegawa K, Camargo CA. Nasal airway microRNA profiling of infants with severe bronchiolitis and risk of childhood asthma: a multicentre prospective study. Eur Respir J 2023; 62:2300502. [PMID: 37321621 PMCID: PMC10578345 DOI: 10.1183/13993003.00502-2023] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Severe bronchiolitis (i.e. bronchiolitis requiring hospitalisation) during infancy is a major risk factor for childhood asthma. However, the exact mechanism linking these common conditions remains unclear. We examined the longitudinal relationship between nasal airway miRNAs during severe bronchiolitis and the risk of developing asthma. METHODS In a 17-centre prospective cohort study of infants with severe bronchiolitis, we sequenced their nasal microRNA at hospitalisation. First, we identified differentially expressed microRNAs (DEmiRNAs) associated with the risk of developing asthma by age 6 years. Second, we characterised the DEmiRNAs based on their association with asthma-related clinical features, and expression level by tissue and cell types. Third, we conducted pathway and network analyses by integrating DEmiRNAs and their mRNA targets. Finally, we investigated the association of DEmiRNAs and nasal cytokines. RESULTS In 575 infants (median age 3 months), we identified 23 DEmiRNAs associated with asthma development (e.g. hsa-miR-29a-3p; false discovery rate (FDR) <0.10), particularly in infants with respiratory syncytial virus infection (FDR for the interaction <0.05). These DEmiRNAs were associated with 16 asthma-related clinical features (FDR <0.05), e.g. infant eczema and corticosteroid use during hospitalisation. In addition, these DEmiRNAs were highly expressed in lung tissue and immune cells (e.g. T-helper cells, neutrophils). Third, DEmiRNAs were negatively correlated with their mRNA targets (e.g. hsa-miR-324-3p/IL13), which were enriched in asthma-related pathways (FDR <0.05), e.g. toll-like receptor, PI3K-Akt and FcɛR signalling pathways, and validated by cytokine data. CONCLUSION In a multicentre cohort of infants with severe bronchiolitis, we identified nasal miRNAs during illness that were associated with major asthma-related clinical features, immune response, and risk of asthma development.
Collapse
Affiliation(s)
- Zhaozhong Zhu
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert J Freishtat
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
- Division of Emergency Medicine, Children's National Hospital, Washington, DC, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Brennan Harmon
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
| | - Andrea Hahn
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Division of Infectious Diseases, Children's National Hospital, Washington, DC, USA
| | - Stephen J Teach
- Division of Emergency Medicine, Children's National Hospital, Washington, DC, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Marcos Pérez-Losada
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, The George Washington University, Washington, DC, USA
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
Ricciardolo FLM, Guida G, Bertolini F, Di Stefano A, Carriero V. Phenotype overlap in the natural history of asthma. Eur Respir Rev 2023; 32:32/168/220201. [PMID: 37197769 DOI: 10.1183/16000617.0201-2022] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/23/2023] [Indexed: 05/19/2023] Open
Abstract
The heterogeneity of asthma makes it challenging to unravel the pathophysiologic mechanisms of the disease. Despite the wealth of research identifying diverse phenotypes, many gaps still remain in our knowledge of the disease's complexity. A crucial aspect is the impact of airborne factors over a lifetime, which often results in a complex overlap of phenotypes associated with type 2 (T2), non-T2 and mixed inflammation. Evidence now shows overlaps between the phenotypes associated with T2, non-T2 and mixed T2/non-T2 inflammation. These interconnections could be induced by different determinants such as recurrent infections, environmental factors, T-helper plasticity and comorbidities, collectively resulting in a complex network of distinct pathways generally considered as mutually exclusive. In this scenario, we need to abandon the concept of asthma as a disease characterised by distinct traits grouped into static segregated categories. It is now evident that there are multiple interplays between the various physiologic, cellular and molecular features of asthma, and the overlap of phenotypes cannot be ignored.
Collapse
Affiliation(s)
- Fabio L M Ricciardolo
- Department of Clinical and Biological Sciences, Severe Asthma and Rare Lung Disease Unit, San Luigi Gonzaga University Hospital, University of Turin, Turin, Italy
- Institute of Translational Pharmacology, National Research Council (IFT-CNR), section of Palermo, Palermo, Italy
| | - Giuseppe Guida
- Department of Clinical and Biological Sciences, Severe Asthma and Rare Lung Disease Unit, San Luigi Gonzaga University Hospital, University of Turin, Turin, Italy
| | - Francesca Bertolini
- Department of Clinical and Biological Sciences, Severe Asthma and Rare Lung Disease Unit, San Luigi Gonzaga University Hospital, University of Turin, Turin, Italy
| | - Antonino Di Stefano
- Department of Pneumology and Laboratory of Cytoimmunopathology of the Heart and Lung, Istituti Clinici Scientifici Maugeri SpA, IRCCS, Novara, Italy
| | - Vitina Carriero
- Department of Clinical and Biological Sciences, Severe Asthma and Rare Lung Disease Unit, San Luigi Gonzaga University Hospital, University of Turin, Turin, Italy
| |
Collapse
|
18
|
Furci F, Allegra A, Tonacci A, Isola S, Senna G, Pioggia G, Gangemi S. Air Pollution and microRNAs: The Role of Association in Airway Inflammation. Life (Basel) 2023; 13:1375. [PMID: 37374157 DOI: 10.3390/life13061375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/29/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Air pollution exposure plays a key role in the alteration of gene expression profiles, which can be regulated by microRNAs, inducing the development of various diseases. Moreover, there is also evidence of sensitivity of miRNAs to environmental factors, including tobacco smoke. Various diseases are related to specific microRNA signatures, suggesting their potential role in pathophysiological processes; considering their association with environmental pollutants, they could become novel biomarkers of exposure. Therefore, the aim of the present work is to analyse data reported in the literature on the role of environmental stressors on microRNA alterations and, in particular, to identify specific alterations that might be related to the development of airway diseases so as to propose future preventive, diagnostic, and therapeutic strategies.
Collapse
Affiliation(s)
- Fabiana Furci
- Allergy Unit and Asthma Center, Verona University Hospital, 37134 Verona, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 98124 Messina, Italy
| | - Alessandro Tonacci
- Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy
| | - Stefania Isola
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy
| | - Gianenrico Senna
- Allergy Unit and Asthma Center, Verona University Hospital, 37134 Verona, Italy
- Department of Medicine, Verona University Hospital, 37134 Verona, Italy
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy
| |
Collapse
|
19
|
Perryman AN, Kim HYH, Payton A, Rager JE, McNell EE, Rebuli ME, Wells H, Almond M, Antinori J, Alexis NE, Porter NA, Jaspers I. Plasma sterols and vitamin D are correlates and predictors of ozone-induced inflammation in the lung: A pilot study. PLoS One 2023; 18:e0285721. [PMID: 37186612 PMCID: PMC10184915 DOI: 10.1371/journal.pone.0285721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/27/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Ozone (O3) exposure causes respiratory effects including lung function decrements, increased lung permeability, and airway inflammation. Additionally, baseline metabolic state can predispose individuals to adverse health effects from O3. For this reason, we conducted an exploratory study to examine the effect of O3 exposure on derivatives of cholesterol biosynthesis: sterols, oxysterols, and secosteroid (25-hydroxyvitamin D) not only in the lung, but also in circulation. METHODS We obtained plasma and induced sputum samples from non-asthmatic (n = 12) and asthmatic (n = 12) adult volunteers 6 hours following exposure to 0.4ppm O3 for 2 hours. We quantified the concentrations of 24 cholesterol precursors and derivatives by UPLC-MS and 30 cytokines by ELISA. We use computational analyses including machine learning to determine whether baseline plasma sterols are predictive of O3 responsiveness. RESULTS We observed an overall decrease in the concentration of cholesterol precursors and derivatives (e.g. 27-hydroxycholesterol) and an increase in concentration of autooxidation products (e.g. secosterol-B) in sputum samples. In plasma, we saw a significant increase in the concentration of secosterol-B after O3 exposure. Machine learning algorithms showed that plasma cholesterol was a top predictor of O3 responder status based on decrease in FEV1 (>5%). Further, 25-hydroxyvitamin D was positively associated with lung function in non-asthmatic subjects and with sputum uteroglobin, whereas it was inversely associated with sputum myeloperoxidase and neutrophil counts. CONCLUSION This study highlights alterations in sterol metabolites in the airway and circulation as potential contributors to systemic health outcomes and predictors of pulmonary and inflammatory responsiveness following O3 exposure.
Collapse
Affiliation(s)
- Alexia N. Perryman
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Hye-Young H. Kim
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States of America
| | - Alexis Payton
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Julia E. Rager
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Erin E. McNell
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Meghan E. Rebuli
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Heather Wells
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Martha Almond
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Jamie Antinori
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Neil E. Alexis
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Ned A. Porter
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States of America
| | - Ilona Jaspers
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| |
Collapse
|
20
|
Chen S, Lv J, Luo Y, Chen H, Ma S, Zhang L. Bioinformatic Analysis of Key Regulatory Genes in Adult Asthma and Prediction of Potential Drug Candidates. Molecules 2023; 28:molecules28104100. [PMID: 37241840 DOI: 10.3390/molecules28104100] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Asthma is a common chronic disease that is characterized by respiratory symptoms including cough, wheeze, shortness of breath, and chest tightness. The underlying mechanisms of this disease are not fully elucidated, so more research is needed to identify better therapeutic compounds and biomarkers to improve disease outcomes. In this present study, we used bioinformatics to analyze the gene expression of adult asthma in publicly available microarray datasets to identify putative therapeutic molecules for this disease. We first compared gene expression in healthy volunteers and adult asthma patients to obtain differentially expressed genes (DEGs) for further analysis. A final gene expression signature of 49 genes, including 34 upregulated and 15 downregulated genes, was obtained. Protein-protein interaction and hub analyses showed that 10 genes, including POSTN, CPA3, CCL26, SERPINB2, CLCA1, TPSAB1, TPSB2, MUC5B, BPIFA1, and CST1, may be hub genes. Then, the L1000CDS2 search engine was used for drug repurposing studies. The top approved drug candidate predicted to reverse the asthma gene signature was lovastatin. Clustergram results showed that lovastatin may perturb MUC5B expression. Moreover, molecular docking, molecular dynamics simulation, and computational alanine scanning results supported the notion that lovastatin may interact with MUC5B via key residues such as Thr80, Thr91, Leu93, and Gln105. In summary, by analyzing gene expression signatures, hub genes, and therapeutic perturbation, we show that lovastatin is an approved drug candidate that may have potential for treating adult asthma.
Collapse
Affiliation(s)
- Shaojun Chen
- Department of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, Ningbo 315000, China
| | - Jiahao Lv
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yiyuan Luo
- Department of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, Ningbo 315000, China
| | - Hongjiang Chen
- Department of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, Ningbo 315000, China
| | - Shuwei Ma
- Department of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, Ningbo 315000, China
| | - Lihua Zhang
- Department of Food Science, Zhejiang Pharmaceutical University, Ningbo 315000, China
| |
Collapse
|
21
|
Herrera-Luis E, Forno E, Celedón JC, Pino-Yanes M. Asthma Exacerbations: The Genes Behind the Scenes. J Investig Allergol Clin Immunol 2023; 33:76-94. [PMID: 36420738 PMCID: PMC10638677 DOI: 10.18176/jiaci.0878] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The clinical and socioeconomic burden of asthma exacerbations (AEs) constitutes a major public health problem. In the last 4 years, there has been an increase in ethnic diversity in candidate-gene and genome-wide association studies of AEs, which in the latter case led to the identification of novel genes and underlying pathobiological processes. Pharmacogenomics, admixture mapping analyses, and the combination of multiple "omics" layers have helped to prioritize genomic regions of interest and/or facilitated our understanding of the functional consequences of genetic variation. Nevertheless, the field still lags behind the genomics of asthma, where a vast compendium of genetic approaches has been used (eg, gene-environment nteractions, next-generation sequencing, and polygenic risk scores). Furthermore, the roles of the DNA methylome and histone modifications in AEs have received little attention, and microRNA findings remain to be validated in independent studies. Likewise, the most recent transcriptomic studies highlight the importance of the host-airway microbiome interaction in the modulation of risk of AEs. Leveraging -omics and deep-phenotyping data from subtypes or homogenous subgroups of patients will be crucial if we are to overcome the inherent heterogeneity of AEs, boost the identification of potential therapeutic targets, and implement precision medicine approaches to AEs in clinical practice.
Collapse
Affiliation(s)
- E Herrera-Luis
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
| | - E Forno
- Division of Pediatric Pulmonary Medicine, UPMC Children´s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - J C Celedón
- Division of Pediatric Pulmonary Medicine, UPMC Children´s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - M Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain 4 Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
| |
Collapse
|
22
|
Tian Y, Cui X, Guan X, Meng X, Zheng M, Wang X, Cheng G, Xia Y, Ye M. Differential expression profile of microRNAs in the lung tissues of coal workers with pneumoconiosis and patients with silicosis. Toxicol Ind Health 2023; 39:204-217. [PMID: 36840710 DOI: 10.1177/07482337231156281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
The purpose of this study was to characterize the microRNA (miRNA) profile of the lung tissues from coal workers' pneumoconiosis (CWP) and silicosis and to analyze the changes in downstream genes, biological processes, and signaling pathways based on the differently expressed miRNAs. Lung tissues from three CWP patients, eight silicosis patients, and four healthy controls were collected and analyzed for their miRNA profiles using Affymetrix® GeneChip® miRNA Arrays. Differentially expressed miRNAs (DEMs) were identified between the different groups. The miRanda and TargetScan databases were used to predict the putative target genes, and volcano and heat maps were drawn. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analyses were then performed to screen the DEMs-associated biological process and signaling pathways, respectively. Further identification with a comprehensive literature research involving particle exposure, fibrosis, inflammation and lung cancer were used to further screen DEMs of CWP and silicosis. Microarray data showed that 375 and 88 miRNAs were differentially expressed in CWP and silicosis lung tissues compared with healthy lung tissues, while 34 miRNAs were differentially expressed in CWP compared with silicosis lung tissues. The GO and KEGG pathway analyses showed that, the target genes were mainly enriched in the TGF-β, MAPK, p53 and other signal pathways. These results provided insight into the miRNA-related underlying mechanisms of CWP and silicosis, and they provided new clues for miRNAs as biomarkers for the diagnosis and differential diagnosis of these two diseases.
Collapse
Affiliation(s)
- Yilin Tian
- National Institute for Occupational Health and Poison Control, 12415Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiuqing Cui
- Hubei Provincial Key Laboratory for Applied Toxicology, 498598Hubei Provincial Center for Disease Control and Prevention, Hubei, China
| | - Xin Guan
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Xiang Meng
- National Institute for Occupational Health and Poison Control, 12415Chinese Center for Disease Control and Prevention, Beijing, China
| | - Min Zheng
- National Institute for Occupational Health and Poison Control, 12415Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xin Wang
- National Institute for Occupational Health and Poison Control, 12415Chinese Center for Disease Control and Prevention, Beijing, China
| | - Guoping Cheng
- Ward II of Respiratory and Critical Care Medicine, Huangshi Second Hospital, Huangshi, China
| | - Ying Xia
- Hubei Provincial Key Laboratory for Applied Toxicology, 498598Hubei Provincial Center for Disease Control and Prevention, Hubei, China
| | - Meng Ye
- National Institute for Occupational Health and Poison Control, 12415Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
23
|
Non-Coding RNAs in Pulmonary Diseases: Comparison of Different Airway-Derived Biosamples. Int J Mol Sci 2023; 24:ijms24032006. [PMID: 36768329 PMCID: PMC9916756 DOI: 10.3390/ijms24032006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Due to their structural conservation and functional role in critical signalling pathways, non-coding RNA (ncRNA) is a promising biomarker and modulator of pathological conditions. Most research has focussed on the role of microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs). These molecules have been investigated both in a cellular and an extracellular context. Sources of ncRNAs may include organ-specific body fluids. Therefore, studies on ncRNAs in respiratory diseases include those on sputum, bronchoalveolar lavage fluid (BALF) and exhaled breath condensate (EBC). It is worth identifying the limitations of these biosamples in terms of ncRNA abundance, processing and diagnostic potential. This review describes the progress in the literature on the role of ncRNAs in the pathogenesis and progression of severe respiratory diseases, including cystic fibrosis, asthma and interstitial lung disease. We showed that there is a deficit of information on lncRNAs and circRNAs in selected diseases, despite attempts to functionally bind them to miRNAs. miRNAs remain the most well-studied, but only a few investigations have been conducted on the least invasive biosample material, i.e., EBC. To summarise the studies conducted to date, we also performed a preliminary in silico analysis of the reported miRNAs, demonstrating the complexity of their role and interactions in selected respiratory diseases.
Collapse
|
24
|
Advances and Highlights of miRNAs in Asthma: Biomarkers for Diagnosis and Treatment. Int J Mol Sci 2023; 24:ijms24021628. [PMID: 36675145 PMCID: PMC9862966 DOI: 10.3390/ijms24021628] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Asthma is a heterogeneous inflammatory disease of the airways that causes breathing difficulties, episodes of cough and wheezing, and in more severe cases can greatly diminish quality of life. Epigenetic regulation, including post-transcriptional mediation of microRNAs (miRNAs), is one of the mechanisms behind the development of the range of asthma phenotypes and endotypes. As in every other immune-mediated disease, miRNAs regulate the behavior of cells that shape the airway structure as well as those in charge of the defense mechanisms in the bronchi and lungs, controlling cell survival, growth, proliferation, and the ability of cells to synthesize and secrete chemokines and immune mediators. More importantly, miRNAs are molecules with chemical and biological properties that make them appropriate biomarkers for disease, enabling stratification of patients for optimal drug selection and thereby simplifying clinical management and reducing both the economic burden and need for critical care associated with the disease. In this review, we summarize the roles of miRNAs in asthma and describe how they regulate the mechanisms of the disease. We further describe the current state of miRNAs as biomarkers for asthma phenotyping, endotyping, and treatment selection.
Collapse
|
25
|
Identification of miRNA-mRNA-TFs regulatory network and crucial pathways involved in asthma through advanced systems biology approaches. PLoS One 2022; 17:e0271262. [PMID: 36264868 PMCID: PMC9584516 DOI: 10.1371/journal.pone.0271262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/28/2022] [Indexed: 12/07/2022] Open
Abstract
Asthma is a life-threatening and chronic inflammatory lung disease that is posing a true global health challenge. The genetic basis of the disease is fairly well examined. However, the molecular crosstalk between microRNAs (miRNAs), target genes, and transcription factors (TFs) networks and their contribution to disease pathogenesis and progression is not well explored. Therefore, this study was aimed at dissecting the molecular network between mRNAs, miRNAs, and TFs using robust computational biology approaches. The transcriptomic data of bronchial epithelial cells of severe asthma patients and healthy controls was studied by different systems biology approaches like differentially expressed gene detection, functional enrichment, miRNA-target gene pairing, and mRNA-miRNA-TF molecular networking. We detected the differential expression of 1703 (673 up-and 1030 down-regulated) genes and 71 (41 up-and 30 down-regulated) miRNAs in the bronchial epithelial cells of asthma patients. The DEGs were found to be enriched in key pathways like IL-17 signaling (KEGG: 04657), Th1 and Th2 cell differentiation (KEGG: 04658), and the Th17 cell differentiation (KEGG: 04659) (p-values = 0.001). The results from miRNAs-target gene pairs-transcription factors (TFs) have detected the key roles of 3 miRs (miR-181a-2-3p; miR-203a-3p; miR-335-5p), 6 TFs (TFAM, FOXO1, GFI1, IRF2, SOX9, and HLF) and 32 miRNA target genes in eliciting autoimmune reactions in bronchial epithelial cells of the respiratory tract. Through systemic implementation of comprehensive system biology tools, this study has identified key miRNAs, TFs, and miRNA target gene pairs as potential tissue-based asthma biomarkers.
Collapse
|
26
|
Zhang X, Jiang Y, Qian H, Qu X, Han K. The association between Herpes simplex virus type 2 and asthma: A cross-sectional study from National Health and Nutrition Examination Survey 1999–2016. Front Med (Lausanne) 2022; 9:943706. [PMID: 36186759 PMCID: PMC9515305 DOI: 10.3389/fmed.2022.943706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 08/03/2022] [Indexed: 12/03/2022] Open
Abstract
Background The association between Herpes simplex virus type 2 (HSV-2) infection, a common infectious disease that increases the incidence of multisystem diseases, and asthma was less well studied. The aim of this study was to investigate the association between HSV-2 infection and the prevalence of asthma. Materials and methods We used data from National Health and Nutrition Examination Survey (NHANES) 1999–2016 for analysis. The study population included was limited to those aged 20–45 years and contained complete information on HSV-2 infection and asthma. We calculated the prevalence of HSV-2, asthma, and HSV-2 combined with asthma separately. The association between HSV-2 infection and asthma was analyzed using multiple logistic regression. We also performed stratified analyses to reduce bias and to find sensitive cohorts. Results The prevalence of HSV-2 infection was decreasing with change in time period (P for trend < 0.01), but the prevalence of asthma was increasing (P for trend < 0.01). The prevalence of HSV-2 infection was higher in those with asthma than in non-asthma participants. A positive association was found between HSV-2 infection and asthma [odds ratio (OR) = 1.15, 95% CI: 1.04–1.27]. Subgroup analysis showed that this positive association was more pronounced in participants who were male, White, 30 years ≤ age ≤ 40 years, body mass index (BMI) ≤ 28 kg/m2, 1.39 ≤ ratio of family income to poverty (PIR) < 3.49 and smokers. Conclusion There was a positive association between HSV-2 infection and asthma, and participants who were male, White race, 30 years ≤ age < 40 years, BMI ≥ 28 kg/m2, 1.39 ≤ PIR < 3.49, and smokers should receive more attention.
Collapse
Affiliation(s)
- Xiaofei Zhang
- Department of Respiratory Medicine, Bozhou Hospital Affiliated to Anhui Medical University, Bozhou, China
| | - Yalin Jiang
- Department of Respiratory Medicine, Bozhou Hospital Affiliated to Anhui Medical University, Bozhou, China
| | - Hui Qian
- Department of Respiratory Medicine, Bozhou Hospital Affiliated to Anhui Medical University, Bozhou, China
| | - Xiangkun Qu
- Department of Respiratory Medicine, Bozhou Hospital Affiliated to Anhui Medical University, Bozhou, China
| | - Kexing Han
- Department of Respiratory Medicine, Bozhou Hospital Affiliated to Anhui Medical University, Bozhou, China
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Kexing Han,
| |
Collapse
|
27
|
Qiao X, Hou G, He YL, Song DF, An Y, Altawil A, Zhou XM, Wang QY, Kang J, Yin Y. The Novel Regulatory Role of the lncRNA–miRNA–mRNA Axis in Chronic Inflammatory Airway Diseases. Front Mol Biosci 2022; 9:927549. [PMID: 35769905 PMCID: PMC9234692 DOI: 10.3389/fmolb.2022.927549] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/19/2022] [Indexed: 12/28/2022] Open
Abstract
Chronic inflammatory airway diseases, characterized by airway inflammation and airway remodelling, are increasing as a cause of morbidity and mortality for all age groups and races across the world. The underlying molecular mechanisms involved in chronic inflammatory airway diseases have not been fully explored. MicroRNAs (miRNAs) and long noncoding RNAs (lncRNAs) have recently attracted much attention for their roles in the regulation of a variety of biological processes. A number of studies have confirmed that both lncRNAs and miRNAs can regulate the initiation and progression of chronic airway diseases by targeting mRNAs and regulating different cellular processes, such as proliferation, apoptosis, inflammation, migration, and epithelial–mesenchymal transition (EMT). Recently, accumulative evidence has shown that the novel regulatory mechanism underlying the interaction among lncRNAs, miRNAs and messenger RNAs (mRNAs) plays a critical role in the pathophysiological processes of chronic inflammatory airway diseases. In this review, we comprehensively summarized the regulatory roles of the lncRNA–miRNA–mRNA network in different cell types and their potential roles as biomarkers, indicators of comorbidities or therapeutic targets for chronic inflammatory airway diseases, particularly chronic obstructive pulmonary disease (COPD) and asthma.
Collapse
Affiliation(s)
- Xin Qiao
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Gang Hou
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yu-Lin He
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Dong-Fang Song
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yi An
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Abdullah Altawil
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiao-Ming Zhou
- Respiratory Department, Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- *Correspondence: Xiao-Ming Zhou, ; Yan Yin,
| | - Qiu-Yue Wang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jian Kang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yan Yin
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Xiao-Ming Zhou, ; Yan Yin,
| |
Collapse
|
28
|
Gao JR, Shi MM, Jiang H, Zhu XL, Wei LB, Qin XJ. MicroRNA-339-5p inhibits lipopolysaccharide-induced rat mesangial cells by regulating the Syk/Ras/c-Fos pathway. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:1075-1085. [PMID: 35687145 DOI: 10.1007/s00210-022-02261-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/26/2022] [Indexed: 10/18/2022]
Abstract
Chronic glomerulonephritis (CGN) is a disease occurred in glomeruli. The mechanism of CGN is regarded to be involved in a range of inflammatory responses. MicroRNA-339-5p (miR-339-5p) has been reported to be involved in inflammatory responses in many diseases. However, the role of miR-339-5p in CGN remains unclear. The purpose of this study was to investigate the role of miR-339-5p in lipopolysaccharide (LPS)-induced nephritis injury in vitro. The real-time reverse transcriptase-polymerase chain reaction (RT-qPCR) and western blot (WB) were used to detect the expression of miR-339-5p and Syk/Ras/c-Fos pathway. Double luciferase was performed to identify targeted binding of miR-339-5p to Syk. Cell counting kit-8 (CCK-8) and flow cytometry were used to observe cell viability and cell cycle. Enzyme-linked immunosorbent assay (ELISA) was performed to measure the concentrations of inflammatory cytokines IL-1β, IL-10, IL-6, and TNF-α. Lipopolysaccharide (LPS) could increase HBZY-1 (rat mesangial cells) cell viability, decrease the G2 phase, and promote cell proliferation and accelerate inflammatory cytokine. However, overexpression of miR-339-5p could inhibit LPS-induced HBZY-1 cell viability, decrease the expression of Syk/Ras/c-Fos signaling pathway, downregulate the expression level of inflammatory cytokines, increase the G2 phase, and inhibit cell proliferation. miR-339-5p could inhibit the proliferation and inflammation of the rat mesangial cells through regulating Syk/Ras/c-Fos signaling pathway.
Collapse
Affiliation(s)
- Jia Rong Gao
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China. .,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, Anhui, China.
| | - Miao Miao Shi
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230011, Anhui, China
| | - Hui Jiang
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China
| | - Xiao Li Zhu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230011, Anhui, China
| | - Liang Bing Wei
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, Anhui, China
| | - Xiu Juan Qin
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, Anhui, China
| |
Collapse
|
29
|
Wang Y, Liu X, Xia P, Li Z, FuChen X, Shen Y, Yu P, Zhang J. The Regulatory Role of MicroRNAs on Phagocytes: A Potential Therapeutic Target for Chronic Diseases. Front Immunol 2022; 13:901166. [PMID: 35634335 PMCID: PMC9130478 DOI: 10.3389/fimmu.2022.901166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/19/2022] [Indexed: 11/27/2022] Open
Abstract
An effective acute inflammatory response results in the elimination of infectious microorganisms, followed by a smooth transition to resolution and repair. During the inflammatory response, neutrophils play a crucial role in antimicrobial defense as the first cells to reach the site of infection damage. However, if the neutrophils that have performed the bactericidal effect are not removed in time, the inflammatory response will not be able to subside. Anti-inflammatory macrophages are the main scavengers of neutrophils and can promote inflammation towards resolution. MicroRNAs (miRNAs) have great potential as clinical targeted therapy and have attracted much attention in recent years. This paper summarizes the involvement of miRNAs in the process of chronic diseases such as atherosclerosis, rheumatoid arthritis and systemic lupus erythematosus by regulating lipid metabolism, cytokine secretion, inflammatory factor synthesis and tissue repair in two types of cells. This will provide a certain reference for miRNA-targeted treatment of chronic diseases.
Collapse
Affiliation(s)
- Yongbo Wang
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Xingyu Liu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Panpan Xia
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Zhangwang Li
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Xinxi FuChen
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Yunfeng Shen
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Peng Yu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| |
Collapse
|
30
|
Neutrophils and Asthma. Diagnostics (Basel) 2022; 12:diagnostics12051175. [PMID: 35626330 PMCID: PMC9140072 DOI: 10.3390/diagnostics12051175] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
Although eosinophilic inflammation is characteristic of asthma pathogenesis, neutrophilic inflammation is also marked, and eosinophils and neutrophils can coexist in some cases. Based on the proportion of sputum cell differentiation, asthma is classified into eosinophilic asthma, neutrophilic asthma, neutrophilic and eosinophilic asthma, and paucigranulocytic asthma. Classification by bronchoalveolar lavage is also performed. Eosinophilic asthma accounts for most severe asthma cases, but neutrophilic asthma or a mixture of the two types can also present a severe phenotype. Biomarkers for the diagnosis of neutrophilic asthma include sputum neutrophils, blood neutrophils, chitinase-3-like protein, and hydrogen sulfide in sputum and serum. Thymic stromal lymphoprotein (TSLP)/T-helper 17 pathways, bacterial colonization/microbiome, neutrophil extracellular traps, and activation of nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 pathways are involved in the pathophysiology of neutrophilic asthma and coexistence of obesity, gastroesophageal reflux disease, and habitual cigarette smoking have been associated with its pathogenesis. Thus, targeting neutrophilic asthma is important. Smoking cessation, neutrophil-targeting treatments, and biologics have been tested as treatments for severe asthma, but most clinical studies have not focused on neutrophilic asthma. Phosphodiesterase inhibitors, anti-TSLP antibodies, azithromycin, and anti-cholinergic agents are promising drugs for neutrophilic asthma. However, clinical research targeting neutrophilic inflammation is required to elucidate the optimal treatment.
Collapse
|
31
|
Duan Q, Zhou Y, Yang D. Endoplasmic reticulum stress in airway hyperresponsiveness. Biomed Pharmacother 2022; 149:112904. [PMID: 35367759 DOI: 10.1016/j.biopha.2022.112904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/18/2022] [Accepted: 03/27/2022] [Indexed: 11/15/2022] Open
Abstract
Airway hyperresponsiveness(AHR) is a major clinical phenomenon in lung diseases (asthma, COPD and pulmonary fibrosis) and not only a high-risk factor for perioperative airway spasm leading to hypoxaemia, haemodynamic instability and even "silent lung", but also a potential risk for increased mortality from underlying diseases (e.g. asthma, COPD). Airway reactivity is closely linked to airway inflammation, remodelling and increased mucus secretion, and endoplasmic reticulum stress is an important mechanism for the development of these pathologies. This review, therefore, focuses on the effects of endoplasmic reticulum stress on the immune cells involved in airway hyperreactivity (epithelial cells, dendritic cells, eosinophils and neutrophils) in inflammation and mucus & sputum secretion; and on the differentiation and remodelling of airway smooth muscle cells and epithelial cells. The aim is to clarify the mechanisms associated with endoplasmic reticulum stress in airway hyperresponsiveness and to find new ideas and methods for the prevention of airway hyperresponsiveness in the perioperative period.
Collapse
Affiliation(s)
- Qirui Duan
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shijingshan District, Beijing 100144, China
| | - Ying Zhou
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shijingshan District, Beijing 100144, China
| | - Dong Yang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shijingshan District, Beijing 100144, China.
| |
Collapse
|
32
|
Tiwari A, Hobbs BD, Li J, Kho AT, Amr S, Celedón JC, Weiss ST, Hersh CP, Tantisira KG, McGeachie MJ. Blood miRNAs Are Linked to Frequent Asthma Exacerbations in Childhood Asthma and Adult COPD. Noncoding RNA 2022; 8:ncrna8020027. [PMID: 35447890 PMCID: PMC9030787 DOI: 10.3390/ncrna8020027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/23/2022] [Accepted: 03/30/2022] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs have been independently associated with asthma and COPD; however, it is unclear if microRNA associations will overlap when evaluating retrospective acute exacerbations. Objective: We hypothesized that peripheral blood microRNAs would be associated with retrospective acute asthma exacerbations in a pediatric asthma cohort and that such associations may also be relevant to acute COPD exacerbations. Methods: We conducted small-RNA sequencing on 374 whole-blood samples from children with asthma ages 6-14 years who participated in the Genetics of Asthma in Costa Rica Study (GACRS) and 450 current and former adult smokers with and without COPD who participated in the COPDGene study. Measurements and Main Results: After QC, we had 351 samples and 649 microRNAs for Differential Expression (DE) analysis between the frequent (n = 183) and no or infrequent exacerbation (n = 168) groups in GACRS. Fifteen upregulated miRs had odds ratios (OR) between 1.22 and 1.59 for a doubling of miR counts, while five downregulated miRs had ORs between 0.57 and 0.8. These were assessed for generalization in COPDGene, where three of the upregulated miRs (miR-532-3p, miR-296-5p, and miR-766-3p) and two of the downregulated miRs (miR-7-5p and miR-451b) replicated. Pathway enrichment analysis showed MAPK and PI3K-Akt signaling pathways were strongly enriched for target genes of DE miRNAs and miRNAs generalizing to COPD exacerbations, as well as infection response pathways to various pathogens. Conclusion: miRs (451b; 7-5p; 532-3p; 296-5p and 766-3p) associated with both childhood asthma and adult COPD exacerbations may play a vital role in airflow obstruction and exacerbations and point to shared genomic regulatory machinery underlying exacerbations in both diseases.
Collapse
Affiliation(s)
- Anshul Tiwari
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (A.T.); (B.D.H.); (J.L.); (A.T.K.); (S.T.W.); (C.P.H.)
| | - Brian D. Hobbs
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (A.T.); (B.D.H.); (J.L.); (A.T.K.); (S.T.W.); (C.P.H.)
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jiang Li
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (A.T.); (B.D.H.); (J.L.); (A.T.K.); (S.T.W.); (C.P.H.)
| | - Alvin T. Kho
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (A.T.); (B.D.H.); (J.L.); (A.T.K.); (S.T.W.); (C.P.H.)
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Samir Amr
- Translational Genomics Core, Mass General Brigham Personalized Medicine, Cambridge, MA 02139, USA;
| | - Juan C. Celedón
- Division of Pediatric Pulmonary Medicine, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224, USA;
| | - Scott T. Weiss
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (A.T.); (B.D.H.); (J.L.); (A.T.K.); (S.T.W.); (C.P.H.)
| | - Craig P. Hersh
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (A.T.); (B.D.H.); (J.L.); (A.T.K.); (S.T.W.); (C.P.H.)
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Kelan G. Tantisira
- Division of Pediatric Respiratory Medicine, Rady Children’s Hospital, University of California, San Diego, CA 92123, USA;
| | - Michael J. McGeachie
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (A.T.); (B.D.H.); (J.L.); (A.T.K.); (S.T.W.); (C.P.H.)
- Correspondence: ; Tel.: +617-525-2272; Fax: 617-731-1541
| |
Collapse
|
33
|
Stunf Pukl S. Are miRNAs Dynamic Biomarkers in Keratoconus? A Review of the Literature. Genes (Basel) 2022; 13:genes13040588. [PMID: 35456395 PMCID: PMC9025197 DOI: 10.3390/genes13040588] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023] Open
Abstract
Aim: A review of miRNA (microRNA) profiling studies in keratoconus. Methods: Literature search strategy—PubMed central database, using miRNA or microRNA and keratoconus as keywords. Results: Eleven experimental or clinical studies on humans regarding miRNA and keratoconus, published in English between 2009 and 2020 were retrieved. Conclusion: The publications regarding the role of miRNAs in keratoconus are scarce and diverse but provide some valuable information about potential new mechanisms of keratoconus development and progression. The cornea expresses almost 300 different miRNAs, 18 of which are specific, and miR-184 is by far the most abundant, with expression restricted to central basal and suprabasal epithelial cells. Mutations in the seed region of MIR184 were proved to be rare and nonspecific in patients with isolated keratoconus. Overall, in keratoconus, a total of 29 miRNAs were upregulated, and 11 were downregulated. It appeared that miR-143-3p, miR-182-5p, and miR-92a-3p were highly expressed, while the miRNAs connected to cell–cell junction, cell division, and motor activity were downregulated. In less advanced forms, altered expression of four miRNAs—miR-151a-3p, miR-194-5p, miR-195-5p, miR-185-5p—was proved in the cone epithelium; in contrast, in advanced keratoconus, the expression of miR-151a-3p and miR-194-5p remained altered, changes in the expression of miR-195 and miR-185 were not reported, and the expression of miR-138-5p, miR-146b-5p, miR-28-5p, and miR-181a-2-3p was also altered in the corneal epithelium. Keratoconus is a dynamic process of corneal stromal thinning that might result from a dynamic miRNA expression in the corneal epithelium exposed to environmental and behavioral factors causing repetitive traumas. Further experimental studies are needed to prove this hypothesis.
Collapse
Affiliation(s)
- Spela Stunf Pukl
- Medical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; ; Tel.: +386-41-382-487
- Eye Hospital, University Clinical Center Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
34
|
Zhang X, Xu Z, Wen X, Huang G, Nian S, Li L, Guo X, Ye Y, Yuan Q. The onset, development and pathogenesis of severe neutrophilic asthma. Immunol Cell Biol 2022; 100:144-159. [PMID: 35080788 DOI: 10.1111/imcb.12522] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/02/2021] [Accepted: 01/23/2022] [Indexed: 12/12/2022]
Abstract
Bronchial asthma is divided into Th2 high, Th2 low and mixed types. The Th2 high type is dominated by eosinophils while the Th2 low type is divided into neutrophilic and paucigranulocytic types. Eosinophilic asthma has gained increased attention recently, and its pathogenesis and treatment are well understood. However, severe neutrophilic asthma requires more in-depth research because its pathogenesis is not well understood, and no effective treatment exists. This review looks at the advances made in asthma research, the pathogenesis of neutrophilic asthma, the mechanisms of progression to severe asthma, risk factors for asthma exacerbations, and biomarkers and treatment of neutrophilic asthma. The pathogenesis of neutrophilic asthma is further discussed from four aspects: Th17-type inflammatory response, inflammasomes, exosomes and microRNAs. This review provides direction for the mechanistic study, diagnosis and treatment of neutrophilic asthma. The treatment of neutrophilic asthma remains a significant challenge for clinical therapists and is an important area of future clinical research.
Collapse
Affiliation(s)
- Xingli Zhang
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| | - Zixi Xu
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| | - Xue Wen
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Guoping Huang
- Zigong Hospital of Woman and Children Healthcare, Sichuan, China
| | - Siji Nian
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| | - Lin Li
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| | - Xiyuan Guo
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| | - Yingchun Ye
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| | - Qing Yuan
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
35
|
Guntur VP, Manka LA, Moore CM, Wynn E, Vladar EK, Alam R, Pham TH, Fingerlin TE, Martin RJ. Refractory neutrophilic asthma and ciliary genes. J Allergy Clin Immunol 2022; 149:1970-1980. [PMID: 35034774 DOI: 10.1016/j.jaci.2021.12.761] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/12/2021] [Accepted: 12/08/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Refractory asthma (RA) remains poorly controlled, resulting in high health care utilization despite guideline-based therapies. Patients with RA manifest higher neutrophilia as a result of increased airway inflammation and subclinical infection, the underlying mechanisms of which remain unclear. OBJECTIVE We sought to characterize and clinically correlate gene expression differences between refractory and nonrefractory (NR) asthma to uncover molecular mechanisms driving group distinctions. METHODS Microarray gene expression of paired airway epithelial brush and endobronchial biopsy samples was compared between 60 RA and 30 NR subjects. Subjects were hierarchically clustered to identify subgroups of RA, and biochemical and clinical traits (airway inflammatory molecules, respiratory pathogens, chest imaging) were compared between groups. Weighted gene correlation network analysis was used to identify coexpressed gene modules. Module expression scores were compared between groups using linear regression, controlling for age, sex, and body mass index. RESULTS Differential gene expression analysis showed upregulation of proneutrophilic and downregulation of ciliary function genes/pathways in RA compared to NR. A subgroup of RA with downregulated ciliary gene expression had increased levels of subclinical infections, airway neutrophilia, and eosinophilia as well as higher chest imaging mucus burden compared to other RA, the dominant differences between RA and NR. Weighted gene correlation network analysis identified gene modules related to ciliary function, which were downregulated in RA and were associated with lower pulmonary function and higher airway wall thickness/inflammation, markers of poorer asthma control. CONCLUSIONS Identification of a novel ciliary-deficient subgroup of RA suggests that diminished mucociliary clearance may underlie repeated asthma exacerbations despite adequate treatment, necessitating further exploration of function, mechanism, and therapeutics.
Collapse
Affiliation(s)
- Vamsi P Guntur
- Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, Colo; The NJH Cohen Family Asthma Institute, National Jewish Health, Denver, Colo.
| | - Laurie A Manka
- Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, Colo; The NJH Cohen Family Asthma Institute, National Jewish Health, Denver, Colo
| | - Camille M Moore
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colo
| | - Elizabeth Wynn
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colo
| | - Eszter K Vladar
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, and the Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colo
| | - Rafeul Alam
- The NJH Cohen Family Asthma Institute, National Jewish Health, Denver, Colo; Division of Allergy and Immunology, National Jewish Health, Denver, Colo
| | - Tuyet-Hang Pham
- Translational Science & Experimental Medicine, Research & Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg
| | - Tasha E Fingerlin
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colo; Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colo
| | - Richard J Martin
- Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, Colo; The NJH Cohen Family Asthma Institute, National Jewish Health, Denver, Colo
| |
Collapse
|
36
|
Which Therapy for Non-Type(T)2/T2-Low Asthma. J Pers Med 2021; 12:jpm12010010. [PMID: 35055325 PMCID: PMC8779705 DOI: 10.3390/jpm12010010] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/13/2021] [Accepted: 12/22/2021] [Indexed: 12/17/2022] Open
Abstract
Currently, the asthmatic population is divided into Type 2-high and non-Type 2/Type 2-low asthmatics, with 50% of patients belonging to one of the two groups. Differently from T2-high, T2-low asthma has not been clearly defined yet, and the T2-low patients are identified on the basis of the absence or non-predominant expression of T2-high biomarkers. The information about the molecular mechanisms underpinning T2-low asthma is scarce, but researchers have recognized as T2-low endotypes type 1 and type 3 immune response, and remodeling events occurring without inflammatory processes. In addition, the lack of agreed biomarkers reprents a challenge for the research of an effective therapy. The first-choice medication is represented by inhaled corticosteroids despite a low efficacy is reported for/in T2-low patients. However, macrolides and long-acting anti-muscarinic drugs have been recognized as efficacious. In recent years, clinical trials targeting biomarkers playing key roles in T3 and T1 immune pathways, alarmins, and molecules involved in neutrophil recruitment have provided conflicting results probably misleading (or biased) in patients' selection. However, further studies are warranted to achieve a precise characterization of T2-low asthma with the aim of defining a tailored therapy for each single asthmatic patient.
Collapse
|
37
|
Wang X, Chen H, Liu J, Gai L, Yan X, Guo Z, Liu F. Emerging Advances of Non-coding RNAs and Competitive Endogenous RNA Regulatory Networks in Asthma. Bioengineered 2021; 12:7820-7836. [PMID: 34635022 PMCID: PMC8806435 DOI: 10.1080/21655979.2021.1981796] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/11/2021] [Accepted: 09/12/2021] [Indexed: 12/31/2022] Open
Abstract
Asthma is a chronic inflammatory disease characterized by airway remodeling and bronchial hyperresponsiveness. A variety of effector cells and cytokines jointly stimulate the occurrence of inflammatory response in asthma. Although the pathogenesis of asthma is not entirely clear, the possible roles of non-coding RNAs (ncRNAs) have been recently demonstrated. NcRNAs are non-protein-coding RNA molecules, such as circular RNAs (circRNAs), long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), which are involved in the regulation of a variety of biological processes. Mounting studies have shown that ncRNAs play pivotal roles in the occurrence and progression of asthma via competing endogenous RNA (ceRNA) regulatory networks. However, the specific mechanism and clinical application of ncRNAs and ceRNA regulatory networks in asthma have not been fully elucidated, which are worthy of further investigation. This paper comprehensively summarized the current progress on the roles of miRNAs, lncRNAs, circRNAs, and ceRNA regulatory networks in asthma, which can provide a better understanding for the disease pathogenesis and is helpful for identifying novel biomarkers for asthma.
Collapse
Affiliation(s)
- Xiaoxu Wang
- Clinical Medicine College, Weifang Medical University, WeifangChina
- Department of Allergy, The First Affiliated Hospital of Weifang Medical University/ Weifang People’s Hospital, WeifangChina
| | - Hui Chen
- Clinical Medicine College, Weifang Medical University, WeifangChina
- Department of Allergy, The First Affiliated Hospital of Weifang Medical University/ Weifang People’s Hospital, WeifangChina
| | - Jingjing Liu
- Clinical Medicine College, Weifang Medical University, WeifangChina
- Department of Allergy, The First Affiliated Hospital of Weifang Medical University/ Weifang People’s Hospital, WeifangChina
| | - Linlin Gai
- Department of Central Laboratory, The First Affiliated Hospital of Weifang Medical University/Weifang People’s Hospital, WeifangChina
| | - Xinyi Yan
- Department of Central Laboratory, The First Affiliated Hospital of Weifang Medical University/Weifang People’s Hospital, WeifangChina
| | - Zhiliang Guo
- Department of Spine Surgery, The 80th Group Army Hospital of Chinese PLA, WeifangChina
| | - Fengxia Liu
- Department of Allergy, The First Affiliated Hospital of Weifang Medical University/ Weifang People’s Hospital, WeifangChina
| |
Collapse
|
38
|
Roffel MP, Maes T, Brandsma CA, van den Berge M, Vanaudenaerde BM, Joos GF, Brusselle GG, Heijink IH, Bracke KR. MiR-223 is increased in lungs of patients with COPD and modulates cigarette smoke-induced pulmonary inflammation. Am J Physiol Lung Cell Mol Physiol 2021; 321:L1091-L1104. [PMID: 34668437 DOI: 10.1152/ajplung.00252.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Since microRNA (miR)-223-3p modulates inflammatory responses and COPD is associated with amplified pulmonary inflammation, we hypothesized that miR-223-3p plays a role in COPD pathogenesis. Expression of miR-223-3p was measured in lung tissue of 2 independent cohorts with COPD GOLD stage II-IV patients, never smokers and smokers without COPD. The functional role of miR-223-3p was studied in deficient mice and upon overexpression in airway epithelial cells from COPD and controls. We observed higher miR-223-3p levels in patients with COPD stage II-IV compared to (non)-smoking controls, and levels were associated with higher neutrophil numbers in bronchial biopsies of COPD patients. MiR-223-3p expression was also increased in lungs and bronchoalveolar lavage of cigarette smoke (CS)-exposed mice. CS-induced neutrophil and monocyte lung infiltration was stronger in miR-223 deficient mice upon acute (5 days) exposure, but attenuated upon sub-chronic (4 weeks) exposure. Additionally, miR-223 deficiency attenuated acute and sub-chronic CS-induced lung infiltration of dendritic cells and T lymphocytes. Finally, in vitro overexpression of miR-223-3p in non-COPD airway epithelial cells suppressed CXCL8 and GM-CSF secretion and gene expression of the pro-inflammatory transcription factor TRAF6. Importantly, this suppressive effect of miR-223-3p was compromised in COPD-derived cultures. In conclusion, we demonstrate that miR-223-3p is increased in lungs of COPD patients and CS-exposed mice, and is associated with neutrophilic inflammation. In vivo data indicate that miR-223 acts as negative regulator of acute CS-induced neutrophilic and monocytic inflammation. In vitro data suggests that miR-223-3p does so by suppressing pro-inflammatory airway epithelial responses, which is less effective in COPD epithelium.
Collapse
Affiliation(s)
- Mirjam P Roffel
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, The Netherlands.,Ghent University, Ghent University Hospital, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent, Belgium
| | - Tania Maes
- Ghent University, Ghent University Hospital, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent, Belgium
| | - Corry-Anke Brandsma
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, The Netherlands
| | - Maarten van den Berge
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, The Netherlands.,University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, The Netherlands
| | - Bart M Vanaudenaerde
- Laboratory for Respiratory Diseases, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Guy F Joos
- Ghent University, Ghent University Hospital, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent, Belgium
| | - Guy G Brusselle
- Ghent University, Ghent University Hospital, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent, Belgium
| | - Irene H Heijink
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, The Netherlands.,University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, The Netherlands
| | - Ken R Bracke
- Ghent University, Ghent University Hospital, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent, Belgium
| |
Collapse
|
39
|
Jakwerth CA, Chaker AM, Guerth F, Oelsner M, Pechtold L, Zur Bonsen LS, Ullmann JT, Krauss-Etschmann S, Erb A, Kau J, Plaschke M, Winkler M, Kurz A, Kloss A, Esser-von Bieren J, Schmidt-Weber CB, Zissler UM. Sputum microRNA-screening reveals Prostaglandin EP3 receptor as selective target in allergen-specific immunotherapy. Clin Exp Allergy 2021; 51:1577-1591. [PMID: 34514658 DOI: 10.1111/cea.14013] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/08/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Several microRNAs (miRs) have been described as potential biomarkers in liquid biopsies and in the context of allergic asthma, while therapeutic effects on the airway expression of miRs remain elusive. In this study, we investigated epigenetic miR-associated mechanisms in the sputum of grass pollen-allergic patients with and without allergen-specific immunotherapy (AIT). METHODS Induced sputum samples of healthy controls (HC), AIT-treated and -untreated grass pollen-allergic rhinitis patients with (AA) and without asthma (AR) were profiled using miR microarray and whole-transcriptome microarray analysis of the same samples. miR targets were predicted in silico and used to identify inverse regulation. Local PGE2 levels were measured using ELISA. RESULTS Two hundred and fifty nine miRs were upregulated in the sputum of AA patients compared with HC, while only one was downregulated. The inverse picture was observed in induced sputum of AIT-treated patients: while 21 miRs were downregulated, only 4 miRs were upregulated in asthmatics upon AIT. Of these 4 miRs, miR-3935 stood out, as its predicted target PTGER3, the prostaglandin EP3 receptor, was downregulated in treated AA patients compared with untreated. The levels of its ligand PGE2 in the sputum supernatants of these samples were increased in allergic patients, especially asthmatics, and downregulated after AIT. Finally, local PGE2 levels correlated with ILC2 frequencies, secreted sputum IL-13 levels, inflammatory cell load, sputum eosinophils and symptom burden. CONCLUSIONS While profiling the sputum of allergic patients for novel miR expression patterns, we uncovered an association between miR-3935 and its predicted target gene, the prostaglandin E3 receptor, which might mediate AIT effects through suppression of the PGE2 -PTGER3 axis.
Collapse
Affiliation(s)
- Constanze A Jakwerth
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany
| | - Adam M Chaker
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany.,Department of Otorhinolaryngology, TUM School of Medicine, Technical University Munich, Klinikum rechts der Isar, Munich, Germany
| | - Ferdinand Guerth
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany
| | - Madlen Oelsner
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany
| | - Lisa Pechtold
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany.,Department of Otorhinolaryngology, TUM School of Medicine, Technical University Munich, Klinikum rechts der Isar, Munich, Germany
| | - Lynn S Zur Bonsen
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany.,Department of Otorhinolaryngology, TUM School of Medicine, Technical University Munich, Klinikum rechts der Isar, Munich, Germany
| | - Julia T Ullmann
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany
| | - Susanne Krauss-Etschmann
- Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany.,Institute of Experimental Medicine, Christian-Albrechts University Kiel, Kiel, Germany
| | - Anna Erb
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany
| | - Josephine Kau
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany.,Department of Otorhinolaryngology, TUM School of Medicine, Technical University Munich, Klinikum rechts der Isar, Munich, Germany
| | - Mirjam Plaschke
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany.,Department of Otorhinolaryngology, TUM School of Medicine, Technical University Munich, Klinikum rechts der Isar, Munich, Germany
| | - Marlene Winkler
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany.,Department of Otorhinolaryngology, TUM School of Medicine, Technical University Munich, Klinikum rechts der Isar, Munich, Germany
| | - Alexandra Kurz
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany.,Department of Otorhinolaryngology, TUM School of Medicine, Technical University Munich, Klinikum rechts der Isar, Munich, Germany
| | - Antonia Kloss
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany.,Department of Otorhinolaryngology, TUM School of Medicine, Technical University Munich, Klinikum rechts der Isar, Munich, Germany
| | - Julia Esser-von Bieren
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany
| | - Carsten B Schmidt-Weber
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany
| | - Ulrich M Zissler
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany
| |
Collapse
|
40
|
Tanoglu EG. Differential expressions of miR-223, miR-424, miR-145, miR-200c, miR-139 in experimental rat chronic pancreatitis model and their relationship between oxidative stress, endoplasmic reticulum stress, and apoptosis. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1301-1306. [PMID: 35083018 PMCID: PMC8751743 DOI: 10.22038/ijbms.2021.57664.12823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/09/2021] [Indexed: 11/10/2022]
Abstract
OBJECTIVES This study aimed to research the roles of miR-139, miR-221, miR-200c, miR-145, miR-223, miR-424, and miR-377 in endoplasmic reticulum stress (ERS), oxidative stress (OS), fibrosis, and apoptosis processes in chronic pancreatitis (CP) rat model. MATERIALS AND METHODS Fourteen rats were randomized into 2 groups (Group 1, sham group (n=7) and Group 2, CP group (n=7)). TGF-beta and malondialdehyde concentrations were measured in rat blood samples. qRT-PCR was used to investigate the expression levels of 7 miRNAs in the pancreas tissues. The correlations of mRNA undergoing significant changes with inflammation (TNF-α, IL-6), ERS (Ire1-α, Perk), apoptosis (Caspase 3, Bcl-2), OS (Cat, Gpx1), and fibrosis (α-Sma) were investigated . RESULTS The biochemical results and histopathological scores in Group 1 were statistically significantly high compared with Group 2 (P<0.5). Expression levels of seven miRNAs (miR-200c, miR-145, miR-223, miR-424) were significantly higher, while miR-139 was significantly lower in CP. In our study, we found that miR-200c, miR-145, and miR-139 may contribute to CP progression and cellular processes based on the correlation between ERS, OS, apoptosis, and inflammation with miRNA expression levels. CONCLUSION miR-200c, miR-145, miR-139, miR-223, and miR-424 play roles in the CP model. They may be used as candidate biomarkers for the CP process.
Collapse
Affiliation(s)
- Esra Guzel Tanoglu
- University of Health Sciences Turkey, Institution of Medical Sciences, Department of Molecular Biology and Genetics, Istanbul, Turkey, University of Health Sciences Turkey, Experimental Medicine Research and Application Center, Uskudar, 34662, Istanbul, Turkey,Corresponding author: Esra Guzel Tanoglu. University of Health Sciences, Institution of Health Sciences, Department of Molecular Biology and Genetics, Istanbul, Turkey. Tel: +905558921416;
| |
Collapse
|
41
|
Roffel MP, Boudewijn IM, van Nijnatten JLL, Faiz A, Vermeulen CJ, van Oosterhout AJ, Affleck K, Timens W, Bracke KR, Maes T, Heijink IH, Brandsma CA, van den Berge M. Identification of asthma associated microRNAs in bronchial biopsies. Eur Respir J 2021; 59:13993003.01294-2021. [PMID: 34446467 DOI: 10.1183/13993003.01294-2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/30/2021] [Indexed: 11/05/2022]
Abstract
Changes in microRNA (miRNA) expression can contribute to the pathogenesis of many diseases, including asthma. We aimed to identify miRNAs that are differentially expressed between asthma patients and healthy controls and explored their association with clinical and inflammatory parameters of asthma.Differentially expressed miRNAs were determined by small RNA sequencing on bronchial biopsies of 79 asthma patients and 82 healthy controls using linear regression models. Differentially expressed miRNAs were associated with clinical and inflammatory asthma features. Potential miRNA-mRNA interactions were analysed using mRNA data available from the same bronchial biopsies and enrichment of pathways was identified with Enrichr and g:Profiler.In total 78 differentially expressed miRNAs were identified in bronchial biopsies of asthma patients compared to controls, of which 60 remained differentially expressed after controlling for smoke and inhaled corticosteroid treatment. We identified several asthma associated miRNAs, including miR-125b-5p and miR-223-3p, based on a significant association with multiple clinical and inflammatory asthma features and their negative correlation with genes associated with the presence of asthma. The most enriched biological pathway(s) affected by miR-125b-5p and miR-223-3p were inflammatory response and cilium assembly and organisation. Of interest, we identified that lower expression of miR-26a-5p was linked to more severe eosinophilic inflammation as measured in blood, sputum as well as bronchial biopsies. Collectively, we identified miR-125b-5p, miR-223-3p and miR-26a-5p, as potential regulators that could contribute to the pathogenesis of asthma.
Collapse
Affiliation(s)
- Mirjam P Roffel
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,Department of Respiratory Medicine, Ghent University, University Hospital Ghent, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent, Belgium
| | - Ilse M Boudewijn
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jos L L van Nijnatten
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,Faculty of Science, Respiratory Bioinformatics and Molecular Biology (RBMB), University of Technology Sydney, Sydney, Australia
| | - Alen Faiz
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,Faculty of Science, Respiratory Bioinformatics and Molecular Biology (RBMB), University of Technology Sydney, Sydney, Australia
| | - Corneel J Vermeulen
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Antoon J van Oosterhout
- Allergic Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage, United Kingdom
| | - Karen Affleck
- Adaptive Immunity Research Unit, GlaxoSmithKline, Stevenage, United Kingdom
| | - Wim Timens
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| | - Ken R Bracke
- Department of Respiratory Medicine, Ghent University, University Hospital Ghent, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent, Belgium
| | - Tania Maes
- Department of Respiratory Medicine, Ghent University, University Hospital Ghent, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent, Belgium
| | - Irene H Heijink
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Corry-Anke Brandsma
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,Both senior authors contributed equally
| | - Maarten van den Berge
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands .,Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Both senior authors contributed equally
| |
Collapse
|
42
|
Li G, Cheng Z. miR-339-5p Inhibits Autophagy to Reduce the Resistance of Laryngeal Carcinoma on Cisplatin via Targeting TAK1. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9938515. [PMID: 34395629 PMCID: PMC8357498 DOI: 10.1155/2021/9938515] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/25/2021] [Accepted: 07/07/2021] [Indexed: 11/23/2022]
Abstract
Laryngeal carcinoma is a malignant disease with high morbidity and mortality. Several studies have indicated that miRNA dysfunction involves in the development of laryngeal carcinoma. In this study, the connection of miR-339-5p and laryngeal carcinoma was investigated, and qRT-PCR, CCK-8, and flow cytometry assay were used to observe the function of miR-339-5p on laryngeal carcinoma. Besides, the target database, dual-luciferase reporter assay, and western blot were used to explore the regulation mechanism of miR-339-5p on the progression of laryngeal carcinoma. The results showed that miR-339-5p was significantly downregulated in cisplatin-resistant cells of laryngeal carcinoma, and miR-339-5p upregulation could weaken the resistance of laryngeal carcinoma cells on cisplatin. Moreover, miR-339-5p could directly react with 3'-UTR of TAK1, and TAK1 could reverse the effects of miR-339-5p on the progression of autophagy. In conclusion, this study suggests that miR-339-5p can inhibit the autophagy to decrease the cisplatin resistance of laryngeal carcinoma via targeting TAK1.
Collapse
Affiliation(s)
- Guang Li
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Zexing Cheng
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu 225001, China
| |
Collapse
|
43
|
Halayko AJ, Pascoe CD, Gereige JD, Peters MC, Cohen RT, Woodruff PG. Update in Adult Asthma 2020. Am J Respir Crit Care Med 2021; 204:395-402. [PMID: 34181860 DOI: 10.1164/rccm.202103-0552up] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Andrew J Halayko
- University of Manitoba, 8664, SECTION OF RESPIRATORY DISEASES, Winnipeg, Manitoba, Canada.,University of Manitoba, 8664, Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Christopher D Pascoe
- University of Manitoba, 8664, Physiology and Pathophysiology, Winnipeg, Manitoba, Canada.,University of Manitoba Children's Hospital Research Institute of Manitoba, 423136, Winnipeg, Manitoba, Canada
| | - Jessica D Gereige
- Boston University School of Medicine, 12259, Division of Pulmonary, Allergy, Sleep, and Critical Care Medicine, Department of Medicine, Boston, Massachusetts, United States
| | - Michael C Peters
- University of California San Francisco, 8785, Pulmonary and Critical Care, San Francisco, California, United States
| | - Robyn T Cohen
- Boston University School of Medicine, 12259, Pediatrics, Boston, Massachusetts, United States
| | - Prescott G Woodruff
- UCSF, 8785, Division of Pulmonary and Critical Care Medicine, Department of Medicine and CVRI, San Francisco, California, United States;
| |
Collapse
|
44
|
Cha S, Seo EH, Lee SH, Kim KS, Oh CS, Moon JS, Kim JK. MicroRNA Expression in Extracellular Vesicles from Nasal Lavage Fluid in Chronic Rhinosinusitis. Biomedicines 2021; 9:biomedicines9050471. [PMID: 33925835 PMCID: PMC8145239 DOI: 10.3390/biomedicines9050471] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are nanovesicles of endocytic origin released by cells and found in human bodily fluids. EVs contain both mRNA and microRNA (miRNA), which can be shuttled between cells, indicating their role in cell communication. This study investigated whether nasal secretions contain EVs and whether these EVs contain RNA. EVs were isolated from nasal lavage fluid (NLF) using sequential centrifugation. EVs were characterized and EV sizes were identified by transmission electron microscopy (TEM). In addition, EV miRNA expression was different in the chronic rhinosinusitis without nasal polyp (CRSsNP) and chronic rhinosinusitis with nasal polyp (CRSwNP) groups. The Kyoto encyclopedia gene and genome database (KEGG) database was used to identify pathways associated with changed miRNAs in each analysis group. Twelve miRNAs were differentially expressed in NLF-EVs of CRS patients versus HCs. In addition, eight miRNAs were differentially expressed in NLF-EVs of CRSwNP versus CRSsNP patients. The mucin-type O-glycan biosynthesis was a high-ranked predicted pathway in CRS patients versus healthy controls (HCs), and the Transforming growth factor beta (TGF-β) signaling pathway was a high-ranked predicted pathway in CRSwNP versus CRSsNP patients. We demonstrated the presence of and differences in NLF-EV miRNAs between CRS patients and HCs. These findings open up a broad and novel area of research on CRS pathophysiology as driven by miRNA cell communication.
Collapse
Affiliation(s)
- Seungbin Cha
- Department of Infection and Immunology, Konkuk University School of Medicine, Seoul 05030, Korea; (S.C.); (S.H.L.)
| | - Eun-Hye Seo
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul 05030, Korea; (E.-H.S.); (C.-S.O.)
| | - Seung Hyun Lee
- Department of Infection and Immunology, Konkuk University School of Medicine, Seoul 05030, Korea; (S.C.); (S.H.L.)
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul 05030, Korea; (E.-H.S.); (C.-S.O.)
| | - Kyung Soo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Chung-Ang University College of Medicine, Seoul 06973, Korea;
| | - Chung-Sik Oh
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul 05030, Korea; (E.-H.S.); (C.-S.O.)
- Department of Anesthesiology and Pain Medicine, Konkuk University School of Medicine, Konkuk University Medical Center, Seoul 05030, Korea
| | - Jong-Seok Moon
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea;
| | - Jin Kook Kim
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul 05030, Korea; (E.-H.S.); (C.-S.O.)
- Departments of Otorhinolaryngology-Head & Neck Surgery, Konkuk University School of Medicine, Konkuk University Medical Center, Seoul 05030, Korea
- Correspondence: ; Tel.: +82-2-2030-7662
| |
Collapse
|
45
|
Li J, Tiwari A, Mirzakhani H, Wang AL, Kho AT, McGeachie MJ, Litonjua AA, Weiss ST, Tantisira KG. Circulating MicroRNA: Incident Asthma Prediction and Vitamin D Effect Modification. J Pers Med 2021; 11:307. [PMID: 33923455 PMCID: PMC8073146 DOI: 10.3390/jpm11040307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 12/23/2022] Open
Abstract
Of children with recurrent wheezing in early childhood, approximately half go on to develop asthma. MicroRNAs have been described as excellent non-invasive biomarkers due to their prognostic utility. We hypothesized that circulating microRNAs can predict incident asthma and that that prediction might be modified by vitamin D. We selected 75 participants with recurrent wheezing at 3 years old from the Vitamin D Antenatal Asthma Reduction Trial (VDAART). Plasma samples were collected at age 3 and sequenced for small RNA-Seq. The read counts were normalized and filtered by depth and coverage. Logistic regression was employed to associate miRNAs at age 3 with asthma status at age 5. While the overall effect of miRNA on asthma occurrence was weak, we identified 38 miRNAs with a significant interaction effect with vitamin D and 32 miRNAs with a significant main effect in the high vitamin D treatment group in VDAART. We validated the VDAART results in Project Viva for both the main effect and interaction effect. Meta-analysis was performed on both cohorts to obtain the combined effect and a logistic regression model was used to predict incident asthma at age 7 in Project Viva. Of the 23 overlapped miRNAs in the stratified and interaction analysis above, 9 miRNAs were replicated in Project Viva with strong effect size and remained in the meta-analysis of the two populations. The target genes of the 9 miRNAs were enriched for asthma-related Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathways. Using logistic regression, microRNA hsa-miR-574-5p had a good prognostic ability for incident asthma prognosis with an area under the receiver operating characteristic (AUROC) of 0.83. In conclusion, miRNAs appear to be good biomarkers of incident asthma, but only when vitamin D level is considered.
Collapse
Affiliation(s)
- Jiang Li
- Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, China;
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.T.); (H.M.); (A.L.W.); (A.T.K.); (M.J.M.); (S.T.W.)
| | - Anshul Tiwari
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.T.); (H.M.); (A.L.W.); (A.T.K.); (M.J.M.); (S.T.W.)
| | - Hooman Mirzakhani
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.T.); (H.M.); (A.L.W.); (A.T.K.); (M.J.M.); (S.T.W.)
| | - Alberta L. Wang
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.T.); (H.M.); (A.L.W.); (A.T.K.); (M.J.M.); (S.T.W.)
| | - Alvin T. Kho
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.T.); (H.M.); (A.L.W.); (A.T.K.); (M.J.M.); (S.T.W.)
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Michael J. McGeachie
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.T.); (H.M.); (A.L.W.); (A.T.K.); (M.J.M.); (S.T.W.)
| | - Augusto A. Litonjua
- Division of Pediatric Pulmonary Medicine, Golisano Children’s Hospital at Strong, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Scott T. Weiss
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.T.); (H.M.); (A.L.W.); (A.T.K.); (M.J.M.); (S.T.W.)
| | - Kelan G. Tantisira
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.T.); (H.M.); (A.L.W.); (A.T.K.); (M.J.M.); (S.T.W.)
- Division of Pediatric Respiratory Medicine, Rady Children’s Hospital San Diego, University of California, San Diego, CA 92123, USA
| |
Collapse
|
46
|
Serum microRNAs as Tool to Predict Early Response to Benralizumab in Severe Eosinophilic Asthma. J Pers Med 2021; 11:jpm11020076. [PMID: 33525548 PMCID: PMC7912443 DOI: 10.3390/jpm11020076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023] Open
Abstract
Severe eosinophilic asthma poses a serious health and economic problem, so new therapy approaches have been developed to control it, including biological drugs such as benralizumab, which is a monoclonal antibody that binds to IL-5 receptor alpha subunit and depletes peripheral blood eosinophils rapidly. Biomarkers that predict the response to this drug are needed so that microRNAs (miRNAs) can be useful tools. This study was performed with fifteen severe eosinophilic asthmatic patients treated with benralizumab, and serum miRNAs were evaluated before and after treatment by semi-quantitative PCR (qPCR). Patients showed a clinical improvement after benralizumab administration. Additionally, deregulation of miR-1246, miR-5100 and miR-338-3p was observed in severe asthmatic patients after eight weeks of therapy, and a correlation was found between miR-1246 and eosinophil counts, including a number of exacerbations per year in these severe asthmatics. In silico pathway analysis revealed that these three miRNAs are regulators of the MAPK signaling pathway, regulating target genes implicated in asthma such as NFKB2, NFATC3, DUSP1, DUSP2, DUSP5 and DUSP16. In this study, we observed an altered expression of miR-1246, miR-5100 and miR-338-3p after eight weeks of benralizumab administration, which could be used as early response markers.
Collapse
|
47
|
Sima M, Rossnerova A, Simova Z, Rossner P. The Impact of Air Pollution Exposure on the MicroRNA Machinery and Lung Cancer Development. J Pers Med 2021; 11:60. [PMID: 33477935 PMCID: PMC7833364 DOI: 10.3390/jpm11010060] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/14/2022] Open
Abstract
Small non-coding RNA molecules (miRNAs) play an important role in the epigenetic regulation of gene expression. As these molecules have been repeatedly implicated in human cancers, they have been suggested as biomarkers of the disease. Additionally, miRNA levels have been shown to be affected by environmental pollutants, including airborne contaminants. In this review, we searched the current literature for miRNAs involved in lung cancer, as well as miRNAs deregulated as a result of exposure to air pollutants. We then performed a synthesis of the data and identified those molecules commonly deregulated under both conditions. We detected a total of 25 miRNAs meeting the criteria, among them, miR-222, miR-21, miR-126-3p, miR-155 and miR-425 being the most prominent. We propose these miRNAs as biomarkers of choice for the identification of human populations exposed to air pollution with a significant risk of developing lung cancer.
Collapse
Affiliation(s)
- Michal Sima
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague, Czech Republic; (M.S.); (Z.S.)
| | - Andrea Rossnerova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague, Czech Republic;
| | - Zuzana Simova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague, Czech Republic; (M.S.); (Z.S.)
| | - Pavel Rossner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague, Czech Republic; (M.S.); (Z.S.)
| |
Collapse
|
48
|
Cañas JA, Rodrigo-Muñoz JM, Gil-Martínez M, Sastre B, del Pozo V. Exosomes: A Key Piece in Asthmatic Inflammation. Int J Mol Sci 2021; 22:963. [PMID: 33478047 PMCID: PMC7835850 DOI: 10.3390/ijms22020963] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
Asthma is a chronic disease of the airways that has an important inflammatory component. Multiple cells are implicated in asthma pathogenesis (lymphocytes, eosinophils, mast cells, basophils, neutrophils), releasing a wide variety of cytokines. These cells can exert their inflammatory functions throughout extracellular vesicles (EVs), which are small vesicles released by donor cells into the extracellular microenvironment that can be taken up by recipient cells. Depending on their size, EVs can be classified as microvesicles, exosomes, or apoptotic bodies. EVs are heterogeneous spherical structures secreted by almost all cell types. One of their main functions is to act as transporters of a wide range of molecules, such as proteins, lipids, and microRNAs (miRNAs), which are single-stranded RNAs of approximately 22 nucleotides in length. Therefore, exosomes could influence several physiological and pathological processes, including those involved in asthma. They can be detected in multiple cell types and biofluids, providing a wealth of information about the processes that take account in a pathological scenario. This review thus summarizes the most recent insights concerning the role of exosomes from different sources (several cell populations and biofluids) in one of the most prevalent respiratory diseases, asthma.
Collapse
Affiliation(s)
- José A. Cañas
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Avenida Reyes Católicos, 2, 28040 Madrid, Spain; (J.A.C.); (J.M.R.-M.); (M.G.-M.)
- CIBER de Enfermedades Respiratorias (CIBERES), Av. de Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - José M. Rodrigo-Muñoz
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Avenida Reyes Católicos, 2, 28040 Madrid, Spain; (J.A.C.); (J.M.R.-M.); (M.G.-M.)
- CIBER de Enfermedades Respiratorias (CIBERES), Av. de Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Marta Gil-Martínez
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Avenida Reyes Católicos, 2, 28040 Madrid, Spain; (J.A.C.); (J.M.R.-M.); (M.G.-M.)
| | - Beatriz Sastre
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Avenida Reyes Católicos, 2, 28040 Madrid, Spain; (J.A.C.); (J.M.R.-M.); (M.G.-M.)
- CIBER de Enfermedades Respiratorias (CIBERES), Av. de Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Victoria del Pozo
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Avenida Reyes Católicos, 2, 28040 Madrid, Spain; (J.A.C.); (J.M.R.-M.); (M.G.-M.)
- CIBER de Enfermedades Respiratorias (CIBERES), Av. de Monforte de Lemos, 3-5, 28029 Madrid, Spain
- Faculty of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| |
Collapse
|
49
|
Ricciardolo FLM, Carriero V, Bullone M. MicroRNAs as Biomarkers in Corticosteroid-Resistant/Neutrophilic Asthma: Still a Long Way to Go! Am J Respir Crit Care Med 2020; 202:4-6. [PMID: 32352833 PMCID: PMC7328323 DOI: 10.1164/rccm.202004-1216ed] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
| | - Vitina Carriero
- Department of Clinical and Biological SciencesUniversity of TurinTurin, Italyand
| | - Michela Bullone
- Department of Veterinary SciencesUniversity of TurinTurin, Italy
| |
Collapse
|
50
|
Roffel MP, Bracke KR, Heijink IH, Maes T. miR-223: A Key Regulator in the Innate Immune Response in Asthma and COPD. Front Med (Lausanne) 2020; 7:196. [PMID: 32509795 PMCID: PMC7249736 DOI: 10.3389/fmed.2020.00196] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022] Open
Abstract
Asthma and Chronic Obstructive Pulmonary Disease (COPD) are chronic obstructive respiratory diseases characterized by airway obstruction, inflammation, and remodeling. Recent findings indicate the importance of microRNAs (miRNAs) in the regulation of pathological processes involved in both diseases. MiRNAs have been implicated in a wide array of biological processes, such as inflammation, cell proliferation, differentiation, and death. MiR-223 is one of the miRNAs that is thought to play a role in obstructive lung disease as altered expression levels have been observed in both asthma and COPD. MiR-223 is a hematopoietic cell–derived miRNA that plays a role in regulation of monocyte-macrophage differentiation, neutrophil recruitment, and pro-inflammatory responses and that can be transferred to non-myeloid cells via extracellular vesicles or lipoproteins. In this translational review, we highlight the role of miR-223 in obstructive respiratory diseases, focusing on expression data in clinical samples of asthma and COPD, in vivo experiments in mouse models and in vitro functional studies. Furthermore, we provide an overview of the mechanisms by which miR-223 regulates gene expression. We specifically focus on immune cell development and activation and involvement in immune responses, which are important in asthma and COPD. Collectively, this review demonstrates the importance of miR-223 in obstructive respiratory diseases and explores its therapeutic potential in the pathogenesis of asthma and COPD.
Collapse
Affiliation(s)
- Mirjam P Roffel
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent University, Ghent, Belgium.,Departments of Pathology and Medical Biology and Pulmonology, Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Ken R Bracke
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Irene H Heijink
- Departments of Pathology and Medical Biology and Pulmonology, Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Tania Maes
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent University, Ghent, Belgium
| |
Collapse
|