1
|
Ganotopoulou A, Korakas E, Pliouta L, Kountouri A, Pililis S, Lampsas S, Ikonomidis I, Rallidis LS, Papazafiropoulou A, Melidonis A, Lambadiari V. Association Between Plasma ADAMTS-7 Levels and Diastolic Dysfunction in Patients with Type 2 Diabetes Mellitus. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1981. [PMID: 39768861 PMCID: PMC11677206 DOI: 10.3390/medicina60121981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025]
Abstract
A disintegrin and metalloproteinase with thrombospondin motifs-7 (ADAMTS-7) belongs to the family of metalloproteinases that contributes to tissue homeostasis during morphogenesis and reproduction. These metalloproteinases regulate various cell functions such as cell proliferation, are important regulators in tissue regeneration, and play a role in vascular remodelling, which is involved in atherosclerosis development. Despite the well-established association between ADAMTS-7 and atherosclerotic disease, data regarding the metalloproteinase's association with LV function remain scarce. The aim of this study was to investigate the association of ADAMTS-7 levels with diastolic dysfunction and various echocardiographic parameters in patients with type 2 diabetes mellitus. All patients underwent a clinical, vascular, and echocardiographic examination during their visit. Plasma ADAMTS-7 levels were measured in all patients. The results showed that diastolic dysfunction was strongly associated with age, but had no statistically significant association with ADAMTS-7. When individual echocardiographic parameters were examined, ADAMTS-7 levels showed a positive tendency only with deceleration time (DT), with the other echocardiographic parameters being positively associated only with age. The possible role of ADAMTS-7 in diastolic dysfunction and in the development and progression of heart failure in patients with type 2 diabetes mellitus deserves further investigation.
Collapse
Affiliation(s)
- Asimina Ganotopoulou
- Research Unit and Diabetes Centre, 2nd Department of Internal Medicine, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (A.G.); (E.K.); (L.P.); (A.K.); (S.P.)
- Department of Internal Medicine and Diabetes Centre, Tzaneio General Hospital of Piraeus, 185 36 Piraeus, Greece; (A.P.); (A.M.)
| | - Emmanouil Korakas
- Research Unit and Diabetes Centre, 2nd Department of Internal Medicine, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (A.G.); (E.K.); (L.P.); (A.K.); (S.P.)
| | - Loukia Pliouta
- Research Unit and Diabetes Centre, 2nd Department of Internal Medicine, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (A.G.); (E.K.); (L.P.); (A.K.); (S.P.)
| | - Aikaterini Kountouri
- Research Unit and Diabetes Centre, 2nd Department of Internal Medicine, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (A.G.); (E.K.); (L.P.); (A.K.); (S.P.)
| | - Sotirios Pililis
- Research Unit and Diabetes Centre, 2nd Department of Internal Medicine, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (A.G.); (E.K.); (L.P.); (A.K.); (S.P.)
| | - Stamatios Lampsas
- 2nd Department of Ophthalmology, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece;
| | - Ignatios Ikonomidis
- 2nd Department of Cardiology, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (I.I.); (L.S.R.)
| | - Loukianos S. Rallidis
- 2nd Department of Cardiology, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (I.I.); (L.S.R.)
| | - Athanasia Papazafiropoulou
- Department of Internal Medicine and Diabetes Centre, Tzaneio General Hospital of Piraeus, 185 36 Piraeus, Greece; (A.P.); (A.M.)
| | - Andreas Melidonis
- Department of Internal Medicine and Diabetes Centre, Tzaneio General Hospital of Piraeus, 185 36 Piraeus, Greece; (A.P.); (A.M.)
| | - Vaia Lambadiari
- Research Unit and Diabetes Centre, 2nd Department of Internal Medicine, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (A.G.); (E.K.); (L.P.); (A.K.); (S.P.)
| |
Collapse
|
2
|
Bian B, Chen H, Teng T, Huang J, Yu X. Circ_0104652 Promotes the Proliferation and Migration of ox-LDL-Stimulated Vascular Smooth Muscle Cells via Stabilizing ADAMTS7 and HMGB1. Am J Hypertens 2024; 37:465-476. [PMID: 38536049 DOI: 10.1093/ajh/hpae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 01/14/2024] [Accepted: 03/06/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Atherosclerosis (AS) stands as the primary contributor to cardiovascular disease, a pervasive global health concern. Extensive research has underscored the pivotal role of circular RNAs (circRNAs) in cardiovascular disease development. However, the specific functions of numerous circRNAs in AS remain poorly understood. METHODS Quantitative real-time PCR analysis revealed a significant upregulation of circ_0104652 in oxidized low-density lipoprotein (ox-LDL)-induced vascular smooth muscle cells (VSMCs). Loss-of-function experiments were subsequently employed to assess the impact of circ_0104652 on ox-LDL-induced VSMCs. RESULTS Silencing circ_0104652 was found to impede the proliferation and migration while promoting the apoptosis of ox-LDL-stimulated VSMCs. Mechanistic assays unveiled that circ_0104652 stabilized ADAM metallopeptidase with thrombospondin type 1 motif 7 (ADAMTS7) and high mobility group box 1 (HMGB1) by recruiting eukaryotic translation initiation factor 4A3 (EIF4A3) protein. Rescue assays further confirmed that circ_0104652 exerted its influence on ox-LDL-induced VSMC proliferation through modulation of ADAMTS7 and HMGB1. CONCLUSIONS This study elucidates the role of the circ_0104652/EIF4A3/ADAMTS7/HMGB1 axis in ox-LDL-stimulated VSMCs, providing valuable insights into the intricate mechanisms involved.
Collapse
MESH Headings
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Lipoproteins, LDL/pharmacology
- Lipoproteins, LDL/metabolism
- Cell Proliferation/drug effects
- RNA, Circular/metabolism
- RNA, Circular/genetics
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/pathology
- Cell Movement/drug effects
- Humans
- HMGB1 Protein/metabolism
- HMGB1 Protein/genetics
- ADAMTS7 Protein/metabolism
- ADAMTS7 Protein/genetics
- Atherosclerosis/pathology
- Atherosclerosis/metabolism
- Atherosclerosis/genetics
- Cells, Cultured
- Signal Transduction
- Apoptosis/drug effects
Collapse
Affiliation(s)
- Bo Bian
- General Practice Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Heye Chen
- Department of Endocrinology and Metabolism, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Tianming Teng
- General Practice Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinyong Huang
- General Practice Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Xuefang Yu
- General Practice Department, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
3
|
Meibom D, Wasnaire P, Beyer K, Broehl A, Cancho-Grande Y, Elowe N, Henninger K, Johannes S, Jungmann N, Krainz T, Lindner N, Maassen S, MacDonald B, Menshykau D, Mittendorf J, Sanchez G, Schaefer M, Stefan E, Torge A, Xing Y, Zubov D. BAY-9835: Discovery of the First Orally Bioavailable ADAMTS7 Inhibitor. J Med Chem 2024; 67:2907-2940. [PMID: 38348661 PMCID: PMC10895658 DOI: 10.1021/acs.jmedchem.3c02036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 02/23/2024]
Abstract
The matrix metalloprotease ADAMTS7 has been identified by multiple genome-wide association studies as being involved in the development of coronary artery disease. Subsequent research revealed the proteolytic function of the enzyme to be relevant for atherogenesis and restenosis after vessel injury. Based on a publicly known dual ADAMTS4/ADAMTS5 inhibitor, we have in silico designed an ADAMTS7 inhibitor of the catalytic domain, which served as a starting point for an optimization campaign. Initially our inhibitors suffered from low selectivity vs MMP12. An X-ray cocrystal structure inspired us to exploit amino acid differences in the binding site of MMP12 and ADAMTS7 to improve selectivity. Further optimization composed of employing 5-membered heteroaromatic groups as hydantoin substituents to become more potent on ADAMTS7. Finally, fine-tuning of DMPK properties yielded BAY-9835, the first orally bioavailable ADAMTS7 inhibitor. Further optimization to improve selectivity vs ADAMTS12 seems possible, and a respective starting point could be identified.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Eric Stefan
- Broad
Institute, 02142 Cambridge, United States
| | | | - Yi Xing
- Broad
Institute, 02142 Cambridge, United States
| | | |
Collapse
|
4
|
Petrovič D, Nussdorfer P, Petrovič D. The rs3825807 Polymorphism of ADAMTS7 as a Potential Genetic Marker for Myocardial Infarction in Slovenian Subjects with Type 2 Diabetes Mellitus. Genes (Basel) 2023; 14:508. [PMID: 36833435 PMCID: PMC9957282 DOI: 10.3390/genes14020508] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/01/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND A disintegrin and metalloprotease with thrombospondin motif 7 (ADAMTS-7) was reported to play a role in the migration of vascular smooth muscle cells and neointimal formation. The object of the study was to investigate the association between the rs3825807 polymorphism of ADAMTS7 and myocardial infarction among patients with type 2 diabetes mellitus in a Slovenian cohort. METHODS 1590 Slovenian patients with type 2 diabetes mellitus were enrolled in this retrospective cross-sectional case-control study. In total, 463 had a history of recent myocardial infarction, and 1127 of the subjects in the control group had no clinical signs of coronary artery disease. Genetic analysis of an rs3825807 polymorphism of ADAMTS7 was performed with logistic regression. RESULTS Patients with the AA genotype had a higher prevalence of myocardial infarction than those in the control group in recessive [odds ratio (OR) 1.647; confidence interval (CI) 1.120-2.407; p = 0.011] and co-dominant (OR 2.153; CI 1.215-3.968; p = 0.011) genetic models. CONCLUSION We found a statistically significant association between rs3825807 and myocardial infarction in a cohort of Slovenian patients with type 2 diabetes mellitus. We report that the AA genotype might be a genetic risk factor for myocardial infarction.
Collapse
Affiliation(s)
- David Petrovič
- Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
| | - Petra Nussdorfer
- Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
- Laboratory for Histology and Genetics of Atherosclerosis and Microvascular Diseases, Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
| | - Danijel Petrovič
- Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
- Laboratory for Histology and Genetics of Atherosclerosis and Microvascular Diseases, Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
5
|
Li T, Peng J, Li Q, Shu Y, Zhu P, Hao L. The Mechanism and Role of ADAMTS Protein Family in Osteoarthritis. Biomolecules 2022; 12:959. [PMID: 35883515 PMCID: PMC9313267 DOI: 10.3390/biom12070959] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 01/27/2023] Open
Abstract
Osteoarthritis (OA) is a principal cause of aches and disability worldwide. It is characterized by the inflammation of the bone leading to degeneration and loss of cartilage function. Factors, including diet, age, and obesity, impact and/or lead to osteoarthritis. In the past few years, OA has received considerable scholarly attention owing to its increasing prevalence, resulting in a cumbersome burden. At present, most of the interventions only relieve short-term symptoms, and some treatments and drugs can aggravate the disease in the long run. There is a pressing need to address the safety problems due to osteoarthritis. A disintegrin-like and metalloprotease domain with thrombospondin type 1 repeats (ADAMTS) metalloproteinase is a kind of secretory zinc endopeptidase, comprising 19 kinds of zinc endopeptidases. ADAMTS has been implicated in several human diseases, including OA. For example, aggrecanases, ADAMTS-4 and ADAMTS-5, participate in the cleavage of aggrecan in the extracellular matrix (ECM); ADAMTS-7 and ADAMTS-12 participate in the fission of Cartilage Oligomeric Matrix Protein (COMP) into COMP lyase, and ADAMTS-2, ADAMTS-3, and ADAMTS-14 promote the formation of collagen fibers. In this article, we principally review the role of ADAMTS metalloproteinases in osteoarthritis. From three different dimensions, we explain how ADAMTS participates in all the following aspects of osteoarthritis: ECM, cartilage degeneration, and synovial inflammation. Thus, ADAMTS may be a potential therapeutic target in osteoarthritis, and this article may render a theoretical basis for the study of new therapeutic methods for osteoarthritis.
Collapse
Affiliation(s)
- Ting Li
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330000, China; (T.L.); (J.P.); (Q.L.); (Y.S.); (P.Z.)
- Second Clinical Medical College, Nanchang University, Nanchang 330000, China
| | - Jie Peng
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330000, China; (T.L.); (J.P.); (Q.L.); (Y.S.); (P.Z.)
- Second Clinical Medical College, Nanchang University, Nanchang 330000, China
| | - Qingqing Li
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330000, China; (T.L.); (J.P.); (Q.L.); (Y.S.); (P.Z.)
- Second Clinical Medical College, Nanchang University, Nanchang 330000, China
| | - Yuan Shu
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330000, China; (T.L.); (J.P.); (Q.L.); (Y.S.); (P.Z.)
- Second Clinical Medical College, Nanchang University, Nanchang 330000, China
| | - Peijun Zhu
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330000, China; (T.L.); (J.P.); (Q.L.); (Y.S.); (P.Z.)
- Second Clinical Medical College, Nanchang University, Nanchang 330000, China
| | - Liang Hao
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330000, China; (T.L.); (J.P.); (Q.L.); (Y.S.); (P.Z.)
| |
Collapse
|
6
|
Yu Z, Zekavat SM, Haidermota S, Bernardo R, MacDonald BT, Libby P, Finucane HK, Natarajan P. Genome-wide pleiotropy analysis of coronary artery disease and pneumonia identifies shared immune pathways. SCIENCE ADVANCES 2022; 8:eabl4602. [PMID: 35452290 PMCID: PMC9032941 DOI: 10.1126/sciadv.abl4602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Coronary artery disease (CAD) remains the leading cause of death despite scientific advances. Elucidating shared CAD/pneumonia pathways may reveal novel insights regarding CAD pathways. We performed genome-wide pleiotropy analyses of CAD and pneumonia, examined the causal effects of the expression of genes near independently replicated SNPs and interacting genes with CAD and pneumonia, and tested interactions between disruptive coding mutations of each pleiotropic gene and smoking status on CAD and pneumonia risks. Identified pleiotropic SNPs were annotated to ADAMTS7 and IL6R. Increased ADAMTS7 expression across tissues consistently showed decreased risk for CAD and increased risk for pneumonia; increased IL6R expression showed increased risk for CAD and decreased risk for pneumonia. We similarly observed opposing CAD/pneumonia effects for NLRP3. Reduced ADAMTS7 expression conferred a reduced CAD risk without increased pneumonia risk only among never-smokers. Genetic immune-inflammatory axes of CAD linked to respiratory infections implicate ADAMTS7 and IL6R, and related genes.
Collapse
Affiliation(s)
- Zhi Yu
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | | | - Sara Haidermota
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Rachel Bernardo
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Bryan T. MacDonald
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Peter Libby
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Hilary K. Finucane
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Pradeep Natarajan
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
ADAM and ADAMTS disintegrin and metalloproteinases as major factors and molecular targets in vascular malfunction and disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 94:255-363. [PMID: 35659374 PMCID: PMC9231755 DOI: 10.1016/bs.apha.2021.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A Disintegrin and Metalloproteinase (ADAM) and A Disintegrin and Metalloproteinase with Thrombospondin Motifs (ADAMTS) are two closely related families of proteolytic enzymes. ADAMs are largely membrane-bound enzymes that act as molecular scissors or sheddases of membrane-bound proteins, growth factors, cytokines, receptors and ligands, whereas ADAMTS are mainly secreted enzymes. ADAMs have a pro-domain, and a metalloproteinase, disintegrin, cysteine-rich and transmembrane domain. Similarly, ADAMTS family members have a pro-domain, and a metalloproteinase, disintegrin, and cysteine-rich domain, but instead of a transmembrane domain they have thrombospondin motifs. Most ADAMs and ADAMTS are activated by pro-protein convertases, and can be regulated by G-protein coupled receptor agonists, Ca2+ ionophores and protein kinase C. Activated ADAMs and ADAMTS participate in numerous vascular processes including angiogenesis, vascular smooth muscle cell proliferation and migration, vascular cell apoptosis, cell survival, tissue repair, and wound healing. ADAMs and ADAMTS also play a role in vascular malfunction and cardiovascular diseases such as hypertension, atherosclerosis, coronary artery disease, myocardial infarction, heart failure, peripheral artery disease, and vascular aneurysm. Decreased ADAMTS13 is involved in thrombotic thrombocytopenic purpura and microangiopathies. The activity of ADAMs and ADAMTS can be regulated by endogenous tissue inhibitors of metalloproteinases and other synthetic small molecule inhibitors. ADAMs and ADAMTS can be used as diagnostic biomarkers and molecular targets in cardiovascular disease, and modulators of ADAMs and ADAMTS activity may provide potential new approaches for the management of cardiovascular disorders.
Collapse
|
8
|
Taştemur M, Beysel S, Hepşen S, Öztekin S, Çakal E, Akdağ İ, Yıldız M. Investigating ADAMTS7 and ADAMTS12 levels in prediabetic and Type 2 diabetic patients. Biomark Med 2021; 15:753-760. [PMID: 34169731 DOI: 10.2217/bmm-2020-0161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 03/19/2021] [Indexed: 12/14/2022] Open
Abstract
Background: This study aims to investigate the role of ADAMTS7 and ADAMTS12 on atherosclerosis and inflammation in prediabetic and diabetic patients. Patients & methods: Serum ADAMTS7 and ADAMTS12 levels were compared with the atherosclerotic and inflammatory markers in diabetic (n = 65, female 30.9%, mean age = 53 years), prediabetic (n = 55, female 36.6%, mean age = 49 years) and control groups (n = 55, females 32.5%, mean age = 49 years). Serum ADAMTS levels were determined by a human enzyme-liked immunoassay. Results: In terms of ADAMTS7, there was no significant difference between diabetic, prediabetic and control groups (50.93, 44.34, 59.07, respectively; p > 0.05). ADAMTS12 is lower in diabetics (p < 0.05), whereas it is similar in prediabetics and controls (14.53, 20.76, 25.05, respectively; p > 0.05). ADAMTS7 and ADAMTS12 levels did not differ in diabetic nephropathy, retinopathy and neuropathy (p > 0.05). Conclusion: While ADAMTS12 was significantly lower in diabetics and prediabetics, ADAMTS7 and ADAMTS12 were not related to diabetic complications (nephropathy, retinopathy and neuropathy).
Collapse
Affiliation(s)
- Mercan Taştemur
- Department of Internal Medicine, University of Health Sciences, Diskapi Yildirim Beyazit Training & Research Hospital, Ankara, Turkey
| | - Selvihan Beysel
- Department of Endocrinology & Metabolism, Afyonkarahisar Health Science University, Ankara, Turkey
| | - Sema Hepşen
- Department of Endocrinology & Metabolism, University of Health Sciences, Diskapi Yildirim Beyazit Training & Research Hospital, Ankara, Turkey
| | - Sanem Öztekin
- Department of Internal Medicine, University of Health Sciences, Diskapi Yildirim Beyazit Training & Research Hospital, Ankara, Turkey
| | - Erman Çakal
- Department of Endocrinology & Metabolism, University of Health Sciences, Diskapi Yildirim Beyazit Training & Research Hospital, Ankara, Turkey
| | - İbrahim Akdağ
- Department of Internal Medicine, University of Health Sciences, Diskapi Yildirim Beyazit Training & Research Hospital, Ankara, Turkey
| | - Mehmet Yıldız
- Department of Internal Medicine, University of Health Sciences, Diskapi Yildirim Beyazit Training & Research Hospital, Ankara, Turkey
| |
Collapse
|
9
|
Li J, Zhao Y, Choi J, Ting KK, Coleman P, Chen J, Cogger VC, Wan L, Shi Z, Moller T, Zheng X, Vadas MA, Gamble JR. Targeting miR-27a/VE-cadherin interactions rescues cerebral cavernous malformations in mice. PLoS Biol 2020; 18:e3000734. [PMID: 32502201 PMCID: PMC7299406 DOI: 10.1371/journal.pbio.3000734] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/17/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
Cerebral cavernous malformations (CCMs) are vascular lesions predominantly developing in the central nervous system (CNS), with no effective treatments other than surgery. Loss-of-function mutation in CCM1/krev interaction trapped 1 (KRIT1), CCM2, or CCM3/programmed cell death 10 (PDCD10) causes lesions that are characterized by abnormal vascular integrity. Vascular endothelial cadherin (VE-cadherin), a major regulator of endothelial cell (EC) junctional integrity is strongly disorganized in ECs lining the CCM lesions. We report here that microRNA-27a (miR-27a), a negative regulator of VE-cadherin, is elevated in ECs isolated from mouse brains developing early CCM lesions and in cultured ECs with CCM1 or CCM2 depletion. Furthermore, we show miR-27a acts downstream of kruppel-like factor (KLF)2 and KLF4, two known key transcription factors involved in CCM lesion development. Using CD5-2 (a target site blocker [TSB]) to prevent the miR-27a/VE-cadherin mRNA interaction, we present a potential therapy to increase VE-cadherin expression and thus rescue the abnormal vascular integrity. In CCM1- or CCM2-depleted ECs, CD5-2 reduces monolayer permeability, and in Ccm1 heterozygous mice, it restores dermal vessel barrier function. In a neonatal mouse model of CCM disease, CD5-2 normalizes vasculature and reduces vascular leakage in the lesions, inhibits the development of large lesions, and significantly reduces the size of established lesions in the hindbrain. Furthermore, CD5-2 limits the accumulation of inflammatory cells in the lesion area. Our work has established that VE-cadherin is a potential therapeutic target for normalization of the vasculature and highlights that targeting miR-27a/VE-cadherin interaction by CD5-2 is a potential novel therapy for the devastating disease, CCM. Cerebral cavernous malformation (CCM) is a disease for which, hitherto, surgery has been the only option. This study shows that a potential therapeutic, CD5-2, inhibits lesion development and vascular leak in the brains of CCM neonatal mice by targeting the endothelial cell–specific adhesion molecule VE-cadherin and restoring the vascular integrity of CCM lesions.
Collapse
Affiliation(s)
- Jia Li
- Centre for the Endothelium, Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney, Australia
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Yang Zhao
- Centre for the Endothelium, Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney, Australia
| | - Jaesung Choi
- Laboratory of Cardiovascular Signaling, Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney, Australia
| | - Ka Ka Ting
- Centre for the Endothelium, Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney, Australia
| | - Paul Coleman
- Centre for the Endothelium, Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney, Australia
| | - Jinbiao Chen
- Liver Injury and Cancer Program, Centenary Institute, The University of Sydney, Sydney, Australia
| | - Victoria C. Cogger
- Aging and Alzheimers Institute and ANZAC Research Institute and Concord Hospital, Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - Li Wan
- Centre for the Endothelium, Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney, Australia
| | - Zhongsong Shi
- Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | | | - Xiangjian Zheng
- Laboratory of Cardiovascular Signaling, Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney, Australia
| | - Mathew A. Vadas
- Centre for the Endothelium, Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney, Australia
| | - Jennifer R. Gamble
- Centre for the Endothelium, Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney, Australia
- * E-mail:
| |
Collapse
|
10
|
Li HW, Shen M, Gao PY, Li ZR, Cao JL, Zhang WL, Sui BB, Wang YX, Wang YJ. Association between ADAMTS7 polymorphism and carotid artery plaque vulnerability. Medicine (Baltimore) 2019; 98:e17438. [PMID: 31651847 PMCID: PMC6824807 DOI: 10.1097/md.0000000000017438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/06/2019] [Accepted: 09/11/2019] [Indexed: 12/22/2022] Open
Abstract
Recent genome-wide association studies (GWAS) indicated that polymorphisms in ADAMTS7 were associated with artery disease caused by atherosclerosis. However, the correlation between the ADAMTS7 polymorphism and plaque stability remains unclear. The objective of this study was to evaluate the association between 2 ADAMTS7 variants rs3825807 and rs7173743 and ischemic stroke or atherosclerotic plaque vulnerability.This research is an observational study. Patients with ischemic stroke and normal control individuals admitted to Beijing Tiantan Hospital from May 2014 to October 2017 were enrolled. High-resolution magnetic resonance imaging was used to distinguish vulnerable and stable carotid plaques. The ADAMTS7 SNPs were genotyped using TaqMan assays on real-time PCR system. The multivariate logistic regression analyses were used to adjust for multiple risk factors between groups.Three hundred twenty-six patients with ischemic stroke (189 patients with vulnerable plaque and 81 patients with stable plaque) and 432 normal controls were included. ADAMTS7 polymorphisms of both rs7173743 and rs3825807 were associated with carotid plaque vulnerability but not the prevalence of ischemic stroke. The T/T genotype of rs7173743 [odds ratio (OR) = 1.885, 95% confidence interval (CI) = 1.067-3.328, P = .028] and A/A genotype of rs3825807 (OR = 2.146, 95% CI = 1.163-3.961, P = .013) were considered as risk genotypes for vulnerable plaque susceptibility.In conclusion, ADAMTS7 variants rs3825807 and rs7173743 are associated with the risk for carotid plaque vulnerability.
Collapse
Affiliation(s)
- Hao-wen Li
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital
- Advanced Innovation Center for Human Brain Protection, Capital Medical University
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease
| | - Mi Shen
- Department of Neuroradiology, Beijing Tiantan Hospital, Capital Medical University
| | - Pei-yi Gao
- Department of Neuroradiology, Beijing Tiantan Hospital, Capital Medical University
- Beijing Neurosurgical Institute
| | - Zi-rui Li
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital
- Advanced Innovation Center for Human Brain Protection, Capital Medical University
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease
| | - Jing-li Cao
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital
- Advanced Innovation Center for Human Brain Protection, Capital Medical University
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease
| | - Wen-li Zhang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital
| | - Bin-bin Sui
- Department of Neuroradiology, Beijing Tiantan Hospital, Capital Medical University
| | - Yu-xin Wang
- Department of Neuroradiology, Beijing Tiantan Hospital, Capital Medical University
| | - Ya-jie Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Zhong S, Khalil RA. A Disintegrin and Metalloproteinase (ADAM) and ADAM with thrombospondin motifs (ADAMTS) family in vascular biology and disease. Biochem Pharmacol 2019; 164:188-204. [PMID: 30905657 DOI: 10.1016/j.bcp.2019.03.033] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/20/2019] [Indexed: 12/11/2022]
Abstract
A Disintegrin and Metalloproteinase (ADAM) is a family of proteolytic enzymes that possess sheddase function and regulate shedding of membrane-bound proteins, growth factors, cytokines, ligands and receptors. Typically, ADAMs have a pro-domain, and a metalloproteinase, disintegrin, cysteine-rich and a characteristic transmembrane domain. Most ADAMs are activated by proprotein convertases, but can also be regulated by G-protein coupled receptor agonists, Ca2+ ionophores and protein kinase C activators. A Disintegrin and Metalloproteinase with Thrombospondin Motifs (ADAMTS) is a family of secreted enzymes closely related to ADAMs. Like ADAMs, ADAMTS members have a pro-domain, and a metalloproteinase, disintegrin, and cysteine-rich domain, but they lack a transmembrane domain and instead have characteristic thrombospondin motifs. Activated ADAMs perform several functions and participate in multiple cardiovascular processes including vascular smooth muscle cell proliferation and migration, angiogenesis, vascular cell apoptosis, cell survival, tissue repair, and wound healing. ADAMs may also be involved in pathological conditions and cardiovascular diseases such as atherosclerosis, hypertension, aneurysm, coronary artery disease, myocardial infarction and heart failure. Like ADAMs, ADAMTS have a wide-spectrum role in vascular biology and cardiovascular pathophysiology. ADAMs and ADAMTS activity is naturally controlled by endogenous inhibitors such as tissue inhibitors of metalloproteinases (TIMPs), and their activity can also be suppressed by synthetic small molecule inhibitors. ADAMs and ADAMTS can serve as important diagnostic biomarkers and potential therapeutic targets for cardiovascular disorders. Natural and synthetic inhibitors of ADAMs and ADAMTS could be potential therapeutic tools for the management of cardiovascular diseases.
Collapse
Affiliation(s)
- Sheng Zhong
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Microglial Progranulin: Involvement in Alzheimer's Disease and Neurodegenerative Diseases. Cells 2019; 8:cells8030230. [PMID: 30862089 PMCID: PMC6468562 DOI: 10.3390/cells8030230] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases such as Alzheimer’s disease have proven resistant to new treatments. The complexity of neurodegenerative disease mechanisms can be highlighted by accumulating evidence for a role for a growth factor, progranulin (PGRN). PGRN is a glycoprotein encoded by the GRN/Grn gene with multiple cellular functions, including neurotrophic, anti-inflammatory and lysosome regulatory properties. Mutations in the GRN gene can lead to frontotemporal lobar degeneration (FTLD), a cause of dementia, and neuronal ceroid lipofuscinosis (NCL), a lysosomal storage disease. Both diseases are associated with loss of PGRN function resulting, amongst other features, in enhanced microglial neuroinflammation and lysosomal dysfunction. PGRN has also been implicated in Alzheimer’s disease (AD). Unlike FTLD, increased expression of PGRN occurs in brains of human AD cases and AD model mice, particularly in activated microglia. How microglial PGRN might be involved in AD and other neurodegenerative diseases will be discussed. A unifying feature of PGRN in diseases might be its modulation of lysosomal function in neurons and microglia. Many experimental models have focused on consequences of PGRN gene deletion: however, possible outcomes of increasing PGRN on microglial inflammation and neurodegeneration will be discussed. We will also suggest directions for future studies on PGRN and microglia in relation to neurodegenerative diseases.
Collapse
|
13
|
Mu Y, Zhou DN, Yan NN, Ding JL, Yang J. Upregulation of ADAMTS‑7 and downregulation of COMP are associated with spontaneous abortion. Mol Med Rep 2019; 19:2620-2626. [PMID: 30720083 PMCID: PMC6423623 DOI: 10.3892/mmr.2019.9898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 08/07/2018] [Indexed: 12/27/2022] Open
Abstract
A disintegrin and metalloproteinase with thrombospondin motifs 7 (ADAMTS-7) has been revealed to serve an important role in inflammation-associated diseases. However, the role of ADAMTS-7 in spontaneous abortion (SA) remains unclear. In the present study, human and mouse decidual tissues were used to detect the expression of ADAMTS-7 and cartilage oligomeric matrix protein (COMP) in mice with lipopolysaccharide (LPS)-induced abortion (10 mice/group), and in SA humans and the corresponding control group (21 participants in the SA group and 15 participants in the control group). The results revealed that ADAMTS-7 expression was upregulated and that COMP expression was downregulated in the mouse decidual tissue of the LPS-induced abortion group, when compared with that of the normal control group. The results were further confirmed by western blot analysis and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis, which revealed increased ADAMTS-7 and decreased COMP expression at the protein and mRNA levels in mice treated with LPS. Additionally, the expression of ADAMTS-7 was negatively correlated with the expression of COMP in mice, with a correlation coefficient of −0.936 (P<0.001). In addition, the expression of ADAMTS-7 and COMP exhibited was similar in the decidual tissue of SA patients when compared with the levels observed in the tissues of the normal control participants, as demonstrated by increased ADAMTS-7 expression and decreased COMP expression. Western blotting and RT-qPCR analysis revealed that ADAMTS-7 was increased and COMP was decreased in the decidual tissue of SA subjects. The correlation analysis of ADAMTS-7 and COMP in human decidual tissue also revealed a similar result, with a correlation coefficient of −0.836 (P<0.001). The results of the present study demonstrated that ADAMTS-7 was upregulated and COMP was downregulated in the decidual tissues of humans and mice with SA, and a negative correlation was identified between the expression levels of ADAMTS-7 and COMP, thereby providing novel evidence for a better understanding of the pathogenesis of SA, which may lead to improvements in the clinical pregnancy outcomes of these individuals.
Collapse
Affiliation(s)
- Yang Mu
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Dan-Ni Zhou
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Na-Na Yan
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jin-Li Ding
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jing Yang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
14
|
Metalloproteinases in atherosclerosis. Eur J Pharmacol 2017; 816:93-106. [DOI: 10.1016/j.ejphar.2017.09.007] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/31/2017] [Accepted: 09/08/2017] [Indexed: 11/20/2022]
|
15
|
Qin W, Cao Y, Li L, Chen W, Chen X. Upregulation of ADAMTS‑7 and downregulation of COMP are associated with aortic aneurysm. Mol Med Rep 2017; 16:5459-5463. [PMID: 28849199 PMCID: PMC5647091 DOI: 10.3892/mmr.2017.7293] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 06/29/2017] [Indexed: 01/17/2023] Open
Abstract
Aortic aneurysm (AA) remains a fatal condition with high rates of morbidity and mortality, and the associated underlying mechanism influencing its pathology remains to be elucidated. A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-7 has previously been demonstrated to be involved in the pathogenesis of vascular atherosclerosis via degradation of cartilage oligomeric matrix protein (COMP). The ADAMTS-7/COMP pathway may therefore act as a potential therapeutic target for vascular disorders. To the best of the author's knowledge, the present study aimed to investigate for the first time, the expression of ADAMTS-7 and COMP in human AA. Human aortic aneurysm samples were collected from patients with AA (n=24), and ascending aorta control samples were harvested from dilated cardiomyopathy patients who underwent heart transplantation (n=18). Expression levels of ADAMTS-7 and matrix metalloproteinase-9 were significantly increased in the AA group, as detected by immunohistochemistry (P<0.05). The COMP protein level was markedly decreased in the AA group when compared with the control group, as demonstrated via immunohistochemistry and western blot analysis (P<0.05). The findings suggest that upregulation of ADAMTS-7 and downregulation of COMP are associated with induction of human AA. ADAMTS-7/COMP pathway may provide therefore act as a potential therapeutic target in human AA for efficient, optimal treatment interventions in the future.
Collapse
Affiliation(s)
- Wei Qin
- Department of Cardiothoracic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yide Cao
- Department of Cardiothoracic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Liangpeng Li
- Department of Cardiothoracic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Wen Chen
- Department of Cardiothoracic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Xin Chen
- Department of Cardiothoracic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| |
Collapse
|
16
|
Abstract
Several large-scale genome-wide association studies have identified single-nucleotide polymorphisms in the genomic region of A Disintegrin And Metalloproteinase with ThromboSpondin type 1 repeats (ADAMTS)-7 and associations to coronary artery disease. Experimental studies have provided evidence for a functional role of ADAMTS-7 in both injury-induced vascular neointima formation and development of atherosclerotic lesions. However, whether ADAMTS-7 is associated with a specific plaque phenotype in humans has not been investigated. Carotid plaques (n = 206) from patients with and without cerebrovascular symptoms were analyzed for expression of ADAMTS-7 by immunohistochemistry and correlated to components associated with plaque vulnerability. Plaques from symptomatic patients showed increased levels of ADAMTS-7 compared with lesions from asymptomatic patients. High levels of ADAMTS-7 correlated with high levels of CD68-staining and lipid content, but with low smooth muscle cell and collagen content, which together are characteristics of a vulnerable plaque phenotype. ADAMTS-7 levels above median were associated with increased risk for postoperative cardiovascular events. Our data show that ADAMTS-7 is associated with a vulnerable plaque phenotype in human carotid lesions. These data support previous observations of a potential proatherogenic role of ADAMTS-7.
Collapse
|
17
|
Pereira A, Palma dos Reis R, Rodrigues R, Sousa AC, Gomes S, Borges S, Ornelas I, Freitas AI, Guerra G, Henriques E, Rodrigues M, Freitas S, Freitas C, Brehm A, Pereira D, Mendonça MI. Association of ADAMTS7 gene polymorphism with cardiovascular survival in coronary artery disease. Physiol Genomics 2016; 48:810-815. [DOI: 10.1152/physiolgenomics.00059.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/08/2016] [Indexed: 12/13/2022] Open
Abstract
Recent genetic studies have revealed an association between polymorphisms at the ADAMTS7 gene locus and coronary artery disease (CAD) risk. Functional studies have shown that a CAD-associated polymorphism (rs3825807) affects ADAMTS7 maturation and vascular smooth muscular cell (VSMC) migration. Here, we tested whether ADAMTS7 (A/G) SNP is associated with cardiovascular (CV) survival in patients with established CAD. A cohort of 1,128 patients with angiographic proven CAD, who were followed up prospectively for a mean follow-up period of 63 (range 6–182) mo, were genotyped for rs3825807 A/G. Survival statistics (Cox regression) compared heterozygous (AG) and wild-type (AA) with the reference homozygous GG. Kaplan-Meier (K-M) survival curves were performed according to ADAMTS7 genotypes for CV mortality. Results showed that 47.3% of patients were heterozygous (AG), 36.5% were homozygous for the wild-type allele (AA) and only 16.2% were homozygous for the GG genotype. During the follow-up period, 109 (9.7%) patients died, 77 (6.8%) of CV causes. Survival analysis showed that AA genotype was an independent risk factor for CV mortality compared with reference genotype GG (HR = 2.7, P = 0.025). At the end of follow-up, the estimated survival probability (K-M) was 89.8% for GG genotype, 82.2% for AG and 72.3% for AA genotype ( P = 0.039). Carriage of the mutant G allele of the ADAMTS7 gene was associated with improved CV survival in patients with documented CAD. The native overfunctional ADAMTS7 allele (A) may accelerate VSMC migration and lead to neointimal thickening, atherosclerosis progression and acute plaque events. ADAMTS7 gene should be further explored in CAD for risk prediction, mechanistic and therapeutic goals.
Collapse
Affiliation(s)
- A. Pereira
- Funchal Hospital Center, Research Unit and Cardiology Department, Funchal, Madeira, Portugal
| | - R. Palma dos Reis
- Faculty of Medical Sciences, New University of Lisbon, Lisbon, Portugal; and
| | - R. Rodrigues
- Funchal Hospital Center, Research Unit and Cardiology Department, Funchal, Madeira, Portugal
| | - A. C. Sousa
- Funchal Hospital Center, Research Unit and Cardiology Department, Funchal, Madeira, Portugal
| | - S. Gomes
- Funchal Hospital Center, Research Unit and Cardiology Department, Funchal, Madeira, Portugal
| | - S. Borges
- Funchal Hospital Center, Research Unit and Cardiology Department, Funchal, Madeira, Portugal
| | - I. Ornelas
- Funchal Hospital Center, Research Unit and Cardiology Department, Funchal, Madeira, Portugal
| | - A. I. Freitas
- Laboratory of Human Genetics, Madeira University, Campus da Penteada, Funchal, Madeira, Portugal
| | - G. Guerra
- Laboratory of Human Genetics, Madeira University, Campus da Penteada, Funchal, Madeira, Portugal
| | - E. Henriques
- Funchal Hospital Center, Research Unit and Cardiology Department, Funchal, Madeira, Portugal
| | - M. Rodrigues
- Funchal Hospital Center, Research Unit and Cardiology Department, Funchal, Madeira, Portugal
| | - S. Freitas
- Funchal Hospital Center, Research Unit and Cardiology Department, Funchal, Madeira, Portugal
| | - C. Freitas
- Funchal Hospital Center, Research Unit and Cardiology Department, Funchal, Madeira, Portugal
| | - A. Brehm
- Laboratory of Human Genetics, Madeira University, Campus da Penteada, Funchal, Madeira, Portugal
| | - D. Pereira
- Funchal Hospital Center, Research Unit and Cardiology Department, Funchal, Madeira, Portugal
| | - M. I. Mendonça
- Funchal Hospital Center, Research Unit and Cardiology Department, Funchal, Madeira, Portugal
| |
Collapse
|
18
|
Roy R, Singh R, Chattopadhyay E, Ray A, Sarkar ND, Aich R, Paul RR, Pal M, Roy B. MicroRNA and target gene expression based clustering of oral cancer, precancer and normal tissues. Gene 2016; 593:58-63. [PMID: 27515006 DOI: 10.1016/j.gene.2016.08.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 08/02/2016] [Accepted: 08/05/2016] [Indexed: 12/26/2022]
Abstract
PURPOSE Development of oral cancer is usually preceded by precancerous lesion. Despite histopathological diagnosis, development of disease specific biomarkers continues to be a promising field of study. Expression of miRNAs and their target genes was studied in oral cancer and two types of precancer lesions to look for disease specific gene expression patterns. METHODS Expression of miR-26a, miR-29a, miR-34b and miR-423 and their 11 target genes were determined in 20 oral leukoplakia, 20 lichen planus and 20 cancer tissues with respect to 20 normal tissues using qPCR assay. Expression data were, then, used for cluster analysis of normal as well as disease tissues. RESULTS Expression of miR-26a and miR-29a was significantly down regulated in leukoplakia and cancer tissues but up regulated in lichen planus tissues. Expression of target genes such as, ADAMTS7, ATP1B1, COL4A2, CPEB3, CDK6, DNMT3a and PI3KR1 was significantly down regulated in at least two of three disease types with respect to normal tissues. Negative correlations between expression levels of miRNAs and their targets were observed in normal tissues but not in disease tissues implying altered miRNA-target interaction in disease state. Specific expression profile of miRNAs and target genes formed separate clusters of normal, lichen planus and cancer tissues. CONCLUSION Our results suggest that alterations in expression of selected miRNAs and target genes may play important roles in development of precancer to cancer. Expression profiles of miRNA and target genes may be useful to differentiate cancer and lichen planus from normal tissues, thereby bolstering their role in diagnostics.
Collapse
Affiliation(s)
- Roshni Roy
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Richa Singh
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Esita Chattopadhyay
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Anindita Ray
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Navonil De Sarkar
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Ritesh Aich
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India; Department of Oral Pathology, Guru Nanak Institute of Dental Science & Research, 157/F Nilganj Road, Kolkata 700114, India
| | - Ranjan Rashmi Paul
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India; Department of Oral Pathology, Guru Nanak Institute of Dental Science & Research, 157/F Nilganj Road, Kolkata 700114, India
| | - Mousumi Pal
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India; Department of Oral Pathology, Guru Nanak Institute of Dental Science & Research, 157/F Nilganj Road, Kolkata 700114, India
| | - Bidyut Roy
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India.
| |
Collapse
|
19
|
The Function and Roles of ADAMTS-7 in Inflammatory Diseases. Mediators Inflamm 2015; 2015:801546. [PMID: 26696755 PMCID: PMC4677222 DOI: 10.1155/2015/801546] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/19/2015] [Accepted: 11/18/2015] [Indexed: 12/11/2022] Open
Abstract
The ADAMTS proteinases are a group of multidomain and secreted metalloproteinases containing the thrombospondin motifs. ADAMTS-7 is a member of ADAMTS family and plays a crucial role in the pathogenesis of arthritis. Overexpression of ADAMTS-7 gene promotes the breakdown of cartilage oligomeric matrix protein (COMP) matrix and accelerates the progression of both surgically induced osteoarthritis and collagen-induced arthritis. Moreover, ADAMTS-7 and tumor necrosis factor-α (TNF-α) form a positive feedback loop in osteoarthritis. More significantly, granulin-epithelin precursor, a growth factor has important roles in bone development and bone-associated diseases, disturbs the interaction between ADAMTS-7 and COMP, and prevents COMP degradation. This review is based on our results and provides an overview of current knowledge of ADAMTS-7, including its structure, function, gene regulation, and inflammatory diseases involvement.
Collapse
|
20
|
ADAMTS7 locus confers high cross-race risk for development of coronary atheromatous plaque. Mol Genet Genomics 2015; 291:121-8. [PMID: 26189211 DOI: 10.1007/s00438-015-1092-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 07/08/2015] [Indexed: 12/17/2022]
Abstract
Genome-wide association studies of coronary artery disease (CAD) have recently identified a new susceptibility locus, ADAMTS7, in subjects of European ancestry. However, the significance of this locus in Chinese populations has not been identified. Therefore, this study was designed to evaluate the effect of rs3825807, a non-synonymous variant in the prodomain of the ADAMTS7 protease, on CAD risk and atherosclerosis severity in a Chinese population. We performed genetic association analyses in two independent case-control cohorts, which included a total of 8154 participants. Additionally, the association between the ADAMTS7 rs3825807 genotype and the proportion of CAD patients with 3- and 1-vessel disease was tested. We found that ADAMTS7 rs3825807 was associated with susceptibility to CAD in a Chinese population [odds ratio (OR) = 1.15, 95 % confidence interval (CI) = 1.05-1.26, P = 0.002]. The association remained significant after adjusting for clinical covariates (adjusted OR = 1.12, 95 % CI = 1.02-1.24, P = 0.02). Among 3741 angiographically documented CAD patients, the rs3825807 risk allele showed a significant association with disease severity (P = 0.04, trend P = 0.02). Additionally, 3-vessel disease demonstrated a strong and direct association with ADAMTS7 rs3825807 gene dosage (P = 0.02). Overall, our findings indicate that the significant associations observed between this coding variant in ADAMTS7 and the risk of CAD development are cross-ethnic, and the gene dosage is consistent with the degree of coronary atheromatous burden.
Collapse
|
21
|
Pi L, Jorgensen M, Oh SH, Protopapadakis Y, Gjymishka A, Brown A, Robinson P, Liu C, Scott EW, Schultz GS, Petersen BE. A disintegrin and metalloprotease with thrombospondin type I motif 7: a new protease for connective tissue growth factor in hepatic progenitor/oval cell niche. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1552-1563. [PMID: 25843683 PMCID: PMC4450322 DOI: 10.1016/j.ajpath.2015.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 02/04/2015] [Accepted: 02/10/2015] [Indexed: 12/14/2022]
Abstract
Hepatic progenitor/oval cell (OC) activation occurs when hepatocyte proliferation is inhibited and is tightly associated with the fibrogenic response during severe liver damage. Connective tissue growth factor (CTGF) is important for OC activation and contributes to the pathogenesis of liver fibrosis. By using the Yeast Two-Hybrid approach, we identified a disintegrin and metalloproteinase with thrombospondin repeat 7 (ADAMTS7) as a CTGF binding protein. In vitro characterization demonstrated CTGF binding and processing by ADAMTS7. Moreover, Adamts7 mRNA was induced during OC activation, after the implantation of 2-acetylaminofluorene with partial hepatectomy in rats or on feeding a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet in mice. X-Gal staining showed Adamts7 expression in hepatocyte nuclear factor 4α(+) hepatocytes and desmin(+) myofibroblasts surrounding reactive ducts in DDC-treated Adamts7(-/-) mice carrying a knocked-in LacZ gene. Adamts7 deficiency was associated with higher transcriptional levels of Ctgf and OC markers and enhanced OC proliferation compared to Adamts7(+/+) controls during DDC-induced liver injury. We also observed increased α-smooth muscle actin and procollagen type I mRNAs, large fibrotic areas in α-smooth muscle actin and Sirius red staining, and increased production of hepatic collagen by hydroxyproline measurement. These results suggest that ADAMTS7 is a new protease for CTGF protein and a novel regulator in the OC compartment, where its absence causes CTGF accumulation, leading to increased OC activation and biliary fibrosis.
Collapse
Affiliation(s)
- Liya Pi
- Department of Pediatrics, University of Florida, Gainesville, Florida.
| | - Marda Jorgensen
- Department of Pediatrics, University of Florida, Gainesville, Florida
| | - Seh-Hoon Oh
- Department of Pediatrics, University of Florida, Gainesville, Florida
| | | | - Altin Gjymishka
- Department of Pediatrics, University of Florida, Gainesville, Florida
| | - Alicia Brown
- Department of Pediatrics, University of Florida, Gainesville, Florida
| | - Paulette Robinson
- Department of Pediatrics, University of Florida, Gainesville, Florida
| | - Chuanju Liu
- Departments of Orthopaedic Surgery and Cell Biology, New York University School of Medicine, New York, New York
| | - Edward W Scott
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida
| | - Gregory S Schultz
- Department of Obstetrics and Gynecology, University of Florida, Gainesville, Florida
| | - Bryon E Petersen
- Department of Pediatrics, University of Florida, Gainesville, Florida
| |
Collapse
|
22
|
Affiliation(s)
- Alicia G Arroyo
- From Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Vicente Andrés
- From Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.
| |
Collapse
|