1
|
Hunt BG, Fox LH, Davis JC, Jones A, Lu Z, Waltz SE. An Introduction and Overview of RON Receptor Tyrosine Kinase Signaling. Genes (Basel) 2023; 14:517. [PMID: 36833444 PMCID: PMC9956929 DOI: 10.3390/genes14020517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
RON is a receptor tyrosine kinase (RTK) of the MET receptor family that is canonically involved in mediating growth and inflammatory signaling. RON is expressed at low levels in a variety of tissues, but its overexpression and activation have been associated with malignancies in multiple tissue types and worse patient outcomes. RON and its ligand HGFL demonstrate cross-talk with other growth receptors and, consequentially, positions RON at the intersection of numerous tumorigenic signaling programs. For this reason, RON is an attractive therapeutic target in cancer research. A better understanding of homeostatic and oncogenic RON activity serves to enhance clinical insights in treating RON-expressing cancers.
Collapse
Affiliation(s)
- Brian G. Hunt
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - Levi H. Fox
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - James C. Davis
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - Angelle Jones
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - Zhixin Lu
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - Susan E. Waltz
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
- Research Service, Cincinnati Veterans Affairs Hospital Medical Center, Cincinnati, OH 45220, USA
| |
Collapse
|
2
|
The Emerging Role of c-Met in Carcinogenesis and Clinical Implications as a Possible Therapeutic Target. JOURNAL OF ONCOLOGY 2022; 2022:5179182. [PMID: 35069735 PMCID: PMC8776431 DOI: 10.1155/2022/5179182] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/15/2021] [Accepted: 12/29/2021] [Indexed: 02/08/2023]
Abstract
Background c-MET is a receptor tyrosine kinase receptor (RTK) for the hepatocyte growth factor (HGF). The binding of HGF to c-MET regulates several cellular functions: differentiation, proliferation, epithelial cell motility, angiogenesis, and epithelial-mesenchymal transition (EMT). Moreover, it is known to be involved in carcinogenesis. Comprehension of HGF-c-MET signaling pathway might have important clinical consequences allowing to predict prognosis, response to treatment, and survival rates based on its expression and dysregulation. Discussion. c-MET represents a useful molecular target for novel engineered drugs. Several clinical trials are underway for various solid tumors and the development of new specific monoclonal antibodies depends on the recent knowledge about the definite c-MET role in each different malignance. Recent clinical trials based on c-MET molecular targets result in good safety profile and represent a promising therapeutic strategy for solid cancers, in monotherapy or in combination with other target drugs. Conclusion The list of cell surface receptors crosslinking with the c-MET signaling is constantly growing, highlighting the importance of this pathway for personalized target therapy. Research on the combination of c-MET inhibitors with other drugs will hopefully lead to discovery of new effective treatment options.
Collapse
|
3
|
Huang L, Fang X, Shi D, Yao S, Wu W, Fang Q, Yao H. MSP-RON Pathway: Potential Regulator of Inflammation and Innate Immunity. Front Immunol 2020; 11:569082. [PMID: 33117355 PMCID: PMC7577085 DOI: 10.3389/fimmu.2020.569082] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022] Open
Abstract
Macrophage-stimulating protein (MSP), a soluble protein mainly synthesized by the liver, is the only known ligand for recepteur d'origine nantais (RON), which is a member of the MET proto-oncogene family. Recent studies show that the MSP-RON signaling pathway not only was important in tumor behavior but also participates in the occurrence or development of many immune system diseases. Activation of RON in macrophages results in the inhibition of nitric oxide synthesis as well as lipopolysaccharide (LPS)-induced inflammatory response. MSP-RON is also associated with chronic inflammatory responses, especially chronic liver inflammation, and might serve as a novel regulator of inflammation, which may affect the metabolism in the body. Another study provided evidence of the relationship between MSP-RON and autoimmune diseases, suggesting a potential role for MSP-RON in the development of drugs for autoimmune diseases. Moreover, MSP-RON plays an important role in maintaining the stability of the tissue microenvironment and contributes to immune escape in the tumor immune microenvironment. Here, we summarize the role of MSP-RON in immunity, based on recent findings, and lay the foundation for further research.
Collapse
Affiliation(s)
- Lingtong Huang
- Department of Critical Care Units, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xueling Fang
- Department of Critical Care Units, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Danrong Shi
- State Key Laboratory for Diagnosis & Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuhao Yao
- Department of Stormotologry, Wenzhou Medical University Renji College, Wenzhou, China
| | - Weifang Wu
- Department of Critical Care Units, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Fang
- Department of Critical Care Units, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis & Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
Zarei O, Benvenuti S, Ustun-Alkan F, Hamzeh-Mivehroud M, Dastmalchi S. Strategies of targeting the extracellular domain of RON tyrosine kinase receptor for cancer therapy and drug delivery. J Cancer Res Clin Oncol 2016; 142:2429-2446. [PMID: 27503093 DOI: 10.1007/s00432-016-2214-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/01/2016] [Indexed: 01/22/2023]
Abstract
PURPOSE Cancer is one of the most important life-threatening diseases in the world. The current efforts to combat cancer are being focused on molecular-targeted therapies. The main purpose of such approaches is based on targeting cancer cell-specific molecules to minimize toxicity for the normal cells. RON (Recepteur d'Origine Nantais) tyrosine kinase receptor is one of the promising targets in cancer-targeted therapy and drug delivery. METHODS In this review, we will summarize the available agents against extracellular domain of RON with potential antitumor activities. RESULTS The presented antibodies and antibody drug conjugates against RON in this review showed wide spectrum of in vitro and in vivo antitumor activities promising the hope for them entering the clinical trials. CONCLUSION Due to critical role of extracellular domain of RON in receptor activation, the development of therapeutic agents against this region could lead to fruitful outcome in cancer therapy.
Collapse
Affiliation(s)
- Omid Zarei
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Students Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Silvia Benvenuti
- Molecular Therapeutics and Exploratory Research Laboratory, Candiolo Cancer Institute-FPO-IRCCS, Candiolo, Turin, Italy
| | - Fulya Ustun-Alkan
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Istanbul University, Istanbul, Turkey
| | - Maryam Hamzeh-Mivehroud
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Yu S, Allen JN, Dey A, Zhang L, Balandaram G, Kennett MJ, Xia M, Xiong N, Peters JM, Patterson A, Hankey-Giblin PA. The Ron Receptor Tyrosine Kinase Regulates Macrophage Heterogeneity and Plays a Protective Role in Diet-Induced Obesity, Atherosclerosis, and Hepatosteatosis. THE JOURNAL OF IMMUNOLOGY 2016; 197:256-65. [DOI: 10.4049/jimmunol.1600450] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 04/13/2016] [Indexed: 12/11/2022]
|
6
|
Li J, Chanda D, Shiri-Sverdlov R, Neumann D. MSP: an emerging player in metabolic syndrome. Cytokine Growth Factor Rev 2014; 26:75-82. [PMID: 25466635 DOI: 10.1016/j.cytogfr.2014.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 10/22/2014] [Indexed: 12/15/2022]
Abstract
MSP (Macrophage Stimulating Protein; also known as Hepatocyte Growth Factor-like protein (HGFL) and MST1) is a secreted protein and the ligand for transmembrane receptor tyrosine kinase Recepteur d'Origine Nantais (RON; also known as MST1R). Since its discovery, MSP has been demonstrated to play a key role in regulating inflammation in the peripheral tissues of multiple disease models. Recent evidences also point toward a beneficial role of MSP in the regulation of hepatic lipid and glucose metabolism, thereby implicating MSP as a crucial regulator in maintaining metabolic homeostasis while simultaneously suppressing inflammatory processes. In this review, we discuss the recent advances that demonstrate the significance of MSP in metabolic syndrome and build a strong case supporting its therapeutic potential.
Collapse
Affiliation(s)
- Jieyi Li
- Department of Molecular Genetics, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Dipanjan Chanda
- Department of Molecular Genetics, CARIM School for Cardiovascular Diseases, Maastricht University, 6200 MD Maastricht, The Netherlands.
| | - Ronit Shiri-Sverdlov
- Department of Molecular Genetics, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Dietbert Neumann
- Department of Molecular Genetics, CARIM School for Cardiovascular Diseases, Maastricht University, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
7
|
Long D, Fix OK, Deng X, Seielstad M, Lauring AS. Whole genome sequencing to identify host genetic risk factors for severe outcomes of hepatitis a virus infection. J Med Virol 2014; 86:1661-8. [PMID: 24978929 DOI: 10.1002/jmv.24007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2014] [Indexed: 01/10/2023]
Abstract
Acute liver failure is a severe, but rare, outcome of hepatitis A virus infection. Unusual presentations of prevalent infections have often been attributed to pathogen-specific immune deficits that exhibit Mendelian inheritance. Genome-wide resequencing of unrelated cases has proven to be a powerful approach for identifying highly penetrant risk alleles that underlie such syndromes. Rare mutations likely to affect protein expression or function can be identified from sequence data, and their association with a similarly rare phenotype rests on their existence in multiple affected individuals. A rare or novel sequence variant that is enriched to a significant degree in a genetically diverse cohort suggests a candidate susceptibility allele. Whole genome sequencing of ten individuals from ethnically diverse backgrounds with HAV-associated acute liver failure was performed. A set of rational filtering criteria was used to identify genetic variants that are rare in the population, but enriched in this cohort. Single nucleotide polymorphisms, insertions, and deletions were considered and autosomal dominant, autosomal recessive, and polygenic models were applied. Analysis of the protein-coding exome identified no single gene with putatively deleterious mutations shared by multiple individuals, arguing against a simple Mendelian model of inheritance. A number of rare variants were significantly enriched in this cohort, consistent with a complex and genetically heterogeneous trait. Several of the variants identified in this genome-wide study lie within genes important to hepatic pathophysiology and are candidate susceptibility alleles for hepatitis A virus infection.
Collapse
Affiliation(s)
- Dustin Long
- Institute for Human Genetics, University of California at San Francisco, San Francisco, California
| | | | | | | | | | | |
Collapse
|
8
|
Kulkarni RM, Stuart WD, Waltz SE. Ron receptor-dependent gene regulation of Kupffer cells during endotoxemia. Hepatobiliary Pancreat Dis Int 2014; 13:281-92. [PMID: 24919612 PMCID: PMC4108450 DOI: 10.1016/s1499-3872(14)60254-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Ron receptor tyrosine kinase signaling in macrophages, including Kupffer cells and alveolar macrophages, suppresses endotoxin-induced proinflammatory cytokine/chemokine production. Further, we have also identified genes from Ron replete and Ron deplete livers that were differentially expressed during the progression of liver inflammation associated with acute liver failure in mice by microarray analyses. While important genes and signaling pathways have been identified downstream of Ron signaling during progression of inflammation by this approach, the precise role that Ron receptor plays in regulating the transcriptional landscape in macrophages, and particular in isolated Kupffer cells, has still not been investigated. METHODS Kupffer cells were isolated from wild-type (TK+/+) and Ron tyrosine kinase deficient (TK-/-) mice. Ex vivo, the cells were treated with lipopolysaccharide (LPS) in the presence or absence of the Ron ligand, hepatocyte growth factor-like protein (HGFL). Microarray and qRT-PCR analyses were utilized to identify alterations in gene expression between genotypes. RESULTS Microarray analyses identified genes expressed differentially in TK+/+ and TK-/- Kupffer cells basally as well as after HGFL and LPS treatment. Interestingly, our studies identified Mefv, a gene that codes for the anti-inflammatory protein pyrin, as an HGFL-stimulated Ron-dependent gene. Moreover, lipocalin 2, a proinflammatory gene, which is induced by LPS, was significantly suppressed by HGFL treatment. Microarray results were validated by qRT-PCR studies on Kupffer cells treated with LPS and HGFL. CONCLUSION The studies herein suggest a novel mechanism whereby HGFL-induced Ron receptor activation promotes the expression of anti-inflammatory genes while inhibiting genes involved in inflammation with a net effect of diminished inflammation in macrophages.
Collapse
|
9
|
Cary DC, Clements JE, Henderson AJ. RON receptor tyrosine kinase, a negative regulator of inflammation, is decreased during simian immunodeficiency virus-associated central nervous system disease. THE JOURNAL OF IMMUNOLOGY 2013; 191:4280-7. [PMID: 24043899 DOI: 10.4049/jimmunol.1300797] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Expressed on tissue-resident macrophages, the receptor tyrosine kinase, recepteur d'orgine nantais (RON), functions to maintain inflammation homeostasis by activating genes that promote wound repair and resolve inflammation while repressing genes that perpetuate tissue damage and cell death. Chronic HIV-1 infection is associated with dysregulated inflammation, and we hypothesize that diminished RON expression contributes to the development of end organ diseases such as HIV-1-associated CNS disease. To explore RON function in vivo, we used CNS tissue from a well-characterized SIV macaque model and examined the temporal regulation of RON in the brain during the course of infection. Following prolonged SIV infection, RON expression was inversely correlated with the development of CNS disease; RON was maintained in animals that did not develop CNS lesions and was reduced in SIV-infected macaques that demonstrated moderate to severe inflammatory lesions. Arginase-1 expression was reduced in the brain during late infection, whereas expression of the inflammatory genes, IL-12p40 and TNF-α, was elevated. To validate a role for RON in regulating HIV-1 in primary cells, we used human tissue-resident macrophages isolated from tonsil as a tractable cell model. RON signaling in tissue-resident macrophages, both ligand dependent and independent, limited HIV-1 replication. Furthermore, prolonged HIV-1 infection in vitro resulted in downregulation of RON. We propose a model in which, following chronic HIV-1 infection in the brain, RON expression is decreased, genes that quell inflammation are repressed, and inflammatory mediators are induced to promote tissue inflammation.
Collapse
Affiliation(s)
- Daniele C Cary
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118
| | | | | |
Collapse
|
10
|
Eyob H, Ekiz HA, Derose YS, Waltz SE, Williams MA, Welm AL. Inhibition of ron kinase blocks conversion of micrometastases to overt metastases by boosting antitumor immunity. Cancer Discov 2013; 3:751-60. [PMID: 23612011 DOI: 10.1158/2159-8290.cd-12-0480] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Many "nonmetastatic" cancers have spawned undetectable metastases before diagnosis. Eventual outgrowth of these microscopic lesions causes metastatic relapse and death, yet the events that dictate when and how micrometastases convert to overt metastases are largely unknown. We report that macrophage-stimulating protein and its receptor, Ron, are key mediators in conversion of micrometastases to bona fide metastatic lesions through immune suppression. Genetic deletion of Ron tyrosine kinase activity specifically in the host profoundly blocked metastasis. Our data show that loss of Ron function promotes an effective antitumor CD8(+) T-cell response, which specifically inhibits outgrowth of seeded metastatic colonies. Treatment of mice with a Ron-selective kinase inhibitor prevented outgrowth of lung metastasis, even when administered after micrometastatic colonies had already been established. Our findings indicate that Ron inhibitors may hold potential to specifically prevent outgrowth of micrometastases in patients with cancer in the adjuvant setting.
Collapse
Affiliation(s)
- Henok Eyob
- Department of Oncological Sciences, Huntsman Cancer Institute, Salt Lake City, UT 84112, USA
| | | | | | | | | | | |
Collapse
|
11
|
Gurusamy D, Gray JK, Pathrose P, Kulkarni RM, Finkleman FD, Waltz SE. Myeloid-specific expression of Ron receptor kinase promotes prostate tumor growth. Cancer Res 2013; 73:1752-63. [PMID: 23328584 DOI: 10.1158/0008-5472.can-12-2474] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Ron receptor kinase (MST1R) is important in promoting epithelial tumorigenesis, but the potential contributions of its specific expression in stromal cells have not been examined. Herein, we show that the Ron receptor is expressed in mouse and human stromal cells of the prostate tumor microenvironment. To test the significance of stromal Ron expression, prostate cancer cells were orthotopically implanted into the prostates of either wild-type or Ron tyrosine kinase deficient (TK(-/-); Mst1r(-/-)) hosts. In TK(-/-) hosts, prostate cancer cell growth was significantly reduced as compared with tumor growth in TK(+/+) hosts. Prostate tumors in TK(-/-) hosts exhibited an increase in tumor cell apoptosis, macrophage infiltration and altered cytokine expression. Reciprocal bone marrow transplantation studies and myeloid cell-specific ablation of Ron showed that loss of Ron in myeloid cells is sufficient to inhibit prostate cancer cell growth. Interestingly, depletion of CD8(+) T cells, but not CD4(+) T cells, was able to restore prostate tumor growth in hosts devoid of myeloid-specific Ron expression. These studies show a critical role for the Ron receptor in the tumor microenvironment, whereby Ron loss in tumor-associated macrophages inhibits prostate cancer cell growth, at least in part, by derepressing the activity of CD8(+) T cells.
Collapse
Affiliation(s)
- Devikala Gurusamy
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | | | | | | | | |
Collapse
|
12
|
Kulkarni RM, Kutcher LW, Stuart WD, Carson DJ, Leonis MA, Waltz SE. Ron receptor-dependent gene regulation in a mouse model of endotoxin-induced acute liver failure. Hepatobiliary Pancreat Dis Int 2012; 11:383-92. [PMID: 22893465 PMCID: PMC4102423 DOI: 10.1016/s1499-3872(12)60196-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Prior experimentation has shown that loss of the tyrosine kinase (TK) signaling domain of the Ron receptor leads to marked hepatocyte protection in a model of lipopolysaccharide-induced acute liver failure (ALF) in D-galactosamine (GalN)-sensitized mice. The aim of this study was to identify the role of Ron in the regulation of hepatic gene expression. METHODS Microarray analyses were performed on liver RNA isolated sequentially from wild-type (WT) and TK-/- mice during the progression of ALF. Gene array data were validated using Western and immunohistochemistry analyses as well as with ex vivo culture systems. RESULTS At baseline, 101 genes were differentially expressed between WT and TK-/- livers, which regulate processes involved in hypoxia, proliferation, apoptosis and metabolism. One hour after ALF induction, WT livers exhibited increased cytokine expression compared to TK-/- livers, and after 4 hours, an induction of suppressor of cytokine signaling (SOCS) genes as well as JAK-STAT pathway activation were prominent in TK-/- livers compared to controls. CONCLUSION Our studies suggest a novel hepato-protective mechanism in Ron TK-/- mice wherein increased and sustained SOCS production and JAK-STAT activation in the hepatocyte may inhibit the destructive proinflammatory milieu and promote survival factors which blunt hepatic death and the ensuing development of ALF.
Collapse
Affiliation(s)
- Rishikesh M. Kulkarni
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, OH 45267-0521
| | - Louis W. Kutcher
- Department of Biology, University of Cincinnati, Cincinnati, OH 45267-0521
| | - William D. Stuart
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, OH 45267-0521
| | - Daniel J. Carson
- Department of Biology, University of Cincinnati, Cincinnati, OH 45267-0521
| | - Mike A. Leonis
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Susan E. Waltz
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, OH 45267-0521,Departments of Research, Shriner’s Hospital for Children, Cincinnati, OH 45267-0521,Cincinnati Veterans Affairs Medical Center, Cincinnati, OH 45267-0521,Corresponding Author: Susan E. Waltz, Ph.D., Department of Cancer and Cell Biology, 3125 Eden Ave., University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, Telephone: (513) 558-8675,
| |
Collapse
|
13
|
Stuart WD, Kulkarni RM, Gray JK, Vasiliauskas J, Leonis MA, Waltz SE. Ron receptor regulates Kupffer cell-dependent cytokine production and hepatocyte survival following endotoxin exposure in mice. Hepatology 2011; 53:1618-28. [PMID: 21520175 PMCID: PMC3082400 DOI: 10.1002/hep.24239] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
UNLABELLED Previous studies demonstrated that targeted deletion of the Ron receptor tyrosine kinase (TK) domain in mice leads to marked hepatocyte protection in a well-characterized model of lipopolysaccharide (LPS)-induced acute liver failure in D-galactosamine (GalN)-sensitized mice. Hepatocyte protection in TK-/- mice was observed despite paradoxically elevated serum levels of tumor necrosis factor alpha (TNF-α). To understand the role of Ron in the liver, purified populations of Kupffer cells and hepatocytes from wildtype (TK+/+) and TK-/- mice were studied. Utilizing quantitative reverse-transcription polymerase chain reaction (RT-PCR), we demonstrated that Ron is expressed in these cell types. Moreover, we also recapitulated the protected hepatocyte phenotype and exaggerated cytokine production observed in the TK-/- mice in vivo through the use of purified cultured cells ex vivo. We show that isolated TK-/- Kupffer cells produce increased levels of TNF-α and select cytokines compared to TK+/+ cells following LPS stimulation. We also show that conditioned media from LPS-treated TK-/- Kupffer cells was more toxic to hepatocytes than control media, suggesting the exaggerated levels of cytokines produced from the TK-/- Kupffer cells are detrimental to wildtype hepatocytes. In addition, we observed that TK-/- hepatocytes were more resistant to cell death compared to TK+/+ hepatocytes, suggesting that Ron functions in both the epithelial and inflammatory cell compartments to regulate acute liver injury. These findings were confirmed in vivo in mice with hepatocyte and macrophage cell-type-specific conditional Ron deletions. Mice with Ron loss selectively in hepatocytes exhibited less liver damage and increased survival compared to mice with Ron loss in macrophages. CONCLUSION We dissected cell-type-specific roles for Ron such that this receptor modulates cytokine production from Kupffer cells and inhibits hepatocyte survival in response to injury.
Collapse
Affiliation(s)
- William D. Stuart
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267–0521
| | - Rishikesh M. Kulkarni
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267–0521
| | - Jerilyn K. Gray
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267–0521
| | - Juozas Vasiliauskas
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267–0521
| | - Mike A. Leonis
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267–0521
| | - Susan E. Waltz
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267–0521, Departments of Research, Cincinnati Veterans Affairs Medical Center and Shriners Hospital for Children, Cincinnati, OH 45267–0521,Address correspondence to: Susan E. Waltz, Ph.D., Department of Cancer and Cell Biology, Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, 3125 Eden Ave, Cincinnati, OH 45267–0521, Tel: 513.558.8675, Fax: 513.558.4428,
| |
Collapse
|
14
|
Nikolaidis NM, Gray JK, Gurusamy D, Fox W, Stuart WD, Huber N, Waltz SE. Ron receptor tyrosine kinase negatively regulates TNFalpha production in alveolar macrophages by inhibiting NF-kappaB activity and Adam17 production. Shock 2010; 33:197-204. [PMID: 19487969 DOI: 10.1097/shk.0b013e3181ae8155] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Ron receptor tyrosine kinase (TK) plays a regulatory role in the inflammatory response to acute lung injury induced by intranasal administration of bacterial LPS. Previously, we have shown that mice with a targeted deletion of the TK signaling domain of the Ron receptor exhibited more severe lung injury in response to intranasal LPS administration as evidenced by an increased leakage of albumin in the lungs and a greater thickening of the alveolar septa compared with wild-type mice. In addition, lung injury in the Ron TK-deficient (TK(-/-)) mice was associated with increased activation of the transcription factor, nuclear factor-kappaB (NF-kappaB), and significantly increased intrapulmonary expression of TNFalpha. TNFalpha, a multifunctional proinflammatory cytokine, is a central mediator in several disease states, including rheumatoid arthritis and sepsis. On the basis of the observation that TNFalpha production is increased in the Ron TK-/- mice and that macrophages are a major source of this cytokine, we hypothesized that the alterations observed in the Ron TK(-/-) mice may be due, in part, to Ron signaling, specifically in alveolar macrophages. To test this hypothesis, we used the wild-type and Ron TK(-/-) primary alveolar macrophages and the murine alveolar macrophage cell line, MH-S, to examine the effects of Ron activation on LPS-induced TNFalpha production and NF-kappaB activity. Here, we reported that Ron is expressed on alveolar macrophages and MH-S cells. Activation of Ron by its ligand, hepatocyte growth factor-like protein, decreases TNFalpha production in alveolar macrophages after LPS challenge. Decreased TNFalpha is associated with hepatocyte growth factor-like protein-induced decreases in NF-kappaB activation and increases in the NF-kappaB inhibitory protein, IkappaB. We also provided the first evidence for Ron as a negative regulator of Adam17, the metalloprotease involved in TNFalpha processing. These results indicate that Ron plays a critical role in regulation of alveolar macrophage signaling and validates this receptor as a target in TNFalpha-mediated pulmonary pathologies.
Collapse
Affiliation(s)
- Nikolaos M Nikolaidis
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Dotzauer D, Wolfenstetter S, Eibert D, Schneider S, Dietrich P, Sauer N. Novel PSI Domains in Plant and Animal H+-Inositol Symporters. Traffic 2010; 11:767-81. [DOI: 10.1111/j.1600-0854.2010.01057.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
16
|
Mongan M, Tan Z, Chen L, Peng Z, Dietsch M, Su B, Leikauf G, Xia Y. Mitogen-activated protein kinase kinase kinase 1 protects against nickel-induced acute lung injury. Toxicol Sci 2008; 104:405-11. [PMID: 18467339 DOI: 10.1093/toxsci/kfn089] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nickel compounds are environmental and occupational hazards that pose serious health problems and are causative factors of acute lung injury. The c-jun N-terminal kinases (JNKs) are regulated through a mitogen-activated protein (MAP) 3 kinase-MAP2 kinase cascade and have been implicated in nickel toxicity. In this study, we used genetically modified cells and mice to investigate the involvement of two upstream MAP3Ks, MAP3K1 and 2, in nickel-induced JNK activation and acute lung injury. In mouse embryonic fibroblasts, levels of JNK activation and cytotoxicity induced by nickel were similar in the Map3k2-null and wild-type cells but were much lower in the Map3k1/Map3k2 double-null cells. Conversely, the levels of JNK activation and cytotoxicity were unexpectedly much higher in the Map3k1-null cells. In adult mouse tissue, MAP3K1 was widely distributed but was abundantly expressed in the bronchiole epithelium of the lung. Accordingly, MAP3K1 ablation in mice resulted in severe nickel-induced acute lung injury and reduced survival. Based on these findings, we propose a role for MAP3K1 in reducing JNK activation and protecting the mice from nickel-induced acute lung injury.
Collapse
Affiliation(s)
- Maureen Mongan
- Department of Environmental Health and Center of Environmental Genetics, University of Cincinnati, School of Medicine, Cincinnati, OH 45267-0056, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Leonis MA, Thobe MN, Waltz SE. Ron-receptor tyrosine kinase in tumorigenesis and metastasis. Future Oncol 2008; 3:441-8. [PMID: 17661719 PMCID: PMC4082960 DOI: 10.2217/14796694.3.4.441] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Ron-receptor tyrosine kinase has been increasingly recognized for its tumorigenic potential in the last decade. Ron-receptor activation leads to the activation of common receptor tyrosine kinase downstream-signaling pathways, and most prominently in tumor models, activation of MAPK, PI3K and beta-catenin. Numerous experimental models of mammalian tumorigenesis have demonstrated that increased Ron-receptor activity correlates with increased tumorigenesis in a variety of organs of epithelial origin. The evidence for Ron as an oncogene in human tumor biology is growing. The Ron receptor is overexpressed and over activated in a large number of human tumors, and overexpression of Ron correlates with a worse clinical outcome for patients in at least two human cancer states, namely breast and bladder cancer. Several experimental approaches have been demonstrated to successfully block Ron activity and function, and given these convincing data, approaches to block Ron-receptor activity in targeted human cancers should prove to be fruitful in the setting of future clinical research trials.
Collapse
Affiliation(s)
- Mike A. Leonis
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0558
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Megan N. Thobe
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0558
| | - Susan E. Waltz
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0558
- Department of Research, Shriner’s Hospital for Children, Cincinnati, OH 45267-0558
| |
Collapse
|
18
|
Lentsch AB, Pathrose P, Kader S, Kuboki S, Collins MH, Waltz SE. The Ron receptor tyrosine kinase regulates acute lung injury and suppresses nuclear factor kappaB activation. Shock 2007; 27:274-80. [PMID: 17304108 PMCID: PMC4037751 DOI: 10.1097/01.shk.0000239755.82711.89] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Emerging information implies that the Ron receptor tyrosine kinase may play a role in the inflammatory response. However, the manner in which this receptor contributes to the response is not well understood. In the present studies, we investigated the role of the Ron receptor in the acute lung inflammatory response. Wild-type and mutant mice lacking the tyrosine kinase domain of Ron (Ron TK-/-) were subjected to acute lung injury induced by intranasal administration of bacterial lipopolysaccharide (LPS). Wild-type mice showed increased lung injury after LPS administration, as determined by the leakage of albumin into the lung and by histopathological changes. Ron TK-/- mice had more than twice the amount of albumin leak and much greater thickening of the alveolar septae. Lipopolysaccharide administration caused neutrophil recruitment into the lungs, as measured by myeloperoxidase. However, Ron TK-/- mice had much higher baseline levels of myeloperoxidase, which did not increase further after LPS. Lung injury in wild-type mice occurred with activation of the transcription factor, nuclear factor kappaB (NF-kappaB), and subsequent increases in intrapulmonary generation of tumor necrosis factor alpha. In TK-/- mice, there was far less IkappaB-alpha and IkappaB-beta protein and greater activation of NF-kappaB. This was associated with substantially increased production of tumor necrosis factor alpha and the nitric oxide (NO) by-product, nitrite. The data suggest that the Ron receptor tyrosine kinase plays an important regulatory role in acute inflammatory lung injury by suppressing signals leading to activation of NF-kappaB.
Collapse
Affiliation(s)
- Alex B. Lentsch
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, U.S.A
| | - Peterson Pathrose
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, U.S.A
| | - Sarah Kader
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, U.S.A
| | - Satoshi Kuboki
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, U.S.A
| | - Margaret H. Collins
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, U.S.A
| | - Susan E. Waltz
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, U.S.A
| |
Collapse
|
19
|
Wetzel CC, Leonis MA, Dent A, Olson MA, Longmeier AM, Ney PA, Boivin GP, Kader SA, Caldwell CC, Degen SJF, Waltz SE. Short-form Ron receptor is required for normal IFN-gamma production in concanavalin A-induced acute liver injury. Am J Physiol Gastrointest Liver Physiol 2007; 292:G253-61. [PMID: 17008558 DOI: 10.1152/ajpgi.00134.2006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Abrogation of Ron receptor tyrosine kinase function results in defects in macrophage activation and dysregulated acute inflammatory responses in vivo. Several naturally occurring constitutively active alternative forms of Ron have been identified, including from primary human tumors and tumor cell lines. One of these alternative forms, short-form (SF) Ron, is generated from an alternative start site in intron 10 of the Ron gene that eliminates most of the extracellular portion of the receptor and is overexpressed in several human cancers. To test the physiological significance of SF-Ron in vivo, mice were generated that solely express the full-length form of Ron (FL-Ron). Our results show that elimination of the capacity to express SF-Ron in vivo leads to augmented production of IFN-gamma from splenocytes following stimulation ex vivo with either concanavalin A or anti-CD3/T cell receptor monoclonal antibody. Moreover, in a concanavalin A-induced murine model of acute liver injury, FL-Ron mice have increased production of serum INF-gamma and serum alanine aminotransferase levels and worsened liver histology and overall survival compared with wild-type control mice. Taken together, these results suggest for the first time that SF-Ron impacts the progression of inflammatory immune responses in vivo and further support a role for the Ron receptor and its various forms in liver pathophysiology.
Collapse
Affiliation(s)
- Cynthia C Wetzel
- Department of Pediatrics, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Intensity-based hierarchical Bayes method improves testing for differentially expressed genes in microarray experiments. BMC Bioinformatics 2006; 7:538. [PMID: 17177995 PMCID: PMC1781470 DOI: 10.1186/1471-2105-7-538] [Citation(s) in RCA: 201] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Accepted: 12/19/2006] [Indexed: 01/11/2023] Open
Abstract
Background The small sample sizes often used for microarray experiments result in poor estimates of variance if each gene is considered independently. Yet accurately estimating variability of gene expression measurements in microarray experiments is essential for correctly identifying differentially expressed genes. Several recently developed methods for testing differential expression of genes utilize hierarchical Bayesian models to "pool" information from multiple genes. We have developed a statistical testing procedure that further improves upon current methods by incorporating the well-documented relationship between the absolute gene expression level and the variance of gene expression measurements into the general empirical Bayes framework. Results We present a novel Bayesian moderated-T, which we show to perform favorably in simulations, with two real, dual-channel microarray experiments and in two controlled single-channel experiments. In simulations, the new method achieved greater power while correctly estimating the true proportion of false positives, and in the analysis of two publicly-available "spike-in" experiments, the new method performed favorably compared to all tested alternatives. We also applied our method to two experimental datasets and discuss the additional biological insights as revealed by our method in contrast to the others. The R-source code for implementing our algorithm is freely available at . Conclusion We use a Bayesian hierarchical normal model to define a novel Intensity-Based Moderated T-statistic (IBMT). The method is completely data-dependent using empirical Bayes philosophy to estimate hyperparameters, and thus does not require specification of any free parameters. IBMT has the strength of balancing two important factors in the analysis of microarray data: the degree of independence of variances relative to the degree of identity (i.e. t-tests vs. equal variance assumption), and the relationship between variance and signal intensity. When this variance-intensity relationship is weak or does not exist, IBMT reduces to a previously described moderated t-statistic. Furthermore, our method may be directly applied to any array platform and experimental design. Together, these properties show IBMT to be a valuable option in the analysis of virtually any microarray experiment.
Collapse
|
21
|
Mallakin A, Kutcher LW, McDowell SA, Kong S, Schuster R, Lentsch AB, Aronow BJ, Leikauf GD, Waltz SE. Gene expression profiles of Mst1r-deficient mice during nickel-induced acute lung injury. Am J Respir Cell Mol Biol 2005; 34:15-27. [PMID: 16166746 PMCID: PMC2644188 DOI: 10.1165/rcmb.2005-0093oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Previous studies have shown that mice deficient in the tyrosine kinase domain (TK-/-) of the receptor Mst1r have an increased susceptibility to nickel (Ni)-induced acute lung injury (ALI). Mst1r TK-/- mice have decreased survival times, alterations in cytokine and nitric oxide regulation, and an earlier onset of pulmonary pathology compared with control mice, suggesting that Mst1r signaling, in part, may regulate the response to ALI. To examine the role of Mst1r in ALI in more detail, we compared the gene expression profiles of murine lung mRNA from control and Mst1r TK-/- mice at baseline and after 24 h of particulate Ni sulfate exposure. Microarray analyses showed a total of 343 transcripts that were significantly changed, either by Ni treatment, or between genotypes. Genes responsible for inflammation, edema, and lymphocyte function were altered in the Mst1r TK-/- mice. Interestingly, the genes for several granzymes were increased in Mst1r TK-/- mice before Ni exposure, compared with controls. In addition, the Mst1r TK-/- lungs showed clusters of cells near the vascular endothelium and airways. Immunohistochemistry indicates these clusters are composed of macrophages, T cells, and neutrophils, and that the clusters display granzyme protein production. These results suggest that Mst1r signaling may be involved in the regulation of macrophage and T-lymphocyte activation in vivo during injury. This assessment of gene expression indicates the importance of genetic factors in contributing to lung injury, and points to strategies for intervention in the progression of inflammatory diseases.
Collapse
Affiliation(s)
- Ali Mallakin
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0558, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Tsutsui S, Noorbakhsh F, Sullivan A, Henderson AJ, Warren K, Toney-Earley K, Waltz SE, Power C. RON-regulated innate immunity is protective in an animal model of multiple sclerosis. Ann Neurol 2005; 57:883-95. [PMID: 15929040 DOI: 10.1002/ana.20502] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The tyrosine kinase receptor RON and its ligand, macrophage stimulating protein (MSP), exert inhibitory effects on systemic innate immunity, but their CNS expression and impact on human neuroinflammatory diseases are unknown were RON and MSP present in human brain perivascular macrophages and microglia, but RON mRNA and protein abundance in the CNS were diminished in both MS patients and the MS animal model, experimental autoimmune encephalomyelitis (EAE). Treatment of differentiated human monocytoid cells with MSP resulted in significant reduction of interleukin (IL)-1beta, tumor necrosis factor (TNF)-alpha and MMP-9 mRNA levels, whereas minimal effects were observed in human astrocytes. After induction of EAE, RON knockout and heterozygote animals exhibited significantly increased CNS proinflammatory gene (TNF-alpha, MMP-12) expression compared with wild-type littermate controls, although IL-4 levels were suppressed in both RON-deficient groups. Neurological disease in RON-deficient animals showed a more rapid onset with overall worsened severity, together with exacerbated demyelination, axonal injury, and neuroinflammation after EAE induction. The proto-oncogene, c-Cbl, which modulates ubiquitylation of RON, was increased in glia in both MS brains and EAE spinal cords. Thus, the MSP-RON pathway represents a novel regulatory mechanism within the CNS by which innate immunity and its pathogenic effects could be targeted for future therapeutic interventions.
Collapse
MESH Headings
- Animals
- Axons/pathology
- Central Nervous System/immunology
- Demyelinating Diseases/immunology
- Demyelinating Diseases/pathology
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Female
- Hepatocyte Growth Factor/genetics
- Humans
- Mice
- Mice, Inbred Strains
- Mice, Knockout
- Microglia/pathology
- Multiple Sclerosis/immunology
- Multiple Sclerosis/pathology
- Multiple Sclerosis/physiopathology
- Oncogene Protein v-cbl
- Proto-Oncogene Mas
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-cbl
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/immunology
- Receptor Protein-Tyrosine Kinases/metabolism
- Retroviridae Proteins, Oncogenic/genetics
- Severity of Illness Index
- U937 Cells
- Ubiquitin-Protein Ligases/metabolism
Collapse
Affiliation(s)
- Shigeki Tsutsui
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Peace BE, Toney-Earley K, Collins MH, Waltz SE. Ron receptor signaling augments mammary tumor formation and metastasis in a murine model of breast cancer. Cancer Res 2005; 65:1285-93. [PMID: 15735014 DOI: 10.1158/0008-5472.can-03-3580] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The tyrosine kinase receptor Ron has been implicated in several types of cancer, including overexpression in human breast cancer. This is the first report describing the effect of Ron signaling on tumorigenesis and metastasis in a mouse model of breast cancer. Mice with a targeted deletion of the Ron tyrosine kinase signaling domain (TK-/-) were crossed to mice expressing the polyoma virus middle T antigen (pMT) under the control of the mouse mammary tumor virus promoter. Both pMT-expressing wild-type control (pMT+/- TK+/+) and pMT+/- TK-/- mice developed mammary tumors and lung metastases. However, a significant decrease in mammary tumor initiation and growth was found in the pMT+/- TK-/- mice compared with controls. An examination of mammary tumors showed that there was a significant decrease in microvessel density, significantly decreased cellular proliferation, and a significant increase in terminal deoxynucleotidyl transferase-mediated nick end labeling-positive staining in mammary tumor cells from the pMT+/- TK-/- mice compared with the pMT+/- TK+/+ mice. Biochemical analyses on mammary tumor lysates showed that whereas both the pMT-expressing TK+/+ and TK-/- tumors have increased Ron expression compared with normal mammary glands, the pMT-expressing TK-/- tumors have deficits in mitogen-activated protein kinase and AKT activation. These results indicate that Ron signaling synergizes with pMT signaling to induce mammary tumor formation, growth, and metastasis. This effect may be mediated in part through the regulation of angiogenesis and through proliferative and cell survival pathways regulated by mitogen-activated protein kinase and AKT.
Collapse
Affiliation(s)
- Belinda E Peace
- Department of Surgery, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | | | | | |
Collapse
|
24
|
Chan EL, Peace BE, Collins MH, Toney-Earley K, Waltz SE. Ron tyrosine kinase receptor regulates papilloma growth and malignant conversion in a murine model of skin carcinogenesis. Oncogene 2005; 24:479-88. [PMID: 15531916 DOI: 10.1038/sj.onc.1208231] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent studies demonstrate that the receptor tyrosine kinase (TK) Ron is tumorigenic when overexpressed and plays a role in regulating skin homeostasis. We hypothesized that Ron signaling promotes skin carcinogenesis. To test this hypothesis, mice deficient in the TK domain of Ron (TK(-/-) mice) were crossed with v-Ha-ras (Tg.AC) transgenic mice; the resulting TK(-/-) Tg.AC(+/-) mice, and their controls, were utilized in a model of chemically induced Ras-mediated skin carcinogenesis. The mice were treated with 2.5 microg of 12-O-tetradecanoylphorbol-13-acetate applied weekly to the shaved back of 36 control (TK(+/+) Tg.AC(+/-)) and 35 experimental (TK(-/-) Tg.AC(+/-)) mice. In an analysis of the resulting papillomas, a reduction in cellular proliferation and papilloma volume was found in the TK(-/-) Tg.AC(+/-) mice compared to controls. Further, Ron protein expression was upregulated during papilloma formation. Ablation of Ron signaling resulted in partial defects in MAPK and Akt signaling that may account for the decreased papilloma growth in the TK(-/-) Tg.AC(+/-) mice. The papilloma-bearing mice were monitored for the occurrence of malignant skin tumors and other malignant tumor types for a period of 48 weeks. Loss of Ron receptor signaling significantly reduced the percent of papillomas that underwent malignant conversion as well as the number of mice developing other malignant tumor types. In conclusion, these studies demonstrate that Ron signaling augments papilloma growth and malignant conversion in vivo.
Collapse
Affiliation(s)
- Edward L Chan
- Department of Pediatrics, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0558, USA
| | | | | | | | | |
Collapse
|
25
|
Correll PH, Morrison AC, Lutz MA. Receptor tyrosine kinases and the regulation of macrophage activation. J Leukoc Biol 2004; 75:731-7. [PMID: 14726496 DOI: 10.1189/jlb.0703347] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- P H Correll
- Department of Veterinary Science, The Pennsylvania State University, University Park, PA 16802-3500, USA.
| | | | | |
Collapse
|
26
|
Peace BE, Hill KJ, Degen SJF, Waltz SE. Cross-talk between the receptor tyrosine kinases Ron and epidermal growth factor receptor. Exp Cell Res 2003; 289:317-25. [PMID: 14499632 DOI: 10.1016/s0014-4827(03)00280-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Heterogeneous receptor-receptor interactions may play a role in intracellular signaling. Accordingly, the interaction of two dissimilar tyrosine kinase receptors, Ron and epidermal growth factor receptor (EGFR) was investigated. The functional interaction of Ron and EGFR in cell scatter and oncogenic transformation was investigated in vivo. Transfection of a dominant negative form of EGFR into human embryonic kidney cells stably expressing Ron (293-Ron) dramatically reduced the scatter response induced by the Ron ligand hepatocyte growth factor-like protein/macrophage stimulating protein (HGFL). The scatter response of the 293-Ron cells was also attenuated by treatment of the cells with the specific EGFR inhibitor AG 1478. Co-transfection of Ron and dominant-negative EGFR, or co-transfection of EGFR and a dominant-negative form of Ron reduced focus formation in NIH/3T3 cells. Western analysis of NIH/3T3 cells overexpressing murine Ron and expressing endogenous levels of EGFR was used to demonstrate that Ron and EGFR co-immunoprecipitate. Stimulation of the cells in vitro with the Ron ligand HGFL or with the EGFR ligand epidermal growth factor (EGF) appeared to induce phosphorylation of both receptors. Co-immunoprecipitation and phosphorylation of phosphatidyl inositol 3-kinase (PI3-K) was also observed. This novel finding of a functional and biochemical interaction between Ron and EGFR suggests that heterologous tyrosine kinase receptor interactions may play a role in cellular processes such as scatter and transformation.
Collapse
Affiliation(s)
- Belinda E Peace
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | | | | | | |
Collapse
|
27
|
Hess KA, Waltz SE, Toney-Earley K, Degen SJF. The receptor tyrosine kinase Ron is expressed in the mouse ovary and regulates inducible nitric oxide synthase levels and ovulation. Fertil Steril 2003; 80 Suppl 2:747-54. [PMID: 14505749 DOI: 10.1016/s0015-0282(03)00774-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE To determine the reproductive effects in mice of the deletion of the tyrosine kinase domain of the Ron receptor. DESIGN Controlled animal studies. SETTING Academic research environment. ANIMAL(S) Immature mice with deletion of the tyrosine kinase domain of the Ron receptor (TK-/-) at 22-30 days of age and adult black Swiss female mice at 5-6 weeks of age. INTERVENTION(S) Hormonal stimulation of immature female TK-/- animals to induce ovulation. MAIN OUTCOME MEASURE(S) Ovulation rates measured by counting the total number of cumulus oocyte complexes in the ampullar region of the murine oviduct after hormonal stimulation. Western blot analysis measured murine ovarian protein levels of endothelial and inducible nitric oxide synthase (iNOS). Immunohistochemical analysis localized iNOS in the developing murine ovarian follicle. RESULT Immature TK-/- mice (22-30 days) ovulate significantly fewer cumulus oocyte complexes. Western blot analyses demonstrated increased levels of iNOS before and after ovulation compared with controls. Conversely, endothelial nitric oxide synthase levels were similar and remained constant during corresponding time periods. Immunohistochemical analyses demonstrated a significant increase in iNOS staining throughout the ovary in TK-/- mice with a significant amount of iNOS in granulosa cells surrounding the oocyte when compared with controls. CONCLUSION(S) The increased level of nitric oxide in the TK-/- mice is likely due to an elevated level of iNOS, which may contribute to a decrease in the size of the ovaries and ovulation rates of immature TK-/- animals.
Collapse
Affiliation(s)
- Karla Ann Hess
- Division of Developmental Biology, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229, USA
| | | | | | | |
Collapse
|
28
|
Wetzel CC, Degen SJF, Waltz SE. Cis-acting elements in the hepatocyte growth factor-like protein gene regulate kidney and liver-specific expression in mice. DNA Cell Biol 2003; 22:293-301. [PMID: 12941157 DOI: 10.1089/104454903322216644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Previous studies from our laboratory demonstrated that the hepatocyte-specific transcriptional activity of the hepatocyte growth factor-like protein/macrophage stimulating protein (HGFL) promoter is modulated in HepG2 cells by the first 135 base pairs (bp) upstream of the HGFL transcriptional start site. Gel mobility shift and transactivation assays demonstrated that hepatocyte nuclear factor-4 (HNF-4) binds to this region and is responsible, in part, for the liver-specific expression of this gene in HepG2 cells. In an attempt to understand the in vivo mechanism regulating the expression of HGFL, a series of transgenic mice were generated that contained four different regions upstream of the HGFL promoter attached to the coding sequences for chloramphenicol acetyltransferase (CAT). Interestingly, upstream promoter sequences, containing as little as 104 bp upstream of the translational start site, were able to drive reporter expression and protein production specifically in kidney and liver tissue. Strikingly, when the first exon and intron of the HGFL gene was inserted downstream of the 135 bp promoter element, only liver-specific expression was observed. These studies indicate that short sequences upstream of HGFL can drive efficient expression in kidney and liver tissue, and that sequences in the first intron of the HGFL gene contain regulatory elements that direct kidney-specific transcriptional repression in vivo and aid in the proper recapitulation of HGFL expression in mice.
Collapse
Affiliation(s)
- Cynthia C Wetzel
- College of Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267-0555, USA
| | | | | |
Collapse
|
29
|
McDowell SA, Gammon K, Zingarelli B, Bachurski CJ, Aronow BJ, Prows DR, Leikauf GD. Inhibition of nitric oxide restores surfactant gene expression following nickel-induced acute lung injury. Am J Respir Cell Mol Biol 2003; 28:188-98. [PMID: 12540486 DOI: 10.1165/rcmb.2002-0077oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The role of nitric oxide (NO) in acute lung injury remains controversial. Although inhaled NO increases oxygenation in clinical trials, inhibiting NO-synthase (NOS) can be protective. To examine the latter, nickel-exposed mice were treated with saline or NOS inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME). Initial microarray analysis of nickel-induced gene expression of saline-treated mice revealed increased inflammatory mediator, matrix injury-repair, and hypoxia-induced factor-mediated sequences and decreased lung-specific (e.g., surfactant-associated protein B and C) sequences. Compared with saline control, L-NAME-treated mice had enhanced survival with attenuated serum nitrate/nitrite, endothelial NOS activity, and lavage neutrophils and protein. Although initial cytokine (i.e., interferon-gamma, interleukins-1beta and -6, macrophage inflammatory protein-2, monocyte chemotactic protein-1, and tumor necrosis factor-alpha) gene expression was similar between groups, subsequent larger cytokine increases only occurred in saline-treated mice. Similarly, surfactant protein gene expression decreased initially in both groups yet was restored subsequently with L-NAME treatment. Interestingly, the role of inducible NOS (iNOS) in these responses seems minimal. iNOS gene expression was unaltered, iNOS activity and nitrotyrosine residues were undetectable, and an iNOS antagonist, aminoguanidine, failed to increase survival. Rather, systemic L-NAME treatment appears to attenuate pulmonary endothelial NOS activity, subsequent cytokine expression, inflammation, and protein permeability, and thereby restores surfactant gene expression and increases survival.
Collapse
Affiliation(s)
- Susan A McDowell
- University of Cincinnati, and Children's Hospital Medical Center, Cincinnati, OH 45267-0056, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Wang MH, Zhou YQ, Chen YQ. Macrophage-stimulating protein and RON receptor tyrosine kinase: potential regulators of macrophage inflammatory activities. Scand J Immunol 2002; 56:545-53. [PMID: 12472665 DOI: 10.1046/j.1365-3083.2002.01177.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Macrophage-stimulating protein (MSP) is a serum protein belonging to the plasminogen-related growth factor family. The specific receptor for MSP is the RON (recepteur d'origine nantais) receptor tyrosine kinase - a member of the MET proto-oncogene family. Activation of RON by MSP exerts dual functions on macrophages. The stimulatory activities include the induction of macrophage spreading, migration and phagocytosis. However, MSP also inhibits lipopolysaccharide (LPS)-induced production of inflammatory mediators, including inducible nitric oxide and prostaglandins. These suppressive effects are mediated by RON-transduced signals that block LPS-induced enzymatic cascades that activate nuclear factor kappa-B (NFkappaB) pathways. Recent in vivo studies demonstrated that inactivation of the RON gene results in increased inflammatory responses and susceptibility to LPS-induced septic death in mice, suggesting that RON expression is required for attenuating the extent of inflammatory responses in vivo. Thus, MSP and RON are potential regulators that control macrophage activities during bacterial infection in vivo.
Collapse
Affiliation(s)
- M-H Wang
- Department of Medicine and Immunology, University of Colorado Health Sciences Center and Denver Health Medical Center, Denver, CO, USA.
| | | | | |
Collapse
|
31
|
Leonis MA, Toney-Earley K, Degen SJF, Waltz SE. Deletion of the Ron receptor tyrosine kinase domain in mice provides protection from endotoxin-induced acute liver failure. Hepatology 2002; 36:1053-60. [PMID: 12395314 DOI: 10.1053/jhep.2002.36822] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
The targeted deletion of the cytoplasmic domain of the Ron receptor tyrosine kinase (TK) in mice leads to exaggerated responses to injury in several murine models of inflammation as well as increased lethality in response to endotoxin (lipopolysaccharide [LPS]). Using a well-characterized model of LPS-induced acute liver failure (ALF) in galactosamine (GalN)-sensitized mice, we show that Ron TK(-/-) mice display marked protection compared with control Ron TK(+/+) mice. Whereas control mice have profound elevation of serum aminotransferase levels (a marker of hepatocyte injury) and hemorrhagic necrosis of the liver, in dramatic contrast, Ron TK(-/-) mice have mild elevation of aminotransferase levels and relatively normal liver histology. These findings are associated with a reduction in the number of liver cells undergoing apoptosis in Ron TK(-/-) mice. Paradoxically, treatment of Ron TK(-/-) mice with LPS/GalN leads to markedly elevated (3.5-fold) serum levels of tumor necrosis factor (TNF) alpha, a key inflammatory mediator in this liver injury model, as well as reduced amounts of interleukin (IL) 10 (a suppressor of TNF-alpha production) and interferon (IFN)-gamma (a TNF-alpha sensitizer). These results show that ablation of the TK activity of the Ron receptor leads to protection from the development of hepatocellular apoptosis in response to treatment with LPS/GalN, even in the presence of excessive levels of serum TNF-alpha. In conclusion, our studies show that the Ron receptor TK plays a critical role in modulating the response of the liver to endotoxin.
Collapse
Affiliation(s)
- Mike A Leonis
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Research Foundation and Department of Pediatrics, University of Cincinnati, OH 45229, USA
| | | | | | | |
Collapse
|