1
|
New Insights into the Implication of Mitochondrial Dysfunction in Tissue, Peripheral Blood Mononuclear Cells, and Platelets during Lung Diseases. J Clin Med 2020; 9:jcm9051253. [PMID: 32357474 PMCID: PMC7287602 DOI: 10.3390/jcm9051253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
Lung diseases such as chronic obstructive pulmonary disease, asthma, pulmonary arterial hypertension, or idiopathic pulmonary fibrosis are major causes of morbidity and mortality. Complex, their physiopathology is multifactorial and includes lung mitochondrial dysfunction and enhanced reactive oxygen species (ROS) release, which deserves increased attention. Further, and importantly, circulating blood cells (peripheral blood mononuclear cells-(PBMCs) and platelets) likely participate in these systemic diseases. This review presents the data published so far and shows that circulating blood cells mitochondrial oxidative capacity are likely to be reduced in chronic obstructive pulmonary disease (COPD), but enhanced in asthma and pulmonary arterial hypertension in a context of increased oxidative stress. Besides such PBMCs or platelets bioenergetics modifications, mitochondrial DNA (mtDNA) changes have also been observed in patients. These new insights open exciting challenges to determine their role as biomarkers or potential guide to a new therapeutic approach in lung diseases.
Collapse
|
2
|
Ederlé C, Charles AL, Khayath N, Poirot A, Meyer A, Clere-Jehl R, Andres E, De Blay F, Geny B. Mitochondrial Function in Peripheral Blood Mononuclear Cells (PBMC) Is Enhanced, Together with Increased Reactive Oxygen Species, in Severe Asthmatic Patients in Exacerbation. J Clin Med 2019; 8:jcm8101613. [PMID: 31623409 PMCID: PMC6833034 DOI: 10.3390/jcm8101613] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/24/2019] [Accepted: 09/27/2019] [Indexed: 12/11/2022] Open
Abstract
Asthma is a chronic inflammatory lung syndrome with an increasing prevalence and a rare but significant risk of death. Its pathophysiology is complex, and therefore we investigated at the systemic level a potential implication of oxidative stress and of peripheral blood mononuclear cells’ (PBMC) mitochondrial function. Twenty severe asthmatic patients with severe exacerbation (GINA 4–5) and 20 healthy volunteers participated at the study. Mitochondrial respiratory chain complexes activities using different substrates and reactive oxygen species (ROS) production were determined in both groups by high-resolution respirometry and electronic paramagnetic resonance, respectively. Healthy PBMC were also incubated with a pool of plasma of severe asthmatics or healthy controls. Mitochondrial respiratory chain complexes activity (+52.45%, p = 0.015 for VADP) and ROS production (+34.3%, p = 0.02) were increased in asthmatic patients. Increased ROS did not originate mainly from mitochondria. Plasma of severe asthmatics significantly increased healthy PBMC mitochondrial dioxygen consumption (+56.8%, p = 0.031). In conclusion, such asthma endotype, characterized by increased PMBCs mitochondrial oxidative capacity and ROS production likely related to a plasma constituent, may reflect activation of the immune system. Further studies are needed to determine whether increased PBMC mitochondrial respiration might have protective effects, opening thus new therapeutic approaches.
Collapse
Affiliation(s)
- Carole Ederlé
- Pôle de Pathologie Thoracique, Service de Pneumologie, Nouvel Hôpital Civil, 1, Place de l'Hôpital, FHU OMICARE Université de Strasbourg, 67000 Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de Médecine, Equipe d'Accueil 3072, «Mitochondrie, Stress Oxydant, et Protection Musculaire», 11 Rue Humann, Université de Strasbourg, 67000 Strasbourg, France.
| | - Anne-Laure Charles
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de Médecine, Equipe d'Accueil 3072, «Mitochondrie, Stress Oxydant, et Protection Musculaire», 11 Rue Humann, Université de Strasbourg, 67000 Strasbourg, France.
| | - Naji Khayath
- Pôle de Pathologie Thoracique, Service de Pneumologie, Nouvel Hôpital Civil, 1, Place de l'Hôpital, FHU OMICARE Université de Strasbourg, 67000 Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de Médecine, Equipe d'Accueil 3072, «Mitochondrie, Stress Oxydant, et Protection Musculaire», 11 Rue Humann, Université de Strasbourg, 67000 Strasbourg, France.
| | - Anh Poirot
- Pôle de Pathologie Thoracique, Service de Pneumologie, Nouvel Hôpital Civil, 1, Place de l'Hôpital, FHU OMICARE Université de Strasbourg, 67000 Strasbourg, France.
| | - Alain Meyer
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de Médecine, Equipe d'Accueil 3072, «Mitochondrie, Stress Oxydant, et Protection Musculaire», 11 Rue Humann, Université de Strasbourg, 67000 Strasbourg, France.
- Service de Physiologie et d'Explorations Fonctionnelles, Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, 1 Place de l'Hôpital, 67091 Strasbourg CEDEX, France.
| | - Raphaël Clere-Jehl
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de Médecine, Equipe d'Accueil 3072, «Mitochondrie, Stress Oxydant, et Protection Musculaire», 11 Rue Humann, Université de Strasbourg, 67000 Strasbourg, France.
| | - Emmanuel Andres
- Service de Médecine Interne, Diabète et Maladies Métaboliques, Pôle M.I.R.N.E.D., Hôpitaux Universitaires, 67000 CHRU Strasbourg CEDEX, France.
| | - Frédéric De Blay
- Pôle de Pathologie Thoracique, Service de Pneumologie, Nouvel Hôpital Civil, 1, Place de l'Hôpital, FHU OMICARE Université de Strasbourg, 67000 Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de Médecine, Equipe d'Accueil 3072, «Mitochondrie, Stress Oxydant, et Protection Musculaire», 11 Rue Humann, Université de Strasbourg, 67000 Strasbourg, France.
| | - Bernard Geny
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de Médecine, Equipe d'Accueil 3072, «Mitochondrie, Stress Oxydant, et Protection Musculaire», 11 Rue Humann, Université de Strasbourg, 67000 Strasbourg, France.
- Service de Physiologie et d'Explorations Fonctionnelles, Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, 1 Place de l'Hôpital, 67091 Strasbourg CEDEX, France.
| |
Collapse
|
3
|
Palikhe NS, Laratta C, Nahirney D, Vethanayagam D, Bhutani M, Vliagoftis H, Cameron L. Elevated levels of circulating CD4(+) CRTh2(+) T cells characterize severe asthma. Clin Exp Allergy 2017; 46:825-36. [PMID: 27079298 DOI: 10.1111/cea.12741] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 03/31/2016] [Accepted: 04/08/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND Chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTh2) is a receptor for PGD2 and expressed by T cells, eosinophils, basophils, and ILC2 cells. CRTh2 expression by CD4(+) T cells identifies the Th2 subset, and these cells have been characterized as allergen-specific central memory Th2 cells. Recently, activation of the PGD2 -CRTh2 pathway in the lungs was associated with severe asthma. OBJECTIVE To assess circulating levels of Th2 cells and related mediators in severe asthma and those who experience asthma exacerbations. METHODS Peripheral blood cells expressing CRTh2 were characterized by flow cytometry and qRT-PCR. Serum IL-13 and PGD2 were measured by ELISA and compared with asthma severity and tendency to exacerbate. RESULTS Severe asthmatics had more circulating CD4(+) CRTh2(+) T cells, CRTh2 and GATA3 mRNA, and a higher level of serum IL-13 compared to mild/moderate asthmatics. The proportion of CD4(+) CRTh2(+) T cells was associated with lower lung function and was highest in severe asthmatics that exacerbated in the last year. Circulating CD4(+) CRTh2(+) T cells, unlike eosinophils, were positively correlated with inhaled steroid dose. CONCLUSIONS AND CLINICAL RELEVANCE Elevated levels of circulating CD4(+) CRTh2(+) T cells are a feature of severe asthma, despite high-dose corticosteroids. Tracking the systemic level of these cells may help identify type 2 severe asthmatics at risk of exacerbation.
Collapse
Affiliation(s)
- N S Palikhe
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - C Laratta
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - D Nahirney
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - D Vethanayagam
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - M Bhutani
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - H Vliagoftis
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - L Cameron
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, AB, Canada.,Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| |
Collapse
|
4
|
Feng JX, Lin Y, Lin J, He SS, Chen MF, Wu XM, Xu YZ. Relationship between Fractional Exhaled Nitric Oxide Level and Efficacy of Inhaled Corticosteroid in Asthma-COPD Overlap Syndrome Patients with Different Disease Severity. J Korean Med Sci 2017; 32:439-447. [PMID: 28145647 PMCID: PMC5290103 DOI: 10.3346/jkms.2017.32.3.439] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 10/30/2016] [Indexed: 12/23/2022] Open
Abstract
This study explored the relationship between the fractional exhaled nitric oxide (FeNO) level and the efficacy of inhaled corticosteroid (ICS) in asthma-chronic obstructive pulmonary disease (COPD) overlap syndrome (ACOS) patients with different disease severity. A total of 127 ACOS patients with ACOS (case group) and 131 healthy people (control group) were enrolled in this study. Based on the severity of COPD, the ACOS patients were divided into: mild ACOS; moderate ACOS; severe ACOS; and extremely severe ACOS groups. We compared FeNO levels, pulmonary function parameters including percentage of forced expiratory volume in 1 second (FEV1) to predicted value (FEV1%pred), ratio of FEV1 to forced vital capacity (FEV1/FVC), inspiratory capacity to total lung capacity (IC/TLC) and residual volume to total lung capacity (RV/TLC), arterial blood gas parameters, including PH, arterial partial pressure of oxygen (PaO₂) and arterial partial pressure of carbon dioxide (PaCO₂), total serum immunoglobulin E (IgE), induced sputum eosinophil (EOS), plasma surfactant protein A (SP-A), plasma soluble receptor for advanced glycation end products (sRAGE), sputum myeloperoxidase (MPO), sputum neutrophil gelatinase-associated lipocalin (NGAL) and Asthma Control Test (ACT) scores, and COPD Assessment Test (CAT) scores. Compared with pre-treatment parameters, the FeNO levels, RV/TLC, PaCO₂, total serum IgE, induced sputum EOS, plasma SP-A, sputum MPO, sputum NGAL, and CAT scores were significantly decreased after 6 months of ICS treatment, while FEV1%pred, FEV1/FVC, IC/TLC, PH, PaO2, plasma sRAGE, and ACT scores were significantly increased in ACOS patients with different disease severity after 6 months of ICS treatment. This finding suggests that the FeNO level may accurately predict the efficacy of ICS in the treatment of ACOS patients.
Collapse
Affiliation(s)
- Jia Xi Feng
- Department of Respiratory Medicine, Taizhou Hospital of Zhejiang Province, Linhai, China
| | - Yun Lin
- Department of Respiratory Medicine, Taizhou Hospital of Zhejiang Province, Linhai, China
| | - Jian Lin
- Department of Respiratory Medicine, Taizhou Hospital of Zhejiang Province, Linhai, China
| | - Su Su He
- Department of Respiratory Medicine, Taizhou Hospital of Zhejiang Province, Linhai, China
| | - Mei Fang Chen
- Department of Respiratory Medicine, Taizhou Hospital of Zhejiang Province, Linhai, China
| | - Xiao Mai Wu
- Department of Respiratory Medicine, Taizhou Hospital of Zhejiang Province, Linhai, China
| | - You Zu Xu
- Department of Respiratory Medicine, Taizhou Hospital of Zhejiang Province, Linhai, China.
| |
Collapse
|
5
|
Venugopalan SK, T S S, V N, S M M, S R. Dexamethasone provoked mitochondrial perturbations in thymus: Possible role of N-acetylglucosamine in restoration of mitochondrial function. Biomed Pharmacother 2016; 83:1485-1492. [PMID: 27619103 DOI: 10.1016/j.biopha.2016.08.068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 08/15/2016] [Accepted: 08/29/2016] [Indexed: 01/14/2023] Open
Abstract
Thymus mitochondria play a crucial role in immune function. This study identifies the novel protective role of N-Acetylglucosamine (NAG) in dexamethasone (DEX) induced mitochondrial perturbations in mice thymus. Mice were induced with DEX (5mg/kg) and treated with NAG i.p. (266μg/kg, 400μg/kg and 800μg/kg) for 14 days, Withanolide A (800μg/kg) has been used as positive control. Dose dependent treatment of NAG against DEX significantly restored the mitochondrial enzyme levels (ICDH, KDH, SDH and MDH) and elevated the mitochondrial glutathione antioxidants defense (GSH, SOD, GPX and GST) thus improving the ATP status which was confirmed by ultrastructural alterations in mitochondria and nucleus using TEM studies. Further histopathological studies also revealed that NAG attenuate DEX induced thymotoxicity. Finally, the study concludes that dose dependent treatment of NAG supports a potential role in preventing DEX induced thymotoxicity and NAG acts as a beneficial pharmacological intervention in the DEX induced thymic repercussions.
Collapse
Affiliation(s)
- Santhosh Kumar Venugopalan
- Centre for Drug Research, Universiti Sains Malaysia (USM), Penang, Malaysia; Department of Pharmacology, School of Pharmaceutical Sciences, Vels University (VISTAS), Pallavaram, Chennai, India.
| | - Shanmugarajan T S
- Department of Pharmacology, School of Pharmaceutical Sciences, Vels University (VISTAS), Pallavaram, Chennai, India
| | - Navaratnam V
- Centre for Drug Research, Universiti Sains Malaysia (USM), Penang, Malaysia; Taylor's University Malaysia, Jan Taylors, Subang Jaya, Selangor, Malaysia
| | - Mansor S M
- Centre for Drug Research, Universiti Sains Malaysia (USM), Penang, Malaysia
| | - Ramanathan S
- Centre for Drug Research, Universiti Sains Malaysia (USM), Penang, Malaysia
| |
Collapse
|
6
|
Mitochondria in the center of human eosinophil apoptosis and survival. Int J Mol Sci 2014; 15:3952-69. [PMID: 24603536 PMCID: PMC3975377 DOI: 10.3390/ijms15033952] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 02/20/2014] [Accepted: 02/26/2014] [Indexed: 12/13/2022] Open
Abstract
Eosinophils are abundantly present in most phenotypes of asthma and they contribute to the maintenance and exacerbations of the disease. Regulators of eosinophil longevity play critical roles in determining whether eosinophils accumulate into the airways of asthmatics. Several cytokines enhance eosinophil survival promoting eosinophilic airway inflammation while for example glucocorticoids, the most important anti-inflammatory drugs used to treat asthma, promote the intrinsic pathway of eosinophil apoptosis and by this mechanism contribute to the resolution of eosinophilic airway inflammation. Mitochondria seem to play central roles in both intrinsic mitochondrion-centered and extrinsic receptor-mediated pathways of apoptosis in eosinophils. Mitochondria may also be important for survival signalling. In addition to glucocorticoids, another important agent that regulates human eosinophil longevity via mitochondrial route is nitric oxide, which is present in increased amounts in the airways of asthmatics. Nitric oxide seems to be able to trigger both survival and apoptosis in eosinophils. This review discusses the current evidence of the mechanisms of induced eosinophil apoptosis and survival focusing on the role of mitochondria and clinically relevant stimulants, such as glucocorticoids and nitric oxide.
Collapse
|
7
|
Couto D, Freitas M, Vilas-Boas V, Dias I, Porto G, Lopez-Quintela MA, Rivas J, Freitas P, Carvalho F, Fernandes E. Interaction of polyacrylic acid coated and non-coated iron oxide nanoparticles with human neutrophils. Toxicol Lett 2014; 225:57-65. [PMID: 24291037 DOI: 10.1016/j.toxlet.2013.11.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/17/2013] [Accepted: 11/18/2013] [Indexed: 10/26/2022]
Abstract
Iron oxide nanoparticles (ION), with different coatings and sizes, have attracted extensive interest in the last years to be applied in drug delivery, cancer therapy and as contrast agents in imagiologic techniques such as magnetic resonance imaging. However, the safety of these nanoparticles is still not completely established, particularly to host defense systems that are usually recruited for their clearance from the body. In this paper, given the importance of neutrophils in the immune response of the organism to nanoparticles, the effect of polyacrylic acid (PAA)-coated and non-coated ION on human neutrophils was evaluated in vitro, namely their capacity to activate the oxidative burst and to modify their lifespan. The obtained results showed that the studied PAA-coated and non-coated ION triggered neutrophils' oxidative burst in a NADPH oxidase dependent manner, and that PAA-coated ION increased - while non-coated ION prevented - apoptotic signaling and apoptosis. These effects may have important clinical implications in biomedical applications of ION.
Collapse
Affiliation(s)
- Diana Couto
- REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Marisa Freitas
- REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Vânia Vilas-Boas
- REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Irene Dias
- REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Graça Porto
- Service of Clinical Hematology, Santo António Hospital, Porto, Portugal
| | - M Arturo Lopez-Quintela
- Laboratory of Nanotechnology and Magnetism, Institute of Technological Research, IIT, University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - José Rivas
- International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Paulo Freitas
- International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Félix Carvalho
- REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Eduarda Fernandes
- REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| |
Collapse
|
8
|
Ilmarinen P, Moilanen E, Kankaanranta H. Regulation of spontaneous eosinophil apoptosis-a neglected area of importance. J Cell Death 2014; 7:1-9. [PMID: 25278781 PMCID: PMC4167313 DOI: 10.4137/jcd.s13588] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/12/2013] [Accepted: 01/05/2013] [Indexed: 12/30/2022] Open
Abstract
Asthma is characterized by the accumulation of eosinophils in the airways in most phenotypes. Eosinophils are inflammatory cells that require an external survival-prolonging stimulus such as granulocyte macrophage-colony-stimulating factor (GM-CSF), interleukin (IL)-5, or IL-3 for survival. In their absence, eosinophils are programmed to die by spontaneous apoptosis in a few days. Eosinophil apoptosis can be accelerated by Fas ligation or by pharmacological agents such as glucocorticoids. Evidence exists for the relevance of these survival-prolonging and pro-apoptotic agents in the regulation of eosinophilic inflammation in inflamed airways. Much less is known about the physiological significance and mechanisms of spontaneous eosinophil apoptosis even though it forms the basis of regulation of eosinophil longevity by pathophysiological factors and pharmacological agents. This review concentrates on discussing the mechanisms of spontaneous eosinophil apoptosis compared to those of glucocorticoid- and Fas-induced apoptosis. We aim to answer the question whether the external apoptotic stimuli only augment the ongoing pathway of spontaneous apoptosis or truly activate a specific pathway.
Collapse
Affiliation(s)
- Pinja Ilmarinen
- The Immunopharmacology Research Group, School of Medicine University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, School of Medicine University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Hannu Kankaanranta
- The Immunopharmacology Research Group, School of Medicine University of Tampere and Tampere University Hospital, Tampere, Finland. ; Department of Respiratory Medicine, Seinäjoki Central Hospital, Seinäjoki, Finland and University of Tampere, Tampere, Finland
| |
Collapse
|
9
|
Ferraris FK, Moret KH, Figueiredo ABC, Penido C, Henriques MDGM. Gedunin, a natural tetranortriterpenoid, modulates T lymphocyte responses and ameliorates allergic inflammation. Int Immunopharmacol 2012; 14:82-93. [DOI: 10.1016/j.intimp.2012.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 05/25/2012] [Accepted: 06/01/2012] [Indexed: 01/13/2023]
|
10
|
Ilmarinen-Salo P, Moilanen E, Kinnula VL, Kankaanranta H. Nitric oxide-induced eosinophil apoptosis is dependent on mitochondrial permeability transition (mPT), JNK and oxidative stress: apoptosis is preceded but not mediated by early mPT-dependent JNK activation. Respir Res 2012; 13:73. [PMID: 22920281 PMCID: PMC3495716 DOI: 10.1186/1465-9921-13-73] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 08/20/2012] [Indexed: 01/07/2023] Open
Abstract
Background Eosinophils are critically involved in the pathogenesis of asthma. Nitric oxide (NO) is produced in high amounts in asthmatic lungs and has an important role as a regulator of lung inflammation. NO was previously shown to induce eosinophil apoptosis mediated via c-jun N-terminal kinase (JNK) and caspases. Our aim was to clarify the cascade of events leading to NO-induced apoptosis in granulocyte macrophage-colony stimulating factor (GM-CSF)-treated human eosinophils concentrating on the role of mitochondria, reactive oxygen species (ROS) and JNK. Methods Apoptosis was determined by flow cytometric analysis of relative DNA content, by Annexin-V labelling and/or morphological analysis. Immunoblotting was used to study phospho-JNK (pJNK) expression. Mitochondrial membrane potential was assessed by JC-1-staining and mitochondrial permeability transition (mPT) by loading cells with calcein acetoxymethyl ester (AM) and CoCl2 after which flow cytometric analysis was conducted. Statistical significance was calculated by repeated measures analysis of variance (ANOVA) or paired t-test. Results NO-donor S-nitroso-N-acetyl-D,L-penicillamine (SNAP) induced late apoptosis in GM-CSF-treated eosinophils. SNAP-induced apoptosis was suppressed by inhibitor of mPT bongkrekic acid (BA), inhibitor of JNK SP600125 and superoxide dismutase-mimetic AEOL 10150. Treatment with SNAP led to late loss of mitochondrial membrane potential. Additionally, we found that SNAP induces early partial mPT (1 h) that was followed by a strong increase in pJNK levels (2 h). Both events were prevented by BA. However, these events were not related to apoptosis because SNAP-induced apoptosis was prevented as efficiently when BA was added 16 h after SNAP. In addition to the early and strong rise, pJNK levels were less prominently increased at 20–30 h. Conclusions Here we demonstrated that NO-induced eosinophil apoptosis is mediated via ROS, JNK and late mPT. Additionally, our results suggest that NO induces early transient mPT (flickerings) that leads to JNK activation but is not significant for apoptosis. Thereby, we showed some interesting early events in NO-stimulated eosinophils that may take place even if the threshold for irreversible mPT and apoptosis is not crossed. This study also revealed a previously unknown physiological function for transient mPT by showing that it may function as initiator of non-apoptotic JNK signalling.
Collapse
Affiliation(s)
- Pinja Ilmarinen-Salo
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland.
| | | | | | | |
Collapse
|
11
|
Abstract
Treatment of mitochondrial disorders (MIDs) is a challenge since there is only symptomatic therapy available and since only few randomized and controlled studies have been carried out, which demonstrate an effect of some of the symptomatic or supportive measures available. Symptomatic treatment of MIDs is based on mainstay drugs, blood transfusions, hemodialysis, invasive measures, surgery, dietary measures, and physiotherapy. Drug treatment may be classified as specific (treatment of epilepsy, headache, dementia, dystonia, extrapyramidal symptoms, Parkinson syndrome, stroke-like episodes, or non-neurological manifestations), non-specific (antioxidants, electron donors/acceptors, alternative energy sources, cofactors), or restrictive (avoidance of drugs known to be toxic for mitochondrial functions). Drugs which more frequently than in the general population cause side effects in MID patients include steroids, propofol, statins, fibrates, neuroleptics, and anti-retroviral agents. Invasive measures include implantation of a pacemaker, biventricular pacemaker, or implantable cardioverter defibrillator, or stent therapy. Dietary measures can be offered for diabetes, hyperlipidemia, or epilepsy (ketogenic diet, anaplerotic diet). Treatment should be individualized because of the peculiarities of mitochondrial genetics. Despite limited possibilities, symptomatic treatment should be offered to MID patients, since it can have a significant impact on the course and outcome.
Collapse
|
12
|
|
13
|
Duffin R, Leitch AE, Sheldrake TA, Hallett JM, Meyer C, Fox S, Alessandri AL, Martin MC, Brady HJ, Teixeira MM, Dransfield I, Haslett C, Rossi AG. The CDK inhibitor, R-roscovitine, promotes eosinophil apoptosis by down-regulation of Mcl-1. FEBS Lett 2009; 583:2540-6. [PMID: 19616548 DOI: 10.1016/j.febslet.2009.07.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 07/10/2009] [Accepted: 07/13/2009] [Indexed: 01/21/2023]
Abstract
Eosinophils are major players in inflammatory allergic diseases such as asthma, hay fever and eczema. Here we show that the cyclin-dependent kinase inhibitor (CDKi) R-roscovitine efficiently and rapidly induces human eosinophil apoptosis using flow cytometric analysis of annexin-V/propidium iodide staining, morphological analysis by light microscopy, transmission electron microscopy and Western immunoblotting for caspase-3 cleavage. We further dissect these observations by demonstrating that eosinophils treated with R-roscovitine lose mitochondrial membrane potential and the key survival protein Mcl-1 is down-regulated. This novel finding of efficacious induction of eosinophil apoptosis by CDKi drugs has potential as a strategy for driving resolution of eosinophilic inflammation.
Collapse
Affiliation(s)
- Rodger Duffin
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh Medical School, Edinburgh, Scotland, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Yu M, Watanabe S, Kudo M, Kanai KI, Suzaki H. Glucocorticoid receptor immunoreactivity of eosinophils in nasal polyps. Acta Otolaryngol 2009:95-100. [PMID: 19848249 DOI: 10.1080/00016480902915723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
CONCLUSION The higher level of glucocorticoid receptor (GR) expression in cases of chronic sinusitis with bronchial asthma or allergic rhinitis suggests that glucocorticoids may exert a greater influence on eosinophils, thereby making them more effective in the treatment of polyps or chronic sinusitis. OBJECTIVES The GR immunoreactivity of eosinophils in nasal polyps was investigated to elucidate the mechanism by which glucocorticoids interact with eosinophils. MATERIALS AND METHODS Nasal polyp specimens were divided into 3 groups: 7 patients with chronic sinusitis alone (CS only group), 12 patients with chronic sinusitis complicated by perennial allergic rhinitis (CS/AR group), and 6 patients with chronic sinusitis complicated by bronchial asthma except for aspirin-induced asthma (CS/asthma group). Immunofluorescent staining with an anti-GR polyclonal antibody and anti-major basic protein (MBP) monoclonal antibody was used. RESULTS The total number of MBP+ cells, GR+ cells, and MBP+/GR+ cells in the CS/asthma group was significantly higher than that in the other two groups. The total number of these cells in the CS/AR group was also higher than that in the CS only group The ratio of MBP+/GR+ cells to GR+ cells was highest in the CS/asthma group. The ratio of MBP+/GR+ cells to MBP+ cells in the CS only group was lower than those in the other two groups.
Collapse
|
15
|
Herr I, Büchler MW, Mattern J. Glucocorticoid-mediated apoptosis resistance of solid tumors. Results Probl Cell Differ 2009; 49:191-218. [PMID: 19132324 DOI: 10.1007/400_2008_20] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
More than a quarter of a century ago, the phenomenon of glucocorticoid-induced apoptosis in the majority of hematological cells was first recognized. More recently, glucocorticoid-induced antiapoptotic signaling associated with apoptosis resistance towards cytotoxic therapy has been identified in cells of epithelial origin, most of malignant solid tumors and some other tissues. Despite these huge amounts of data demonstrating differential pro- and anti-apoptotic effects of glucocorticoids, the underlying mechanisms of cell type-specific glucocorticoid signaling are just beginning to be described. This review summarizes our present understanding of cell type-specific pro- and anti-apoptotic signaling induced by glucocorticoids. We shortly introduce mechanisms of glucocorticoid resistance of hematological cells. We highlight and discuss the emerging molecular evidence of a general induction of survival signaling in epithelial cells and carcinoma cells by glucocorticoids. We give a summary of our current knowledge of decreased proliferation rates in response to glucocorticoid pre- and combination treatment, which are suspicious to be involved not only in protection of normal tissues, but also in protection of solid tumors from cytotoxic effects of anticancer agents.
Collapse
Affiliation(s)
- Ingrid Herr
- Department of Surgery, University of Heidelberg, Germany.
| | | | | |
Collapse
|
16
|
Butterfield JH. Treatment of hypereosinophilic syndromes with prednisone, hydroxyurea, and interferon. Immunol Allergy Clin North Am 2007; 27:493-518. [PMID: 17868861 DOI: 10.1016/j.iac.2007.06.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The hypereosinophilic syndromes continue to challenge our clinical acumen and skills. Prednisone, hydroxyurea, and interferon alpha 2b are three of the oldest agents that allow control of eosinophilia and its devastating clinical consequences. They still work. As our experience with them has grown, it has become evident that use of these agents in combination will control eosinophilia in most patients. Moreover, with time, the doses can frequently be reduced. Even with the advent of newer agents for treatment of hypereosinophilic syndromes, these three medications still afford an excellent, cost-effective avenue for disease management.
Collapse
Affiliation(s)
- Joseph H Butterfield
- Division of Allergic Diseases, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
17
|
Herr I, Gassler N, Friess H, Büchler MW. Regulation of differential pro- and anti-apoptotic signaling by glucocorticoids. Apoptosis 2007; 12:271-291. [PMID: 17191112 DOI: 10.1007/s10495-006-0624-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
More than a quarter of a century ago, the phenomenon of glucocorticoid-induced apoptosis in the majority of hematological cells was first recognized. More recently, glucocorticoid-induced antiapoptotic signaling associated with apoptosis resistance has been identified in cells of epithelial origin, most of malignant solid tumors and some other tissues. Despite these huge amount of data demonstrating differential pro- and anti-apoptotic effects of glucocorticoids, the underlying mechanisms of cell type specific glucocorticoid signaling are just beginning to be described. This review summarizes our present understanding of cell type-specific pro- and anti-apoptotic signaling induced by glucocorticoids. In the first section we give a summary and update of known glucocorticoid-induced pathways mediating apoptosis in hematological cells. We shortly introduce mechanisms of glucocorticoid resistance of hematological cells. We highlight and discuss the emerging molecular evidence of a general induction of survival signaling in epithelial cells and carcinoma cells by glucocorticoids. We provide a model for glucocorticoid-induced resistance in cells growing in a tissue formation. Thus, attachment to the extracellular matrix and cell-cell contacts typical for e.g. epithelial and tumor cells may be crucially involved in switching the balance of several interacting pathways to survival upon treatment with glucocorticoids.
Collapse
Affiliation(s)
- Ingrid Herr
- Department of Surgery, University of Heidelberg, Heidelberg, Germany.
| | | | | | | |
Collapse
|
18
|
Dolgachev V, Thomas M, Berlin A, Lukacs NW. Stem cell factor-mediated activation pathways promote murine eosinophil CCL6 production and survival. J Leukoc Biol 2007; 81:1111-9. [PMID: 17234680 DOI: 10.1189/jlb.0906595] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Eosinophil activation during allergic diseases has a detrimental role in the generation of pathophysiologic responses. Stem cell factor (SCF) has recently shown an inflammatory, gene-activating role on eosinophils and contributes to the generation of pathophysiologic changes in the airways during allergic responses. The data in the present study outline the signal transduction events that are induced by SCF in eosinophils and further demonstrate that MEK-mediated signaling pathways are crucial for SCF-induced CCL6 chemokine activation and eosinophil survival. SCF-mediated eosinophil activation was demonstrated to include PI-3K activation as well as MEK/MAPK phosphorylation pathways. Subsequent analysis of CCL6 gene activation and production induced by SCF in the presence or absence of rather specific inhibitors for certain pathways demonstrated that the MEK/MAPK pathway but not the PI-3K pathway was crucial for the SCF-induced CCL6 gene activation. These same signaling pathways were shown to initiate antiapoptotic events and promote eosinophil survival, including up-regulation of BCL2 and BCL3. Altogether, SCF appears to be a potent eosinophil activation and survival factor.
Collapse
Affiliation(s)
- Vladislav Dolgachev
- Department of Pathology, University of Michigan Medical School, 109 Zina Pitcher Place, Room 4618, Ann Arbor, MI 48109-2200, USA.
| | | | | | | |
Collapse
|
19
|
Janka-Junttila M, Moilanen E, Hasala H, Zhang X, Adcock I, Kankaanranta H. The glucocorticoid RU24858 does not distinguish between transrepression and transactivation in primary human eosinophils. JOURNAL OF INFLAMMATION-LONDON 2006; 3:10. [PMID: 16834783 PMCID: PMC1559619 DOI: 10.1186/1476-9255-3-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Accepted: 07/12/2006] [Indexed: 11/10/2022]
Abstract
Background Glucocorticoids are used to treat chronic inflammatory diseases such as asthma. Induction of eosinophil apoptosis is considered to be one of the main mechanisms behind the anti-asthmatic effect of glucocorticoids. Glucocorticoid binding to its receptor (GR) can have a dual effect on gene transcription. Activated GR can activate transcription (transactivation), or by interacting with other transcription factors such as NF-κB suppress transcription (transrepression). RU24858 has been reported to transrepress but to have little or no transactivation capability in other cell types. The dissociated properties of RU24858 have not been previously studied in non-malignant human cells. As the eosinophils have a very short lifetime and many of the modern molecular biological methods cannot be used, a "dissociated steroid" would be a valuable tool to evaluate the mechanism of action of glucocorticoids in human eosinophils. The aim of this study was to elucidate the ability of RU24858 to activate and repress gene expression in human eosinophils in order to see whether it is a dissociated steroid in human eosinophils. Methods Human peripheral blood eosinophils were isolated under sterile conditions and cultured in the presence and/or absence RU24858. For comparison, dexamethasone and mometasone were used. We measured chemokine receptor-4 (CXCR4) and Annexin 1 expression by flow cytometry and cytokine production by ELISA. Apoptosis was measured by DNA fragmentation and confirmed by morphological analysis. Results RU24858 (1 μM) increased CXCR4 and Annexin 1 expression on eosinophils to a similar extent as mometasone (1 μM) and dexamethasone (1 μM). Like dexamethasone and mometasone, RU24858 did suppress IL-8 and MCP-1 production in eosinophils. RU24858 also increased spontaneous eosinophil apoptosis to a similar degree as dexamethasone and mometasone, but unlike dexamethasone and mometasone it did not reverse IL-5- or GM-CSF-induced eosinophil survival. Conclusion Our results suggest that in human eosinophils RU24858 acts as transactivator and transrepressor like classical glucocorticoids. Thus, RU24858 seems not to be a "dissociated steroid" in primary human eosinophils in contrast to that reported in animal cells. In addition, functionally RU24858 seems to be a less potent glucocorticoid as it did not reverse IL-5- and GM-CSF-afforded eosinophil survival similarly to dexamethasone and mometasone.
Collapse
Affiliation(s)
- Mirkka Janka-Junttila
- The Immunopharmacology Research Group, Medical School, FIN-33014 University of Tampere and Research Unit, Tampere University Hospital, Tampere, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Medical School, FIN-33014 University of Tampere and Research Unit, Tampere University Hospital, Tampere, Finland
| | - Hannele Hasala
- The Immunopharmacology Research Group, Medical School, FIN-33014 University of Tampere and Research Unit, Tampere University Hospital, Tampere, Finland
| | - Xianzhi Zhang
- The Immunopharmacology Research Group, Medical School, FIN-33014 University of Tampere and Research Unit, Tampere University Hospital, Tampere, Finland
- The Center for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ian Adcock
- Department of Thoracic Medicine, National Heart and Lung Institute, Imperial College, London, UK
| | - Hannu Kankaanranta
- The Immunopharmacology Research Group, Medical School, FIN-33014 University of Tampere and Research Unit, Tampere University Hospital, Tampere, Finland
- Department of Pulmonary Medicine Tampere University Hospital, Tampere, Finland
| |
Collapse
|
20
|
Zamzami N, Larochette N, Kroemer G. Mitochondrial permeability transition in apoptosis and necrosis. Cell Death Differ 2005; 12 Suppl 2:1478-80. [PMID: 16247494 DOI: 10.1038/sj.cdd.4401682] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- N Zamzami
- CNRS-UMR8125, Laboratoire de Génomique Cellulaire des Cancers, Institut Gustave Roussy, 39 rue Camille-Desmoulins, F-94805 Villejuif, France
| | | | | |
Collapse
|
21
|
Lavastre V, Chiasson S, Cavalli H, Girard D. Viscum album agglutinin-I induces apoptosis and degradation of cytoskeletal proteins via caspases in human leukaemia eosinophil AML14.3D10 cells: differences with purified human eosinophils. Br J Haematol 2005; 130:527-35. [PMID: 16098066 DOI: 10.1111/j.1365-2141.2005.05633.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Although there are several agents that induce neutrophil apoptosis, few are known as inducers of eosinophil apoptosis. As eosinophils are potent effector cells contributing to allergic inflammation and asthma, we investigated whether the pro-apoptotic agent Viscum album agglutinin-I (VAA-I) could induce eosinophil apoptosis. VAA-I was found to induce apoptosis in eosinophilic AML14.3D10 (3D10) cells and that these cells expressed caspases-1, -2, -3, -4, -7, -8, -9 and -10. VAA-I-induced gelsolin degradation was reversed by the pan-caspase inhibitor N-benzyloxycarbonyl-V-A-D-O-methylfluoromethyl ketone (z-VAD). Also, paxillin, vimentin and lamin B1 were cleaved by caspases in VAA-I-induced 3D10 cells. VAA-I activated caspase-3 and -8 in 3D10 cells but, unlike z-VAD, treatment with a caspase-8 inhibitor slightly reversed apoptosis. Treatment of purified human eosinophils with VAA-I was found to induce apoptosis, degradation of gelsolin and lamin B1, but unlike 3D10 cells, cleavage of lamin B1 and cell apoptosis was not reversed by z-VAD. We conclude that VAA-I is a potent inducer of eosinophil apoptosis and that proteases other than those inhibited by z-VAD in 3D10 cells are involved in VAA-I-induced peripheral blood eosinophil apoptosis and lamin B1 cleavage. Thus, VAA-I represents a potential candidate for the reduction of the number of eosinophils in diseases where they play important roles.
Collapse
Affiliation(s)
- Valérie Lavastre
- INRS-Institut Armand-Frappier, Université du Québec, Pointe-Claire, Canada
| | | | | | | |
Collapse
|
22
|
Maximiano ES, Elsas PX, de Mendonça Sales SC, Jones CP, Joseph D, Vargaftig BB, Gaspar Elsas MIC. Cells isolated from bone-marrow and lungs of allergic BALB/C mice and cultured in the presence of IL-5 are respectively resistant and susceptible to apoptosis induced by dexamethasone. Int Immunopharmacol 2005; 5:857-70. [PMID: 15778122 DOI: 10.1016/j.intimp.2005.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Revised: 10/29/2004] [Accepted: 01/04/2005] [Indexed: 12/21/2022]
Abstract
We have previously reported that, in IL-5-stimulated bone-marrow cultures, dexamethasone upregulates eosinophil differentiation and protects developing eosinophils from apoptosis induced by a variety of agents. Recently developed procedures for the isolation of hemopoietic cells from allergic murine lungs have enabled us to evaluate how these cells respond to dexamethasone in IL-5-stimulated cultures, when compared with bone-marrow-derived cells isolated from the same donors, and whether differences in response patterns were linked to apoptosis. Ovalbumin challenge of sensitized mice increased significantly the numbers of mature leukocytes as well as hemopoietic cells recovered from digested lung fragments, relative to saline-challenged, sensitized controls. Both mature eosinophils and cells capable of differentiating into eosinophils in the presence of IL-5 were present in lungs from sensitized mice 24 h after airway challenge. Dexamethasone strongly inhibited eosinophil differentiation in IL-5-stimulated cultures of lung hemopoietic cells. By contrast, dexamethasone enhanced eosinophil differentiation in cultures of allergic bone-marrow cells, in identical conditions. Hemopoietic cells from lungs and bone-marrow were respectively susceptible and resistant to induction of apoptosis by dexamethasone. The dexamethasone-sensitive step was the response to IL-5 in culture, while accumulation of IL-5 responsive cells in allergen-challenged lungs was dexamethasone-resistant. Cells from lungs and bone-marrow, cultured for 3 days with IL-5 in the absence of dexamethasone, did not respond to a subsequent exposure to dexamethasone in the presence of IL-5. These findings confirm that IL-5-responsive hemopoietic cells found in challenged, sensitized murine lungs differ from those in bone-marrow, with respect to the cellular responses induced by dexamethasone, including apoptosis.
Collapse
Affiliation(s)
- Elisabeth S Maximiano
- Laboratório de Fisiopatologia Humana, Depto. de Pediatria, Instituto Fernandes Figueira/FIOCRUZ, Av. Rui Barbosa, 716, Praia do Flamengo, CEP 22250-020, Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
23
|
Whiteman M, Rose P, Siau JL, Cheung NS, Tan GS, Halliwell B, Armstrong JS. Hypochlorous acid-mediated mitochondrial dysfunction and apoptosis in human hepatoma HepG2 and human fetal liver cells: role of mitochondrial permeability transition. Free Radic Biol Med 2005; 38:1571-84. [PMID: 15917186 DOI: 10.1016/j.freeradbiomed.2005.02.030] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Revised: 01/14/2005] [Accepted: 02/18/2005] [Indexed: 01/01/2023]
Abstract
Liver cirrhosis is often preceded by overt signs of hepatitis, including parenchymal cell inflammation and infiltration of polymorphonuclear (PMN) leukocytes. Activated PMNs release both reactive oxygen species and reactive halogen species, including hypochlorous acid (HOCl), which are known to be significantly cytotoxic due to their oxidizing potential. Because the role of mitochondria in the hepatotoxicity attributed to HOCl has not been elucidated, we investigated the effects of HOCl on mitochondrial function in the human hepatoma HepG2 cell line, human fetal liver cells, and isolated rat liver mitochondria. We show here that HOCl induced mitochondrial dysfunction, and apoptosis was dependent on the induction of the mitochondrial permeability transition (MPT), because HOCl induced mitochondrial swelling and collapse of the mitochondrial membrane potential with the concomitant release of cytochrome c. These biochemical events were inhibited by the classical MPT inhibitor cyclosporin A (CSA). Cell death induced by HOCl exhibited several classical hallmarks of apoptosis, including annexin V labeling, caspase activation, chromatin condensation, and cell body shrinkage. The induction of apoptosis by HOCl was further supported by the finding that CSA and caspase inhibitors prevented cell death. For the first time, these results show that HOCl activates the MPT, which leads to the induction of apoptosis and provides a novel insight into the mechanisms of HOCl-mediated cell death at sites of chronic inflammation.
Collapse
Affiliation(s)
- Matthew Whiteman
- Department of Biochemistry, Faculty of Medicine, National University of Singapore, 8 Medical Drive, Republic of Singapore 117597.
| | | | | | | | | | | | | |
Collapse
|
24
|
Yoon SW, Kim TY, Sung MH, Kim CJ, Poo H. Comparative proteomic analysis of peripheral blood eosinophils from healthy donors and atopic dermatitis patients with eosinophilia. Proteomics 2005; 5:1987-95. [PMID: 15832365 DOI: 10.1002/pmic.200401086] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Atopic dermatitis (AD) is an allergic disease that has recently shown a dramatic increase of incidence in developed countries. Eosinophilia, the accumulation of eosinophils, occurs in AD patients through an anti-apoptotic mechanism. To understand the target proteins involved in the anti-apoptotic signaling of eosinophilia, we used a proteomic approach to analyze eosinophil proteins from AD patients with eosinophilia and healthy donors. Protein spots in two-dimensional electrophoresis (2-DE) gels were identified with peptide mass fingerprinting (PMF) based on matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) and database searching. More spots were observed in the 2-DE proteome map from AD patient samples (1310 +/- 58 spots) than in those from healthy donors (1121 +/- 40 spots). We identified 51 proteins affected by eosinophilia: 19 related to signaling, 8 involved in regulation of metabolism, 4 related to apoptosis, and 3 involved in inflammation. The other identified proteins were associated with transcription, RNA processing, translation, the cytoskeleton, and unknown functions. Among the identified proteins, we observed prominent increases in the expressions of cyclinA2, voltage-dependent anion channel protein 2, and 38 kDa FK506 binding protein 8 in eosinophils from AD patients in comparison to healthy donors. PMF and immunoblotting of a single spot that was expressed in eosinophils from healthy individuals but not in AD patients identified the protein as phosphorylated growth receptor binding 7 (Grb7) adaptor protein. Increased phosphorylation of Grb7 and its upstream signaling protein, focal adhesion kinase (FAK), was detected in low viability eosinophils such as those from healthy donors or in cultured eosinophils (AML14.3D10 cells) treated with dexamethasone. These results suggest that phosphorylation of Grb7 and the expressions of cyclinA2, voltage-dependent anion channel protein 2, and 38 kDa FK506 binding protein 8 may be related with the anti-apoptosis mechanism of eosinophilia.
Collapse
Affiliation(s)
- Sun Woo Yoon
- System Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejon
| | | | | | | | | |
Collapse
|
25
|
Yan SR, Sapru K, Issekutz AC. The CD11/CD18 (beta2) integrins modulate neutrophil caspase activation and survival following TNF-alpha or endotoxin induced transendothelial migration. Immunol Cell Biol 2005; 82:435-46. [PMID: 15283855 DOI: 10.1111/j.0818-9641.2004.01268.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neutrophils (PMN) are short-lived cells but their survival is often prolonged in inflammation. The beta2 (CD11/CD18) integrins are involved in PMN migration into inflammation but their role in PMN survival is not well understood. We investigated the role of beta2 integrins in PMN caspase activation, a key enzyme cascade in apoptosis. After 20 h, caspase activation (Western blotting) was markedly decreased in PMN cultured on fibrinogen, a ligand for Mac-1 (CD11b/CD18), but not on fibronectin or albumin. In the presence of TNF-alpha or endotoxin (LPS), blockade of CD18 (beta2 chain) with mAb markedly increased caspase activation in PMN on fibrinogen. PMN which migrated through endothelium in vitro in response to TNF-alpha, LPS, IL-1alpha, IL-8 or C5a contained 58% fewer active caspase positive PMN after 20 h than non-migrated PMN remaining on the endothelium. When beta2 (CD18) integrin or lymphocyte function antigen (LFA)-1 (CD11a) plus Mac1 (CD11b) were blocked by mAb (intact or Fab'), the proportion of migrated PMN (but not of non-migrated PMN) with active caspases was significantly increased (2-4-fold) and this was associated with accelerated PMN apoptosis and death. Thus, engagement of ligands on extracellular matrix and endothelium by the beta2 integrins Mac-1 and LFA-1 plays a role in delaying apoptosis in PMN recruited in response to LPS and TNF-alpha. Inhibition of beta2 integrin function may not only inhibit PMN infiltration, but also accelerate PMN clearance from inflamed tissue.
Collapse
Affiliation(s)
- Sen Rong Yan
- Department of Pediatrics, The Dalhousie Inflammation Group, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
26
|
Debierre-Grockiego F, Fuentes V, Prin L, Gouilleux F, Gouilleux-Gruart V. Differential effect of dexamethasone on cell death and STAT5 activation during in vitro
eosinopoiesis. Br J Haematol 2003; 123:933-41. [PMID: 14632786 DOI: 10.1046/j.1365-2141.2003.04700.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glucorticoids reduce eosinophilia through a direct effect on eosinophils or indirectly on cells producing cytokines and chemokines. Conflicting data have been previously reported concerning glucocorticoid effects on eosinopoiesis. To elucidate this point, dexamethasone was added during eosinophil differentiation of CD34+ cells. Dexamethasone enhanced proliferation and differentiation through an early effect on immature cells. Dexamethasone inhibited apoptosis during early differentiation, whereas death of mature cells was increased. Signal transducer and activator of transcription 5 (STAT5) is a transcription factor involved in the proliferation, differentiation and survival of haematopoietic cells, which interacts with glucocorticoid receptor. Activation of STAT5 by interleukin-5 was investigated during eosinophil differentiation. Long isoforms of STAT5 were activated during the entire period in the culture as well as in blood eosinophils, while short isoforms were only activated during early differentiation. Short isoforms were less activated in the presence of dexamethasone. This suggests that dexamethasone could act on proliferation, differentiation and apoptosis during eosinophil differentiation through an association of STAT5 with the glucocorticoid receptor.
Collapse
|
27
|
Gardai SJ, Hoontrakoon R, Goddard CD, Day BJ, Chang LY, Henson PM, Bratton DL. Oxidant-mediated mitochondrial injury in eosinophil apoptosis: enhancement by glucocorticoids and inhibition by granulocyte-macrophage colony-stimulating factor. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:556-66. [PMID: 12496443 DOI: 10.4049/jimmunol.170.1.556] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mainstay of asthma therapy, glucocorticosteroids (GCs) have among their therapeutic effects the inhibition of inflammatory cytokine production and induction of eosinophil apoptosis. In the absence of prosurvival cytokines (e.g., GM-CSF), eosinophils appear to be short-lived, undergoing apoptosis over 96 h in vitro. In a dose-dependent manner, GC further enhances apoptosis, while prosurvival cytokines inhibit apoptosis and antagonize the effect of GC. The mechanisms of eosinophil apoptosis, its enhancement by GC, and antagonism of GC by GM-CSF are not well-understood. As demonstrated in this study, baseline apoptosis of eosinophils resulted from oxidant-mediated mitochondrial injury that was significantly enhanced by GC. Mitochondrial injury was detected by early and progressive loss of mitochondrial membrane potential and the antioxidant protein, Mn superoxide dismutase (SOD). Also observed was the activation/translocation of the proapoptotic protein, Bax, to mitochondria. Underscoring the role of oxidants was the inhibition of mitochondrial changes and apoptosis with culture in hypoxia, or pretreatment with a flavoprotein inhibitor or a SOD mimic. GCs demonstrated early (40 min) and late (16 h) activation of proapoptotic c-Jun NH2-terminal kinase (JNK) and decreased the antiapoptotic protein X-linked inhibitor of apoptosis, a recently demonstrated inhibitor of JNK activation. Similarly, inhibition of JNK prevented GC-enhanced mitochondrial injury and apoptosis. Importantly, GM-CSF prevented GC-induced loss of X-linked inhibitor of apoptosis protein, late activation of JNK, and mitochondrial injury even in the face of unchanged oxidant production, loss of MnSOD, and early JNK activation. These data demonstrate that oxidant-induced mitochondrial injury is pivotal in eosinophil apoptosis, and is enhanced by GC-induced prolonged JNK activation that is in turn inhibited by GM-CSF.
Collapse
Affiliation(s)
- Shyra J Gardai
- Department of Pediatrics, National Jewish Medical and Research Center, Denver, CO 80206, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Dobson CM, Wai T, Leclerc D, Wilson A, Wu X, Doré C, Hudson T, Rosenblatt DS, Gravel RA. Identification of the gene responsible for the cblA complementation group of vitamin B12-responsive methylmalonic acidemia based on analysis of prokaryotic gene arrangements. Proc Natl Acad Sci U S A 2002; 99:15554-9. [PMID: 12438653 PMCID: PMC137755 DOI: 10.1073/pnas.242614799] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vitamin B(12) (cobalamin) is an essential cofactor of two enzymes, methionine synthase and methylmalonyl-CoA mutase. The conversion of the vitamin to its coenzymes requires a series of biochemical modifications for which several genetic diseases are known, comprising eight complementation groups (cblA through cblH). The objective of this study was to clone the gene responsible for the cblA complementation group thought to represent a mitochondrial cobalamin reductase. Examination of bacterial operons containing genes in close proximity to the gene for methylmalonyl-CoA mutase and searching for orthologous sequences in the human genome yielded potential candidates. A candidate gene was evaluated for deleterious mutations in cblA patient cell lines, which revealed a 4-bp deletion in three cell lines, as well as an 8-bp insertion and point mutations causing a stop codon and an amino acid substitution. These data confirm that the identified gene, MMAA, corresponds to the cblA complementation group. It is located on chromosome 4q31.1-2 and encodes a predicted protein of 418 aa. A Northern blot revealed RNA species of 1.4, 2.6, and 5.5 kb predominating in liver and skeletal muscle. The deduced amino acid sequence reveals a domain structure, which belongs to the AAA ATPase superfamily that encompasses a wide variety of proteins including ATP-binding cassette transporter accessory proteins that bind ATP and GTP. We speculate that we have identified a component of a transporter or an accessory protein that is involved in the translocation of vitamin B(12) into mitochondria.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution
- Base Sequence
- Cell Line
- Chromosome Mapping
- Chromosomes, Human, Pair 4/genetics
- DNA Mutational Analysis
- Female
- Fibroblasts/enzymology
- Genes
- Genetic Complementation Test
- Heteroduplex Analysis
- Humans
- Infant
- Liver/enzymology
- Male
- Metabolism, Inborn Errors/blood
- Metabolism, Inborn Errors/enzymology
- Metabolism, Inborn Errors/genetics
- Methylmalonic Acid/blood
- Methylmalonyl-CoA Mutase/genetics
- Molecular Sequence Data
- Muscle, Skeletal/enzymology
- Mutagenesis, Insertional
- Mutation, Missense
- Organ Specificity
- Point Mutation
- RNA Splice Sites
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Deletion
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- C Melissa Dobson
- Department of Biochemistry and Molecular Biology, University of Calgary, AB, Canada T2N 1N4
| | | | | | | | | | | | | | | | | |
Collapse
|