1
|
Brockhoff B, Schreckenberg R, Forst S, Heger J, Bencsik P, Kiss K, Ferdinandy P, Schulz R, Schlüter K. Effect of nitric oxide deficiency on the pulmonary PTHrP system. J Cell Mol Med 2017; 21:96-106. [PMID: 27581501 PMCID: PMC5192877 DOI: 10.1111/jcmm.12942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/04/2016] [Indexed: 01/20/2023] Open
Abstract
Nitric oxide (NO) deficiency is common in pulmonary diseases, but its effect on pulmonary remodelling is still controversial. As pulmonary parathyroid hormone-related protein (PTHrP) expression is a key regulator of pulmonary fibrosis and development, the effect of chronic NO deficiency on the pulmonary PTHrP system and its relationship with oxidative stress was addressed. NO bioavailability in adult rats was reduced by systemic administration of L-NAME via tap water. To clarify the role of NO synthase (NOS)-3-derived NO on pulmonary expression of PTHrP, NOS-3-deficient mice were used. Captopril and hydralazine were used to reduce the hypertensive effect of L-NAME treatment and to interfere with the pulmonary renin-angiotensin system (RAS). Quantitative RT-PCR and immunoblot techniques were used to characterize the expression of key proteins involved in pulmonary remodelling. L-NAME administration significantly reduced pulmonary NO concentration and caused oxidative stress as characterized by increased pulmonary nitrite concentration and increased expression of NOX2, p47phox and p67phox. Furthermore, L-NAME induced the pulmonary expression of PTHrP and of its corresponding receptor, PTH-1R. Expression of PTHrP and PTH-1R correlated with the expression of two well-established PTHrP downstream targets, ADRP and PPARγ, suggesting an activation of the pulmonary PTHrP system by NO deficiency. Captopril reduced the expression of PTHrP, profibrotic markers and ornithine decarboxylase, but neither that of PTH-1R nor that of ADRP and PPARγ. All transcriptional changes were confirmed in NOS-3-deficient mice. In conclusion, NOS-3-derived NO suppresses pulmonary PTHrP and PTH-1R expression, thereby modifying pulmonary remodelling.
Collapse
Affiliation(s)
- Bastian Brockhoff
- Physiologisches InstitutJustus‐Liebig‐Universität GießenGießenGermany
| | | | - Svenja Forst
- Physiologisches InstitutJustus‐Liebig‐Universität GießenGießenGermany
| | - Jacqueline Heger
- Physiologisches InstitutJustus‐Liebig‐Universität GießenGießenGermany
| | - Péter Bencsik
- Pharmahungary GroupSzegedHungary
- Cardiovascular Research GroupDepartment of BiochemistryUniversity of SzegedSzegedHungary
| | - Krisztina Kiss
- Pharmahungary GroupSzegedHungary
- Cardiovascular Research GroupDepartment of BiochemistryUniversity of SzegedSzegedHungary
| | - Peter Ferdinandy
- Pharmahungary GroupSzegedHungary
- Department of Pharmacology and PharmacotherapySemmelweis UniversityBudapestHungary
| | - Rainer Schulz
- Physiologisches InstitutJustus‐Liebig‐Universität GießenGießenGermany
| | | |
Collapse
|
2
|
Li B, Ze Y, Sun Q, Zhang T, Sang X, Cui Y, Wang X, Gui S, Tan D, Zhu M, Zhao X, Sheng L, Wang L, Hong F, Tang M. Molecular mechanisms of nanosized titanium dioxide-induced pulmonary injury in mice. PLoS One 2013; 8:e55563. [PMID: 23409001 PMCID: PMC3567101 DOI: 10.1371/journal.pone.0055563] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 12/27/2012] [Indexed: 12/23/2022] Open
Abstract
The pulmonary damage induced by nanosized titanium dioxide (nano-TiO2) is of great concern, but the mechanism of how this damage may be incurred has yet to be elucidated. Here, we examined how multiple genes may be affected by nano-TiO2 exposure to contribute to the observed damage. The results suggest that long-term exposure to nano-TiO2 led to significant increases in inflammatory cells, and levels of lactate dehydrogenase, alkaline phosphate, and total protein, and promoted production of reactive oxygen species and peroxidation of lipid, protein and DNA in mouse lung tissue. We also observed nano-TiO2 deposition in lung tissue via light and confocal Raman microscopy, which in turn led to severe pulmonary inflammation and pneumonocytic apoptosis in mice. Specifically, microarray analysis showed significant alterations in the expression of 847 genes in the nano-TiO2-exposed lung tissues. Of 521 genes with known functions, 361 were up-regulated and 160 down-regulated, which were associated with the immune/inflammatory responses, apoptosis, oxidative stress, the cell cycle, stress responses, cell proliferation, the cytoskeleton, signal transduction, and metabolic processes. Therefore, the application of nano-TiO2 should be carried out cautiously, especially in humans.
Collapse
Affiliation(s)
- Bing Li
- Medical College of Soochow University, Suzhou, China
| | - Yuguan Ze
- Medical College of Soochow University, Suzhou, China
| | - Qingqing Sun
- Medical College of Soochow University, Suzhou, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
- Jiangsu key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, China
| | - Xuezi Sang
- Medical College of Soochow University, Suzhou, China
| | - Yaling Cui
- Medical College of Soochow University, Suzhou, China
| | - Xiaochun Wang
- Medical College of Soochow University, Suzhou, China
| | - Suxin Gui
- Medical College of Soochow University, Suzhou, China
| | - Danlin Tan
- Medical College of Soochow University, Suzhou, China
| | - Min Zhu
- Medical College of Soochow University, Suzhou, China
| | - Xiaoyang Zhao
- Medical College of Soochow University, Suzhou, China
| | - Lei Sheng
- Medical College of Soochow University, Suzhou, China
| | - Ling Wang
- Medical College of Soochow University, Suzhou, China
| | - Fashui Hong
- Medical College of Soochow University, Suzhou, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
- Jiangsu key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, China
| |
Collapse
|
3
|
|
4
|
Abstract
Acute lung injury can be induced indirectly (e.g., sepsis) or directly (e.g., chlorine inhalation). Because treatment is still limited to supportive measures, mortality remains high ( approximately 74,500 deaths/yr). In the past, accidental (railroad derailments) and intentional (Iraq terrorism) chlorine exposures have led to deaths and hospitalizations from acute lung injury. To better understand the molecular events controlling chlorine-induced acute lung injury, we have developed a functional genomics approach using inbred mice strains. Various mouse strains were exposed to chlorine (45 ppm x 24 h) and survival was monitored. The most divergent strains varied by more than threefold in mean survival time, supporting the likelihood of an underlying genetic basis of susceptibility. These divergent strains are excellent models for additional genetic analysis to identify critical candidate genes controlling chlorine-induced acute lung injury. Gene-targeted mice then could be used to test the functional significance of susceptibility candidate genes, which could be valuable in revealing novel insights into the biology of acute lung injury.
Collapse
|
5
|
Xu SC, He MD, Zhong M, Zhang YW, Wang Y, Yang L, Yang J, Yu ZP, Zhou Z. Melatonin protects against Nickel-induced neurotoxicity in vitro by reducing oxidative stress and maintaining mitochondrial function. J Pineal Res 2010; 49:86-94. [PMID: 20536687 DOI: 10.1111/j.1600-079x.2010.00770.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Nickel is a potential neurotoxic pollutant. Oxidative stress is supposed to be involved in the mechanism underlying nickel-induced neurotoxicity. Melatonin has efficient protective effects against various oxidative damages in nervous system. The purpose of this study was to investigate whether melatonin could efficiently protect against neurotoxicity induced by nickel. Here, we exposed primary cultured cortical neurons and mouse neuroblastoma cell lines (neuro2a) to different concentrations of nickel chloride (NiCl(2)) (0.125, 0.25, 0.5, and 1 mm) for 12 hr or 0.5 mm NiCl(2) for various periods (0, 3, 6, 12, and 24 hr). We found that nickel significantly increased reactive oxygen species production and caused the loss of cell viability both in cortical neurons and neuro2a cells. In addition, nickel exposure obviously inhibited the mitochondrial function, disrupted the mitochondrial membrane potential (DeltaPsim), reduced ATP production, and decreased mitochondrial DNA (mtDNA) content. However, each of these oxidative damages was efficiently attenuated by melatonin pretreatment. These protective effects of melatonin may be attributable to its roles in reducing oxidative stress and improving mitochondrial function in nickel-treated nerve cells. Our results suggested that melatonin may have great pharmacological potential in protecting against the adverse effects of nickel in the nervous system.
Collapse
Affiliation(s)
- Shang-Cheng Xu
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Johnston LC, Gonzales LW, Lightfoot RT, Guttentag SH, Ischiropoulos H. Opposing regulation of human alveolar type II cell differentiation by nitric oxide and hyperoxia. Pediatr Res 2010; 67:521-5. [PMID: 20098340 PMCID: PMC3066065 DOI: 10.1203/pdr.0b013e3181d4f20f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Clinical trials demonstrated decreasing rates of bronchopulmonary dysplasia in preterm infants with hypoxic respiratory failure treated with inhaled nitric oxide (iNO). However, the molecular and biochemical effects of iNO on developing human fetal lungs remain vastly unknown. By using a well-characterized model of human fetal alveolar type II cells, we assessed the effects of iNO and hyperoxia, independently and concurrently, on NO-cGMP signaling pathway and differentiation. Exposure to iNO increased cGMP levels by 40-fold after 3 d and by 8-fold after 5 d despite constant expression of phosphodiesterase-5 (PDE5). The levels of cGMP declined significantly on exposure to iNO and hyperoxia at 3 and 5 d, although expression of soluble guanylyl cyclase (sGC) was sustained. Surfactant proteins B and C (SP-B, SP-C) and thyroid transcription factor (TTF)-1 mRNA levels increased in cells exposed to iNO in normoxia but not on exposure to iNO plus hyperoxia. Collectively, these data indicate an increase in type II cell markers when undifferentiated lung epithelial cells are exposed to iNO in room air. However, hyperoxia overrides these potentially beneficial effects of iNO despite sustained expression of sGC.
Collapse
Affiliation(s)
- Lindsay C Johnston
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
7
|
Fujita K, Morimoto Y, Ogami A, Myojyo T, Tanaka I, Shimada M, Wang WN, Endoh S, Uchida K, Nakazato T, Yamamoto K, Fukui H, Horie M, Yoshida Y, Iwahashi H, Nakanishi J. Gene expression profiles in rat lung after inhalation exposure to C60 fullerene particles. Toxicology 2009; 258:47-55. [PMID: 19167457 DOI: 10.1016/j.tox.2009.01.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 12/22/2008] [Accepted: 01/05/2009] [Indexed: 02/02/2023]
Abstract
Concern over the influence of nanoparticles on human health has risen due to advances in the development of nanotechnology. We are interested in the influence of nanoparticles on the pulmonary system at a molecular level. In this study, gene expression profiling of the rat lung after whole-body inhalation exposure to C(60) fullerene (0.12mg/m(3); 4.1x10(4) particles/cm(3), 96nm diameter) and ultrafine nickel oxide (Uf-NiO) particles (0.2mg/m(3); 9.2x10(4) particles/cm(3), 59nm diameter) as a positive control were employed to gain insights into these molecular events. In response to C(60) fullerene exposure for 6h a day, for 4 weeks (5 days a week), C(60) fullerene particles were located in alveolar epithelial cells at 3 days post-exposure and engulfed by macrophages at both 3 days and 1 month post-exposures. Gene expression profiles revealed that few genes involved in the inflammatory response, oxidative stress, apoptosis, and metalloendopeptidase activity were up-regulated at both 3 days and 1 month post-exposure. Only some genes associated with the immune system process, including major histocompatibility complex (MHC)-mediated immunity were up-regulated. These results were significantly different from those of Uf-NiO particles which induced high expression of genes associated with chemokines, oxidative stress, and matrix metalloproteinase 12 (Mmp12), suggesting that Uf-NiO particles lead to acute inflammation for the inhalation exposure period, and the damaged tissues were repaired in the post-exposure period. We suggest that C(60) fullerene might not have a severe pulmonary toxicity under the inhalation exposure condition.
Collapse
Affiliation(s)
- Katsuhide Fujita
- Health Technology Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Onogawa 16-1, Tsukuba, Ibaraki 305-8569, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Zhou T, Chou J, Watkins PB, Kaufmann WK. Toxicogenomics: transcription profiling for toxicology assessment. EXS 2009; 99:325-66. [PMID: 19157067 DOI: 10.1007/978-3-7643-8336-7_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Toxicogenomics, the application of transcription profiling to toxicology, has been widely used for elucidating the molecular and cellular actions of chemicals and other environmental stressors on biological systems, predicting toxicity before any functional damages, and classification of known or new toxicants based on signatures of gene expression. The success of a toxicogenomics study depends upon close collaboration among experts in different fields, including a toxicologist or biologist, a bioinformatician, statistician, physician and, sometimes, mathematician. This review is focused on toxicogenomics studies, including transcription profiling technology, experimental design, significant gene extraction, toxicological results interpretation, potential pathway identification, database input and the applications of toxicogenomics in various fields of toxicological study.
Collapse
Affiliation(s)
- Tong Zhou
- Center for Drug Safety Sciences, The Hamner Institutes for Health Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, NC, USA.
| | | | | | | |
Collapse
|
9
|
Cohen MD. Pulmonary Immunotoxicology of Select Metals: Aluminum, Arsenic, Cadmium, Chromium, Copper, Manganese, Nickel, Vanadium, and Zinc. J Immunotoxicol 2008; 1:39-69. [DOI: 10.1080/15476910490438360] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
10
|
Qin XJ, He W, Hai CX, Liang X, Liu R. Protection of multiple antioxidants Chinese herbal medicine on the oxidative stress induced by adriamycin chemotherapy. J Appl Toxicol 2008; 28:271-82. [PMID: 17582587 DOI: 10.1002/jat.1276] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Adriamycin is an effective anthracycline anti-tumor antibiotic. However, the clinical use of adriamycin has been restricted by its serious side effects. Some reports indicated that the side effects of adriamycin could cause systemic injury, in which reactive oxygen species (ROS) play an important role. ROS are a large family of oxygen free radical and non-free radical active oxygen-containing molecules, including superoxide radical, hydrogen peroxide and hydroxyl radical, which contribute to oxidative stress. Although antioxidant treatment is a promising method to prevent the side effects, protection by a single antioxidant is limited. The Chinese herbal medicine ANTIOXIN is a multiple antioxidant that can effectively block oxidative stress. It was hypothesized that ANTIOXIN could effectively reduce the side effects of adriamycin. A rat tumor model with a transplanted tumor in the liver was treated with adriamycin and ANTIOXIN was used as a protection. Oxidative stress and antioxidant enzymes were evaluated. The results showed that adriamycin chemotherapy increased the level of malondialdehyde (MDA), nitrogen oxide (NO) and decreased the activities of total superoxide dismutase (T-SOD), manganese superoxide dismutase (MnSOD), catalase (CAT), glutathione (GSH) and total antioxidant capacity (TAC). Adriamycin chemotherapy also decreased the expression of Bcl-2, increased the expression of iNOS and cell apoptosis in the liver and kidney. Multiple antioxidants ANTIOXIN had an antagonistic effect on these changes and significantly decreased the mortality of the experimental rats. These data demonstrated that adriamycin chemotherapy could cause oxidative stress to the whole body, on which multiple antioxidants based on the theory of 'multiple antioxidant chain' had effective protection.
Collapse
Affiliation(s)
- Xu-Jun Qin
- Department of Toxicology, the Fourth Military Medical University, Xi'an, 710032, China
| | | | | | | | | |
Collapse
|
11
|
Intensity-based hierarchical Bayes method improves testing for differentially expressed genes in microarray experiments. BMC Bioinformatics 2006; 7:538. [PMID: 17177995 PMCID: PMC1781470 DOI: 10.1186/1471-2105-7-538] [Citation(s) in RCA: 201] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Accepted: 12/19/2006] [Indexed: 01/11/2023] Open
Abstract
Background The small sample sizes often used for microarray experiments result in poor estimates of variance if each gene is considered independently. Yet accurately estimating variability of gene expression measurements in microarray experiments is essential for correctly identifying differentially expressed genes. Several recently developed methods for testing differential expression of genes utilize hierarchical Bayesian models to "pool" information from multiple genes. We have developed a statistical testing procedure that further improves upon current methods by incorporating the well-documented relationship between the absolute gene expression level and the variance of gene expression measurements into the general empirical Bayes framework. Results We present a novel Bayesian moderated-T, which we show to perform favorably in simulations, with two real, dual-channel microarray experiments and in two controlled single-channel experiments. In simulations, the new method achieved greater power while correctly estimating the true proportion of false positives, and in the analysis of two publicly-available "spike-in" experiments, the new method performed favorably compared to all tested alternatives. We also applied our method to two experimental datasets and discuss the additional biological insights as revealed by our method in contrast to the others. The R-source code for implementing our algorithm is freely available at . Conclusion We use a Bayesian hierarchical normal model to define a novel Intensity-Based Moderated T-statistic (IBMT). The method is completely data-dependent using empirical Bayes philosophy to estimate hyperparameters, and thus does not require specification of any free parameters. IBMT has the strength of balancing two important factors in the analysis of microarray data: the degree of independence of variances relative to the degree of identity (i.e. t-tests vs. equal variance assumption), and the relationship between variance and signal intensity. When this variance-intensity relationship is weak or does not exist, IBMT reduces to a previously described moderated t-statistic. Furthermore, our method may be directly applied to any array platform and experimental design. Together, these properties show IBMT to be a valuable option in the analysis of virtually any microarray experiment.
Collapse
|
12
|
Wesselkamper SC, McDowell SA, Medvedovic M, Dalton TP, Deshmukh HS, Sartor MA, Case LM, Henning LN, Borchers MT, Tomlinson CR, Prows DR, Leikauf GD. The role of metallothionein in the pathogenesis of acute lung injury. Am J Respir Cell Mol Biol 2005; 34:73-82. [PMID: 16166738 PMCID: PMC2644192 DOI: 10.1165/rcmb.2005-0248oc] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Often fatal, acute lung injury has a complicated etiology. Previous studies from our laboratory in mice have demonstrated that survival during acute lung injury is a complex trait governed by multiple loci. We also found that the increase in metallothionein (MT) is one of the greatest noted in transcriptome-wide analyses of gene expression. To assess the role of MT in nickel-induced acute lung injury, the survival of Mt-transgenic, Mt1/2(+/+), and Mt1/2(-/-) mice was compared. Pulmonary inflammation and global gene expression were compared in Mt1/2(+/+) and Mt1/2(-/-) mice. Gene-targeted Mt1/2(-/-) mice were more susceptible than Mt1/2(+/+) mice to nickel-induced inflammation, surfactant-associated protein B transcript loss, and lethality. Similarly, Mt-transgenic mice exhibited increased survival. MAPPFinder analyses also noted significant decreases in genes involved in protein processing (e.g., ubiquitination, folding), which were greater in Mt1/2(-/-) mice as compared with Mt1/2(+/+) mice early in the progression of acute lung injury, possibly due to a zinc-mediated transcript destabilization. In contrast, transcript levels of genes associated with the inflammatory response, extracellular matrix regulation, and coagulation/fibrinolysis were increased more in Mt1/2(-/-) mice as compared with Mt1/2(+/+) mice late in the development of acute lung injury. Thus, MT ultimately improves survival in the progression of acute lung injury in mice. Transcriptome-wide analysis suggests that this survival may be mediated through changes in the destabilization of transcripts associated with protein processing, the subsequent augmentation of transcripts controlling inflammation, extracellular matrix regulation, coagulation/fibrinolysis, and disruption of surfactant homeostasis.
Collapse
Affiliation(s)
- Scott C Wesselkamper
- Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, OH 45267-0056, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Chu SJ, Lee TY, Yan HC, Lin SH, Li MH. l-Arginine prevents air embolism-induced acute lung injury in rats. Crit Care Med 2005; 33:2056-60. [PMID: 16148480 DOI: 10.1097/01.ccm.0000178175.54354.ea] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Pulmonary air embolism, causing vessel obstruction and primary or secondary reactions of blood, can lead to acute lung injury. In addition, nitric oxide has been known to play a key role in various causes of lung injury. In this study we employed the isolated rat lung model to investigate the effects of l-arginine on air embolism-induced lung injury. DESIGN Randomized, controlled study. SETTING Animal-care facility procedure room. SUBJECTS Forty-two adult male Sprague-Dawley rats each weighing 250-350 g. INTERVENTIONS Infusion of air at the rate of 0.25 mL/min for 1 min into the pulmonary artery in isolated and perfused rat lung resulted in pulmonary hypertension and lung edema. Air embolism elicited a significant increase in microvascular permeability as measured by the capillary filtration coefficient, lung weight gain, lung weight-to-body weight ratio, pulmonary arterial pressure, and protein concentration of bronchoalveolar lavage fluid. MEASUREMENTS AND MAIN RESULTS Pretreatment with L-arginine (4 mmol/L) significantly attenuated the acute lung injury induced by air embolism as shown by a significant decrease in all of the assessed variables but did not alter the pulmonary arterial pressure (p < .05). The protective effect of l-arginine was blocked when N(G)-nitro-L-arginine methyl ester (5 mmol/L) was added. Pretreatment with N(G)-nitro-L-arginine methyl ester exacerbated air embolism-induced lung injury. CONCLUSIONS Our findings suggest that L-arginine can prevent air embolism-induced lung injury.
Collapse
Affiliation(s)
- Shi-Jye Chu
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
14
|
Jian MY, Koizumi T, Kubo K. Effects of nitric oxide synthase inhibitor on acid aspiration-induced lung injury in rats. Pulm Pharmacol Ther 2005; 18:33-9. [PMID: 15607125 DOI: 10.1016/j.pupt.2004.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Revised: 07/07/2004] [Accepted: 07/14/2004] [Indexed: 12/15/2022]
Abstract
The current study was designed to determine the effects of nitric oxide synthase (NOS) in the development of acid aspiration-induced lung injury in rats. Hydrochloric acid (HCl, 0.1 N; 2 ml/kg) or normal saline (NS, 2 ml/kg) was instilled into the lung of anesthetized, ventilated Sprague-Dawley rats. NG-monomethyl-L-arginine (L-NMMA, 20 mg kg(-1)) and a selective inducible nitric oxide synthase (iNOS) inhibitor, ONO-1714 (0.1 and 0.3 mg kg(-1)), were used to block NOS. Bronchoalveolar lavage fluid (BALF) and wet and dry measurements of lung (W/D) were obtained 5h after HCl or NS instillation. Unlike the control group, rats instilled with HCl showed significant increases in total nuclear cell counts (NCC), neutrophil counts, concentrations of albumin, tumor necrosis factor-alpha (TNF-alpha), interleukine-6 (IL-6) and nitrites/nitrates (NO(x)) in BALF. These parameters were associated with the significantly increased W/D in the HCl group compared with the NS group. ONO-1714 (0.1 mg kg(-1)) significantly prevented the increases in all these parameters. Its inhibitory effects were superior to those of L-NMMA and 0.3 mg kg(-1) of ONO-1714. NOS plays an important role in the pathogenesis of acid aspiration-induced lung injury. Furthermore, selective iNOS inhibition at the optimal dose was most effective in improving lung injury induced by acid aspiration in rats.
Collapse
Affiliation(s)
- Ming-Yuan Jian
- First Department of Internal Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | | | | |
Collapse
|
15
|
Duffy JY, Schwartz SM, Lyons JM, Bell JH, Wagner CJ, Zingarelli B, Pearl JM. Calpain inhibition decreases endothelin-1 levels and pulmonary hypertension after cardiopulmonary bypass with deep hypothermic circulatory arrest*. Crit Care Med 2005; 33:623-8. [PMID: 15753756 DOI: 10.1097/01.ccm.0000156243.44845.67] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Cardiopulmonary bypass in infants and children can result in cardiopulmonary dysfunction through ischemia and reperfusion injury. Pulmonary hypertension and injury are particularly common and morbid complications of neonatal cardiac surgery. Inhibition of calpain, a cysteine protease, has been shown to inhibit reperfusion injury in adult organ systems. The hypothesis is that calpain inhibition can alleviate the cardiopulmonary dysfunction seen in immature animals following ischemia and reperfusion with cardiopulmonary bypass. DESIGN Animal case study. SETTING Medical laboratory. SUBJECTS Crossbred piglets (5-7 kg). INTERVENTIONS Piglets were cooled with cardiopulmonary bypass to 18 degrees C followed by deep hypothermic circulatory arrest for 120 mins. Animals were rewarmed to 38 degrees C on cardiopulmonary bypass and maintained for 120 mins. Six animals were administered calpain inhibitor (Z-Leu-Leu-Tyr-fluoromethyl ketone; 1 mg/kg, intravenously) 60 mins before cardiopulmonary bypass. Nine animals were administered saline as a control. Plasma endothelin-1, pulmonary and hemodynamic function, and markers of leukocyte activity and injury were measured. MEASUREMENTS AND MAIN RESULTS Calpain inhibition prevented the increased pulmonary vascular resistance seen in control animals (95.7 +/- 39.4 vs. 325.3 +/- 83.6 dyne.sec/cm, respectively, 120 mins after cardiopulmonary bypass and deep hypothermic circulatory arrest, p = .05). The attenuation in pulmonary vascular resistance was associated with a blunted plasma endothelin-1 response (4.91 +/- 1.72 pg/mL with calpain inhibition vs. 10.66 +/- 6.21 pg/mL in controls, p < .05). Pulmonary function after cardiopulmonary bypass was better maintained after calpain inhibition compared with controls: Po2/Fio2 ratio (507.2 +/- 46.5 vs. 344.7 +/- 140.5, respectively, p < .05) and alveolar-arterial gradient (40.0 +/- 17.2 vs. 128.1 +/- 85.2 mm Hg, respectively, p < .05). Systemic oxygen delivery was higher after calpain inhibition compared with controls (759 +/- 171 vs. 277 +/- 46 mL/min, respectively, p < .001). In addition, endothelial nitric oxide synthase activity in lung tissue was maintained with calpain inhibition. CONCLUSIONS The reduction in plasma endothelin-1 and maintenance of lung endothelial nitric oxide levels after cardiopulmonary bypass and deep hypothermic circulatory arrest with calpain inhibition were associated with reduced pulmonary vascular resistance. Improved gas exchange and higher systemic oxygen delivery suggest that calpain inhibition may be advantageous for reducing postoperative cardiopulmonary dysfunction commonly associated with pediatric heart surgery and cardiopulmonary bypass.
Collapse
Affiliation(s)
- Jodie Y Duffy
- Pediatric Cardiothoracic Surgery, Cincinnati Children's Hospital Medical Center, and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Ma P, Cui X, Wang S, Zhang J, Nishanian EV, Wang W, Wesley RA, Danner RL. Nitric oxide post-transcriptionally up-regulates LPS-induced IL-8 expression through p38 MAPK activation. J Leukoc Biol 2004; 76:278-87. [PMID: 15178710 DOI: 10.1189/jlb.1203653] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Nitric oxide (NO(.-)) contributes to vascular collapse in septic shock and regulates inflammation. Here, we demonstrate in lipopolysaccharide (LPS)-stimulated human THP-1 cells and monocytes that NO(.-) regulates interleukin (IL)-8 and tumor necrosis factor alpha (TNF-alpha) by distinct mechanisms. Dibutyryl-cyclic guanosine 5'-monophosphate (cGMP) failed to simulate NO(.-)-induced increases in TNF-alpha or IL-8 production. In contrast, dibutyryl-cyclic adenosine monophosphate blocked NO(.-)-induced production of TNF-alpha (P=0.009) but not IL-8. NO(.-) increased IL-8 (5.7-fold at 4 h; P=0.04) and TNF-alpha mRNA levels (2.2-fold at 4 h; P=0.037). However, nuclear run-on assays demonstrated that IL-8 transcription was slightly decreased by NO(.-) (P=0.08), and TNF-alpha was increased (P=0.012). Likewise, NO(.-) had no effect on IL-8 promoter activity (P=0.84) as measured by reporter gene assay. In THP-1 cells and human primary monocytes treated with actinomycin D, NO(.-) had no effect on TNF-alpha mRNA stability (P>0.3 for both cell types) but significantly stabilized IL-8 mRNA (P=0.001 for both cell types). Because of its role in mRNA stabilization, the p38 mitogen-activated protein kinase (MAPK) pathway was examined and found to be activated by NO(.-) in LPS-treated THP-1 cells and human monocytes. Further, SB202190, a p38 MAPK inhibitor, was shown to block NO(.-)-induced stabilization of IL-8 mRNA (P<0.02 for both cell types). Thus, NO(.-) regulates IL-8 but not TNF-alpha post-transcriptionally. IL-8 mRNA stabilization by NO(.-) is independent of cGMP and at least partially dependent on p38 MAPK activation.
Collapse
Affiliation(s)
- Penglin Ma
- Bldg. 10, Rm. 7D43, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Shultz MA, Zhang L, Gu YZ, Baker GL, Fannuchi MV, Padua AM, Gurske WA, Morin D, Penn SG, Jovanovich SB, Plopper CG, Buckpitt AR. Gene expression analysis in response to lung toxicants: I. Sequencing and microarray development. Am J Respir Cell Mol Biol 2004; 30:296-310. [PMID: 12947022 DOI: 10.1165/rcmb.2003-0214oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
A key challenge in measuring gene expression changes in the lung in response to site-selective toxicants is differentiating between target and nontarget areas. The toxicity for the cytotoxicant 1-nitronaphthalene is highly localized in the airway epithelium. Target cells comprise but a fraction of the total lung cell mass; measurements from whole lung homogenates are not likely to reflect what occurs at the target site. Additionally, the use of generic microarrays to measure expression in airway epithelium may not provide a good representation of transcripts present at the site of toxic action. cDNA libraries from airway and alveolar subcompartments of rat lung were sequenced for the development of a custom microarray representative of these lung regions. We identified 7,460 nonredundant rat lung sequences. Nearly 30% of the sequences on this array are not present on the Affymetrix Rat GeneChip 230. A 20,000-element microarray was developed that delineates differences in gene expression between subcompartments. This is the first in a series of articles employing this microarray for detecting gene expression changes during acute injury produced by 1-nitronaphthalene and subsequent repair.
Collapse
Affiliation(s)
- Michael A Shultz
- Global Research, American Biosciences (SV) Corp., Sunnyvale, California, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lee JW, Ovadia B, Azakie A, Salas S, Goerke J, Fineman JR, Gutierrez JA. Increased pulmonary blood flow does not alter surfactant protein gene expression in lambs within the first week of life. Am J Physiol Lung Cell Mol Physiol 2004; 286:L1237-43. [PMID: 14751849 DOI: 10.1152/ajplung.00271.2003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neonates and infants with congenital heart disease with increased pulmonary blood flow suffer morbidity from poor oxygenation and decreased lung compliance. In a previous experiment involving 4-wk-old lambs with pulmonary hypertension secondary to increased pulmonary blood flow following an in utero placement of an aortopulmonary vascular graft, we found a decrease in surfactant protein (SP)-A gene expression as well as a decrease in SP-A and SP-B protein contents. To determine the timing of these changes, the objective of the present study was to characterize the effect of increased pulmonary blood flow and pulmonary hypertension on SP-A, -B, and -C gene expressions and protein contents within the first week of life. Of eight fetal lambs that underwent the in utero placement of the shunt, there was no difference in the expression of SP-A, -B, and -C mRNA levels or SP-A and -B protein contents compared with age-matched controls. The results showed that, in this model of congenital heart disease with pulmonary hypertension and increased pulmonary blood flow, the effect of the shunt on SP gene expression and protein content was not apparent within the first week of life.
Collapse
Affiliation(s)
- Jae W Lee
- Department of Anesthesiology, University of California, CA 94143, USA.
| | | | | | | | | | | | | |
Collapse
|