1
|
Imoto S, Suzukawa M, Takada K, Watanabe S, Igarashi S, Kitani M, Nagase T, Ohta K. Immunoglobulin A promotes IL-6 and IL-8 production, proliferation, and migration by the human bronchial smooth muscle cells. Cell Immunol 2022; 381:104612. [PMID: 36130412 DOI: 10.1016/j.cellimm.2022.104612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/24/2022] [Accepted: 09/11/2022] [Indexed: 11/03/2022]
Abstract
Immunoglobulin A (IgA) is important in biological defense, mainly in the mucosal area, and plays pathogenic roles in various diseases by activating both inflammatory and structural cells. The current study aimed to validate the effects of IgA on the human bronchial smooth muscle cell (BSMC), which plays a major role in airway inflammation and remodeling. Serum IgA induced interleukin (IL)-6 and IL-8 production at both mRNA and protein levels, and enhanced cell proliferation and migration by the BSMCs. The synthetic phenotype markers were regulated and the contractile phenotype markers were downregulated by serum IgA. Mitogen-activated protein kinase, phosphatidylinositol 3-kinase/Akt, and nuclear factor-κB pathways were involved in IgA-induced IL-6 and IL-8 production. The BSMCs expressed transferrin receptor (TfR), and TfR siRNA transfection inhibited IL-6 and IL-8 production by serum IgA. In summary, serum IgA is a potent activator of the BSMCs at least partially via TfR.
Collapse
Affiliation(s)
- Sahoko Imoto
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan; Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Maho Suzukawa
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan.
| | - Kazufumi Takada
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan; Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Shizuka Watanabe
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan; Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Sayaka Igarashi
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan
| | - Masashi Kitani
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan
| | - Takahide Nagase
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Ken Ohta
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan; Japan Anti-Tuberculosis Association, JATA Fukujuji Hospital, 3-1-24 Matsuyama, Kiyose-City, Tokyo 204-8522, Japan.
| |
Collapse
|
2
|
LTD4 and TGF-β1 Induce the Expression of Metalloproteinase-1 in Chronic Rhinosinusitis via a Cysteinyl Leukotriene Receptor 1-Related Mechanism. SINUSITIS 2016. [DOI: 10.3390/sinusitis1010065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
3
|
Rydell-Törmänen K, Risse PA, Kanabar V, Bagchi R, Czubryt MP, Johnson JR. Smooth muscle in tissue remodeling and hyper-reactivity: airways and arteries. Pulm Pharmacol Ther 2012; 26:13-23. [PMID: 22561160 DOI: 10.1016/j.pupt.2012.04.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 04/20/2012] [Accepted: 04/23/2012] [Indexed: 01/17/2023]
Abstract
Smooth muscle comprises a key functional component of both the airways and their supporting vasculature. Dysfunction of smooth muscle contributes to and exacerbates a host of breathing-associated pathologies such as asthma, chronic obstructive pulmonary disease and pulmonary hypertension. These diseases may be marked by airway and/or vascular smooth muscle hypertrophy, proliferation and hyper-reactivity, and related conditions such as fibrosis and extracellular matrix remodeling. This review will focus on the contribution of airway or vascular smooth dysfunction to common airway diseases.
Collapse
|
4
|
Girodet PO, Ozier A, Bara I, Tunon de Lara JM, Marthan R, Berger P. Airway remodeling in asthma: new mechanisms and potential for pharmacological intervention. Pharmacol Ther 2011; 130:325-37. [PMID: 21334378 DOI: 10.1016/j.pharmthera.2011.02.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 02/02/2011] [Indexed: 01/10/2023]
Abstract
The chronic inflammatory response within the airways of asthmatics is associated with structural changes termed airway remodeling. This remodeling process is a key feature of severe asthma. The 5-10% of patients with a severe form of the disease account for the higher morbidity and health costs related to asthma. Among the histopathological characteristics of airway remodeling, recent reports indicate that the increased mass of airway smooth muscle (ASM) plays a critical role. ASM cell proliferation in severe asthma implicates a gallopamil-sensitive calcium influx and the activation of calcium-calmodulin kinase IV leading to enhanced mitochondrial biogenesis through the activation of various transcription factors (PGC-1α, NRF-1 and mt-TFA). The altered expression and function of sarco/endoplasmic reticulum Ca(2+) pump could play a role in ASM remodeling in moderate to severe asthma. Additionally, aberrant communication between an injured airway epithelium and ASM could also contribute to disease severity. Airway remodeling is insensitive to corticosteroids and anti-leukotrienes whereas the effect of monoclonal antibodies (the anti-IgE omalizumab, the anti-interleukin-5 mepolizumab or anti-tumor necrosis factor-alpha) remains to be investigated. This review focuses on potential new therapeutic strategies targeting ASM cells, especially Ca(2+) and mitochondria-dependent pathways.
Collapse
|
5
|
Role of versican, hyaluronan and CD44 in ovarian cancer metastasis. Int J Mol Sci 2011; 12:1009-29. [PMID: 21541039 PMCID: PMC3083686 DOI: 10.3390/ijms12021009] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 01/28/2011] [Accepted: 01/29/2011] [Indexed: 12/18/2022] Open
Abstract
There is increasing evidence to suggest that extracellular matrix (ECM) components play an active role in tumor progression and are an important determinant for the growth and progression of solid tumors. Tumor cells interfere with the normal programming of ECM biosynthesis and can extensively modify the structure and composition of the matrix. In ovarian cancer alterations in the extracellular environment are critical for tumor initiation and progression and intra-peritoneal dissemination. ECM molecules including versican and hyaluronan (HA) which interacts with the HA receptor, CD44, have been shown to play critical roles in ovarian cancer metastasis. This review focuses on versican, HA, and CD44 and their potential as therapeutic targets for ovarian cancer.
Collapse
|
6
|
Ricciardelli C, Sakko AJ, Ween MP, Russell DL, Horsfall DJ. The biological role and regulation of versican levels in cancer. Cancer Metastasis Rev 2009; 28:233-45. [PMID: 19160015 DOI: 10.1007/s10555-009-9182-y] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Increased expression of the proteoglycan, versican is strongly associated with poor outcome for many different cancers. Depending on the cancer type, versican is expressed by either the cancer cells themselves or by stromal cells surrounding the tumor. Versican plays diverse roles in cell adhesion, proliferation, migration and angiogenesis, all features of invasion and metastasis. These wide ranging functions have been attributed to the central glycosaminoglycan-binding region of versican, and to the N-(G1) and C-(G3) terminal globular domains which collectively interact with a large number of extracellular matrix and cell surface structural components. Here we review the recently identified mechanisms responsible for the regulation of versican expression and the biological roles that versican plays in cancer invasion and metastasis. The regulation of versican expression may represent one mechanism whereby cancer cells alter their surrounding microenvironment to facilitate the malignant growth and invasion of several tumor types. A greater understanding of the regulation of versican expression may contribute to the development of therapeutic methods to inhibit versican function and tumor invasion.
Collapse
Affiliation(s)
- Carmela Ricciardelli
- Research Centre for Reproductive Health, Discipline of Obstetrics and Gynaecology, University of Adelaide, Adelaide, SA, 5005, Australia.
| | | | | | | | | |
Collapse
|
7
|
Bossé Y, Stankova J, Rola-Pleszczynski M. Cysteinyl-leukotrienes in asthmatic airway smooth muscle cell hyperplasia. Ann Allergy Asthma Immunol 2009; 102:16-21. [PMID: 19205280 DOI: 10.1016/s1081-1206(10)60102-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To present a historic perspective and an up-to-date understanding of the involvement of cysteinyl-leukotrienes (cys-LTs) in asthmatic airway smooth muscle (ASM) cell hyperplasia. DATA SOURCES Data collected from human tissues, from animal models of airway inflammation, and from ASM cells cultured in vitro are included. STUDY SELECTION All studies regarding the potential contribution of cys-LTs on ASM cell hyperplasia are reviewed. RESULTS Whereas in vivo observations are consistent and seem to attribute an important role for cys-LTs in ASM cell hyperplasia, the observations made in cultured ASM cells are inconsistent, with studies documenting a mitogenic potential only reporting marginal effects. CONCLUSION This dichotomy between in vitro and in vivo results led to the elaboration of a hypothesis suggesting that the mitogenic effect of cys-LTs on ASM cells may be indirect and mediated by a paracrine loop involving transforming growth factor beta1 production by airway resident and inflammatory cells.
Collapse
Affiliation(s)
- Ynuk Bossé
- The James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research, Providence Health Care/St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | |
Collapse
|
8
|
Clarke DL, Dakshinamurti S, Larsson AK, Ward JE, Yamasaki A. Lipid metabolites as regulators of airway smooth muscle function. Pulm Pharmacol Ther 2008; 22:426-35. [PMID: 19114116 DOI: 10.1016/j.pupt.2008.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 11/18/2008] [Accepted: 12/10/2008] [Indexed: 02/02/2023]
Abstract
Compelling evidence identifies airway smooth muscle (ASM) not only as a target but also a cellular source for a diverse range of mediators underlying the processes of airway narrowing and airway hyperresponsiveness in diseases such as asthma. These include the growing family of plasma membrane phospholipid-derived polyunsaturated fatty acids broadly characterised by the prostaglandins, leukotrienes, lipoxins, isoprostanes and lysophospholipids. In this review, we describe the enzymatic and non-enzymatic biosynthetic pathways of these lipid mediators and how these are influenced by drug treatment, oxidative stress and airways disease. Additionally, we outline their cognate receptors, many of which are expressed by ASM. We describe potential deleterious and protective roles for these lipid mediators in airway inflammatory and remodelling processes by describing their effects on diverse functions of ASM in asthma that have the potential to contribute to asthma pathogenesis and symptoms. These functions include contractile tone development, cytokine and extracellular matrix production, and cellular proliferation and migration.
Collapse
Affiliation(s)
- Deborah L Clarke
- Respiratory Pharmacology, National Heart and Lung Institute, Imperial College, London, UK
| | | | | | | | | |
Collapse
|
9
|
Burgess JK, Ceresa C, Johnson SR, Kanabar V, Moir LM, Nguyen TTB, Oliver BGG, Schuliga M, Ward J. Tissue and matrix influences on airway smooth muscle function. Pulm Pharmacol Ther 2008; 22:379-87. [PMID: 19135163 DOI: 10.1016/j.pupt.2008.12.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 11/14/2008] [Accepted: 12/10/2008] [Indexed: 01/01/2023]
Abstract
Asthma is characterized by structural changes in the airways - airway remodelling. These changes include an increase in the bulk of the airway smooth muscle (ASM) and alterations in the profile of extracellular matrix (ECM) proteins in the airway wall. The mechanisms leading to airway remodelling are not well understood. ASM cells have the potential to play a key role in these processes through the production and release of ECM proteins. The ASM cells and ECM proteins are each able to influence the behaviour and characteristics of the other. The modified ECM profile in the asthmatic airway may contribute to the altered behaviour of the ASM cells, such responses to ECM proteins are modulated through the cell surface expression of integrin receptors. ASM cells from asthmatic individuals express different levels of some integrin subunits compared to nonasthmatic ASM cells, which have the potential to further influence their responses to the ECM proteins in the airways. ECM homeostasis requires the presence and activation of matrix metalloproteinases and their tissue inhibitors, which in turn modulate the interaction of the ASM cells and the ECM proteins. Furthermore, the complex interactions of the ASM cells and the ECM in the asthmatic airways and the role played by external stimuli, such as viral infections, to modulate airway remodelling are currently unknown. This review summarises our current understanding of the influence of the ECM on ASM function.
Collapse
Affiliation(s)
- Janette K Burgess
- Discipline of Pharmacology, Bosch Institute, University of Sydney, Sydney, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ammit AJ, Burgess JK, Hirst SJ, Hughes JM, Kaur M, Lau JY, Zuyderduyn S. The effect of asthma therapeutics on signalling and transcriptional regulation of airway smooth muscle function. Pulm Pharmacol Ther 2008; 22:446-54. [PMID: 19022391 DOI: 10.1016/j.pupt.2008.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 10/02/2008] [Accepted: 10/22/2008] [Indexed: 01/11/2023]
Abstract
SCOPE OF THE REVIEW Our knowledge of the multifunctional nature of airway smooth muscle (ASM) has expanded rapidly in the last decade, but the underlying molecular mechanisms and how current therapies for obstructive airway diseases, such as asthma and chronic obstructive pulmonary disease (COPD), affect these are still being elucidated. Our current knowledge has built on the pharmacology of human ASM contraction and relaxation established prior to that and which is reviewed in detail elsewhere in this issue. The advent of methods to isolate and culture ASM cells, especially human ASM cells, has made it possible to study how they may contribute to airway remodelling through their synthetic, proliferative, and migratory capacities. Now the underlying molecular mechanisms of ASM growth factor secretion, extracellular matrix (ECM) production, proliferation and migration, as well as contraction and relaxation, are being determined. A complex network of signalling pathways leading to gene transcription in ASM cells permits this functional plasticity in healthy and diseased airways. This review is an overview of the effects of current therapies, and some of those in development, on key signalling pathways and transcription factors involved in these ASM functions.
Collapse
Affiliation(s)
- Alaina J Ammit
- Respiratory Research Group, Faculty of Pharmacy, University of Sydney, NSW, Australia.
| | | | | | | | | | | | | |
Collapse
|
11
|
He F, Zhang Q, Kuruba R, Gao X, Li J, Li Y, Gong W, Jiang Y, Xie W, Li S. Upregulation of decorin by FXR in vascular smooth muscle cells. Biochem Biophys Res Commun 2008; 372:746-51. [PMID: 18514055 DOI: 10.1016/j.bbrc.2008.05.098] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Accepted: 05/20/2008] [Indexed: 12/31/2022]
Abstract
Decorin is a member of the family of small leucine-rich proteoglycans that are present in blood vessels and synthesized by vascular smooth muscle cells (VSMCs). Decorin plays complex roles in both normal vascular physiology and the pathogenesis of various types of vascular disorders. However, the mechanisms of regulation of decorin expression in vasculature are not clearly understood. Particularly little information is available about a role of nuclear receptors in the regulation of decorin expression. In the present study, we report that activation of vascular FXR by a specific ligand resulted in upregulation of decorin at the levels of both mRNA and protein. FXR appears to induce decorin expression at a transcriptional level because (1) upregulation of decorin mRNA expression was abolished by the treatment of a transcription inhibitor, actinomycin D; and (2) decorin promoter activity was significantly increased by activation of FXR. Functional analysis of human decorin promoter identified an imperfect inverted repeat DNA motif, IR8 (-2313TGGTCAtagtgtcaTGACCT-2294), as a likely FXR-responsive element that is involved in decorin regulation.
Collapse
MESH Headings
- Cells, Cultured
- DNA-Binding Proteins/agonists
- DNA-Binding Proteins/metabolism
- Decorin
- Extracellular Matrix Proteins/genetics
- Gene Expression Regulation
- Humans
- Isoxazoles/pharmacology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Proteoglycans/genetics
- RNA, Messenger/metabolism
- Receptors, Cytoplasmic and Nuclear/agonists
- Receptors, Cytoplasmic and Nuclear/metabolism
- Repetitive Sequences, Nucleic Acid
- Response Elements/drug effects
- Sequence Analysis, DNA
- Transcription Factors/agonists
- Transcription Factors/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Fengtian He
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, 639 Salk Hall, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Bossé Y, Thompson C, McMahon S, Dubois CM, Stankova J, Rola-Pleszczynski M. Leukotriene D4-induced, epithelial cell-derived transforming growth factor beta1 in human bronchial smooth muscle cell proliferation. Clin Exp Allergy 2007; 38:113-21. [PMID: 18028462 DOI: 10.1111/j.1365-2222.2007.02873.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Cysteinyl-leukotrienes (cys-LTs) orchestrate many pathognomonic features of asthma in animal models of allergic airway inflammation, including bronchial smooth muscle cell (BSMC) hyperplasia. However, because cys-LTs alone do not induce mitogenesis in monocultures of human BSMC, the effect observed in vivo seemingly involves indirect mechanisms, which are still undefined. OBJECTIVE This study aims to investigate the regulatory role of leukotriene (LT)D(4) on TGF-beta1 expression in airway epithelial cells and the consequence of this interplay on BSMC proliferation. METHODS HEK293 cells stably transfected with cys-LT receptor 1 (CysLT1) (293LT1) were stimulated with LTD(4) and TGF-beta1 mRNA and protein expression was measured using Northern blot and ELISA, respectively. Conditioned medium (CM) harvested from LTD(4)-treated cells was then assayed for its proliferative effect on primary human BSMC. TGF-beta1 mRNA expression was also determined in tumoural type II pneumocytes A549 and in normal human bronchial epithelial cells (NHBE) following LTD(4) stimulation. RESULTS The results demonstrated that LTD(4)-induced TGF-beta1 mRNA production in a time- and concentration-dependent manner in 293LT1. TGF-beta1 secretion was also up-regulated and CM from LTD(4)-treated 293LT1 was shown to increase BSMC proliferation in a TGF-beta1-dependent manner. The increased expression of TGF-beta1 mRNA by LTD(4) also occured in A549 and NHBE cells via a CysLT1-dependent mechanism. CONCLUSION In conclusion, elevated expression of cys-LTs in asthmatic airways might contribute to BSMC hyperplasia and concomitant clinical features of asthma such as airway hyperresponsiveness via a paracrine loop involving TGF-beta1 production by airway epithelial cells.
Collapse
Affiliation(s)
- Y Bossé
- Department of Pediatrics, Immunology Division, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | | | | | | |
Collapse
|
13
|
Yoshisue H, Kirkham-Brown J, Healy E, Holgate ST, Sampson AP, Davies DE. Cysteinyl leukotrienes synergize with growth factors to induce proliferation of human bronchial fibroblasts. J Allergy Clin Immunol 2006; 119:132-40. [PMID: 17208594 DOI: 10.1016/j.jaci.2006.08.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Revised: 08/21/2006] [Accepted: 08/22/2006] [Indexed: 10/23/2022]
Abstract
BACKGROUND Cysteinyl leukotrienes (cys-LTs) are potent asthma-related mediators that function through their G protein-coupled receptors, cys-LT receptor type 1 (CysLT1R) and cys-LT receptor type 2 (CysLT2R). OBJECTIVE Because many G protein-coupled receptors transactivate the epidermal growth factor receptor (EGFR) through metalloprotease-mediated ligand shedding, we investigated the effects of cys-LTs on signal transduction and proliferation of bronchial fibroblasts. METHODS Human bronchial fibroblasts were grown from biopsy specimens of healthy subjects. Mitogenesis was assessed on the basis of tritiated methylthymidine incorporation. RESULTS Leukotriene (LT) D(4) alone did not increase mitogenesis but dose-dependently increased thymidine incorporation and cell proliferation in the presence of epidermal growth factor (EGF). The enhancement was not prevented by CysLT1R antagonists (MK-571 and montelukast) or by a dual antagonist (BAY u9773), which is consistent with the lack of detectable mRNA for CysLT1R and CysLT2R in bronchial fibroblasts. LTD(4) did not cause EGFR transphosphorylation nor was the synergism blocked by the metalloprotease inhibitor GM6001. The EGFR-selective kinase inhibitor AG1478 suppressed the synergy between LTD(4) and EGF but had no effect on synergistic interactions of LTD(4) with other receptor tyrosine kinase growth factors. The effect of LTD(4) involved a pertussis toxin-sensitive and protein kinase C-mediated intracellular pathway, leading to sustained growth factor-dependent phosphorylation of extracellular signal-regulated kinase 1/2 and protein kinase B (PKB/Akt). CONCLUSION Cys-LTs do not transactivate EGFR but have a broader capability to synergize with receptor tyrosine kinase pathways. CLINICAL IMPLICATIONS This study implies a critical role of cys-LTs in airway fibrosis in asthma and other chronic airway diseases, which might not be blocked by therapy with current LT receptor antagonists.
Collapse
Affiliation(s)
- Hajime Yoshisue
- Division of Infection, Inflammation and Repair, University of Southampton School of Medicine, Southampton General Hospital, UK.
| | | | | | | | | | | |
Collapse
|
14
|
Kelly MM, Chakir J, Vethanayagam D, Boulet LP, Laviolette M, Gauldie J, O'Byrne PM. Montelukast treatment attenuates the increase in myofibroblasts following low-dose allergen challenge. Chest 2006; 130:741-53. [PMID: 16963671 DOI: 10.1378/chest.130.3.741] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
RATIONALE Airway remodeling is believed to be important in the pathophysiology of asthma, and myofibroblasts are increased in the airways of asthmatic individuals 24 h after allergen challenge. Leukotriene receptor antagonists exert antiinflammatory activity in asthma, but it is unknown whether they influence indices of airway remodeling. In the present study, we evaluated the effect of montelukast on airway myofibroblasts following low-dose allergen challenge (LDAC). METHODS Stable subjects with mild asthma were included in a two-center, randomized, parallel-group study. A 2-week run-in period was followed by LDAC and endobronchial biopsy. Subjects were then randomized to receive either montelukast, 10 mg/d, or placebo (n = 10 in each group) for 8 weeks in a double-blind manner; at the end of the treatment period, subjects underwent a second LDAC and endobronchial biopsy. The effect of treatment on myofibroblasts, fibroblasts, and inflammatory cells was examined using electron microscopy techniques. RESULTS Treatment with montelukast showed no significant difference by comparison with placebo but did show a significant within-group treatment-related decrease in airway wall myofibroblasts not seen in the placebo group. In addition, the montelukast-treated group also showed a significant within-group reduction in lymphomononuclear cells and increased neutrophils. CONCLUSIONS The results suggest that montelukast has an inhibitory effect on airway structural cells that play a key role in airway remodeling in allergic airway inflammation, and that montelukast may be a useful therapy to attenuate airway remodeling in asthma.
Collapse
Affiliation(s)
- Margaret M Kelly
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
15
|
Lazaar AL, Panettieri RA. Airway smooth muscle as a regulator of immune responses and bronchomotor tone. Clin Chest Med 2006; 27:53-69, vi. [PMID: 16543052 DOI: 10.1016/j.ccm.2005.10.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The traditional view of airway smooth muscle (ASM) in asthma, as a purely contractile tissue, seems to be inadequate. Compelling evidence now suggests that ASM plays an important role in regulating bronchomotor tone, in perpetuating airway inflammation, and in remodeling of the airways. This article reviews three distinct functions of ASM cells: the process of excitation-contraction coupling, with a particular focus on the role of cytokines in modulating calcium responses; the processes of smooth muscle cell proliferation and migration; and the synthetic and immunomodulatory function of ASM cells. This article also discusses how altered synthetic function contributes to airway remodeling.
Collapse
Affiliation(s)
- Aili L Lazaar
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania Medical Center, BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104-6160, USA.
| | | |
Collapse
|
16
|
Current World Literature. Curr Opin Allergy Clin Immunol 2006; 6:67-9. [PMID: 16505615 DOI: 10.1097/01.all.0000202355.95779.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Lajoie-Kadoch S, Joubert P, Létuvé S, Halayko AJ, Martin JG, Soussi-Gounni A, Hamid Q. TNF-alpha and IFN-gamma inversely modulate expression of the IL-17E receptor in airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2006; 290:L1238-46. [PMID: 16428271 DOI: 10.1152/ajplung.00301.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The interleukin-17B receptor (IL-17BR) is expressed in a variety of tissues and is upregulated under inflammatory conditions. This receptor binds both its cognate ligand IL-17B and IL-17E/IL-25, a novel cytokine known to promote Th2 responses. The present study shows that airway smooth muscle cells express IL-17BR in vitro and that its expression is upregulated by TNF-alpha and downregulated by IFN-gamma. Our data indicate that TNF-alpha upregulates IL-17BR mainly through nuclear factor-kappaB as assessed with the IkappaB kinase 2 inhibitor AS-602868. In addition, both IFN-gamma and dexamethasone are able to antagonize a TNF-alpha-induced IL-17BR increase in mRNA expression. The mitogen-activated protein kinase kinase inhibitor U0126 totally reversed the inhibition observed with IFN-gamma, suggesting the involvement of the extracellular signal-regulated kinase pathway in this effect. In addition, on stimulation with IL-17E, airway smooth muscle cells increase their expression of ECM components, namely procollagen-alphaI and lumican mRNA. Furthermore, immunohistochemical analysis of biopsies from asthmatic subjects reveals that this receptor is abundant in smooth muscle layers. This is the first report showing IL-17BR receptor in structural cells of the airways. Our results suggest a potential proremodeling effect of IL-17E on airway smooth muscle cells through the induction of ECM and that its receptor is upregulated by proinflammatory conditions.
Collapse
Affiliation(s)
- Stéphane Lajoie-Kadoch
- Meakins-Christie Laboratories, McGill University, 3626 St-Urbain Street, Montreal, Québec, Canada H2X 2P2
| | | | | | | | | | | | | |
Collapse
|
18
|
Affiliation(s)
- Kwan Hyoung Kim
- Department of Internal Medicine The Catholic University of Korea College of Medicine, Korea
| |
Collapse
|
19
|
Pini L, Torregiani C, Martin JG, Hamid Q, Ludwig MS. Airway remodeling in allergen-challenged Brown Norway rats: distribution of proteoglycans. Am J Physiol Lung Cell Mol Physiol 2005; 290:L1052-8. [PMID: 16387756 DOI: 10.1152/ajplung.00122.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Proteoglycans (PG) have important effects on the mechanical properties of tissues and the phenotype of various structural cells. Little is known about changes in PG deposition in the airways in animal models of asthma. We studied changes in PG in the airway wall of Brown Norway rats sensitized to ovalbumin (OA) and exposed to repeated OA challenge. Control (Sal) animals were sensitized and challenged with saline. After the 3rd challenge, animals were killed and lungs fixed in formalin. Tissue sections were incubated with antibodies to the small, leucine-rich PG, decorin, and biglycan and collagen type I. Airways were classified according to basement membrane perimeter length (< or =0.99, 1-2.99, and > or =3 mm). Decorin, biglycan, and collagen type I were increased in the airways of OA vs. Sal rats. Remodeling was most prominent in central airways. The distribution of PG differed with respect to the subepithelial vs. airway smooth muscle (ASM) vs. adventitial layer. Whereas biglycan was readily detected within the ASM, decorin and collagen were detected outside the ASM and especially in the adventitial layer. Differences in the distribution of these molecules within the layers of the airway wall may reflect their specific functional roles.
Collapse
Affiliation(s)
- Laura Pini
- Meakins Christie Labs, 3626 St. Urbain Street, Montreal, QC, Canada
| | | | | | | | | |
Collapse
|
20
|
Stelmach I, Korzeniewska A, Stelmach W, Majak P, Grzelewski T, Jerzynska J. Effects of montelukast treatment on clinical and inflammatory variables in patients with cystic fibrosis. Ann Allergy Asthma Immunol 2005; 95:372-80. [PMID: 16279568 DOI: 10.1016/s1081-1206(10)61156-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND In cystic fibrosis (CF), the inflammatory process contributes to progressive lung tissue damage. Cysteinyl leukotrienes have been found in the sputum of patients with CF at high concentrations sufficient to cause potent biological effects. OBJECTIVE To evaluate the effect of anti-inflammatory treatment with montelukast sodium in patients with CF. METHODS Twenty-six patients aged 6 to 18 years were recruited to this 20-week, randomized, double-blind, placebo-controlled, crossover trial. Patients received montelukast or placebo for 8 weeks in addition to their regular CF treatment. Before and after treatment, findings from spirometry, whole-body plethysmography, and the clinical wheezing and cough scales were evaluated. At the same time, serum and sputum samples were obtained for the measurement of eosinophil cationic protein, interleukin 10 (IL-10), IL-8, and myeloperoxidase levels. RESULTS Twenty-three patients completed the study. Compared with placebo use, montelukast treatment significantly improved forced expiratory volume in I second, peak expiratory flow, and forced expiratory flow between 25% and 75% and significantly decreased cough and wheezing scale scores (P < .001 for all). There were no significant changes in vital capacity, thoracic gas volume, airway resistance, and residual volume after treatment. Compared with placebo use, montelukast treatment decreased serum and sputum levels of eosinophil cationic protein and IL-8, decreased sputum levels of myeloperoxidase, and increased serum and sputum levels of IL-10 (P < .001 for all). CONCLUSIONS Montelukast may have measurable anti-inflammatory properties in patients with CF.
Collapse
Affiliation(s)
- Iwona Stelmach
- Department of Pediatrics and Allergy, M Curie Hospital, Zgierz, Poland.
| | | | | | | | | | | |
Collapse
|
21
|
Kumasawa F, Hashimoto S, Onose A, Jibiki I, Mizumura K, Matsumoto K, Maruoka S, Gon Y, Kobayashi T, Takahashi N, Ichijo H, Horie T. Apoptosis signal-regulating kinase 1 in leukotriene D(4)-induced activator protein-1 activation in airway smooth muscle cells. Eur J Pharmacol 2005; 517:11-6. [PMID: 15970283 DOI: 10.1016/j.ejphar.2005.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Revised: 04/29/2005] [Accepted: 05/05/2005] [Indexed: 10/25/2022]
Abstract
Cysteinyl leukotrienes (LTs) are involved in allergic disorders including bronchial asthma. Transcription factor activator protein-1 (AP-1) activation is essential for cell proliferation and differentiation. LTD(4) is shown to promote human airway smooth muscle cell proliferation; however, the effect of LTD(4) on AP-1 activation in airway smooth muscle cells and the molecular mechanism in regulating AP-1 activation have not been determined. We examined the effect LTD(4) on AP-1 activation in human airway smooth muscle cells and analyzed a role of apoptosis signal-regulating kinase1 (ASK1), an upstream kinase kinase of c-Jun-NH(2)-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) in LTD(4)-induced AP-1 activation to clarify the signaling molecule regulating AP-1 activation. The results showed that LTD(4) induced AP-1 activation determined by AP-1-dependent luciferase gene activity and ASK1 phosphorylation. Transient transfection of the dominant negative form of ASK1 attenuated LTD(4)-induced AP-1 activation. In addition, LTD(4)-induced AP-1 activity was depressed in the dominant negative form of ASK1-stably transfected porcine artery endothelial cells compared to that in the parental porcine artery endothelial cells. These results indicate that LTD(4) is capable of inducing AP-1 activation and ASK1 regulates AP-1 activation in LTD(4)-stimulated airway smooth muscle cells.
Collapse
Affiliation(s)
- Fumio Kumasawa
- Division of Respiratory Medicine, Department of Internal Medicine Nihon University School of Medicine, 30-1 Oyaguchikamimachi, Itabashi-ku, Tokyo 173-8610, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW This overview summarizes some the more recent studies of remodeling in patients with asthma, studies using animal models to study the interaction of cell types and mediators, and studies using in vitro models to assess the effects of mitogenic stimuli, including mechanical strain, on mesenchymal cells and extracellular matrix proteins. The aim is to demonstrate how the term remodeling is becoming increasingly less specific as reductionism is applied to this field of study. RECENT FINDINGS Specific areas of recent interest include plasticity of airway smooth muscle and fibroblast phenotype; the role of the extracellular matrix and its relation to the function of the airway smooth muscle and the mechanical properties of the airway wall; mitogenic stimuli arising from damaged epithelium, fibroblasts, smooth muscle cells, mast cells, eosinophils, and mechanical stress; extracellular and intracellular signaling in fibroblasts and smooth muscle cells; and therapeutic targets among the many pathways of remodeling-pathways that may be distinct from those involved in inflammation. The potential functional consequences of some of these findings call into question the role of remodeling. In some respects, it may represent a continuum from inflammation to scarring, but it may also be a protective response to altered airway mechanics caused by ongoing tissue damage or by abnormal airway structure present from early in life. SUMMARY The diverse areas of research in this field are increasingly making the term remodeling as useful (or not) as the word asthma, because both can be used to describe simultaneously a large number of processes that may or may not be related to each other.
Collapse
Affiliation(s)
- Alan James
- West Australian Sleep Disorders Research Institute, Queen Elizabeth II Medical Centre, School of Medicine and Pharmacology, University of Western Australia, Perth, Australia.
| |
Collapse
|
23
|
Howarth PH, Knox AJ, Amrani Y, Tliba O, Panettieri RA, Johnson M. Synthetic responses in airway smooth muscle. J Allergy Clin Immunol 2004; 114:S32-50. [PMID: 15309017 DOI: 10.1016/j.jaci.2004.04.041] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Human airway smooth muscle (ASM) has several properties and functions that contribute to asthma pathogenesis, and increasing attention is being paid to its synthetic capabilities. ASM can promote the formation of the interstitial extracellular matrix, and in this respect, ASM from asthmatic subjects compared with normal subjects responds differently, both qualitatively and quantitatively. Thus, ASM cells are important regulating cells that potentially contribute to the known alterations within the extracellular matrix in asthma. In addition, through integrin-directed signaling, extracellular matrix components can alter the proliferative, survival, and cytoskeletal synthetic function of ASM cells. ASM also functions as a rich source of biologically active chemokines and cytokines that are capable of perpetuating airway inflammation in asthma and chronic obstructive pulmonary disease by promoting recruitment, activation, and trafficking of inflammatory cells in the airway milieu. Emerging evidence shows that airway remodeling may also be a result of the autocrine action of secreted inflammatory mediators, including T(H)2 cytokines, growth factors, and COX-2-dependent prostanoids. Finally, ASM cells contain both beta(2)-adrenergic receptors and glucocorticoid receptors and may represent a key target for beta(2)-adrenergic receptor agonist/corticosteroid interactions. Combinations of long-acting beta(2)-agonists and corticosteroids appear to have additive and/or synergistic effects in inhibiting inflammatory mediator release and the migration and proliferation of ASM cells.
Collapse
Affiliation(s)
- Peter H Howarth
- Respiratory Cell and Molecular Biology, Southampton General Hospital, Southampton, United Kingdom.
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
The proteoglycan versican is one of several extracellular matrix (ECM) molecules that accumulate in lesions of atherosclerosis and restenosis. Its unique structural features create a highly interactive molecule that binds growth factors, enzymes, lipoproteins, and a variety of other ECM components to influence fundamental events involved in vascular disease. Versican is one of the principal genes that is upregulated after vascular injury and is a prominent component in stented and nonstented restenotic lesions. The synthesis of versican is highly regulated by specific growth factors and cytokines and the principal source of versican is the smooth muscle cell. Versican interacts with hyaluronan, a long chain glycosaminoglycan, to create expanded viscoelastic pericellular matrices that are required for arterial smooth muscle cell (ASMC) proliferation and migration. Versican is also prominent in advanced lesions of atherosclerosis, at the borders of lipid-filled necrotic cores as well as at the plaque-thrombus interface, suggesting roles in lipid accumulation, inflammation, and thrombosis. Versican influences the assembly of ECM and controls elastic fiber fibrillogenesis, which is of fundamental importance in ECM remodeling during vascular disease. Collectively, these studies highlight the critical importance of this specific ECM component in atherosclerosis and restenosis.
Collapse
Affiliation(s)
- Thomas N Wight
- Department of Vascular Biology, The Hope Heart Institute, 1124 Columbia St, No. 783, Seattle, Wash 98104-2046, USA.
| | | |
Collapse
|