1
|
Lipid-Protein and Protein-Protein Interactions in the Pulmonary Surfactant System and Their Role in Lung Homeostasis. Int J Mol Sci 2020; 21:ijms21103708. [PMID: 32466119 PMCID: PMC7279303 DOI: 10.3390/ijms21103708] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Pulmonary surfactant is a lipid/protein complex synthesized by the alveolar epithelium and secreted into the airspaces, where it coats and protects the large respiratory air–liquid interface. Surfactant, assembled as a complex network of membranous structures, integrates elements in charge of reducing surface tension to a minimum along the breathing cycle, thus maintaining a large surface open to gas exchange and also protecting the lung and the body from the entrance of a myriad of potentially pathogenic entities. Different molecules in the surfactant establish a multivalent crosstalk with the epithelium, the immune system and the lung microbiota, constituting a crucial platform to sustain homeostasis, under health and disease. This review summarizes some of the most important molecules and interactions within lung surfactant and how multiple lipid–protein and protein–protein interactions contribute to the proper maintenance of an operative respiratory surface.
Collapse
|
2
|
Murugaiah V, Tsolaki AG, Kishore U. Collectins: Innate Immune Pattern Recognition Molecules. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1204:75-127. [PMID: 32152944 PMCID: PMC7120701 DOI: 10.1007/978-981-15-1580-4_4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Collectins are collagen-containing C-type (calcium-dependent) lectins which are important pathogen pattern recognising innate immune molecules. Their primary structure is characterised by an N-terminal, triple-helical collagenous region made up of Gly-X-Y repeats, an a-helical coiled-coil trimerising neck region, and a C-terminal C-type lectin or carbohydrate recognition domain (CRD). Further oligomerisation of this primary structure can give rise to more complex and multimeric structures that can be seen under electron microscope. Collectins can be found in serum as well as in a range of tissues at the mucosal surfaces. Mannanbinding lectin can activate the complement system while other members of the collectin family are extremely versatile in recognising a diverse range of pathogens via their CRDs and bring about effector functions designed at the clearance of invading pathogens. These mechanisms include opsonisation, enhancement of phagocytosis, triggering superoxidative burst and nitric oxide production. Collectins can also potentiate the adaptive immune response via antigen presenting cells such as macrophages and dendritic cells through modulation of cytokines and chemokines, thus they can act as a link between innate and adaptive immunity. This chapter describes the structure-function relationships of collectins, their diverse functions, and their interaction with viruses, bacteria, fungi and parasites.
Collapse
Affiliation(s)
- Valarmathy Murugaiah
- College of Health and Life Sciences, Brunel University London, London, UB8 3PH, UK
| | - Anthony G Tsolaki
- College of Health and Life Sciences, Brunel University London, London, UB8 3PH, UK
| | - Uday Kishore
- College of Health and Life Sciences, Brunel University London, London, UB8 3PH, UK.
| |
Collapse
|
3
|
Mittal J, Ponce MG, Gendlina I, Nosanchuk JD. Histoplasma Capsulatum: Mechanisms for Pathogenesis. Curr Top Microbiol Immunol 2019; 422:157-191. [PMID: 30043340 PMCID: PMC7212190 DOI: 10.1007/82_2018_114] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Histoplasmosis, caused by the dimorphic environmental fungus Histoplasma capsulatum, is a major mycosis on the global stage. Acquisition of the fungus by mammalian hosts can be clinically silent or it can lead to life-threatening systemic disease, which can occur in immunologically intact or deficient hosts, albeit severe disease is more likely in the setting of compromised cellular immunity. H. capsulatum yeast cells are highly adapted to the mammalian host as they can effectively survive within intracellular niches in select phagocytic cells. Understanding the biological response by both the host and H. capsulatum will facilitate improved approaches to prevent and/or modify disease. This review presents our current understanding of the major pathogenic mechanisms involved in histoplasmosis.
Collapse
Affiliation(s)
- Jamie Mittal
- Department of Medicine (Infectious Diseases), Montefiore Medical Center, Bronx, NY, USA
| | - Maria G Ponce
- Department of Medicine (Infectious Diseases), Montefiore Medical Center, Bronx, NY, USA
| | - Inessa Gendlina
- Department of Medicine (Infectious Diseases), Albert Einstein College of Medicine, Bronx, NY, USA
| | - Joshua D Nosanchuk
- Department of Medicine (Infectious Diseases), Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
4
|
Watson A, Phipps MJS, Clark HW, Skylaris CK, Madsen J. Surfactant Proteins A and D: Trimerized Innate Immunity Proteins with an Affinity for Viral Fusion Proteins. J Innate Immun 2018; 11:13-28. [PMID: 30293076 PMCID: PMC6738215 DOI: 10.1159/000492974] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/16/2018] [Indexed: 12/20/2022] Open
Abstract
Innate recognition of viruses is an essential part of the immune response to viral pathogens. This is integral to the maintenance of healthy lungs, which are free from infection and efficient at gaseous exchange. An important component of innate immunity for identifying viruses is the family of C-type collagen-containing lectins, also known as collectins. These secreted, soluble proteins are pattern recognition receptors (PRRs) which recognise pathogen-associated molecular patterns (PAMPs), including viral glycoproteins. These innate immune proteins are composed of trimerized units which oligomerise into higher-order structures and facilitate the clearance of viral pathogens through multiple mechanisms. Similarly, many viral surface proteins form trimeric configurations, despite not showing primary protein sequence similarities across the virus classes and families to which they belong. In this review, we discuss the role of the lung collectins, i.e., surfactant proteins A and D (SP-A and SP-D) in viral recognition. We focus particularly on the structural similarity and complementarity of these trimeric collectins with the trimeric viral fusion proteins with which, we hypothesise, they have elegantly co-evolved. Recombinant versions of these innate immune proteins may have therapeutic potential in a range of infectious and inflammatory lung diseases including anti-viral therapeutics.
Collapse
Affiliation(s)
- Alastair Watson
- Child Health, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Maximillian J S Phipps
- Computational Chemistry, Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, United Kingdom
| | - Howard W Clark
- Child Health, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom.,Institute for Life Sciences, University of Southampton, Southampton, United Kingdom.,National Institute for Health Research, Southampton Respiratory Biomedical Research Unit, Southampton Centre for Biomedical Research, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Chris-Kriton Skylaris
- Computational Chemistry, Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, United Kingdom
| | - Jens Madsen
- Child Health, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United .,Institute for Life Sciences, University of Southampton, Southampton, United .,National Institute for Health Research, Southampton Respiratory Biomedical Research Unit, Southampton Centre for Biomedical Research, University Hospital Southampton NHS Foundation Trust, Southampton, United
| |
Collapse
|
5
|
Souza BMPS, Lambert SM, Nishi SM, Saldaña GF, Oliveira GGS, Vieira LS, Madruga CR, Almeida MAO. Collectins and galectins in the abomasum of goats susceptible and resistant to gastrointestinal nematode infection. VETERINARY PARASITOLOGY- REGIONAL STUDIES AND REPORTS 2017; 12:99-105. [PMID: 31014818 DOI: 10.1016/j.vprsr.2017.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 12/04/2017] [Accepted: 12/07/2017] [Indexed: 10/18/2022]
Abstract
Originally described in cattle, conglutinin belongs to the collectin family and is involved in innate immune defense. It is thought that conglutinin provides the first line of defense by maintaining a symbiotic relationship with the microbes in the rumen while inhibiting inflammatory reactions caused by antibodies leaking into the bloodstream. Due to the lack of information on the similar lectins and sequence detection in goats, we characterized the goat conglutinin gene using RACE and evaluated the differences in its gene expression profile, as well as in the gene expression profiles for surfactant protein A, galectins 14 and 11, interleukin 4 and interferon-gamma in goats. We used Saanen and Anglo Nubian F2 crossbred goats monitored over a period of four months and characterized them as resistant (R) or susceptible (S) based on the average values of EPG counts. Goat conglutinin was similar to bovine conglutinin, but its gene expression varied among different tissues. However, as with bovine conglutinin, it was most highly expressed in the liver. Variation in conglutinin (R=24.3±3.9; S=23.5±2.6, p=0.059), protein surfactant A (R=23.8±5.2, S=24.4±2.3, p=0.16), galectin 14 (R=15.9±3.5, S=14.7±6.2, p=0.49) and galectin l1 gene expression (R=25.4±2.6, S=25.8±3.7, p=0.53) was not significant between groups. However, there were weak correlations between interleukin 4 and the protein surfactant A gene (r=0.459, p=0.02) and between interleukin 4 and galectin 11 (r=0.498, p=0.01). Strong correlation between interferon-gamma and galectin 14 (r=0.744, p=0.00) was observed. Galectin 14 was negatively correlated with the number of nematodes in the goat (r=-0.416, p=0.04) as well as the EPG count (r=-0.408, p=0.04). This is the first study to date that identifies the gene expression of conglutinin, surfactant protein A and galectins 14 and 11 in the goat abomasum. In conclusion, we present evidence that lectin is involved in the immune response to gastrointestinal nematodes, which suggests that collectins and galectins are involved in the molecular recognition of helminths.
Collapse
Affiliation(s)
- Bárbara M P S Souza
- Laboratory of Cellular and Molecular Biology, School of Veterinary Medicine and Animal Science, Federal University of Bahia, Salvador, BA, Brazil.
| | - Sabrina M Lambert
- Laboratory of Cellular and Molecular Biology, School of Veterinary Medicine and Animal Science, Federal University of Bahia, Salvador, BA, Brazil
| | - Sandra M Nishi
- Laboratory of Cellular and Molecular Biology, School of Veterinary Medicine and Animal Science, Federal University of Bahia, Salvador, BA, Brazil
| | - Gustavo F Saldaña
- Institute for Research on Genetic Engineering and Molecular Biology (INGEBI-CONICET), Laboratory of Molecular Biology of Chagas Disease, Buenos Aires, Argentina
| | - Geraldo G S Oliveira
- Laboratory of Cellular and Molecular Immunology, Research Center of Gonçalo Muniz, Fiocruz, BA, Brazil
| | - Luis S Vieira
- National Research Center of Goats and Sheep, Embrapa, Sobral, CE, Brazil
| | - Claudio R Madruga
- Laboratory of Cellular and Molecular Biology, School of Veterinary Medicine and Animal Science, Federal University of Bahia, Salvador, BA, Brazil
| | - Maria Angela O Almeida
- Laboratory of Cellular and Molecular Biology, School of Veterinary Medicine and Animal Science, Federal University of Bahia, Salvador, BA, Brazil
| |
Collapse
|
6
|
Abstract
The discovery of an ever-expanding plethora of coding and non-coding RNAs with nodal and causal roles in the regulation of lung physiology and disease is reinvigorating interest in the clinical utility of the oligonucleotide therapeutic class. This is strongly supported through recent advances in nucleic acids chemistry, synthetic oligonucleotide delivery and viral gene therapy that have succeeded in bringing to market at least three nucleic acid-based drugs. As a consequence, multiple new candidates such as RNA interference modulators, antisense, and splice switching compounds are now progressing through clinical evaluation. Here, manipulation of RNA for the treatment of lung disease is explored, with emphasis on robust pharmacological evidence aligned to the five pillars of drug development: exposure to the appropriate tissue, binding to the desired molecular target, evidence of the expected mode of action, activity in the relevant patient population and commercially viable value proposition.
Collapse
|
7
|
Carreto-Binaghi LE, Aliouat EM, Taylor ML. Surfactant proteins, SP-A and SP-D, in respiratory fungal infections: their role in the inflammatory response. Respir Res 2016; 17:66. [PMID: 27250970 PMCID: PMC4888672 DOI: 10.1186/s12931-016-0385-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/25/2016] [Indexed: 12/20/2022] Open
Abstract
Pulmonary surfactant is a complex fluid that comprises phospholipids and four proteins (SP-A, SP-B, SP-C, and SP-D) with different biological functions. SP-B, SP-C, and SP-D are essential for the lungs’ surface tension function and for the organization, stability and metabolism of lung parenchyma. SP-A and SP-D, which are also known as pulmonary collectins, have an important function in the host’s lung immune response; they act as opsonins for different pathogens via a C-terminal carbohydrate recognition domain and enhance the attachment to phagocytic cells or show their own microbicidal activity by increasing the cellular membrane permeability. Interactions between the pulmonary collectins and bacteria or viruses have been extensively studied, but this is not the same for fungal pathogens. SP-A and SP-D bind glucan and mannose residues from fungal cell wall, but there is still a lack of information on their binding to other fungal carbohydrate residues. In addition, both their relation with immune cells for the clearance of these pathogens and the role of surfactant proteins’ regulation during respiratory fungal infections remain unknown. Here we highlight the relevant findings associated with SP-A and SP-D in those respiratory mycoses where the fungal infective propagules reach the lungs by the airways.
Collapse
Affiliation(s)
- Laura Elena Carreto-Binaghi
- Laboratorio de Inmunología de Hongos, Unidad de Micología, Departamento de Microbiología-Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM); Circuito Interior, Ciudad Universitaria, Av. Universidad 3000, México, D.F., 04510, Mexico
| | - El Moukhtar Aliouat
- Laboratoire Biologie et Diversité des Pathogènes Eucaryotes Emergents, CIIL Institut Pasteur de Lille, Bâtiment Guérin, 1 rue du Professeur Calmette, Lille, France
| | - Maria Lucia Taylor
- Laboratorio de Inmunología de Hongos, Unidad de Micología, Departamento de Microbiología-Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM); Circuito Interior, Ciudad Universitaria, Av. Universidad 3000, México, D.F., 04510, Mexico.
| |
Collapse
|
8
|
Thawer S, Auret J, Schnoeller C, Chetty A, Smith K, Darby M, Roberts L, Mackay RM, Whitwell HJ, Timms JF, Madsen J, Selkirk ME, Brombacher F, Clark HW, Horsnell WGC. Surfactant Protein-D Is Essential for Immunity to Helminth Infection. PLoS Pathog 2016; 12:e1005461. [PMID: 26900854 PMCID: PMC4763345 DOI: 10.1371/journal.ppat.1005461] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 01/28/2016] [Indexed: 11/26/2022] Open
Abstract
Pulmonary epithelial cell responses can enhance type 2 immunity and contribute to control of nematode infections. An important epithelial product is the collectin Surfactant Protein D (SP-D). We found that SP-D concentrations increased in the lung following Nippostrongylus brasiliensis infection; this increase was dependent on key components of the type 2 immune response. We carried out loss and gain of function studies of SP-D to establish if SP-D was required for optimal immunity to the parasite. N. brasiliensis infection of SP-D-/- mice resulted in profound impairment of host innate immunity and ability to resolve infection. Raising pulmonary SP-D levels prior to infection enhanced parasite expulsion and type 2 immune responses, including increased numbers of IL-13 producing type 2 innate lymphoid cells (ILC2), elevated expression of markers of alternative activation by alveolar macrophages (alvM) and increased production of the type 2 cytokines IL-4 and IL-13. Adoptive transfer of alvM from SP-D-treated parasite infected mice into naïve recipients enhanced immunity to N. brasiliensis. Protection was associated with selective binding by the SP-D carbohydrate recognition domain (CRD) to L4 parasites to enhance their killing by alvM. These findings are the first demonstration that the collectin SP-D is an essential component of host innate immunity to helminths. Infections by parasitic worms are very common, and controlling them is a major medical and veterinary challenge. Very few drugs exist to treat them, and the parasites can develop resistance to these. In order to find new ways to control worm infections, understanding how our immune system responds to them is essential. Many important parasitic worm infections move through the host lung. In this study we show that a major secreted protein in the lung, Surfactant Protein D (SP-D), is essential for immunity to a parasitic worm infection. We found that this protein binds to worm larvae in the lung to help the immune system kill them. Infecting mice that do not express SP-D with worms demonstrates SP-D is important in this immune response. These mice are unable to launch an effective anti-worm immune response and have many more worms in their intestine compared to mice that do express SP-D. We also show that if we increase SP-D levels in the lung the mouse has better immunity to worms. Together this shows for the first time that SP-D is very important for immunity to worm infections.
Collapse
Affiliation(s)
- Sumaiyya Thawer
- Institute of Infectious Disease and Molecular Medicine, International Centre for Genetic Engineering and Biotechnology and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Jennifer Auret
- Institute of Infectious Disease and Molecular Medicine, International Centre for Genetic Engineering and Biotechnology and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Corinna Schnoeller
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Alisha Chetty
- Institute of Infectious Disease and Molecular Medicine, International Centre for Genetic Engineering and Biotechnology and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Katherine Smith
- Institute of Infectious Disease and Molecular Medicine, International Centre for Genetic Engineering and Biotechnology and Division of Immunology, University of Cape Town, Cape Town, South Africa
- Institute of Infection and Immunity, University of Cardiff, Cardiff, United Kingdom
| | - Matthew Darby
- Institute of Infectious Disease and Molecular Medicine, International Centre for Genetic Engineering and Biotechnology and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Luke Roberts
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Rosie-Marie Mackay
- Clinical & Experimental Sciences Academic Unit, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Harry J. Whitwell
- Cancer Proteomics, Institute for Women’s Health, University College London, London, United Kingdom
| | - John F. Timms
- Cancer Proteomics, Institute for Women’s Health, University College London, London, United Kingdom
| | - Jens Madsen
- Clinical & Experimental Sciences Academic Unit, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Murray E. Selkirk
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Frank Brombacher
- Institute of Infectious Disease and Molecular Medicine, International Centre for Genetic Engineering and Biotechnology and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Howard William Clark
- Clinical & Experimental Sciences Academic Unit, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
- * E-mail: (HWC); (WGCH)
| | - William G. C. Horsnell
- Institute of Infectious Disease and Molecular Medicine, International Centre for Genetic Engineering and Biotechnology and Division of Immunology, University of Cape Town, Cape Town, South Africa
- * E-mail: (HWC); (WGCH)
| |
Collapse
|
9
|
Nayak A, Dodagatta-Marri E, Tsolaki AG, Kishore U. An Insight into the Diverse Roles of Surfactant Proteins, SP-A and SP-D in Innate and Adaptive Immunity. Front Immunol 2012; 3:131. [PMID: 22701116 PMCID: PMC3369187 DOI: 10.3389/fimmu.2012.00131] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 05/07/2012] [Indexed: 01/20/2023] Open
Abstract
Surfactant proteins SP-A and SP-D are hydrophilic, collagen-containing calcium-dependent lectins, which appear to have a range of innate immune functions at pulmonary as well as extrapulmonary sites. These proteins bind to target ligands on pathogens, allergens, and apoptotic cells, via C-terminal homotrimeric carbohydrate recognition domains, while the collagen region brings about the effector functions via its interaction with cell surface receptors. SP-A and SP-D deal with various pathogens, using a range of innate immune mechanisms such as agglutination/aggregation, enhancement of phagocytosis, and killing mechanisms by phagocytic cells and direct growth inhibition. SP-A and SP-D have also been shown to be involved in the control of pulmonary inflammation including allergy and asthma. Emerging evidence suggest that SP-A and SP-D are capable of linking innate immunity with adaptive immunity that includes modulation of dendritic cell function and helper T cell polarization. This review enumerates immunological properties of SP-A and SP-D inside and outside lungs and discusses their importance in human health and disease.
Collapse
Affiliation(s)
- Annapurna Nayak
- Centre for Infection, Immunity and Disease Mechanisms, School of Health Sciences and Social Care, Brunel University London, UK
| | | | | | | |
Collapse
|
10
|
Wuhrer M, Koeleman CAM, Deelder AM, Hokke CH. Repeats of LacdiNAc and fucosylated LacdiNAc on N-glycans of the human parasite Schistosoma mansoni. FEBS J 2006; 273:347-61. [PMID: 16403022 DOI: 10.1111/j.1742-4658.2005.05068.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
N-Glycans from glycoproteins of the worm stage of the human parasite Schistosoma mansoni were enzymatically released, fluorescently labelled and analysed using various mass spectrometric and chromatographic methods. A family of 28 mainly core-alpha1-6-fucosylated, diantennary N-glycans of composition Hex(3-4)HexNAc(6-12)Fuc(1-6) was found to carry dimers of N,N'-diacetyllactosediamine [LacdiNAc or LDN; GalNAc(beta1-4)GlcNAc(beta1-] with or without fucose alpha1-3-linked to the N-acetylglucosamine residues in the antennae {GalNAc(beta1-4)[+/-Fuc(alpha1-3)]GlcNAc(beta1-3)GalNAc(beta1-4)[+/-Fuc(alpha1-3)]GlcNAc(beta1-}. To date, oligomeric LDN and oligomeric fucosylated LDN (LDNF) have been found only on N-glycans from mammalian cells engineered to express Caenorhabditis elegansbeta4-GalNAc transferase and human alpha3-fucosyltransferase IX [Z. S. Kawar et al. (2005) J Biol Chem280, 12810-12819]. It now appears that LDN(F) repeats can also occur in a natural system such as the schistosome parasite. Like monomeric LDN and LDNF, the dimeric LDN(F) moieties found here are expected to be targets of humoral and cellular immune responses during schistosome infection.
Collapse
Affiliation(s)
- Manfred Wuhrer
- Biomolecular Mass Spectrometry Unit, Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, The Netherlands.
| | | | | | | |
Collapse
|
11
|
Cambi A, Figdor CG. Levels of complexity in pathogen recognition by C-type lectins. Curr Opin Immunol 2005; 17:345-51. [PMID: 15950451 PMCID: PMC7127008 DOI: 10.1016/j.coi.2005.05.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Accepted: 05/25/2005] [Indexed: 12/23/2022]
Abstract
In pathogen recognition by C-type lectins, several levels of complexity can be distinguished; these might modulate the immune response in different ways. Firstly, the pathogen-associated molecular pattern repertoire expressed at the microbial surface determines the interactions with specific receptors. Secondly, each immune cell type possesses a specific set of pathogen-recognition receptors. Thirdly, changes in the cell-surface distribution of C-type lectins regulate carbohydrate binding by modulating receptor affinity for different ligands. Crosstalk between these receptors results in a network of multimolecular complexes, adding a further level of complexity in pathogen recognition.
Collapse
|
12
|
Abstract
Schistosome glycans induce characteristic innate immune responses in the infected host. The molecular aspects of these responses, the pathways and receptors as well as the schistosome glycans and glycoconjugates involved, form an area of intense research. The relevant schistosome glycan elements and the possible mechanisms through which they act on the innate immune system are discussed in this review.
Collapse
Affiliation(s)
- C H Hokke
- Department of Parasitology, Centre of Infectious Diseases, Leiden University Medical Centre, Leiden, the Netherlands.
| | | |
Collapse
|
13
|
Abstract
The year 2004 represents a milestone for the biosensor research community: in this year, over 1000 articles were published describing experiments performed using commercially available systems. The 1038 papers we found represent an approximately 10% increase over the past year and demonstrate that the implementation of biosensors continues to expand at a healthy pace. We evaluated the data presented in each paper and compiled a 'top 10' list. These 10 articles, which we recommend every biosensor user reads, describe well-performed kinetic, equilibrium and qualitative/screening studies, provide comparisons between binding parameters obtained from different biosensor users, as well as from biosensor- and solution-based interaction analyses, and summarize the cutting-edge applications of the technology. We also re-iterate some of the experimental pitfalls that lead to sub-optimal data and over-interpreted results. We are hopeful that the biosensor community, by applying the hints we outline, will obtain data on a par with that presented in the 10 spotlighted articles. This will ensure that the scientific community at large can be confident in the data we report from optical biosensors.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|