1
|
Huff RD, El-Bittar N, Watts ER, Yoon M, Afshar T, Wiehler S, Mookherjee N, Rider CF, Proud D, Carlsten C. Increased rhinovirus replication following corticosteroid and air pollution exposures. ENVIRONMENTAL RESEARCH 2025; 281:121970. [PMID: 40436198 DOI: 10.1016/j.envres.2025.121970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/29/2025] [Accepted: 05/25/2025] [Indexed: 06/01/2025]
Abstract
Respiratory tract infections have been linked to air pollution exposure, and both are known exogenous risk factors of asthma exacerbations. The current frontline therapy used to minimize exacerbations are inhaled corticosteroids (ICS), but these medications increase the risk of respiratory tract infections in patients due to immunosuppressive side-effects. Virally-triggered exacerbations are most commonly associated with rhinovirus, and the ICS fluticasone propionate (FP) has been demonstrated to increase rhinovirus viral load by 2.5-fold in infected epithelial cells. We hypothesized that air pollution exposure combined with ICS would magnify effects on host-defence antiviral responses and viral replication. Using rhinovirus (RV16), we infected human bronchial epithelial (BEAS-2B) cells that were pre-treated with FP (250 nM) and exposed to diesel exhaust particles (DEP) SRM2975 (50 μg/cm2). We show that DEP exposure significantly increased RV16 viral RNA by 12-fold over untreated cells 24 h post-infection, while FP alone induced a 2-fold rise. However, when combined, FP and DEP induced a significant supra-additive 17-fold increase in RV16 RNA. In addition, we demonstrate that DEP induces the expression of the RV16 entry receptor ICAM-1 through the canonical NF-κB pathway and that suppression of this pathway results in attenuation of RV16 viral expression. Our findings suggest a mechanism through which combined epithelial exposure to DEP and ICS increases RV16 infectivity through the suppression of innate antiviral immune responses and induction of the RV16 entry receptor ICAM-1. These findings suggest a need for caution during periods of high air pollution by those managing chronic lung diseases with corticosteroids.
Collapse
Affiliation(s)
- Ryan D Huff
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, Vancouver Coastal Health Research Institute, The University of British Columbia, The Lung Center, Vancouver General Hospital - Gordon and Leslie Diamond Health Care Centre, 2775 Laurel St. 7th Floor, Vancouver, British Columbia, V5Z 1M9, Canada
| | - Nataly El-Bittar
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, Vancouver Coastal Health Research Institute, The University of British Columbia, The Lung Center, Vancouver General Hospital - Gordon and Leslie Diamond Health Care Centre, 2775 Laurel St. 7th Floor, Vancouver, British Columbia, V5Z 1M9, Canada
| | - Emily R Watts
- University of Edinburgh Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, United Kingdom
| | - Michael Yoon
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, Vancouver Coastal Health Research Institute, The University of British Columbia, The Lung Center, Vancouver General Hospital - Gordon and Leslie Diamond Health Care Centre, 2775 Laurel St. 7th Floor, Vancouver, British Columbia, V5Z 1M9, Canada
| | - Tina Afshar
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, Vancouver Coastal Health Research Institute, The University of British Columbia, The Lung Center, Vancouver General Hospital - Gordon and Leslie Diamond Health Care Centre, 2775 Laurel St. 7th Floor, Vancouver, British Columbia, V5Z 1M9, Canada
| | - Shahina Wiehler
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Neeloffer Mookherjee
- Manitoba Center for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, 799 John Buhler Research Centre 715 McDermot Avenue, Winnipeg, Manitoba, R3E 3P4, Canada
| | - Christopher F Rider
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, Vancouver Coastal Health Research Institute, The University of British Columbia, The Lung Center, Vancouver General Hospital - Gordon and Leslie Diamond Health Care Centre, 2775 Laurel St. 7th Floor, Vancouver, British Columbia, V5Z 1M9, Canada
| | - David Proud
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Chris Carlsten
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, Vancouver Coastal Health Research Institute, The University of British Columbia, The Lung Center, Vancouver General Hospital - Gordon and Leslie Diamond Health Care Centre, 2775 Laurel St. 7th Floor, Vancouver, British Columbia, V5Z 1M9, Canada.
| |
Collapse
|
2
|
Islam KMT, Mahmud S. In-silico exploring pathway and mechanism-based therapeutics for allergic rhinitis: Network pharmacology, molecular docking, ADMET, quantum chemistry and machine learning based QSAR approaches. Comput Biol Med 2025; 187:109754. [PMID: 39908918 DOI: 10.1016/j.compbiomed.2025.109754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 01/07/2025] [Accepted: 01/24/2025] [Indexed: 02/07/2025]
Abstract
Allergic rhinitis is a devastating health complication that interrupts the quality of daily life and significantly affects around 40 % of the population worldwide. Despite the availability of various treatment options, many patients continue to struggle with persistent symptoms and side effects, highlighting the need for innovative therapeutic approaches. Therefore, identifying pathway and mechanism-based targeted therapies with more effective and fewer side effects could aid current therapeutics and provide novel therapeutic advantages. This study aimed to identify potential drug candidates for allergic rhinitis treatment by employing in-silico approaches, including network pharmacology, molecular docking, ADMET, similarity, pharmacophore modeling, quantum chemistry, and machine learning-based QSAR modeling. From three traditionally used medicinal plants known as allergic rhinitis curing, Xanthium strumarium, Magnolia liliiflora, and Tylophora indica, 241 compounds were obtained, and their favorable ADMET properties were analyzed. Network pharmacology revealed 203 potential therapeutic targets, with 15 hub targets identified through protein-protein interaction network analysis and most of them play key roles in inflammatory and immune pathways confirmed by KEGG pathway analysis. Molecular docking, similarity testing, and pharmacophore modeling studies identified promising compounds Quercetin, Yinyanghuo E, Uralenin, CID:90643991, CID:42607537, CID:76329670, Heracetin, and Fisetin exhibiting strong binding affinities with key regulatory targets, NFKB1, TRAF6, and key cytokines IL5, and IL6 that directly and indirectly involved in allergic reactions. Quantum chemistry calculations revealed favorable electronic properties and reactivities of these compounds. The machine learning-based QSAR model predicted IC50 < 50 nM for almost all compounds, indicating highly potent inhibitors. Hence, this in-silico study identified some novel promising drug candidates for treating allergic rhinitis by targeting crucial inflammatory and immune pathways, offering improved treatment outcomes and reduced side effects, subject to further experimental validation.
Collapse
Affiliation(s)
- K M Tanjida Islam
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh
| | - Shahin Mahmud
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh.
| |
Collapse
|
3
|
Chuang CH, Tai YA, Wu TJ, Ho YJ, Yeh SL. Quercetin attenuates cisplatin-induced fatigue through mechanisms associated with the regulation of the HPA axis and MCP-1 signaling. Front Nutr 2025; 12:1530132. [PMID: 39949542 PMCID: PMC11821496 DOI: 10.3389/fnut.2025.1530132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
Introduction Cancer-related fatigue (CRF) is a common symptom induced by chemotherapy. The main objective of the present study was to investigate whether quercetin regulates the hypothalamic-pituitary-adrenal (HPA) axis and chemoattractant protein-1 (MCP-1) signaling, two factors contributing to CRF in mice exposed to cisplatin. Methods Male BALB/c mice were randomly assigned to the following five groups for 15 weeks: Control, CDDP, CDDP+TAK779 (an antagonist of MCP-1 receptor, human CC chemokine receptor R2 (CCR2)), CDDP+OQ (a diet containing 1% quercetin) and CDDP+IQ (quercetin given by ip, 10 mg/kg, 3 times/week). Results The results first showed that OQ and IQ significantly increased grip strength and locomotor activity, decreased plasma cortisol/corticosterone levels, and decreased the corticotropin releasing hormone (CRH) mRNA level in the brain tissues in mice exposed to CDDP. OQ and IQ also decreased CDDP-induced plasma levels of MCP-1 as well as the mRNA expression of MCP-1 and CCR2 in the brain stem. TAK779 significantly increased grip strength and tended to decrease the cortisol/corticosterone levels in CDDP-exposed mice, indicating the association between the HPA axis and MCP-1 signaling. Conclusion Taken together, the study suggests that quercetin could attenuate CDDP-induced CRF through the mechanisms associated with downregulation of the HPA axis and MCP-1 signaling in mice.
Collapse
Affiliation(s)
| | - Yu-An Tai
- Department of Nutritional Science, Chung Shan Medical University, Taichung, Taiwan
| | - Ting-Jing Wu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ying-Jui Ho
- Department of Psychology, Chung Shan Medical University, Taichung, Taiwan
| | - Shu-Lan Yeh
- Department of Nutritional Science, Chung Shan Medical University, Taichung, Taiwan
- Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
4
|
Liao W, Tran QTN, Peh HY, Chan CCMY, Fred Wong WS. Natural Products for the Management of Asthma and COPD. Handb Exp Pharmacol 2025; 287:175-205. [PMID: 38418669 DOI: 10.1007/164_2024_709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Chronic airway inflammatory diseases like asthma, chronic obstructive pulmonary disease (COPD), and their associated exacerbations cause significant socioeconomic burden. There are still major obstacles to effective therapy for controlling severe asthma and COPD progression. Advances in understanding the pathogenesis of the two diseases at the cellular and molecular levels are essential for the development of novel therapies. In recent years, significant efforts have been made to identify natural products as potential drug leads for treatment of human diseases and to investigate their efficacy, safety, and underlying mechanisms of action. Many major active components from various natural products have been extracted, isolated, and evaluated for their pharmacological efficacy and safety. For the treatment of asthma and COPD, many promising natural products have been discovered and extensively investigated. In this chapter, we will review a range of natural compounds from different chemical classes, including terpenes, polyphenols, alkaloids, fatty acids, polyketides, and vitamin E, that have been demonstrated effective against asthma and/or COPD and their exacerbations in preclinical models and clinical trials. We will also elaborate in detail their underlying mechanisms of action unraveled by these studies and discuss new opportunities and potential challenges for these natural products in managing asthma and COPD.
Collapse
Affiliation(s)
- Wupeng Liao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), National University of Singapore, Singapore, Singapore
| | - Quy T N Tran
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), National University of Singapore, Singapore, Singapore
- Drug Discovery and Optimization Platform (DDOP), Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - Hong Yong Peh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Christabel Clare M Y Chan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
- Drug Discovery and Optimization Platform (DDOP), Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - W S Fred Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore.
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), National University of Singapore, Singapore, Singapore.
- Drug Discovery and Optimization Platform (DDOP), Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore.
| |
Collapse
|
5
|
Zhang R, Qiu X, He C, Deng R, Huo C, Fang B. From Life's Essential 8 to metabolic syndrome: insights from NHANES database and network pharmacology analysis of quercetin. Front Nutr 2024; 11:1452374. [PMID: 39434897 PMCID: PMC11491958 DOI: 10.3389/fnut.2024.1452374] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/17/2024] [Indexed: 10/23/2024] Open
Abstract
Background Metabolic syndrome (MetS), or syndrome X, is a collection of metabolic illnesses that affect the body's health, particularly insulin resistance and obesity. The prevalence of MetS is on the rise, particularly among younger individuals. Quercetin, a natural flavonoid found in many traditional Chinese medicines, can impact various pathways to disrupt the pathological advancement of MetS with few negative effects. The American Heart Association recently introduced a cardiovascular health assessment termed Life's Essential 8 (LE8), which might impact the treatment of MetS. Methods Quercetin targets and their functions in MetS pathways were identified using a network pharmacology method and molecular docking techniques. The study examined quercetin's direct and indirect interactions with proteins linked to the pathogenic processes of MetS. Data were collected regarding the American Heart Association's LE8 cardiovascular health indicators, which include health behaviors (diet, physical activity, nicotine exposure, and sleep) and health factors (body mass index, non-high-density lipoprotein cholesterol, blood glucose, and blood pressure). The study assessed the connection between LE8 and the occurrence of MetS, taking into account dietary quercetin consumption as a variable of interest. Results The negative correlation between MetS and LE8 indicates that individuals with higher LE8 scores are less likely to develop MetS. Individuals in the fully adjusted highest group (LE8 ≥ 80) demonstrated a 79% lower likelihood of developing MetS than those in the lowest group (OR = 0.21; 95% CI, 0.17-0.26, p < 0.0001). Network pharmacology and molecular docking results show that quercetin may exert its therapeutic effects by modulating various biological response processes, including those related to xenobiotic stimuli, bacterial molecules, lipopolysaccharides, and oxidative stimuli. These processes involve key pathways associated with diabetic complications, such as the AGE-RAGE signaling pathway, pathways related to diabetic complications, and pathways involved in lipids and atherosclerosis. Therefore, quercetin may reduce cardiovascular risk, improve glucose-lipid metabolism, and alleviate insulin resistance and other biological processes by influencing multiple aspects of the lipid profile, blood glucose, and insulin resistance, ultimately impacting the links between LE8 score and MetS. Conclusion This study discovered that an optimal LE8 score is a marker of adopting a lifestyle of wellness and is connected with a reduced likelihood of developing MetS. Quercetin acts on core targets such as IL6, BCL2, TP53, IL1B, MAPK1, and CCL2, and then plays a therapeutic role in regulating lipid metabolism, anti-inflammation, immunomodulation, autophagy, etc., through the pathways of diabetic complications, lipids, atherosclerosis, etc., and has the characteristics of multi-targets, multi-pathways, and multi-functions in regulating interventions for MetS.
Collapse
Affiliation(s)
- Runze Zhang
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiuxiu Qiu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenming He
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rou Deng
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenxing Huo
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bangjiang Fang
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
6
|
Ahmed SI, Jamil S, Ismatullah H, Hussain R, Bibi S, Khandaker MU, Naveed A, Idris AM, Emran TB. A comprehensive perspective of traditional Arabic or Islamic medicinal plants as an adjuvant therapy against COVID-19. Saudi J Biol Sci 2023; 30:103561. [PMID: 36684115 PMCID: PMC9838045 DOI: 10.1016/j.sjbs.2023.103561] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/09/2022] [Accepted: 01/08/2023] [Indexed: 01/15/2023] Open
Abstract
COVID-19 is a pulmonary disease caused by SARS-CoV-2. More than 200 million individuals are infected by this globally. Pyrexia, coughing, shortness of breath, headaches, diarrhoea, sore throats, and body aches are among the typical symptoms of COVID-19. The virus enters into the host body by interacting with the ACE2 receptor. Despite many SARS-CoV-2 vaccines manufactured by distinct strategies but any evidence-based particular medication to combat COVID-19 is not available yet. However, further research is required to determine the safety and effectiveness profile of the present therapeutic approaches. In this study, we provide a summary of Traditional Arabic or Islamic medicinal (TAIM) plants' historical use and their present role as adjuvant therapy for COVID-19. Herein, six medicinal plants Aloe barbadensis Miller, Olea europaea, Trigonella foenum-graecum, Nigella sativa, Cassia angustifolia, and Ficus carica have been studied based upon their pharmacological activities against viral infections. These plants include phytochemicals that have antiviral, immunomodulatory, antiasthmatic, antipyretic, and antitussive properties. These bioactive substances could be employed to control symptoms and enhance the development of a possible COVID-19 medicinal synthesis. To determine whether or if these TAIMs may be used as adjuvant therapy and are appropriate, a detailed evaluation is advised.
Collapse
Affiliation(s)
- Shabina Ishtiaq Ahmed
- Department of Plant Biotechnology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), 44000, Islamabad, Pakistan
- The Standard College for Girls, 3/530 Paris Road, Sialkot Pakistan
| | - Sehrish Jamil
- The Standard College for Girls, 3/530 Paris Road, Sialkot Pakistan
| | - Humaira Ismatullah
- School of Interdisciplinary Engineering & Sciences (SINES), National University of Sciences and Technology (NUST), 44000 Islamabad, Pakistan
| | - Rashid Hussain
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China
| | - Mayeen Uddin Khandaker
- Center for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Bandar Sunway 47500, Selangor, Malaysia
| | - Aisha Naveed
- Caribbean Medical University, Willemastad, Curacao-Caribbean Island, Curaçao
| | - Abubakr M. Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 62529, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| |
Collapse
|
7
|
Alam SB, Wagner A, Willows S, Kulka M. Quercetin and Resveratrol Differentially Decrease Expression of the High-Affinity IgE Receptor (FcεRI) by Human and Mouse Mast Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196704. [PMID: 36235240 PMCID: PMC9573482 DOI: 10.3390/molecules27196704] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022]
Abstract
Mast cells (MC) synthesize and store proinflammatory mediators and are centrally important in atopic diseases such as asthma and atopic dermatitis. Quercetin a and resveratrol are plant derived polyphenolic compounds with anti-inflammatory properties that inhibit MC degranulation and mediator release. However, the underlying mechanism of these inhibitory effects on MC is poorly understood and it is unclear whether this is a general effect on all MC phenotypes. We have characterized and compared the effects of quercetin with resveratrol on human (LAD2) and mouse (MC/9 and BMMC) MC mediator release, receptor expression and FcεRI signaling to better understand the mechanisms involved in quercetin and resveratrol-mediated inhibition of MC activation. Quercetin significantly decreased the expression of FcεRI by BMMC and MC/9, although the effects on MC/9 were associated with a significant reduction in cell viability. Quercetin also inhibited antigen-stimulated TNF release by BMMC. Although neither quercetin nor resveratrol significantly altered antigen-stimulated BMMC degranulation or downstream signaling events such as phosphorylation of spleen tyrosine kinase (SYK) or extracellular signal-regulated kinase 1/2 (ERK), resveratrol inhibited ERK phosphorylation and FcεRI- stimulated degranulation in LAD2. Our data suggests that quercetin and resveratrol inhibit human and mouse MC differentially and that these effects are associated with modification of FcεRI expression, signaling (phosphorylation of SYK and ERK) and mediator release.
Collapse
Affiliation(s)
- Syed Benazir Alam
- Nanotechnology Research Center, National Research Council, Edmonton, AB T6G 2M9, Canada
- Correspondence:
| | - Ashley Wagner
- Nanotechnology Research Center, National Research Council, Edmonton, AB T6G 2M9, Canada
| | - Steven Willows
- Nanotechnology Research Center, National Research Council, Edmonton, AB T6G 2M9, Canada
| | - Marianna Kulka
- Nanotechnology Research Center, National Research Council, Edmonton, AB T6G 2M9, Canada
- Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
8
|
Kröber T, Bartsch SM, Fiedler D. Pharmacological tools to investigate inositol polyphosphate kinases - Enzymes of increasing therapeutic relevance. Adv Biol Regul 2021; 83:100836. [PMID: 34802993 DOI: 10.1016/j.jbior.2021.100836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 01/01/2023]
Abstract
Inositol poly- and pyrophosphates (InsPs and PP-InsPs) are a group of central eukaryotic metabolites and signaling molecules. Due to the diverse cellular functions and widespread diseases InsPs and PP-InsPs are associated with, pharmacological targeting of the kinases involved in their biosynthesis has become a significant research interest in the last decade. In particular, the development of inhibitors for inositol hexakisphosphate kinases (IP6Ks) has leaped forward, while other inositol phosphate kinases have received scant attention. This review summarizes the efforts undertaken so far for discovering potent and selective inhibitors for this diverse group of small molecule kinases. The benefits of pharmacological inhibition are highlighted, given the multiple kinase-independent functions of inositol phosphate kinases. The distinct structural families of InsP and PP-InsP kinases are presented, and we discuss how compound availability for different inositol phosphate kinase families varies drastically. Lead compound discovery and optimization for the inositol kinases would benefit from detailed structural information on the ATP-binding sites of these kinases, as well as reliable biochemical and cellular read-outs to monitor inositol phosphate kinase activity in complex settings. Efforts to further tune well-established inhibitors, while simultaneously reviving tool compound development for the more neglected kinases from this family are indisputably worthwhile, considering the large potential therapeutic benefits.
Collapse
Affiliation(s)
- Tim Kröber
- Leibniz Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125, Berlin, Germany; Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Straße 2, 12489, Berlin, Germany.
| | - Simon M Bartsch
- Leibniz Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125, Berlin, Germany; Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Straße 2, 12489, Berlin, Germany.
| | - Dorothea Fiedler
- Leibniz Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125, Berlin, Germany; Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Straße 2, 12489, Berlin, Germany.
| |
Collapse
|
9
|
Beigoli S, Behrouz S, Memarzia A, Ghasemi SZ, Boskabady M, Marefati N, Kianian F, Khazdair MR, El-Seedi H, Boskabady MH. Effects of Allium cepa and Its Constituents on Respiratory and Allergic Disorders: A Comprehensive Review of Experimental and Clinical Evidence. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5554259. [PMID: 34552650 PMCID: PMC8452398 DOI: 10.1155/2021/5554259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/10/2021] [Accepted: 08/30/2021] [Indexed: 11/27/2022]
Abstract
The health benefits of Allium cepa (A. cepa) have been proclaimed for centuries. Various pharmacological and therapeutic effects on respiratory, allergic, and immunologic disorders are shown by A. cepa and its constituents. Flavonoids such as quercetin and kaempferol, alk(en)yl cysteine sulfoxides including S-methyl cysteine sulfoxide and S-propyl cysteine sulfoxide, cycloalliin, thiosulfinates, and sulfides are the main compounds of the plant. A. cepa displays broad-spectrum pharmacological activities including antioxidant, anti-inflammatory, antihypertensive, and antidiabetic effects. Our objective in this review is to present the effects of A. cepa and its constituents on respiratory, allergic, and immunologic disorders. Different online databases were searched to find articles related to the effect of A. cepa extracts and its constituents on respiratory, allergic, and immunologic disorders until the end of December 2020 using keywords such as onion, A. cepa, constituents of A. cepa, therapeutic effects and pharmacological effects, and respiratory, allergic, and immunologic disorders. Extracts and constituents of A. cepa showed tracheal smooth muscle relaxant effects, indicating possible bronchodilator activities or relieving effects on obstructive respiratory diseases. In experimental animal models of different respiratory diseases, the preventive effect of various extracts and constituents of A. cepa was induced by their antioxidant, immunomodulatory, and anti-inflammatory effects. The preventive effects of the plant and its components on lung disorders induced by exposure to noxious agents as well as lung cancer, lung infection, and allergic and immunologic disorders were also indicated in the experimental and clinical studies. Therefore, this review may be considered a scientific basis for development of therapies using this plant, to improve respiratory, allergic, and immunologic disorders.
Collapse
Affiliation(s)
- Sima Beigoli
- Endoscopic and Minimally Invasive Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sepideh Behrouz
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arghavan Memarzia
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyyedeh Zahra Ghasemi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzie Boskabady
- Dental Materials Research Center and Department of Pediatric Dentistry, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pediatric Dentistry, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Marefati
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzaneh Kianian
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Khazdair
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Hesham El-Seedi
- Department of Medicinal Chemistry, Uppsala University, Biomedical Center, Box 574, SE-751 23, Uppsala, Sweden
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Al-Rayan Research and Innovation Center, Al-Rayan Colleges, Medina 42541, Saudi Arabia
| | - Mohammad Hosein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Uncovering Quercetin’s Effects against Influenza A Virus Using Network Pharmacology and Molecular Docking. Processes (Basel) 2021. [DOI: 10.3390/pr9091627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
(1) Background: Re-emerging influenza threats continue to challenge medical and public health systems. Quercetin is a ubiquitous flavonoid found in food and is recognized to possess antioxidant, anti-inflammatory, antiviral, and anticancer activities. (2) Methods: To elucidate the targets and mechanisms underlying the action of quercetin as a therapeutic agent for influenza, network pharmacology and molecular docking were employed. Biological targets of quercetin and target genes associated with influenza were retrieved from public databases. Compound–disease target (C-D) networks were constructed, and targets were further analyzed using KEGG pathway analysis. Potent target genes were retrieved from the compound–disease–pathway (C-D-P) and protein–protein interaction (PPI) networks. The binding affinities between quercetin and the targets were identified using molecular docking. (3) Results: The pathway study revealed that quercetin-associated influenza targets were mainly involved in viral diseases, inflammation-associated pathways, and cancer. Four targets, MAPK1, NFKB1, RELA, and TP53, were identified to be involved in the inhibitory effects of quercetin on influenza. Using the molecular docking method, we evaluated the binding affinity of each ligand (quercetin)–target and discovered that quercetin and MAPK1 showed the strongest calculated binding energy among the four ligand–target complexes. (4) Conclusion: These findings identified potential targets of quercetin and suggest quercetin as a potential drug for influenza treatment.
Collapse
|
11
|
Bousquet J, Cristol JP, Czarlewski W, Anto JM, Martineau A, Haahtela T, Fonseca SC, Iaccarino G, Blain H, Fiocchi A, Canonica GW, Fonseca JA, Vidal A, Choi HJ, Kim HJ, Le Moing V, Reynes J, Sheikh A, Akdis CA, Zuberbier T. Nrf2-interacting nutrients and COVID-19: time for research to develop adaptation strategies. Clin Transl Allergy 2020; 10:58. [PMID: 33292691 PMCID: PMC7711617 DOI: 10.1186/s13601-020-00362-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023] Open
Abstract
There are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, PPARγ:Peroxisome proliferator-activated receptor, NFκB: Nuclear factor kappa B, ERK: Extracellular signal-regulated kinases and eIF2α:Elongation initiation factor 2α). They may as a result be important in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-Angiotensin-II-AT1R axis (AT1R) pathway. Many Nrf2-interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very low COVID-19 mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of COVID-19 severity.
Collapse
Affiliation(s)
- Jean Bousquet
- Department of Dermatology and Allergy, Charité, Universitätsmedizin Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Comprehensive Allergy Center, Berlin, Germany.
- University Hospital Montpellier, 273 avenue d'Occitanie, 34090, Montpellier, France.
- MACVIA-France, Montpellier, France.
| | - Jean-Paul Cristol
- Laboratoire de Biochimie et Hormonologie, PhyMedExp, Université de Montpellier, INSERM, CNRS, CHU, Montpellier, France
| | | | - Josep M Anto
- IMIM (Hospital del Mar Research Institute), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
- ISGlobAL, Barcelona, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
| | - Adrian Martineau
- Institute for Population Health Sciences, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Hospital, and University of Helsinki, Helsinki, Finland
| | - Susana C Fonseca
- GreenUPorto - Sustainable Agrifood Production Research Centre, DGAOT, Faculty of Sciences, University of Porto, Campus de Vairão, Vila do Conde, Portugal
| | - Guido Iaccarino
- Department of Advanced Biomedical Sciences, Federico II University, Napoli, Italy
| | - Hubert Blain
- Department of Geriatrics, Montpellier University Hospital, Montpellier, France
| | - Alessandro Fiocchi
- Division of Allergy, Department of Pediatric Medicine, The Bambino Gesu Children's Research Hospital Holy See, Rome, Italy
| | - G Walter Canonica
- Personalized Medicine Asthma and Allergy Clinic-Humanitas University & Research Hospital, IRCCS, Milano, Italy
| | - Joao A Fonseca
- CINTESIS, Center for Research in Health Technology and Information Systems, Faculdade de Medicina da Universidade do Porto; and Medida,, Lda Porto, Porto, Portugal
| | - Alain Vidal
- World Business Council for Sustainable Development (WBCSD) Maison de la Paix, Geneva, Switzerland
- AgroParisTech-Paris Institute of Technology for Life, Food and Environmental Sciences, Paris, France
| | - Hak-Jong Choi
- Microbiology and Functionality Research Group, Research and Development Division, World Institute of Kimchi, Gwangju, Korea
| | - Hyun Ju Kim
- SME Service Department, Strategy and Planning Division, World Institute of Kimchi, Gwangju, Korea
| | | | - Jacques Reynes
- Maladies Infectieuses et Tropicales, CHU, Montpellier, France
| | - Aziz Sheikh
- The Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh, UK
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Torsten Zuberbier
- Department of Dermatology and Allergy, Charité, Universitätsmedizin Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Comprehensive Allergy Center, Berlin, Germany
| |
Collapse
|
12
|
Abstract
In the following continuation article, the author will expand on how the mechanisms discussed in Part One capitalise on host characteristics to produce the organ specific damage seen in severe coronavirus disease (COVID-19), with specific reference to pulmonary and cardiac manifestations. Pneumonia is the primary manifestation of COVID-19; presentation varies from a mild, self-limiting pneumonitis to a fulminant and progressive respiratory failure. Features of disease severity tend to directly correlate with patient age, with elderly populations faring poorest. Advancing age parallels an increasingly pro-oxidative pulmonary milieu, a consequence of increasing host expression of phospholipase A2 Group IID. Virally induced expression of NADPH oxidase intensifies this pro-oxidant environment. The virus avails of the host response by exploiting caveolin-1 to assist in disabling host defenses and adopting a glycolytic metabolic pathway to self-replicate.
Collapse
|
13
|
Colunga Biancatelli RML, Berrill M, Catravas JD, Marik PE. Quercetin and Vitamin C: An Experimental, Synergistic Therapy for the Prevention and Treatment of SARS-CoV-2 Related Disease (COVID-19). Front Immunol 2020; 11:1451. [PMID: 32636851 PMCID: PMC7318306 DOI: 10.3389/fimmu.2020.01451] [Citation(s) in RCA: 295] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/04/2020] [Indexed: 12/25/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) represents an emergent global threat which is straining worldwide healthcare capacity. As of May 27th, the disease caused by SARS-CoV-2 (COVID-19) has resulted in more than 340,000 deaths worldwide, with 100,000 deaths in the US alone. It is imperative to study and develop pharmacological treatments suitable for the prevention and treatment of COVID-19. Ascorbic acid is a crucial vitamin necessary for the correct functioning of the immune system. It plays a role in stress response and has shown promising results when administered to the critically ill. Quercetin is a well-known flavonoid whose antiviral properties have been investigated in numerous studies. There is evidence that vitamin C and quercetin co-administration exerts a synergistic antiviral action due to overlapping antiviral and immunomodulatory properties and the capacity of ascorbate to recycle quercetin, increasing its efficacy. Safe, cheap interventions which have a sound biological rationale should be prioritized for experimental use in the current context of a global health pandemic. We present the current evidence for the use of vitamin C and quercetin both for prophylaxis in high-risk populations and for the treatment of COVID-19 patients as an adjunct to promising pharmacological agents such as Remdesivir or convalescent plasma.
Collapse
Affiliation(s)
- Ruben Manuel Luciano Colunga Biancatelli
- Division of Pulmonary and Critical Care Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States
- Policlinico Umberto I, La Sapienza University of Rome, Rome, Italy
| | - Max Berrill
- Department of Respiratory Medicine, St. Peter's Hospital, Surrey, United Kingdom
| | - John D. Catravas
- Division of Pulmonary and Critical Care Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States
- School of Medical Diagnostic & Translational Sciences, College of Health Sciences, Old Dominion University, Norfolk, VA, United States
| | - Paul E. Marik
- Division of Pulmonary and Critical Care Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| |
Collapse
|
14
|
Jafarinia M, Sadat Hosseini M, kasiri N, Fazel N, Fathi F, Ganjalikhani Hakemi M, Eskandari N. Quercetin with the potential effect on allergic diseases. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2020; 16:36. [PMID: 32467711 PMCID: PMC7227109 DOI: 10.1186/s13223-020-00434-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 05/07/2020] [Indexed: 02/08/2023]
Abstract
Quercetin is a naturally occurring polyphenol flavonoid which is rich in antioxidants. It has anti-allergic functions that are known for inhibiting histamine production and pro-inflammatory mediators. Quercetin can regulate the Th1/Th2 stability, and decrease the antigen-specific IgE antibody releasing by B cells. Quercetin has a main role in anti-inflammatory and immunomodulatory function which makes it proper for the management of different diseases. Allergic diseases are a big concern and have high health care costs. In addition, the use of current therapies such as ß2-agonists and corticosteroids has been limited for long term use due to their numerous side effects. Since the effect of quercetin on allergic diseases has been widely studied, in the current article, we review the effect of quercetin on allergic diseases, such as allergic asthma, allergic rhinitis (AR), and atopic dermatitis (AD).
Collapse
Affiliation(s)
- Morteza Jafarinia
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Box 8174673461, Isfahan, Iran
| | - Mahnaz Sadat Hosseini
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Box 8174673461, Isfahan, Iran
| | - Neda kasiri
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Box 8174673461, Isfahan, Iran
| | - Niloofar Fazel
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Box 8174673461, Isfahan, Iran
| | - Farshid Fathi
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Box 8174673461, Isfahan, Iran
| | - Mazdak Ganjalikhani Hakemi
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Box 8174673461, Isfahan, Iran
| | - Nahid Eskandari
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Box 8174673461, Isfahan, Iran
- Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
15
|
Li C, Gao L, Zhang Y, Simpson BK. Preparation of Quercetin Loaded Microparticles and their Antitumor Activity against Human Lung Cancer Cells (A549) in vitro. Curr Pharm Biotechnol 2019; 20:945-954. [PMID: 31264544 DOI: 10.2174/1573407215666190628145902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/09/2019] [Accepted: 06/13/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND Novel quercetin-loaded microparticles (QM) were fabricated using coaxial electrospraying, characterized for surface morphology and release profile, and evaluated for antitumor activity in vitro. METHODS QM exhibited an average diameter of 1.69 ±1.13 mm, which was an appropriate size suitable for respiratory delivery. X-ray diffraction patterns showed that the components in QM existed in an amorphous physical form, leading to favorable interactions between the drug (quercetin), the polymer matrix (polyvinylpyrrolidone, PVP) and other excipients (sodium dodecyl sulfate and sucralose). RESULTS QM performed much faster release rate compared with free quercetin powder (Q) in vitro. Furthermore, QM also showed more potent inhibitory effects on A549 cell growth with reduced cell viability, decreased cell migration and induced more G0/G1 phase cell cycle arrest than Q. CONCLUSION Thus, the quercetin loaded microparticles exhibited more potent inhibitory effects than free quercetin on A549 cell. The increased antitumor activity could be attributed to the enhanced accumulation of quercetin in the A549 cells with the QM. However, further studies are necessary to elucidate the exact mechanisms.
Collapse
Affiliation(s)
- Chen Li
- School of Life Science, Shanxi University; No. 92, Wucheng Road, Taiyuan 030006, China
| | - Liufang Gao
- School of Life Science, Shanxi University; No. 92, Wucheng Road, Taiyuan 030006, China
| | - Yi Zhang
- Department of Food Science and Agricultural Chemistry, McGill University (Macdonald Campus); Ste-Anne-de-Bellevue, Québec H9X 3V9, Canada
| | - Benjamin K Simpson
- Department of Food Science and Agricultural Chemistry, McGill University (Macdonald Campus); Ste-Anne-de-Bellevue, Québec H9X 3V9, Canada
| |
Collapse
|
16
|
Cheng SC, Huang WC, S Pang JH, Wu YH, Cheng CY. Quercetin Inhibits the Production of IL-1β-Induced Inflammatory Cytokines and Chemokines in ARPE-19 Cells via the MAPK and NF-κB Signaling Pathways. Int J Mol Sci 2019; 20:ijms20122957. [PMID: 31212975 PMCID: PMC6628093 DOI: 10.3390/ijms20122957] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/08/2019] [Accepted: 06/13/2019] [Indexed: 12/27/2022] Open
Abstract
Quercetin, a bioflavonoid derived from vegetables and fruits, exerts anti-inflammatory effects in various diseases. Our previous study revealed that quercetin could suppress the expression of matrix metalloprotease-9 (MMP-9) and intercellular adhesion molecule-1 (ICAM-1) to achieve anti-inflammatory effects in tumor necrosis factor-α (TNF-α)-stimulated human retinal pigment epithelial (ARPE-19) cells. The present study explored whether quercetin can inhibit the interleukin-1β (IL-1β)-induced production of inflammatory cytokines and chemokines in ARPE-19 cells. Prior to stimulation by IL-1β, ARPE-19 cells were pretreated with quercetin at various concentrations (2.5–20 µM). The results showed that quercetin could dose-dependently decrease the mRNA and protein levels of ICAM-1, IL-6, IL-8 and monocyte chemoattractant protein-1 (MCP-1). It also attenuated the adherence of the human monocytic leukemia cell line THP-1 to IL-1β-stimulated ARPE-19 cells. We also demonstrated that quercetin inhibited signaling pathways related to the inflammatory process, including phosphorylation of mitogen-activated protein kinases (MAPKs), inhibitor of nuclear factor κ-B kinase (IKK)α/β, c-Jun, cAMP response element-binding protein (CREB), activating transcription factor 2 (ATF2) and nuclear factor (NF)-κB p65, and blocked the translocation of NF-κB p65 into the nucleus. Furthermore, MAPK inhibitors including an extracellular signal-regulated kinase (ERK) 1/2 inhibitor (U0126), a p38 inhibitor (SB202190) and a c-Jun N-terminal kinase (JNK) inhibitor (SP600125) decreased the expression of soluble ICAM-1 (sICAM-1), but not ICAM-1. U0126 and SB202190 could inhibit the expression of IL-6, IL-8 and MCP-1, but SP600125 could not. An NF-κB inhibitor (Bay 11-7082) also reduced the expression of ICAM-1, sICAM-1, IL-6, IL-8 and MCP-1. Taken together, these results provide evidence that quercetin protects ARPE-19 cells from the IL-1β-stimulated increase in ICAM-1, sICAM-1, IL-6, IL-8 and MCP-1 production by blocking the activation of MAPK and NF-κB signaling pathways to ameliorate the inflammatory response.
Collapse
Affiliation(s)
- Shu-Chen Cheng
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan 33372, Taiwan.
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Wen-Chung Huang
- Graduate Institute of Health Industry Technology, Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan.
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
| | - Jong-Hwei S Pang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
| | - Yi-Hong Wu
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
- Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan 33372, Taiwan.
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Ching-Yi Cheng
- Graduate Institute of Health Industry Technology, Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan.
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou 33305, Taiwan.
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou 33305, Taiwan.
| |
Collapse
|
17
|
Gu C, Stashko MA, Puhl-Rubio AC, Chakraborty M, Chakraborty A, Frye SV, Pearce KH, Wang X, Shears SB, Wang H. Inhibition of Inositol Polyphosphate Kinases by Quercetin and Related Flavonoids: A Structure-Activity Analysis. J Med Chem 2019; 62:1443-1454. [PMID: 30624931 DOI: 10.1021/acs.jmedchem.8b01593] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dietary flavonoids inhibit certain protein kinases and phospholipid kinases by competing for their ATP-binding sites. These nucleotide pockets have structural elements that are well-conserved in two human small-molecule kinases, inositol hexakisphosphate kinase (IP6K) and inositol polyphosphate multikinase (IPMK), which synthesize multifunctional inositol phosphate cell signals. Herein, we demonstrate that both kinases are inhibited by quercetin and 16 related flavonoids; IP6K is the preferred target. Relative inhibitory activities were rationalized by X-ray analysis of kinase/flavonoid crystal structures; this detailed structure-activity analysis revealed hydrophobic and polar ligand/protein interactions, the degree of flexibility of key amino acid side chains, and the importance of water molecules. The seven most potent IP6K inhibitors were incubated with intact HCT116 cells at concentrations of 2.5 μM; diosmetin was the most selective and effective IP6K inhibitor (>70% reduction in activity). Our data can instruct on pharmacophore properties to assist the future development of inositol phosphate kinase inhibitors. Finally, we propose that dietary flavonoids may inhibit IP6K activity in cells that line the gastrointestinal tract.
Collapse
Affiliation(s)
- Chunfang Gu
- Inositol Signaling Group, Signal Transduction Laboratory , National Institute of Environmental Health Sciences , Research Triangle Park , North Carolina 27709 , United States
| | - Michael A Stashko
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Ana C Puhl-Rubio
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Molee Chakraborty
- Department of Pharmacology and Physiology , Saint Louis University School of Medicine , M370, Schwitalla Hall, 1402 South Grand Boulevard , Saint Louis , Missouri 63104 , United States
| | - Anutosh Chakraborty
- Department of Pharmacology and Physiology , Saint Louis University School of Medicine , M370, Schwitalla Hall, 1402 South Grand Boulevard , Saint Louis , Missouri 63104 , United States
| | - Stephen V Frye
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Kenneth H Pearce
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Xiaodong Wang
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Stephen B Shears
- Inositol Signaling Group, Signal Transduction Laboratory , National Institute of Environmental Health Sciences , Research Triangle Park , North Carolina 27709 , United States
| | - Huanchen Wang
- Inositol Signaling Group, Signal Transduction Laboratory , National Institute of Environmental Health Sciences , Research Triangle Park , North Carolina 27709 , United States
| |
Collapse
|
18
|
Yao M, Fang W, Smart C, Hu Q, Huang S, Alvarez N, Fields P, Cheng N. CCR2 Chemokine Receptors Enhance Growth and Cell-Cycle Progression of Breast Cancer Cells through SRC and PKC Activation. Mol Cancer Res 2018; 17:604-617. [PMID: 30446625 DOI: 10.1158/1541-7786.mcr-18-0750] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/10/2018] [Accepted: 11/12/2018] [Indexed: 12/19/2022]
Abstract
Basal-like breast cancers are an aggressive breast cancer subtype, which often lack estrogen receptor, progesterone receptor, and Her2 expression, and are resistant to antihormonal and targeted therapy, resulting in few treatment options. Understanding the underlying mechanisms that regulate progression of basal-like breast cancers would lead to new therapeutic targets and improved treatment strategies. Breast cancer progression is characterized by inflammatory responses, regulated in part by chemokines. The CCL2/CCR2 chemokine pathway is best known for regulating breast cancer progression through macrophage-dependent mechanisms. Here, we demonstrated important biological roles for CCL2/CCR2 signaling in breast cancer cells. Using the MCF10CA1d xenograft model of basal-like breast cancer, primary tumor growth was significantly increased with cotransplantation of patient-derived fibroblasts expressing high levels of CCL2, and was inhibited with CRISP/R gene ablation of stromal CCL2. CRISP/R gene ablation of CCR2 in MCF10CA1d breast cancer cells inhibited breast tumor growth and M2 macrophage recruitment and validated through CCR2 shRNA knockdown in the 4T1 model. Reverse phase protein array analysis revealed that cell-cycle protein expression was associated with CCR2 expression in basal-like breast cancer cells. CCL2 treatment of basal-like breast cancer cell lines increased proliferation and cell-cycle progression associated with SRC and PKC activation. Through pharmacologic approaches, we demonstrated that SRC and PKC negatively regulated expression of the cell-cycle inhibitor protein p27KIP1, and are necessary for CCL2-induced breast cancer cell proliferation. IMPLICATIONS: This report sheds novel light on CCL2/CCR2 chemokine signaling as a mitogenic pathway and cell-cycle regulator in breast cancer cells.
Collapse
Affiliation(s)
- Min Yao
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Wei Fang
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Curtis Smart
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Qingting Hu
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Shixia Huang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Nehemiah Alvarez
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Patrick Fields
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Nikki Cheng
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas. .,Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
19
|
Tomlinson ML, Butelli E, Martin C, Carding SR. Flavonoids from Engineered Tomatoes Inhibit Gut Barrier Pro-inflammatory Cytokines and Chemokines, via SAPK/JNK and p38 MAPK Pathways. Front Nutr 2017; 4:61. [PMID: 29326940 PMCID: PMC5741681 DOI: 10.3389/fnut.2017.00061] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/24/2017] [Indexed: 12/29/2022] Open
Abstract
Flavonoids are a diverse group of plant secondary metabolites, known to reduce inflammatory bowel disease symptoms. How they achieve this is largely unknown. Our study focuses on the gut epithelium as it receives high topological doses of dietary constituents, maintains gut homeostasis, and orchestrates gut immunity. Dysregulation leads to chronic gut inflammation, via dendritic cell (DC)-driven immune responses. Tomatoes engineered for enriched sets of flavonoids (anthocyanins or flavonols) provided a unique and complex naturally consumed food matrix to study the effect of diet on chronic inflammation. Primary murine colonic epithelial cell-based inflammation assays consist of chemokine induction, apoptosis and proliferation, and effects on kinase pathways. Primary murine leukocytes and DCs were used to assay effects on transmigration. A murine intestinal cell line was used to assay wound healing. Engineered tomato extracts (enriched in anthocyanins or flavonols) showed strong and specific inhibitory effects on a set of key epithelial pro-inflammatory cytokines and chemokines. Chemotaxis assays showed a resulting reduction in the migration of primary leukocytes and DCs. Activation of epithelial cell SAPK/JNK and p38 MAPK signaling pathways were specifically inhibited. The epithelial wound healing-associated STAT3 pathway was unaffected. Cellular migration, proliferation, and apoptosis assays confirmed that wound healing processes were not affected by flavonoids. We show flavonoids target epithelial pro-inflammatory kinase pathways, inhibiting chemotactic signals resulting in reduced leukocyte and DC chemotaxis. Thus, both anthocyanins and flavonols modulate epithelial cells to become hyporesponsive to bacterial stimulation. Our results identify a viable mechanism to explain the in vivo anti-inflammatory effects of flavonoids.
Collapse
Affiliation(s)
- Matthew L. Tomlinson
- Gut Health and Food Safety Research Programme, Quadram Institute, Norwich, United Kingdom
- Martin Laboratory, The John Innes Centre, Norwich, United Kingdom
| | - Eugenio Butelli
- Martin Laboratory, The John Innes Centre, Norwich, United Kingdom
| | - Cathie Martin
- Martin Laboratory, The John Innes Centre, Norwich, United Kingdom
| | - Simon R. Carding
- Gut Health and Food Safety Research Programme, Quadram Institute, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
20
|
Hariri BM, McMahon DB, Chen B, Freund JR, Mansfield CJ, Doghramji LJ, Adappa ND, Palmer JN, Kennedy DW, Reed DR, Jiang P, Lee RJ. Flavones modulate respiratory epithelial innate immunity: Anti-inflammatory effects and activation of the T2R14 receptor. J Biol Chem 2017; 292:8484-8497. [PMID: 28373278 DOI: 10.1074/jbc.m116.771949] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/21/2017] [Indexed: 12/18/2022] Open
Abstract
Chronic rhinosinusitis has a significant impact on patient quality of life, creates billions of dollars of annual healthcare costs, and accounts for ∼20% of adult antibiotic prescriptions in the United States. Because of the rise of resistant microorganisms, there is a critical need to better understand how to stimulate and/or enhance innate immune responses as a therapeutic modality to treat respiratory infections. We recently identified bitter taste receptors (taste family type 2 receptors, or T2Rs) as important regulators of sinonasal immune responses and potentially important therapeutic targets. Here, we examined the immunomodulatory potential of flavones, a class of flavonoids previously demonstrated to have antibacterial and anti-inflammatory effects. Some flavones are also T2R agonists. We found that several flavones inhibit Muc5AC and inducible NOS up-regulation as well as cytokine release in primary and cultured airway cells in response to several inflammatory stimuli. This occurs at least partly through inhibition of protein kinase C and receptor tyrosine kinase activity. We also demonstrate that sinonasal ciliated epithelial cells express T2R14, which closely co-localizes (<7 nm) with the T2R38 isoform. Heterologously expressed T2R14 responds to multiple flavones. These flavones also activate T2R14-driven calcium signals in primary cells that activate nitric oxide production to increase ciliary beating and mucociliary clearance. TAS2R38 polymorphisms encode functional (PAV: proline, alanine, and valine at positions 49, 262, and 296, respectively) or non-functional (AVI: alanine, valine, isoleucine at positions 49, 262, and 296, respectively) T2R38. Our data demonstrate that T2R14 in sinonasal cilia is a potential therapeutic target for upper respiratory infections and that flavones may have clinical potential as topical therapeutics, particularly in T2R38 AVI/AVI individuals.
Collapse
Affiliation(s)
| | | | - Bei Chen
- Department of Otorhinolaryngology-Head and Neck Surgery
| | | | | | | | | | | | | | - Danielle R Reed
- Monell Chemical Senses Center, Philadelphia, Pennsylvania 19104
| | - Peihua Jiang
- Monell Chemical Senses Center, Philadelphia, Pennsylvania 19104
| | - Robert J Lee
- Department of Otorhinolaryngology-Head and Neck Surgery; Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia.
| |
Collapse
|
21
|
Abstract
This review reports on the beneficial pharmacological properties of naturally occurring polyphenols for the treatment of inflammatory pulmonary diseases. In addition, it presents an overview of the different types of inhalable formulations which have been developed in order to achieve efficient delivery of polyphenols to the respiratory tract. The main biological activities of polyphenols (anti-oxidant and anti-inflammatory) are covered, with particular emphasis on the studies describing their therapeutic effects on different factors and conditions characteristic of lung pathologies. Special focus is on the technological aspects which influence the pulmonary delivery of drugs. The various polyphenol-based inhalable formulations reported in the literature are examined with specific attention to the preparation methodologies, aerosol performance, lung deposition and in vitro and in vivo polyphenol uptake by the pulmonary epithelial cells.
Collapse
Affiliation(s)
- Valentina Trotta
- a Department of Chemical and Pharmaceutical Sciences , University of Ferrara , Ferrara , Italy
| | - Santo Scalia
- a Department of Chemical and Pharmaceutical Sciences , University of Ferrara , Ferrara , Italy
| |
Collapse
|
22
|
Chen Y, Islam A, Abraham P, Deuster P. Single-dose oral quercetin improves redox status but does not affect heat shock response in mice. Nutr Res 2014; 34:623-9. [PMID: 25150121 DOI: 10.1016/j.nutres.2014.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/22/2014] [Accepted: 06/09/2014] [Indexed: 01/09/2023]
Abstract
Inflammation and oxidative stress are considered as likely contributors to heat injury. However, their roles in regulating the heat shock response in vivo remain unclear. We tested the hypothesis that acute quercetin treatment would improve redox status and reduce heat shock responses in mice. Mice underwent two heat tests before and after single oral administration of either quercetin (15 mg/kg) or vehicle. We measured physiologic and biochemical responses in mice during and 18 to 22 hours after heat tests, respectively. There were no significant differences in core temperature, heart rate, or blood pressure between quercetin and vehicle groups during heat exposure. Mice with relatively severe hyperthermia during the pretreatment heat test showed a significant trend toward a lower peak core temperature during the heat test after quercetin treatment. Compared with mice not exposed to heat, quercetin-treated mice had significantly lower interleukin 6 (P < .01) and higher superoxide dismutase levels (P < .01), whereas vehicle-treated mice had significantly lower total glutathione and higher 8-isoprostane levels in the circulation after heat exposure. Heat exposure significantly elevated heat shock proteins (HSPs) 72 and 90 and heat shock factor 1 levels in mouse liver, heart, and skeletal muscles, but no significant differences in tissue HSPs and heat shock factor 1 were found between quercetin- and vehicle-treated mice. These results suggest that a single moderate dose of quercetin is sufficient to alter redox status but not heat stress response in mice. Acute adaptations of peripheral tissues to heat stress may not be mediated by systemic inflammatory and redox state in vivo.
Collapse
Affiliation(s)
- Yifan Chen
- Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| | - Aminul Islam
- Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Preetha Abraham
- Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Patricia Deuster
- Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
23
|
Structure-activity association of flavonoids in lung diseases. Molecules 2014; 19:3570-95. [PMID: 24662074 PMCID: PMC6271797 DOI: 10.3390/molecules19033570] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 03/13/2014] [Accepted: 03/17/2014] [Indexed: 12/22/2022] Open
Abstract
Flavonoids are polyphenolic compounds classified into flavonols, flavones, flavanones, isoflavones, catechins, anthocyanidins, and chalcones according to their chemical structures. They are abundantly found in Nature and over 8,000 flavonoids have from different sources, mainly plant materials, have been described. Recently reports have shown the valuable effects of flavonoids as antiviral, anti-allergic, antiplatelet, antitumor, antioxidant, and anti-inflammatory agents and interest in these compounds has been increasing since they can be helpful to human health. Several mechanisms of action are involved in the biological properties of flavonoids such as free radical scavenging, transition metal ion chelation, activation of survival genes and signaling pathways, regulation of mitochondrial function and modulation of inflammatory responses. The anti-inflammatory effects of flavonoids have been described in a number of studies in the literature, but not frequently associated to respiratory disease. Thus, this review aims to discuss the effects of different flavonoids in the control of lung inflammation in some disorders such as asthma, lung emphysema and acute respiratory distress syndrome and the possible mechanisms of action, as well as establish some structure-activity relationships between this biological potential and chemical profile of these compounds.
Collapse
|
24
|
Incorporation of quercetin in respirable lipid microparticles: Effect on stability and cellular uptake on A549 pulmonary alveolar epithelial cells. Colloids Surf B Biointerfaces 2013; 112:322-9. [DOI: 10.1016/j.colsurfb.2013.07.067] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 07/16/2013] [Accepted: 07/31/2013] [Indexed: 12/11/2022]
|
25
|
Polyphenols and their components in experimental allergic asthma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 756:91-8. [PMID: 22836623 DOI: 10.1007/978-94-007-4549-0_12] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The aim of the study was to investigate the potential anti-inflammatory effects in -experimental allergic asthma of natural polyphenolic compounds or their single major components. The experiment was performed after 21-days sensitization of guinea pigs with ovalbumin suspension. Changes in airway reactivity after the long-term treatment with the polyphenolic compounds Provinol and Flavin-7 and their single major components quercetin and resveratrol during were assessed using a whole body plethysmography. Reactivity of tracheal smooth muscle was studied in vitro in response to cumulative doses of the bronchoconstrictive mediators histamine and acetylcholine. Furthermore, concentrations of the inflammatory cytokines IL-4 and IL-5 were measured in bronchoalveolar lavage fluid. The results demonstrate significant anti-inflammatory effects of Provinol and Flavin-7 exerted in the airways. In contrast, chronic treatment with quercetin and resveratrol, single components of the two polyphenols, did not show such activity. We conclude that polyphenolic compounds are more effective in the anti-inflammatory effects in the airways than their separate components.
Collapse
|
26
|
Fortunato LR, Alves CDF, Teixeira MM, Rogerio AP. Quercetin: a flavonoid with the potential to treat asthma. BRAZ J PHARM SCI 2012. [DOI: 10.1590/s1984-82502012000400002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Allergic asthma is a complex inflammatory disorder characterized by airway hyperresponsiveness, eosinophilic inflammation and hypersecretion of mucus. Current therapies include β2-agonists, cysteinyl leukotriene receptor 1 antagonists and corticosteroids. Although these drugs demonstrate beneficial effects, their adverse side effects limit their long-term use. Thus, the development of new compounds with similar therapeutic activities and reduced side effects is both desirable and necessary. Natural compounds are used in some current therapies, as plant-derived metabolites can relieve disease symptoms in the same manner as allopathic medicines. Quercetin is a flavonoid that is naturally found in many fruits and vegetables and has been shown to exert multiple biological effects in experimental models, including the reduction of major symptoms of asthma: bronchial hyperactivity, mucus production and airway inflammation. In this review, we discuss results from the literature that illustrate the potential of quercetin to treat asthma and its exacerbations.
Collapse
|
27
|
Ganesan S, Unger BL, Comstock AT, Angel KA, Mancuso P, Martinez FJ, Sajjan US. Aberrantly activated EGFR contributes to enhanced IL-8 expression in COPD airways epithelial cells via regulation of nuclear FoxO3A. Thorax 2012; 68:131-41. [PMID: 23099361 DOI: 10.1136/thoraxjnl-2012-201719] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Decreased activity of forkhead transcription factor class O (FoxO)3A, a negative regulator of NF-κB-mediated chemokine expression, is implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD). Previously, we showed that quercetin reduces lung inflammation in a murine model of COPD. Here, we examined the mechanisms underlying decreased FoxO3A activation and its modulation by quercetin in COPD human airway epithelial cells and in a COPD mouse model. METHODS Primary COPD and normal human airway epithelial cells were treated with quercetin, LY294002 or erlotinib for 2 weeks. IL-8 was measured by ELISA. FoxO3A, Akt, and epidermal growth factor (EGF) receptor (EGFR) phosphorylation and nuclear FoxO3A levels were determined by Western blot analysis. Effects of quercetin on lung chemokine expression, nuclear FoxO3A levels and phosphorylation of EGFR and Akt were determined in COPD mouse model. RESULTS Compared with normal, COPD cells showed significantly increased IL-8, which negatively correlated with nuclear FoxO3A levels. COPD bronchial biopsies also showed reduced nuclear FoxO3A. Decreased FoxO3A in COPD cells was associated with increased phosphorylation of EGFR, Akt and FoxO3A and treatment with quercetin, LY294002 or erlotinib increased nuclear FoxO3A and decreased IL-8 and phosphorylation of Akt, EGFR and FoxO3A, Compared with control, elastase/LPS-exposed mice showed decreased nuclear FoxO3A, increased chemokines and phosphorylation of EGFR and Akt. Treatment with quercetin partially reversed these changes. CONCLUSIONS In COPD airways, aberrant EGFR activity increases PI 3-kinase/Akt-mediated phosphorylation of FoxO3A, thereby decreasing nuclear FoxO3A and increasing chemokine expression. Quercetin restores nuclear FoxO3A and reduces chemokine expression partly by modulating EGFR/PI 3-kinase/Akt activity.
Collapse
Affiliation(s)
- Shyamala Ganesan
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI 48109-5688, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Ganesan S, Faris AN, Comstock AT, Wang Q, Nanua S, Hershenson MB, Sajjan US. Quercetin inhibits rhinovirus replication in vitro and in vivo. Antiviral Res 2012; 94:258-71. [PMID: 22465313 PMCID: PMC3360794 DOI: 10.1016/j.antiviral.2012.03.005] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 02/28/2012] [Accepted: 03/13/2012] [Indexed: 01/19/2023]
Abstract
Rhinovirus (RV), which is responsible for the majority of common colds, also causes exacerbations in patients with asthma and chronic obstructive pulmonary disease. So far, there are no drugs available for treatment of rhinovirus infection. We examined the effect of quercetin, a plant flavanol on RV infection in vitro and in vivo. Pretreatment of airway epithelial cells with quercetin decreased Akt phosphosphorylation, viral endocytosis and IL-8 responses. Addition of quercetin 6 h after RV infection (after viral endocytosis) reduced viral load, IL-8 and IFN responses in airway epithelial cells. This was associated with decreased levels of negative and positive strand viral RNA, and RV capsid protein, abrogation of RV-induced eIF4GI cleavage and increased phosphorylation of eIF2α. In mice infected with RV, quercetin treatment decreased viral replication as well as expression of chemokines and cytokines. Quercetin treatment also attenuated RV-induced airway cholinergic hyperresponsiveness. Together, our results suggest that quercetin inhibits RV endocytosis and replication in airway epithelial cells at multiple stages of the RV life cycle. Quercetin also decreases expression of pro-inflammatory cytokines and improves lung function in RV-infected mice. Based on these observations, further studies examining the potential benefits of quercetin in the prevention and treatment of RV infection are warranted.
Collapse
Affiliation(s)
- Shyamala Ganesan
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
González R, Ballester I, López-Posadas R, Suárez MD, Zarzuelo A, Martínez-Augustin O, Sánchez de Medina F. Effects of flavonoids and other polyphenols on inflammation. Crit Rev Food Sci Nutr 2011; 51:331-62. [PMID: 21432698 DOI: 10.1080/10408390903584094] [Citation(s) in RCA: 369] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Flavonoids are a family of polyphenolic compounds which are widespread in nature (vegetables) and are consumed as part of the human diet in significant amounts. There are other types of polyphenols, including, for example, tannins and resveratrol. Flavonoids and related polyphenolic compounds have significant antiinflammatory activity, among others. This short review summarizes the current knowledge on the effects of flavonoids and related polyphenolic compounds on inflammation, with a focus on structural requirements, the mechanisms involved, and pharmacokinetic considerations. Different molecular (cyclooxygenase, lipoxygenase) and cellular targets (macrophages, lymphocytes, epithelial cells, endothelium) have been identified. In addition, many flavonoids display significant antioxidant/radical scavenging properties. There is substantial structural variation in these compounds, which is bound to have an impact on their biological profile, and specifically on their effects on inflammatory conditions. However, in general terms there is substantial consistency in the effects of these compounds despite considerable structural variations. The mechanisms have been studied mainly in myeloid cells, where the predominant effect is an inhibition of NF-κB signaling and the downregulation of the expression of proinflammatory markers. At present there is a gap in knowledge of in vitro and in vivo effects, although the pharmacokinetics of flavonoids has advanced considerably in the last decade. Many flavonoids have been studied for their intestinal antiinflammatory activity which is only logical, since the gastrointestinal tract is naturally exposed to them. However, their potential therapeutic application in inflammation is not restricted to this organ and extends to other sites and conditions, including arthritis, asthma, encephalomyelitis, and atherosclerosis, among others.
Collapse
Affiliation(s)
- R González
- Department of Pharmacology, CIBERehd, School of Pharmacy, University of Granada, Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
30
|
Wang S, Xiang YY, Ellis R, Wattie J, Feng M, Inman MD, Lu WY. Effects of furosemide on allergic asthmatic responses in mice. Clin Exp Allergy 2011; 41:1456-67. [PMID: 21729180 DOI: 10.1111/j.1365-2222.2011.03811.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND The syndrome of allergic asthma features reversible bronchoconstriction, airway inflammation and hyperresponsiveness as well as airway remodelling, including goblet cell hyperplasia. Managing severe asthma is still a clinical challenge. Numerous studies report that furosemide, an inhibitor of Na(+)-K(+)-Cl(-) cotransporter (NKCC) reduces airway hyperresponsiveness (AHR) in asthmatic patients. However, the mechanism by which furosemide exerts anti-asthmatic action remains unclear. OBJECTIVE This study sought to investigate the cellular profile of NKCC1 expression in the lung and examine the effects of furosemide on several outcome measurements in a mouse model of allergic asthma. METHODS Mice were sensitized and challenged with ovalbumin (OVA). Before challenge, the OVA-sensitized mice were treated with furosemide (4.0 mg/kg/day, via daily intraperitoneal injection for 5 days). Outcome measurements in naïve, OVA-exposure, furosemide-treated naïve and furosemide-treated OVA-exposed mice included the slope of the relationship between inhaled methacholine (MCh) concentration and respiratory system resistance (Slope·R(RS)), bronchoalveolar lavage (BAL) cell counts and immunohistochemical and immunoblotting assays of lung tissues. RESULTS NKCC1 immunoreactivity was observed in airway epithelial cells (AECs) and alveolar type II (ATII) cells of the control mice. OVA exposure enhanced the expression of NKCC1 in AECs and ATII cells, and increased the infiltration of NKCC1-expressing T lymphocytes in the lung. NKCC1 immunoreactivity was not detected in the airway smooth muscle (ASM) cells. Furosemide treatment reduced the Slope·R(RS) in both naïve and OVA-exposed mice by about 50%. Furosemide treatment also increased T lymphocyte infiltration to the lung in OVA-exposed mice by approximately 53%, but had no effect on pulmonary goblet cell hyperplasia. CONCLUSIONS AND CLINICAL RELEVANCE Furosemide decreases basal airway responsiveness, thereby reducing the extent of allergen-induced AHR. However, the same treatment also increases T lymphocytes infiltration in the course of allergic asthma. Further studies are necessary to address the usefulness of furosemide in the clinical treatment of asthma.
Collapse
Affiliation(s)
- S Wang
- Institute of Physiology, Medical College of Shandong University, Shandong, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Rhinovirus-induced barrier dysfunction in polarized airway epithelial cells is mediated by NADPH oxidase 1. J Virol 2011; 85:6795-808. [PMID: 21507984 DOI: 10.1128/jvi.02074-10] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously, we showed that rhinovirus (RV), which is responsible for the majority of common colds, disrupts airway epithelial barrier function, as evidenced by reduced transepithelial resistance (R(T)), dissociation of zona occludins 1 (ZO-1) from the tight junction complex, and bacterial transmigration across polarized cells. We also showed that RV replication is required for barrier function disruption. However, the underlying biochemical mechanisms are not known. In the present study, we found that a double-stranded RNA (dsRNA) mimetic, poly(I:C), induced tight junction breakdown and facilitated bacterial transmigration across polarized airway epithelial cells, similar to the case with RV. We also found that RV and poly(I:C) each stimulated Rac1 activation, reactive oxygen species (ROS) generation, and Rac1-dependent NADPH oxidase 1 (NOX1) activity. Inhibitors of Rac1 (NSC23766), NOX (diphenylene iodonium), and NOX1 (small interfering RNA [siRNA]) each blocked the disruptive effects of RV and poly(I:C) on R(T), as well as the dissociation of ZO-1 and occludin from the tight junction complex. Finally, we found that Toll-like receptor 3 (TLR3) is not required for either poly(I:C)- or RV-induced reductions in R(T). Based on these results, we concluded that Rac1-dependent NOX1 activity is required for RV- or poly(I:C)-induced ROS generation, which in turn disrupts the barrier function of polarized airway epithelia. Furthermore, these data suggest that dsRNA generated during RV replication is sufficient to disrupt barrier function.
Collapse
|
32
|
Sergent T, Piront N, Meurice J, Toussaint O, Schneider YJ. Anti-inflammatory effects of dietary phenolic compounds in an in vitro model of inflamed human intestinal epithelium. Chem Biol Interact 2010; 188:659-67. [PMID: 20816778 DOI: 10.1016/j.cbi.2010.08.007] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Revised: 08/18/2010] [Accepted: 08/26/2010] [Indexed: 12/12/2022]
Abstract
Phenolic compounds (PCs) are considered to possess anti-inflammatory properties and therefore were proposed as an alternative natural approach to prevent or treat chronic inflammatory diseases. However their effects are not fully understood, particularly at the intestinal level. To further understand their mode of action at the molecular level during intestinal inflammation, an in vitro model of inflamed human intestinal epithelium was established. Different representative dietary PCs, i.e. resveratrol, ellagic and ferulic acids, curcumin, quercetin, chrysin, (-)-epigallocatechin-3-gallate (EGCG) and genistein, were selected. To mimic intestinal inflammation, differentiated Caco-2 cells cultivated in bicameral inserts, in a serum-free medium, were treated with a cocktail of pro-inflammatory substances: interleukin (IL)-1β, tumor necrosis factor-α, interferon-γ and lipopolysaccharides. The inflammatory state was characterized by a leaky epithelial barrier (attenuation of the transepithelial electrical resistance) and by an over-expression at the mRNA and protein levels for pro-inflammatory markers, i.e. IL-6, IL-8 and monocyte chemoattractant protein-1 (MCP-1), quantified by ELISA and by gene expression analysis using a low-density array allowing the evaluation of expression level for 46 genes relevant of the intestinal inflammation and functional metabolism. Treatment with PCs, used at a realistic intestinal concentration, did not affect cell permeability. In inflamed cells, the incubation with genistein reduced the IL-6 and MCP-1 overproduction, to ca. 50% of the control, whereas EGCG provoked a decrease in the IL-6 and IL-8 over-secretion, by 50 and 60%, respectively. This occurred for both flavonoids without any concomitant inhibition of the corresponding mRNA expression. All the PCs generated a specific gene expression profile, with genistein the most efficient in the downregulation of the expression, or over-expression, of inflammatory genes notably those linked to the arachidonic metabolism pathway. In conclusion, this study provides evidence that genistein and EGCG downregulate the inflammatory response in inflamed intestinal epithelial cells by a pathway implicating largely a post-transcriptional regulatory mechanism.
Collapse
|
33
|
Hirota R, Roger NN, Nakamura H, Song HS, Sawamura M, Suganuma N. Anti-inflammatory effects of limonene from yuzu (Citrus junos Tanaka) essential oil on eosinophils. J Food Sci 2010; 75:H87-92. [PMID: 20492298 DOI: 10.1111/j.1750-3841.2010.01541.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Yuzu (Citrus junos Tanaka) has been used as a traditional medicine in Japan. We investigated in vitro anti-inflammatory effects of limonene from yuzu peel on human eosinophilic leukemia HL-60 clone 15 cells. To examine anti-inflammatory effects of limonene on the cells, we measured the level of reactive oxygen species (ROS), monocyte chemoattractant protein-1 (MCP-1), nuclear factor (NF) kappa B, and p38 mitogen-activated protein kinase (MAPK). We found that low concentration of limonene (7.34 mmol/L) inhibited the production of ROS for eotaxin-stimulated HL-60 clone 15 cells. 14.68 mmol/L concentration of limonene diminished MCP-1 production via NF-kappa B activation comparable to the addition of the proteasomal inhibitor MG132. In addition, it inhibited cell chemotaxis in a p38 MAPK dependent manner similar to the adding of SB203580. These results suggest that limonene may have potential anti-inflammatory efficacy for the treatment of bronchial asthma by inhibiting cytokines, ROS production, and inactivating eosinophil migration.
Collapse
Affiliation(s)
- Ryoji Hirota
- Dept. of Environmental Medicine, Kochi Medical School, Kohasu, Oko, Nankoku, Kochi 783-8505, Japan.
| | | | | | | | | | | |
Collapse
|
34
|
Ganesan S, Faris AN, Comstock AT, Chattoraj SS, Chattoraj A, Burgess JR, Curtis JL, Martinez FJ, Zick S, Hershenson MB, Sajjan US. Quercetin prevents progression of disease in elastase/LPS-exposed mice by negatively regulating MMP expression. Respir Res 2010; 11:131. [PMID: 20920189 PMCID: PMC2954923 DOI: 10.1186/1465-9921-11-131] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 09/28/2010] [Indexed: 01/14/2023] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is characterized by chronic bronchitis, emphysema and irreversible airflow limitation. These changes are thought to be due to oxidative stress and an imbalance of proteases and antiproteases. Quercetin, a plant flavonoid, is a potent antioxidant and anti-inflammatory agent. We hypothesized that quercetin reduces lung inflammation and improves lung function in elastase/lipopolysaccharide (LPS)-exposed mice which show typical features of COPD, including airways inflammation, goblet cell metaplasia, and emphysema. Methods Mice treated with elastase and LPS once a week for 4 weeks were subsequently administered 0.5 mg of quercetin dihydrate or 50% propylene glycol (vehicle) by gavage for 10 days. Lungs were examined for elastance, oxidative stress, inflammation, and matrix metalloproteinase (MMP) activity. Effects of quercetin on MMP transcription and activity were examined in LPS-exposed murine macrophages. Results Quercetin-treated, elastase/LPS-exposed mice showed improved elastic recoil and decreased alveolar chord length compared to vehicle-treated controls. Quercetin-treated mice showed decreased levels of thiobarbituric acid reactive substances, a measure of lipid peroxidation caused by oxidative stress. Quercetin also reduced lung inflammation, goblet cell metaplasia, and mRNA expression of pro-inflammatory cytokines and muc5AC. Quercetin treatment decreased the expression and activity of MMP9 and MMP12 in vivo and in vitro, while increasing expression of the histone deacetylase Sirt-1 and suppressing MMP promoter H4 acetylation. Finally, co-treatment with the Sirt-1 inhibitor sirtinol blocked the effects of quercetin on the lung phenotype. Conclusions Quercetin prevents progression of emphysema in elastase/LPS-treated mice by reducing oxidative stress, lung inflammation and expression of MMP9 and MMP12.
Collapse
Affiliation(s)
- Shyamala Ganesan
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Grandhi S, Donnelly LE, Rogers DF. Phytoceuticals: the new 'physic garden' for asthma and chronic obstructive pulmonary disease. Expert Rev Respir Med 2010; 1:227-46. [PMID: 20477187 DOI: 10.1586/17476348.1.2.227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Phytoceuticals (non-nutritional but beneficial plant chemicals) merit investigation as pharmacotherapy for asthma and chronic obstructive pulmonary disease (COPD). Although asthma is mostly treated adequately, COPD is not. Thus, there is a need for new drugs with improved therapeutic benefit, especially in COPD. Recent interest in herbal remedies has redirected attention towards plants as sources of improved treatments for lung disease. Phytoceuticals from a variety of plants and plant products, including butterbur, English ivy, apples, chocolate, green tea and red wine, demonstrate broad-spectrum pharmacotherapeutic activities that could be exploited in the clinic. Well-designed clinical trials are required to determine whether these beneficial activities are reproduced in patients, with the prospect that phytoceuticals are the new physic garden for asthma and COPD.
Collapse
Affiliation(s)
- Sumalatha Grandhi
- Airway Disease, National Heart & Lung Institute, Imperial College London, Dovehouse Street, London SW3 6LY, UK
| | | | | |
Collapse
|
36
|
Quercetin and kaempferol suppress immunoglobulin E-mediated allergic inflammation in RBL-2H3 and Caco-2 cells. Inflamm Res 2010; 59:847-54. [PMID: 20383790 DOI: 10.1007/s00011-010-0196-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 03/16/2010] [Accepted: 03/29/2010] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE We investigated the inhibitory effects of quercetin and kaempferol treatment on the suppression of immunoglobulin E (IgE)-mediated allergic responses in relation to intestinal epithelium barrier function in RBL-2H3 and Caco-2 cells. METHODS RBL-2H3 cells as a model of intestinal mucosa mast cells were treated with flavonols followed by IgE-anti-dinitrophenyl sensitization. The extent of degranulation and the release of pro-inflammatory cytokines were measured. Caco-2 cells were stimulated with interleukin (IL)-4 or IgE-allergen with or without flavonol pretreatment and changes in the expression of CD23 mRNA and mitogen-activated protein kinase (MAPK), and chemokine release were determined. RESULTS Flavonols inhibited the secretion of allergic mediators in RBL-2H3 cells and suppressed the CD23 mRNA expression and p38 MAPK activation in IL-4 stimulated Caco-2 cells. Flavonols also suppressed IgE-OVA induced extra signal-regulated protein kinase (ERK) activation and chemokine release. CONCLUSIONS Quercetin and kaempferol effectively suppressed the development of IgE-mediated allergic inflammation of intestinal cell models.
Collapse
|
37
|
Deshmane SL, Kremlev S, Amini S, Sawaya BE. Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res 2009. [PMID: 19441883 DOI: 10.1089/jir.2008.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chemokines constitute a family of chemoattractant cytokines and are subdivided into four families on the basis of the number and spacing of the conserved cysteine residues in the N-terminus of the protein. Chemokines play a major role in selectively recruiting monocytes, neutrophils, and lymphocytes, as well as in inducing chemotaxis through the activation of G-protein-coupled receptors. Monocyte chemoattractant protein-1 (MCP-1/CCL2) is one of the key chemokines that regulate migration and infiltration of monocytes/macrophages. Both CCL2 and its receptor CCR2 have been demonstrated to be induced and involved in various diseases. Migration of monocytes from the blood stream across the vascular endothelium is required for routine immunological surveillance of tissues, as well as in response to inflammation. This review will discuss these biological processes and the structure and function of CCL2.
Collapse
Affiliation(s)
- Satish L Deshmane
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | |
Collapse
|
38
|
Deshmane SL, Kremlev S, Amini S, Sawaya BE. Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res 2009. [PMID: 19441883 DOI: 10.1089/jir.2008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Chemokines constitute a family of chemoattractant cytokines and are subdivided into four families on the basis of the number and spacing of the conserved cysteine residues in the N-terminus of the protein. Chemokines play a major role in selectively recruiting monocytes, neutrophils, and lymphocytes, as well as in inducing chemotaxis through the activation of G-protein-coupled receptors. Monocyte chemoattractant protein-1 (MCP-1/CCL2) is one of the key chemokines that regulate migration and infiltration of monocytes/macrophages. Both CCL2 and its receptor CCR2 have been demonstrated to be induced and involved in various diseases. Migration of monocytes from the blood stream across the vascular endothelium is required for routine immunological surveillance of tissues, as well as in response to inflammation. This review will discuss these biological processes and the structure and function of CCL2.
Collapse
Affiliation(s)
- Satish L Deshmane
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | |
Collapse
|
39
|
Deshmane SL, Kremlev S, Amini S, Sawaya BE. Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res 2009; 29:313-26. [PMID: 19441883 PMCID: PMC2755091 DOI: 10.1089/jir.2008.0027] [Citation(s) in RCA: 2875] [Impact Index Per Article: 179.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2008] [Accepted: 12/05/2008] [Indexed: 02/06/2023] Open
Abstract
Chemokines constitute a family of chemoattractant cytokines and are subdivided into four families on the basis of the number and spacing of the conserved cysteine residues in the N-terminus of the protein. Chemokines play a major role in selectively recruiting monocytes, neutrophils, and lymphocytes, as well as in inducing chemotaxis through the activation of G-protein-coupled receptors. Monocyte chemoattractant protein-1 (MCP-1/CCL2) is one of the key chemokines that regulate migration and infiltration of monocytes/macrophages. Both CCL2 and its receptor CCR2 have been demonstrated to be induced and involved in various diseases. Migration of monocytes from the blood stream across the vascular endothelium is required for routine immunological surveillance of tissues, as well as in response to inflammation. This review will discuss these biological processes and the structure and function of CCL2.
Collapse
Affiliation(s)
- Satish L. Deshmane
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Sergey Kremlev
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Shohreh Amini
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Bassel E. Sawaya
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
40
|
Metabolic transformation has a profound effect on anti-inflammatory activity of flavonoids such as quercetin: Lack of association between antioxidant and lipoxygenase inhibitory activity. Biochem Pharmacol 2008; 75:1045-53. [DOI: 10.1016/j.bcp.2007.11.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 11/01/2007] [Accepted: 11/02/2007] [Indexed: 11/18/2022]
|