1
|
Li J, Wang F, Meng C, Zhu D. Role of TRPV1 and TRPA1 in TSLP production in nasal epithelial cells. Int Immunopharmacol 2024; 131:111916. [PMID: 38522138 DOI: 10.1016/j.intimp.2024.111916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/06/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND TRP protein is sensitive to external temperature changes, but its pathogenic mechanism in the upper airway mucosa is still unclear. OBJECTIVE To investigate the mechanism of TRPV1and TRPA1 in regulating the secretion of inflammatory factors in nasal epithelial cells. METHODS The expression of TRPV1 and TRPA1 in nasal mucosal epithelial cells was investigated using immunofluorescence assays. Epithelial cells were stimulated with TRPV1 and TRPA1 agonists and antagonists, and changes in Ca2+ release and inflammatory factor secretion in epithelial cells were detected. TSLP secretion stimulated with the calcium chelating agent EGTA was evaluated. The transcription factor NFAT was observed by immunofluorescence staining. RESULTS TRPV1 and TRPA1 expression was detected in nasal epithelial cells, and Ca2+ influx was increased after stimulation with agonists. After the activation of TRPV1 and TRPA1, the gene expression of TSLP, IL-25, and IL-33 and the protein expression levels of TSLP and IL-33 were increased, and only TSLP could be inhibited by antagonists and siRNAs. After administration of EGTA, the secretion of TSLP was inhibited significantly, and the expression of the transcription factor NFAT in the nucleus was observed after activation of the TRPV1 and TRPA1 proteins in epithelial cells. CONCLUSION Activation of TRPV1 and TRPA1 on nasal epithelial cells stimulates the generation of TSLP through the Ca2+/NFAT pathway. It also induces upregulation of IL-25 and IL-33 gene expression levels and increased levels of IL-33 protein, leading to the development of airway inflammation.
Collapse
Affiliation(s)
- Jiani Li
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Fang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Cuida Meng
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Precise Diagnosis and Treatment of Upper Airway Allergic Diseases, China
| | - Dongdong Zhu
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Precise Diagnosis and Treatment of Upper Airway Allergic Diseases, China.
| |
Collapse
|
2
|
Vittal R, Walker NM, McLinden AP, Braeuer RR, Ke F, Fattahi F, Combs MP, Misumi K, Aoki Y, Wheeler DS, Wilke CA, Huang SK, Moore BB, Cao P, Lama VN. Genetic deficiency of the transcription factor NFAT1 confers protection against fibrogenic responses independent of immune influx. Am J Physiol Lung Cell Mol Physiol 2024; 326:L39-L51. [PMID: 37933452 PMCID: PMC11279780 DOI: 10.1152/ajplung.00045.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/08/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is marked by unremitting matrix deposition and architectural distortion. Multiple profibrotic pathways contribute to the persistent activation of mesenchymal cells (MCs) in fibrosis, highlighting the need to identify and target common signaling pathways. The transcription factor nuclear factor of activated T cells 1 (NFAT1) lies downstream of second messenger calcium signaling and has been recently shown to regulate key profibrotic mediator autotaxin (ATX) in lung MCs. Herein, we investigate the role of NFAT1 in regulating fibroproliferative responses during the development of lung fibrosis. Nfat1-/--deficient mice subjected to bleomycin injury demonstrated improved survival and protection from lung fibrosis and collagen deposition as compared with bleomycin-injured wild-type (WT) mice. Chimera mice, generated by reconstituting bone marrow cells from WT or Nfat1-/- mice into irradiated WT mice (WT→WT and Nfat1-/-→WT), demonstrated no difference in bleomycin-induced fibrosis, suggesting immune influx-independent fibroprotection in Nfat1-/- mice. Examination of lung tissue and flow sorted lineageneg/platelet-derived growth factor receptor alpha (PDGFRα)pos MCs demonstrated decreased MC numbers, proliferation [↓ cyclin D1 and 5-ethynyl-2'-deoxyuridine (EdU) incorporation], myofibroblast differentiation [↓ α-smooth muscle actin (α-SMA)], and survival (↓ Birc5) in Nfat1-/- mice. Nfat1 deficiency abrogated ATX expression in response to bleomycin in vivo and MCs derived from Nfat1-/- mice demonstrated decreased ATX expression and migration in vitro. Human IPF MCs demonstrated constitutive NFAT1 activation, and regulation of ATX in these cells by NFAT1 was confirmed using pharmacological and genetic inhibition. Our findings identify NFAT1 as a critical mediator of profibrotic processes, contributing to dysregulated lung remodeling and suggest its targeting in MCs as a potential therapeutic strategy in IPF.NEW & NOTEWORTHY Idiopathic pulmonary fibrosis (IPF) is a fatal disease with hallmarks of fibroblastic foci and exuberant matrix deposition, unknown etiology, and ineffective therapies. Several profibrotic/proinflammatory pathways are implicated in accelerating tissue remodeling toward a honeycombed end-stage disease. NFAT1 is a transcriptional factor activated in IPF tissues. Nfat1-deficient mice subjected to chronic injury are protected against fibrosis independent of immune influxes, with suppression of profibrotic mesenchymal phenotypes including proliferation, differentiation, resistance to apoptosis, and autotaxin-related migration.
Collapse
Affiliation(s)
- Ragini Vittal
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia, United States
| | - Natalie M Walker
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - A Patrick McLinden
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia, United States
| | - Russell R Braeuer
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Fang Ke
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Fatemeh Fattahi
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Michael P Combs
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Keizo Misumi
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Yoshiro Aoki
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - David S Wheeler
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Carol A Wilke
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan, United States
| | - Steven K Huang
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Bethany B Moore
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan, United States
| | - Pengxiu Cao
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Vibha N Lama
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia, United States
| |
Collapse
|
3
|
Choi YA, Dhakal H, Lee S, Kim N, Lee B, Kwon TK, Khang D, Kim SH. IRF3 Activation in Mast Cells Promotes FcεRI-Mediated Allergic Inflammation. Cells 2023; 12:1493. [PMID: 37296614 PMCID: PMC10252328 DOI: 10.3390/cells12111493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
(1) Background: This study aims to elucidate a novel non-transcriptional action of IRF3 in addition to its role as a transcription factor in mast cell activation and associated allergic inflammation; (2) Methods: For in vitro experiments, mouse bone-marrow-derived mast cells (mBMMCs) and a rat basophilic leukemia cell line (RBL-2H3) were used for investigating the underlying mechanism of IRF3 in mast-cell-mediated allergic inflammation. For in vivo experiments, wild-type and Irf3 knockout mice were used for evaluating IgE-mediated local and systemic anaphylaxis; (3) Results: Passive cutaneous anaphylaxis (PCA)-induced tissues showed highly increased IRF3 activity. In addition, the activation of IRF3 was observed in DNP-HSA-treated mast cells. Phosphorylated IRF3 by DNP-HSA was spatially co-localized with tryptase according to the mast cell activation process, and FcεRI-mediated signaling pathways directly regulated that activity. The alteration of IRF3 affected the production of granule contents in the mast cells and the anaphylaxis responses, including PCA- and ovalbumin-induced active systemic anaphylaxis. Furthermore, IRF3 influenced the post-translational processing of histidine decarboxylase (HDC), which is required for granule maturation; and (4) Conclusion: Through this study, we demonstrated the novel function of IRF3 as an important factor inducing mast cell activation and as an upstream molecule for HDC activity.
Collapse
Affiliation(s)
- Young-Ae Choi
- Cell & Matrix Research Institute, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.-A.C.); (H.D.); (N.K.)
| | - Hima Dhakal
- Cell & Matrix Research Institute, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.-A.C.); (H.D.); (N.K.)
| | - Soyoung Lee
- Immunoregulatory Materials Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea;
| | - Namkyung Kim
- Cell & Matrix Research Institute, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.-A.C.); (H.D.); (N.K.)
| | - Byungheon Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea;
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea;
| | - Dongwoo Khang
- Department of Physiology, School of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Sang-Hyun Kim
- Cell & Matrix Research Institute, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.-A.C.); (H.D.); (N.K.)
| |
Collapse
|
4
|
Bhat S, Rotti H, Prasad K, Kabekkodu SP, Saadi AV, Shenoy SP, Joshi KS, Nesari TM, Shengule SA, Dedge AP, Gadgil MS, Dhumal VR, Salvi S, Satyamoorthy K. Genome-wide DNA methylation profiling after Ayurveda intervention to bronchial asthmatics identifies differential methylation in several transcription factors with immune process related function. J Ayurveda Integr Med 2023; 14:100692. [PMID: 37018893 PMCID: PMC10122039 DOI: 10.1016/j.jaim.2023.100692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 10/13/2022] [Accepted: 02/01/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND The Indian traditional medicinal system, Ayurveda, describes several lifestyle practices, processes and medicines as an intervention to treat asthma. Rasayana therapy is one of them and although these treatment modules show improvement in bronchial asthma, their mechanism of action, particularly the effect on DNA methylation, is largely understudied. OBJECTIVES Our study aimed at identifying the contribution of DNA methylation changes in modulating bronchial asthma phenotype upon Ayurveda intervention. MATERIALS AND METHODS In this study, genome-wide methylation profiling in peripheral blood DNA of healthy controls and bronchial asthmatics before (BT) and after (AT) Ayurveda treatment was performed using array-based profiling of reference-independent methylation status (aPRIMES) coupled to microarray technique. RESULTS We identified 4820 treatment-associated DNA methylation signatures (TADS) and 11,643 asthma-associated DNA methylation signatures (AADS), differentially methylated [FDR (≤0.1) adjusted p-values] in AT and HC groups respectively, compared to BT group. Neurotrophin TRK receptor signaling pathway was significantly enriched for differentially methylated genes in bronchial asthmatics, compared to AT and HC subjects. Additionally, we identified over 100 differentially methylated immune-related genes located in the promoter/5'-UTR regions of TADS and AADS. Various immediate-early response and immune regulatory genes with functions such as transcription factor activity (FOXD1, FOXD2, GATA6, HOXA3, HOXA5, MZF1, NFATC1, NKX2-2, NKX2-3, RUNX1, KLF11), G-protein coupled receptor activity (CXCR4, PTGER4), G-protein coupled receptor binding (UCN), DNA binding (JARID2, EBF2, SOX9), SNARE binding (CAPN10), transmembrane signaling receptor activity (GP1BB), integrin binding (ITGA6), calcium ion binding (PCDHGA12), actin binding (TRPM7, PANX1, TPM1), receptor tyrosine kinase binding (PIK3R2), receptor activity (GDNF), histone methyltransferase activity (MLL5), and catalytic activity (TSTA3) were found to show consistent methylation status between AT and HC group in microarray data. CONCLUSIONS Our study reports the DNA methylation-regulated genes in bronchial asthmatics showing improvement in symptoms after Ayurveda intervention. DNA methylation regulation in the identified genes and pathways represents the Ayurveda intervention responsive genes and may be further explored as diagnostic, prognostic, and therapeutic biomarkers for bronchial asthma in peripheral blood.
Collapse
Affiliation(s)
- Smitha Bhat
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Harish Rotti
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Keshava Prasad
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Abdul Vahab Saadi
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sushma P Shenoy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Kalpana S Joshi
- Department of Biotechnology, Sinhgad College of Engineering, S. P. University of Pune, Pune Maharashtra, India
| | - Tanuja M Nesari
- Department of Dravyaguna, Tilak Ayurved Mahavidyalaya, Pune, Maharashtra, India
| | - Sushant A Shengule
- Department of Biotechnology, Sinhgad College of Engineering, S. P. University of Pune, Pune Maharashtra, India
| | - Amrish P Dedge
- Department of Dravyaguna, Tilak Ayurved Mahavidyalaya, Pune, Maharashtra, India
| | - Maithili S Gadgil
- Department of Biotechnology, Sinhgad College of Engineering, S. P. University of Pune, Pune Maharashtra, India
| | - Vikram R Dhumal
- Department of Dravyaguna, Tilak Ayurved Mahavidyalaya, Pune, Maharashtra, India
| | - Sundeep Salvi
- Department of Pulmonary Medicine, Chest Research Foundation, Pune, Maharashtra, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
5
|
Lee HG, Kim LK, Choi JM. NFAT-Specific Inhibition by dNP2-VIVITAmeliorates Autoimmune Encephalomyelitisby Regulation of Th1 and Th17. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 16:32-41. [PMID: 31737742 PMCID: PMC6849366 DOI: 10.1016/j.omtm.2019.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 10/16/2019] [Indexed: 11/26/2022]
Abstract
Nuclear factor of activated T cells (NFATs) is an important transcription factor for T cell activation and proliferation. Recent studies have highlighted the role of NFATs in regulating the differentiation of effector CD4 T helper (Th) subsets including Th1 and Th17 cells. Because controlling the effector T cell function is important for the treatment of autoimmune diseases, regulation of NFAT functions in T cells would be an important strategy to control the pathogenesis of autoimmune diseases. Here, we demonstrated that an NFAT inhibitory peptide, VIVIT conjugated to dNP2 (dNP2-VIVIT), a blood-brain barrier-permeable peptide, ameliorated experimental autoimmune encephalomyelitis (EAE) by inhibiting Th1 and Th17 cells, but not regulatory T (Treg) cells. dNP2-VIVIT negatively regulated spinal cord-infiltrating interleukin-17A (IL-17A) and interferon (IFN)-γ-producing CD4+ T cells without affecting the number of Foxp3+ CD4+ Treg cells, whereas dNP2-VEET or 11R-VIVIT could not significantly inhibit EAE. In comparison with cyclosporin A (CsA), dNP2-VIVIT selectively inhibited Th1 and Th17 differentiation, whereas CsA inhibited the differentiation of all T cell subsets including that of Th2 and Treg cells. Collectively, this study demonstrated the role of dNP2-VIVIT as a novel agent for the treatment of autoimmune diseases such as multiple sclerosis by regulating the functions of Th1 and Th17 cells.
Collapse
Affiliation(s)
- Hong-Gyun Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Li-Kyung Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea.,Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Lee JU, Kim LK, Choi JM. Revisiting the Concept of Targeting NFAT to Control T Cell Immunity and Autoimmune Diseases. Front Immunol 2018; 9:2747. [PMID: 30538703 PMCID: PMC6277705 DOI: 10.3389/fimmu.2018.02747] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/08/2018] [Indexed: 01/15/2023] Open
Abstract
The nuclear factor of activated T cells (NFAT) family of transcription factors, which includes NFAT1, NFAT2, and NFAT4, are well-known to play important roles in T cell activation. Most of NFAT proteins are controlled by calcium influx upon T cell receptor and costimulatory signaling results increase of IL-2 and IL-2 receptor. NFAT3 however is not shown to be expressed in T cells and NFAT5 has not much highlighted in T cell functions yet. Recent studies demonstrate that the NFAT family proteins involve in function of lineage-specific transcription factors during differentiation of T helper 1 (Th1), Th2, Th17, regulatory T (Treg), and follicular helper T cells (Tfh). They have been studied to make physical interaction with the other transcription factors like GATA3 or Foxp3 and they also regulate Th cell signature gene expressions by direct binding on promotor region of target genes. From last decades, NFAT functions in T cells have been targeted to develop immune modulatory drugs for controlling T cell immunity in autoimmune diseases like cyclosporine A, FK506, etc. Due to their undesirable side defects, only limited application is available in human diseases. This review focuses on the recent advances in development of NFAT targeting drug as well as our understanding of each NFAT family protein in T cell biology. We also discuss updated detail molecular mechanism of NFAT functions in T cells, which would lead us to suggest an idea for developing specific NFAT inhibitors as a therapeutic drug for autoimmune diseases.
Collapse
Affiliation(s)
- Jae-Ung Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, South Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul, South Korea
| | - Li-Kyung Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, South Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul, South Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, South Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul, South Korea
| |
Collapse
|
7
|
MacLean Scott E, Solomon LA, Davidson C, Storie J, Palikhe NS, Cameron L. Activation of Th2 cells downregulates CRTh2 through an NFAT1 mediated mechanism. PLoS One 2018; 13:e0199156. [PMID: 29969451 PMCID: PMC6029763 DOI: 10.1371/journal.pone.0199156] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 06/02/2018] [Indexed: 01/07/2023] Open
Abstract
CRTh2 (encoded by PTGDR2) is a G-protein coupled receptor expressed by Th2 cells as well as eosinophils, basophils and innate lymphoid cells (ILC)2s. Activation of CRTh2, by its ligand prostaglandin (PG)D2, mediates production of type 2 cytokines (IL-4, IL-5 and IL-13), chemotaxis and inhibition of apoptosis. As such, the PGD2-CRTh2 pathway is considered important to the development and maintenance of allergic inflammation. Expression of CRTh2 is mediated by the transcription factor GATA3 during Th2 cell differentiation and within ILC2s. Other than this, relatively little is known regarding the cellular and molecular mechanisms regulating expression of CRTh2. Here, we show using primary human Th2 cells that activation (24hrs) through TCR crosslinking (αCD3/αCD28) reduced expression of both mRNA and surface levels of CRTh2 assessed by flow cytometry and qRT-PCR. This effect took more than 4 hours and expression was recovered following removal of activation. EMSA analysis revealed that GATA3 and NFAT1 can bind independently to overlapping sites within a CRTh2 promoter probe. NFAT1 over-expression resulted in loss of GATA3-mediated CRTh2 promoter activity, while inhibition of NFAT using a peptide inhibitor (VIVIT) coincided with recovery of CRTh2 expression. Collectively these data indicate that expression of CRTh2 is regulated through the competitive action of GATA3 and NFAT1. Though prolonged activation led to NFAT1-mediated downregulation, CRTh2 was re-expressed when stimulus was removed suggesting this is a dynamic mechanism and may play a role in PGD2-CRTh2 mediated allergic inflammation.
Collapse
MESH Headings
- Antibodies, Monoclonal/pharmacology
- Base Sequence
- Binding Sites
- Binding, Competitive
- CD28 Antigens/antagonists & inhibitors
- CD28 Antigens/genetics
- CD28 Antigens/immunology
- CD3 Complex/antagonists & inhibitors
- CD3 Complex/genetics
- CD3 Complex/immunology
- GATA3 Transcription Factor/genetics
- GATA3 Transcription Factor/immunology
- Gene Expression Regulation/immunology
- Humans
- Jurkat Cells
- Lymphocyte Activation/drug effects
- NFATC Transcription Factors/genetics
- NFATC Transcription Factors/immunology
- Primary Cell Culture
- Promoter Regions, Genetic
- Prostaglandin D2/metabolism
- Prostaglandin D2/pharmacology
- Protein Binding
- Receptors, Immunologic/agonists
- Receptors, Immunologic/antagonists & inhibitors
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Receptors, Prostaglandin/agonists
- Receptors, Prostaglandin/antagonists & inhibitors
- Receptors, Prostaglandin/genetics
- Receptors, Prostaglandin/immunology
- Signal Transduction
- Th2 Cells/cytology
- Th2 Cells/drug effects
- Th2 Cells/immunology
Collapse
Affiliation(s)
- Emily MacLean Scott
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, Alberta, CANADA
| | - Lauren A. Solomon
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, CANADA
| | - Courtney Davidson
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, Alberta, CANADA
| | - Jessica Storie
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, Alberta, CANADA
| | - Nami Shrestha Palikhe
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, Alberta, CANADA
| | - Lisa Cameron
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, Alberta, CANADA
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, CANADA
| |
Collapse
|
8
|
Specific MicroRNA Pattern in Colon Tissue of Young Children with Eosinophilic Colitis. Int J Mol Sci 2017; 18:ijms18051050. [PMID: 28498330 PMCID: PMC5454962 DOI: 10.3390/ijms18051050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/15/2017] [Accepted: 05/05/2017] [Indexed: 12/25/2022] Open
Abstract
Eosinophilic colitis (EC) is a common cause of haematochezia in infants and young children. The exact pathomechanism is not understood, and the diagnosis is challenging. The role of microRNAs as key class of regulators of mRNA expression and translation in patients with EC has not been explored. Therefore, the aim of the present study was to explore the miRNA profile in EC with respect to eosinophilic inflammation. Patients enrolled in the study (n = 10) had persistent rectal bleeding, and did not respond to elimination dietary treatment. High-throughput microRNA sequencing was carried out on colonic biopsy specimens of children with EC (EC: n = 4) and controls (C: n = 4) as a preliminary screening of the miRNA profile. Based on the next-generation sequencing (NGS) results and literature data, a potentially relevant panel of miRNAs were selected for further measurements by real-time reverse transcription (RT)-PCR (EC: n = 14, C: n = 10). Validation by RT-PCR resulted in significantly altered expression of miR-21, -31, -99b, -125a, -146a, -184, -221, -223, and -559 compared to controls (p ≤ 0.05). Elevation in miR-21, -99b, -146a, -221, and -223 showed statistically significant correlation to the extent of tissue eosinophilia. Based on our results, we conclude that the dysregulated miRNAs have a potential role in the regulation of apoptosis by targeting Protein kinase B/Mechanistic target of rapamycin (AKT/mTOR)-related pathways in inflammation by modulating Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)-related signalling and eosinophil cell recruitment and activation, mainly by regulating the expression of the chemoattractant eotaxin and the adhesion molecule CD44. Our results could serve as a basis for further extended research exploring the pathomechanism of EC.
Collapse
|
9
|
Yan F, Li W, Zhou H, Wu Y, Ying S, Chen Z, Shen H. Interleukin-13-induced MUC5AC expression is regulated by a PI3K-NFAT3 pathway in mouse tracheal epithelial cells. Biochem Biophys Res Commun 2014; 446:49-53. [PMID: 24583134 DOI: 10.1016/j.bbrc.2014.02.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 02/11/2014] [Indexed: 12/31/2022]
Abstract
Interleukin-13 (IL-13) plays a critical role in asthma mucus overproduction, while the mechanisms underlying this process are not fully elucidated. Previous studies showed that nuclear factor of activated T cells (NFAT) is involved in the pathogenesis of asthma, but whether it can directly regulate IL-13-induced mucus (particularly MUC5AC) production is still not clear. Here we showed that IL-13 specifically induced NFAT3 activation through promoting its dephosphorylation in air-liquid interface (ALI) cultures of mouse tracheal epithelial cells (mTECs). Furthermore, both Cyclosporin A (CsA, a specific NFAT inhibitor) and LY294002 (a Phosphoinositide 3-kinase (PI3K) inhibitor) significantly blocked IL-13-induced MUC5AC mRNA and protein production through the inhibition of NFAT3 activity. We also confirmed that CsA could not influence the forkhead Box A2 (Foxa2) and mouse calcium dependent chloride channel 3 (mClca3) expression in IL-13-induced MUC5AC production, which both are known to be important in IL-13-stimulated mucus expression. Our study is the first to demonstrate that the PI3K-NFAT3 pathway is positively involved in IL-13-induced mucus production, and provided novel insights into the molecular mechanism of asthma mucus hypersecretion.
Collapse
Affiliation(s)
- Fugui Yan
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wen Li
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hongbin Zhou
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yinfang Wu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Songmin Ying
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhihua Chen
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huahao Shen
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; State Key Lab. of Respiratory Disease (SKLRS), China.
| |
Collapse
|
10
|
Guilherme RF, Xisto DG, Kunkel SL, Freire-de-Lima CG, Rocco PRM, Neves JS, Fierro IM, Canetti C, Benjamim CF. Pulmonary antifibrotic mechanisms aspirin-triggered lipoxin A(4) synthetic analog. Am J Respir Cell Mol Biol 2014; 49:1029-37. [PMID: 23848293 DOI: 10.1165/rcmb.2012-0462oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
No successful therapies are available for pulmonary fibrosis, indicating the need for new treatments. Lipoxins and their 15-epimers, aspirin-triggered lipoxins (ATL), present potent antiinflammatory and proresolution effects (Martins et al., J Immunol 2009;182:5374-5381). We show that ATLa, an ATL synthetic analog, therapeutically reversed a well-established pulmonary fibrotic process induced by bleomycin (BLM) in mice. We investigated the mechanisms involved in its effect and found that systemic treatment with ATLa 1 week after BLM instillation considerably reversed the inflammatory response, total collagen and collagen type 1 deposition, vascular endothelial growth factor, and transforming growth factor (TGF)-β expression in the lung and restored surfactant protein C expression levels. ATLa also inhibited BLM-induced apoptosis and cellular accumulation in bronchoalveolar lavage fluid and in the lung parenchyma as evaluated by light microscopy and flow cytometry (Ly6G(+), F4/80(+), CD11c(+), CD4(+), and B220(+) cells) assays. Moreover, ATLa inhibited the lung production of IL-1β, IL-17, TNF-α, and TGF-β induced by BLM-challenged mice. ATLa restored the balance of inducible nitric oxide synthase-positive and arginase-positive cells in the lungs, suggesting a prevalence of M2 versus M1 macrophages. Together, these effects improved pulmonary mechanics because ATLa treatment brought to normal levels lung resistance and elastance, which were clearly altered at 7 days after BLM challenge. Our findings support ATLa as a promising therapeutic agent to treat lung fibrosis.
Collapse
|
11
|
Gusareva ES, Kurey I, Grekov I, Lipoldová M. Genetic regulation of immunoglobulin E level in different pathological states: integration of mouse and human genetics. Biol Rev Camb Philos Soc 2013; 89:375-405. [DOI: 10.1111/brv.12059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 06/14/2013] [Accepted: 07/31/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Elena S. Gusareva
- Institute of Molecular Genetics; Academy of Sciences of the Czech Republic; Prague 4 Czech Republic
| | - Iryna Kurey
- Institute of Molecular Genetics; Academy of Sciences of the Czech Republic; Prague 4 Czech Republic
| | - Igor Grekov
- Institute of Molecular Genetics; Academy of Sciences of the Czech Republic; Prague 4 Czech Republic
| | - Marie Lipoldová
- Institute of Molecular Genetics; Academy of Sciences of the Czech Republic; Prague 4 Czech Republic
| |
Collapse
|
12
|
Yu ZH, Xu JR, Wang YX, Xu GN, Xu ZP, Yang K, Wu DZ, Cui YY, Chen HZ. Targeted inhibition of KCa3.1 channel attenuates airway inflammation and remodeling in allergic asthma. Am J Respir Cell Mol Biol 2013; 48:685-93. [PMID: 23492185 DOI: 10.1165/rcmb.2012-0236oc] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
KCa3.1 has been suggested to be involved in regulating cell activation, proliferation, and migration in multiple cell types, including airway inflammatory and structural cells. However, the contributions of KCa3.1 to airway inflammation and remodeling and subsequent airway hyperresponsiveness (AHR) in allergic asthma remain to be explored. The main purpose of this study was to elucidate the roles of KCa3.1 and the potential therapeutic value of KCa3.1 blockers in chronic allergic asthma. Using real-time PCR, Western blotting, or immunohistochemical analyses, we explored the precise role of KCa3.1 in the bronchi of allergic mice and asthmatic human bronchial smooth muscle cells (BSMCs). We found that KCa3.1 mRNA and protein expression were elevated in the bronchi of allergic mice, and double labeling revealed that up-regulation occurred primarily in airway smooth muscle cells. Triarylmethane (TRAM)-34, a KCa3.1 blocker, dose-dependently inhibited the generation and maintenance of the ovalbumin-induced airway inflammation associated with increased Th2-type cytokines and decreased Th1-type cytokine, as well as subepithelial extracellular matrix deposition, goblet-cell hyperplasia, and AHR in a murine model of asthma. Moreover, the pharmacological blockade and gene silencing of KCa3.1, which was evidently elevated after mitogen stimulation, suppressed asthmatic human BSMC proliferation and migration, and arrested the cell cycle at the G0/G1 phase. In addition, the KCa3.1 activator 1-ethylbenzimidazolinone-induced membrane hyperpolarization and intracellular calcium increase in asthmatic human BSMCs were attenuated by TRAM-34. We demonstrate for the first time an important role for KCa3.1 in the pathogenesis of airway inflammation and remodeling in allergic asthma, and we suggest that KCa3.1 blockers may represent a promising therapeutic strategy for asthma.
Collapse
Affiliation(s)
- Zhi-Hua Yu
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ferraris FK, Moret KH, Figueiredo ABC, Penido C, Henriques MDGM. Gedunin, a natural tetranortriterpenoid, modulates T lymphocyte responses and ameliorates allergic inflammation. Int Immunopharmacol 2012; 14:82-93. [DOI: 10.1016/j.intimp.2012.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 05/25/2012] [Accepted: 06/01/2012] [Indexed: 01/13/2023]
|
14
|
Werneck MBF, Vieira-de-Abreu A, Chammas R, Viola JPB. NFAT1 transcription factor is central in the regulation of tissue microenvironment for tumor metastasis. Cancer Immunol Immunother 2011; 60:537-46. [PMID: 21225259 PMCID: PMC11028796 DOI: 10.1007/s00262-010-0964-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 12/21/2010] [Indexed: 12/23/2022]
Abstract
Members of the nuclear factor of activated T cell (NFAT) family of transcription factors were originally described in T lymphocytes but later shown to be expressed in several immune and non-immune cell types. NFAT proteins can modulate cellular transformation intrinsically, and NFAT-deficient (NFAT1-/-) mice are indeed more susceptible to transformation than wild-type counterparts. However, the contribution of an NFAT1-/- microenvironment to tumor progression has not been studied. We have addressed this question by inoculating NFAT1-/- mice with B16F10 melanoma cells intravenously, an established model of tumor homing and growth. Surprisingly, NFAT1-/- animals sustained less tumor growth in the lungs after melanoma inoculation than wild-type counterparts. Even though melanoma cells equally colonize NFAT1-/- and wild-type lungs, tumors do not progress in the absence of NFAT1 expression. A massive mononuclear perivascular infiltrate and reduced expression of TGF-β in the absence of NFAT1 suggested a role for tumor-infiltrating immune cells and the cytokine milieu. However, these processes are independent of an IL-4-induced regulatory tumor microenvironment, since lack of this cytokine does not alter the phenotype in NFAT1-/- animals. Bone marrow chimera experiments meant to differentiate the contributions of stromal and infiltrating cells to tumor progression demonstrated that NFAT1-induced susceptibility to pulmonary tumor growth depends on NFAT1-expressing parenchyma rather than on bone marrow-derived cells. These results suggest an important role for NFAT1 in radio-resistant tumor-associated parenchyma, which is independent of the anti-tumor immune response and Th1 versus Th2 cytokine milieu established by the cancer cells, but able to promote site-specific tumor growth.
Collapse
Affiliation(s)
- Miriam B. F. Werneck
- Division of Cellular Biology, Brazilian National Institute of Cancer (INCA), Rua André Cavalcanti, 37, Centro, Rio de Janeiro, RJ 20231-050 Brazil
| | - Adriana Vieira-de-Abreu
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ Brazil
| | - Roger Chammas
- Laboratory of Experimental Oncology, Faculty of Medicine, University of São Paulo, São Paulo, SP Brazil
| | - João P. B. Viola
- Division of Cellular Biology, Brazilian National Institute of Cancer (INCA), Rua André Cavalcanti, 37, Centro, Rio de Janeiro, RJ 20231-050 Brazil
| |
Collapse
|
15
|
Current world literature. Curr Opin Allergy Clin Immunol 2010; 10:87-92. [PMID: 20026987 DOI: 10.1097/aci.0b013e3283355458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Current world literature. Curr Opin Pulm Med 2010; 16:77-82. [PMID: 19996898 DOI: 10.1097/mcp.0b013e328334fe23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Queto T, Xavier-Elsas P, Gardel MA, de Luca B, Barradas M, Masid D, E Silva PMR, Peixoto CA, Vasconcelos ZMF, Dias EP, Gaspar-Elsas MI. Inducible nitric oxide synthase/CD95L-dependent suppression of pulmonary and bone marrow eosinophilia by diethylcarbamazine. Am J Respir Crit Care Med 2009; 181:429-37. [PMID: 20007928 DOI: 10.1164/rccm.200905-0800oc] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
RATIONALE The mechanism of action of diethylcarbamazine (DEC), an antifilarial drug effective against tropical pulmonary eosinophilia, remains controversial. DEC effects on microfilariae depend on inducible NO synthase (iNOS). In eosinophilic pulmonary inflammation, its therapeutic mechanism has not been established. We previously described the rapid up-regulation of bone marrow eosinophilopoiesis in ovalbumin (OVA)-sensitized mice by airway allergen challenge, and further evidenced the down-regulation of eosinophilopoiesis by iNOS- and CD95L-dependent mechanisms. OBJECTIVES We investigated whether: (1) DEC can prevent the effects of airway challenge of sensitized mice on lungs and bone marrow, and (2) its effectiveness depends on iNOS/CD95L. METHODS OVA-sensitized BALB/c mice were intranasally challenged for 3 consecutive days, with DEC administered over a 12-, 3-, or 2-day period, ending at the day of the last challenge. We evaluated: (1) airway resistance, cytokine (IFN-gamma, IL-4, IL-5, and eotaxin) production, and pulmonary eosinophil accumulation; and (2) bone marrow eosinophil numbers in vivo and eosinophil differentiation ex vivo. MEASUREMENTS AND MAIN RESULTS DEC effectively prevented the effects of subsequent challenges on: (1) airway resistance, Th1/Th2 cytokine production, and pulmonary eosinophil accumulation; and (2) eosinophilopoiesis in vivo and ex vivo. Recovery from unprotected challenges included full responses to DEC during renewed challenges. DEC directly suppressed IL-5-dependent eosinophilopoiesis in naive bone marrow. DEC was ineffective in CD95L-deficient gld mice and in mice lacking iNOS activity because of gene targeting or pharmacological blockade. CONCLUSIONS DEC has a strong impact on pulmonary eosinophilic inflammation in allergic mice, as well as on the underlying hemopoietic response, suppressing the eosinophil lineage by an iNOS/CD95L-dependent mechanism.
Collapse
Affiliation(s)
- Tulio Queto
- Laboratório de Fisiopatologia Humana, IFF, FIOCRUZ, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Martins V, Valença SS, Farias-Filho FA, Molinaro R, Simões RL, Ferreira TPT, e Silva PMR, Hogaboam CM, Kunkel SL, Fierro IM, Canetti C, Benjamim CF. ATLa, an aspirin-triggered lipoxin A4 synthetic analog, prevents the inflammatory and fibrotic effects of bleomycin-induced pulmonary fibrosis. THE JOURNAL OF IMMUNOLOGY 2009; 182:5374-81. [PMID: 19380784 DOI: 10.4049/jimmunol.0802259] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite an increase in the knowledge of mechanisms and mediators involved in pulmonary fibrosis, there are no successful therapeutics available. Lipoxins (LX) and their 15-epimers, aspirin-triggered LX (ATL), are endogenously produced eicosanoids with potent anti-inflammatory and proresolution effects. To date, few studies have been performed regarding their effect on pulmonary fibrosis. In the present study, using C57BL/6 mice, we report that bleomycin (BLM)-induced lung fibrosis was prevented by the concomitant treatment with an ATL synthetic analog, ATLa, which reduced inflammation and matrix deposition. ATLa inhibited BLM-induced leukocyte accumulation and alveolar collapse as evaluated by histology and morphometrical analysis. Moreover, Sirius red staining and lung hydroxyproline content showed an increased collagen deposition in mice receiving BLM alone that was decreased upon treatment with the analog. These effects resulted in benefits to pulmonary mechanics, as ATLa brought to normal levels both lung resistance and compliance. Furthermore, the analog improved mouse survival, suggesting an important role for the LX pathway in the control of disease establishment and progression. One possible mechanism by which ATLa restrained fibrosis was suggested by the finding that BLM-induced myofibroblast accumulation/differentiation in the lung parenchyma was also reduced by both simultaneous and posttreatment with the analog (alpha-actin immunohistochemistry). Interestingly, ATLa posttreatment (4 days after BLM) showed similar inhibitory effects on inflammation and matrix deposition, besides the TGF-beta level reduction in the lung, reinforcing an antifibrotic effect. In conclusion, our findings show that LX and ATL can be considered as promising therapeutic approaches to lung fibrotic diseases.
Collapse
Affiliation(s)
- Vanessa Martins
- Departamento de Farmacologia Básica e Clínica-Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
CD4 cell-secreted, posttranslationally modified cytokine GIF suppresses Th2 responses by inhibiting the initiation of IL-4 production. Proc Natl Acad Sci U S A 2008; 105:19402-7. [PMID: 19036925 DOI: 10.1073/pnas.0810035105] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
T helper 2 (Th2) cells are critical to the induction of IgE antibody and allergic inflammation, but how the pathological pathways are controlled in nonallergic individuals remains unclear. Here we report that glycosylation-inhibiting factor (GIF) suppresses Th2 effector generation. GIF is a cytokine encoded by the same gene that codes for macrophage migration inhibitory factor (MIF). GIF-deficient mice demonstrated enhanced T-dependent antibody formation especially of IgE isotype and allergic airway inflammation with the generation of regulatory T cells unaffected. GIF-deficient macrophages and dendritic cells revealed normal responsiveness to toll-like receptor (TLR) ligands. GIF undergoes a unique posttranslational modification, cysteinylation. The modified GIF, mainly secreted by activated T cells derived from CD4(+)CD25(-) cells, inhibited IL-4 production by the same cells whereas the unmodified GIF showed no effect. Bone marrow chimera experiment demonstrated that T cell-derived GIF suppressed the generation of Th effectors that secrete IL-4. During the first 24 h of CD3/CD28 stimulation in vitro, GIF secreted from naïve CD4 cells acted on the same cells, maintained nuclear factor of activated T cells (NFAT)c2 in the nucleus, and repressed IL-4 mRNA levels. Thus, GIF represents a self-regulatory mechanism of Th2 cell generation from naïve CD4 cells, in which the posttranslational modification plays a crucial role.
Collapse
|