1
|
Caird R, Williamson M, Yusuf A, Gogoi D, Casey M, McElvaney NG, Reeves EP. Targeting of Glycosaminoglycans in Genetic and Inflammatory Airway Disease. Int J Mol Sci 2022; 23:ijms23126400. [PMID: 35742845 PMCID: PMC9224208 DOI: 10.3390/ijms23126400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/02/2022] [Accepted: 06/05/2022] [Indexed: 12/10/2022] Open
Abstract
In the lung, glycosaminoglycans (GAGs) are dispersed in the extracellular matrix (ECM) occupying the interstitial space between the capillary endothelium and the alveolar epithelium, in the sub-epithelial tissue and in airway secretions. In addition to playing key structural roles, GAGs contribute to a number of physiologic processes ranging from cell differentiation, cell adhesion and wound healing. Cytokine and chemokine–GAG interactions are also involved in presentation of inflammatory molecules to respective receptors leading to immune cell migration and airway infiltration. More recently, pathophysiological roles of GAGs have been described. This review aims to discuss the biological roles and molecular interactions of GAGs, and their impact in the pathology of chronic airway diseases, such as cystic fibrosis and chronic obstructive pulmonary disease. Moreover, the role of GAGs in respiratory disease has been heightened by the current COVID-19 pandemic. This review underlines the essential need for continued research aimed at exploring the contribution of GAGs in the development of inflammation, to provide a better understanding of their biological impact, as well as leads in the development of new therapeutic agents.
Collapse
|
2
|
Bhattacharyya S, Feferman L, Han X, Xia K, Zhang F, Linhardt RJ, Tobacman JK. Increased CHST15 follows decline in arylsulfatase B (ARSB) and disinhibition of non-canonical WNT signaling: potential impact on epithelial and mesenchymal identity. Oncotarget 2020; 11:2327-2344. [PMID: 32595831 PMCID: PMC7299535 DOI: 10.18632/oncotarget.27634] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
Expression of CHST15 (carbohydrate sulfotransferase 15; chondroitin 4-sulfate-6-sulfotransferase; BRAG), the sulfotransferase enzyme that adds 6-sulfate to chondroitin 4-sulfate (C4S) to make chondroitin 4,6-disulfate (chondroitin sulfate E, CSE), was increased in malignant prostate epithelium obtained by laser capture microdissection and following arylsulfatase B (ARSB; N-acetylgalactosamine-4-sulfatase) silencing in human prostate epithelial cells. Experiments in normal and malignant human prostate epithelial and stromal cells and tissues, in HepG2 cells, and in the ARSB-null mouse were performed to determine the pathway by which CHST15 expression is up-regulated when ARSB expression is reduced. Effects of Wnt-containing prostate stromal cell spent media and selective inhibitors of WNT, JNK, p38, SHP2, β-catenin, Rho, and Rac-1 signaling pathways were determined. Activation of WNT signaling followed declines in ARSB and Dickkopf WNT Signaling Pathway Inhibitor (DKK)3 and was required for increased CHST15 expression. The increase in expression of CHST15 followed activation of non-canonical WNT signaling and involved Wnt3A, Rac-1 GTPase, phospho-p38 MAPK, and nuclear DNA-bound GATA-3. Inhibition of JNK, Sp1, β-catenin nuclear translocation, or Rho kinase had no effect. Consistent with higher expression of CHST15 in prostate epithelium, disaccharide analysis showed higher levels of CSE and chondroitin 6-sulfate (C6S) disaccharides in prostate epithelial cells. In contrast, chondroitin 4-sulfate (C4S) disaccharides were greater in prostate stromal cells. CSE may contribute to increased C4S in malignant epithelium when GALNS (N-aceytylgalactosamine-6-sulfate sulfatase) is increased and ARSB is reduced. These effects increase chondroitin 4-sulfates and reduce chondroitin 6-sulfates, consistent with enhanced stromal characteristics and epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Sumit Bhattacharyya
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Jesse Brown VAMC, Chicago, IL, USA
| | - Leo Feferman
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Jesse Brown VAMC, Chicago, IL, USA
| | - Xiaorui Han
- Department of Chemistry and Chemical Biology Rensselaer Polytechnic Insitute, Troy, NY, USA
| | - Ke Xia
- Department of Chemistry and Chemical Biology Rensselaer Polytechnic Insitute, Troy, NY, USA
| | - Fuming Zhang
- Department of Chemistry and Chemical Biology Rensselaer Polytechnic Insitute, Troy, NY, USA
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology Rensselaer Polytechnic Insitute, Troy, NY, USA
| | - Joanne K Tobacman
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Jesse Brown VAMC, Chicago, IL, USA
| |
Collapse
|
3
|
Bhattacharyya S, Feferman L, Tobacman JK. Distinct Effects of Carrageenan and High-Fat Consumption on the Mechanisms of Insulin Resistance in Nonobese and Obese Models of Type 2 Diabetes. J Diabetes Res 2019; 2019:9582714. [PMID: 31179345 PMCID: PMC6501429 DOI: 10.1155/2019/9582714] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 03/06/2019] [Indexed: 12/23/2022] Open
Abstract
Exposure to low concentration of the common food additive carrageenan (10 mg/L) for only six days led to glucose intolerance and insulin resistance in the C57BL/6J mouse. Longer exposure produced fasting hyperglycemia but with no increase in weight, in contrast to the HFD. Glucose intolerance was attributable to carrageenan-induced inflammation and to increased expression of GRB10. Both HFD and carrageenan increased p(Ser32)-IκBα and p(Ser307)-IRS1, and the increases were greater following the combined exposure. The effects of carrageenan were inhibited by the combination of the free radical inhibitor Tempol and BCL10 siRNA, which had no impact on the HFD-mediated increase. In contrast, the PKC inhibitor sotrastaurin blocked the HFD-induced increases, without an effect on the carrageenan-mediated effects. HFD had no impact on the expression of GRB10. Both carrageenan and high fat increased hepatic infiltration by F4/80-positive macrophages. Serum galectin-3 and galectin-3 binding to the insulin receptor increased by carrageenan and by HFD. Tyrosine phosphorylation of the insulin receptor declined following either exposure and was further reduced by their combination. Carrageenan reduced the activity of the enzyme N-acetylgalactosamine-4-sulfatase (ARSB; arylsulfatase B), which was unchanged following HFD. Dietary exposure to both high fat and carrageenan can impair insulin signaling through both similar and distinct mechanisms.
Collapse
Affiliation(s)
- Sumit Bhattacharyya
- Department of Medicine, University of Illinois at Chicago and Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Leo Feferman
- Department of Medicine, University of Illinois at Chicago and Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Joanne K. Tobacman
- Department of Medicine, University of Illinois at Chicago and Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
4
|
Feferman L, Deaton R, Bhattacharyya S, Xie H, Gann PH, Melamed J, Tobacman JK. Arylsulfatase B is reduced in prostate cancer recurrences. Cancer Biomark 2018; 21:229-234. [PMID: 29081414 DOI: 10.3233/cbm-170680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Arylsulfatase B (ARSB) removes the 4-sulfate group from chondroitin 4-sulfate (C4S) and dermatan sulfate and is required for their degradation. Prior work showed that ARSB immunohistochemical scores were lower in malignant prostate tissue, and were associated with higher Gleason scores and recurrence. OBJECTIVE This study aims to confirm that ARSB immunostaining of prostate tissue obtained at the time of radical prostatectomy is prognostic for prostate cancer recurrence. METHODS Intensity and distribution of ARSB immunostaining were digitally analyzed in a large, well-annotated, prostate cancer tissue microarray (TMA). Scores were calculated for stroma and epithelium and compared for 191 cases, including 36 recurrences, defined as PSA > 0.2 ng/ml. RESULTS Epithelial scores were significantly lower in the recurrences (p= 0.010), and among subgroups with age > 60, initial PSA > 6 ng/ml, or Gleason grade = 7. ARSB score did not improve the prediction of recurrence in multifactorial analysis. CONCLUSIONS Study findings validate previous findings and provide further evidence that lower ARSB is associated with prostate cancer recurrence. Additional studies are required to assess if there are specific cutoff values that may help predict recurrence.
Collapse
Affiliation(s)
- Leo Feferman
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Ryan Deaton
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Sumit Bhattacharyya
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Hui Xie
- Center for Clinical and Translational Sciences and Department of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, IL, USA
| | - Peter H Gann
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Jonathan Melamed
- Department of Pathology, New York University Langone Medical Center, New York, NY, USA
| | - Joanne K Tobacman
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Jesse Brown VA Medical Center, Chicago, IL, USA
| |
Collapse
|
5
|
Bhattacharyya S, Feferman L, Sharma G, Tobacman JK. Increased GPNMB, phospho-ERK1/2, and MMP-9 in cystic fibrosis in association with reduced arylsulfatase B. Mol Genet Metab 2018; 124:168-175. [PMID: 29703589 DOI: 10.1016/j.ymgme.2018.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 02/17/2018] [Accepted: 02/17/2018] [Indexed: 10/18/2022]
Abstract
BACKGROUND GPNMB was increased in a CF gene array and in Arylsulfatase B (ARSB; N-acetylgalactosamine-4-sulfatase)-null mice, consistent with previous reports that ARSB is reduced in cystic fibrosis (CF). Implications of GPNMB increase in CF are unknown. METHODS GPNMB levels were determined in serum and circulating leukocytes from CF patients and healthy controls. GPNMB binding with β-1 integrin and measurements of phospho-ERK1/2 and MMP-9 in CFTR-uncorrected, CFTR-corrected, and normal human bronchial epithelial cells (BEC) were determined, following ARSB and GPNMB knockdown, and treatment with RGD peptide, and ERK phosphorylation inhibitor. RESULTS GPNMB was markedly increased in CF patients compared to controls (p < 0.0001, unpaired t-test, two-tailed). Silencing GPNMB, treatment with excess RGD peptide, and treatment with ERK phosphorylation inhibitor blocked ARSB silencing-induced increases in MMP-9 in the normal BEC. CONCLUSIONS Findings suggest that decline in ARSB activity caused by decline in CFTR function leads to increased GPNMB, which may contribute to organ dysfunction in CF by increased MMP-9 expression.
Collapse
Affiliation(s)
- Sumit Bhattacharyya
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA; Jesse Brown VAMC, Chicago, IL, 60612, USA
| | - Leo Feferman
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA; Jesse Brown VAMC, Chicago, IL, 60612, USA
| | - Girish Sharma
- Department of Pediatrics, Rush University Medical Center, Chicago, IL 60612, USA
| | - Joanne K Tobacman
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA; Jesse Brown VAMC, Chicago, IL, 60612, USA.
| |
Collapse
|
6
|
Restriction of Aerobic Metabolism by Acquired or Innate Arylsulfatase B Deficiency: A New Approach to the Warburg Effect. Sci Rep 2016; 6:32885. [PMID: 27605497 PMCID: PMC5015117 DOI: 10.1038/srep32885] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/16/2016] [Indexed: 11/09/2022] Open
Abstract
Aerobic respiration is required for optimal efficiency of metabolism in mammalian cells. Under circumstances when oxygen utilization is impaired, cells survive by anerobic metabolism. The malignant cell has cultivated the use of anerobic metabolism in an aerobic environment, the Warburg effect, but the explanation for this preference is not clear. This paper presents evidence that deficiency of the enzyme arylsulfatase B (ARSB; N-acetylgalactosamine 4-sulfatase), either innate or acquired, helps to explain the Warburg phenomenon. ARSB is the enzyme that removes 4-sulfate groups from the non-reducing end of chondroitin 4-sulfate and dermatan sulfate. Previous reports indicated reduced ARSB activity in malignancy and replication of the effects of hypoxia by decline in ARSB. Hypoxia reduced ARSB activity, since molecular oxygen is needed for post-translational modification of ARSB. In this report, studies were performed in human HepG2 cells and in hepatocytes from ARSB-deficient and normal C57BL/6J control mice. Decline of ARSB, in the presence of oxygen, profoundly reduced the oxygen consumption rate and increased the extracellular acidification rate, indicating preference for aerobic glycolysis. Specific study findings indicate that decline in ARSB activity enhanced aerobic glycolysis and impaired normal redox processes, consistent with a critical role of ARSB and sulfate reduction in mammalian metabolism.
Collapse
|
7
|
Inhibition of Phosphatase Activity Follows Decline in Sulfatase Activity and Leads to Transcriptional Effects through Sustained Phosphorylation of Transcription Factor MITF. PLoS One 2016; 11:e0153463. [PMID: 27078017 PMCID: PMC4831796 DOI: 10.1371/journal.pone.0153463] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/30/2016] [Indexed: 01/11/2023] Open
Abstract
Arylsulfatase B (B-acetylgalactosamine 4-sulfatase; ARSB) is the enzyme that removes 4-sulfate groups from the non-reducing end of the glycosaminoglycans chondroitin 4-sulfate and dermatan sulfate. Decline in ARSB has been shown in malignant prostate, colonic, and mammary cells and tissues, and decline in ARSB leads to transcriptional events mediated by galectin-3 with AP-1 and Sp1. Increased mRNA expression of GPNMB (transmembrane glycoprotein NMB) in HepG2 cells and in hepatic tissue from ARSB-deficient mice followed decline in expression of ARSB and was mediated by the microphthalmia-associated transcription factor (MITF), but was unaffected by silencing galectin-3. Since GPNMB is increased in multiple malignancies, studies were performed to determine how decline in ARSB increased GPNMB expression. The mechanism by which decline in ARSB increased nuclear phospho-MITF was due to reduced activity of SHP2, a protein tyrosine phosphatase with Src homology (SH2) domains that regulates multiple cellular processes. SHP2 activity declined due to increased binding with chondroitin 4-sulfate when ARSB was reduced. When SHP2 activity was inhibited, phosphorylations of p38 mitogen-associated phosphokinase (MAPK) and of MITF increased, leading to GPNMB promoter activation. A dominant negative SHP2 construct, the SHP2 inhibitor PHSP1, and silencing of ARSB increased phospho-p38, nuclear MITF, and GPNMB. In contrast, constitutively active SHP2 and overexpression of ARSB inhibited GPNMB expression. The interaction between chondroitin 4-sulfate and SHP2 is a novel intersection between sulfation and phosphorylation, by which decline in ARSB and increased chondroitin 4-sulfation can inhibit SHP2, thereby regulating downstream tyrosine phosphorylations by sustained phosphorylations with associated activation of signaling and transcriptional events.
Collapse
|
8
|
Bhattacharyya S, Feferman L, Tobacman JK. Effect of CFTR modifiers on arylsulfatase B activity in cystic fibrosis and normal human bronchial epithelial cells. Pulm Pharmacol Ther 2016; 36:22-30. [DOI: 10.1016/j.pupt.2015.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 11/01/2015] [Accepted: 11/25/2015] [Indexed: 10/22/2022]
|
9
|
Bhattacharyya S, Zhang X, Feferman L, Johnson D, Tortella FC, Guizzetti M, Tobacman JK. Decline in arylsulfatase B and Increase in chondroitin 4-sulfotransferase combine to increase chondroitin 4-sulfate in traumatic brain injury. J Neurochem 2015; 134:728-39. [PMID: 25943740 DOI: 10.1111/jnc.13156] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/23/2015] [Accepted: 04/30/2015] [Indexed: 01/11/2023]
Abstract
In an established rat model of penetrating ballistic-like brain injury (PBBI), arylsulfatase B (ARSB; N-acetylgalactosamine 4-sulfatase) activity was significantly reduced at the ipsilateral site of injury, but unaffected at the contralateral site or in sham controls. In addition, the ARSB substrate chondroitin 4-sulfate (C4S) and total sulfated glycosaminoglycans increased. The mRNA expression of chondroitin 4-sulfotransferase 1 (C4ST1; CHST11) and the sulfotransferase activity rose at the ipsilateral site of injury (PBBI-I), indicating contributions from both increased production and reduced degradation to the accumulation of C4S. In cultured, fetal rat astrocytes, following scratch injury, the ARSB activity declined and the nuclear hypoxia inducible factor-1α increased significantly. In contrast, sulfotransferase activity and chondroitin 4-sulfotransferase expression increased following astrocyte exposure to TGF-β1, but not following scratch. These different pathways by which C4S increased in the cell preparations were both evident in the response to injury in the PBBI-I model. Hence, findings support effects of injury because of mechanical disruption inhibiting ARSB and to chemical mediation by TGF-β1 increasing CHST11 expression and sulfotransferase activity. The increase in C4S following traumatic brain injury is because of contributions from impaired degradation and enhanced synthesis of C4S which combine in the pathogenesis of the glial scar. This is the first report of how two mechanisms contribute to the increase in chondroitin 4-sulfate (C4S) in TBI. Following penetrating ballistic-like brain injury in a rat model and in the scratch model of injury in fetal rat astrocytes, Arylsulfatase B activity declined, leading to accumulation of C4S. TGF-β1 exposure increased expression of chondroitin 4-sulfotransferase. Hence, the increase in C4S in TBI is attributable to both impaired degradation and enhanced synthesis, combining in the pathogenesis of the glial scar.
Collapse
Affiliation(s)
- Sumit Bhattacharyya
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA.,Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Xiaolu Zhang
- Jesse Brown VA Medical Center, Chicago, Illinois, USA.,Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Leo Feferman
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA.,Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - David Johnson
- Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Frank C Tortella
- Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Marina Guizzetti
- Jesse Brown VA Medical Center, Chicago, Illinois, USA.,Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA.,Oregon Health and Science University, Portland, Oregon, USA.,VA Portland Health Care System, Portland, Oregon, USA
| | - Joanne K Tobacman
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA.,Jesse Brown VA Medical Center, Chicago, Illinois, USA
| |
Collapse
|
10
|
Bhattacharyya S, Feferman L, Tobacman JK. Regulation of chondroitin-4-sulfotransferase (CHST11) expression by opposing effects of arylsulfatase B on BMP4 and Wnt9A. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:342-52. [PMID: 25511584 DOI: 10.1016/j.bbagrm.2014.12.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 11/24/2014] [Accepted: 12/09/2014] [Indexed: 01/07/2023]
Abstract
In this report, the gene regulatory mechanism by which decline in arylsulfatase B (ARSB; N-acetylgalactosamine-4-sulfatase) reduces CHST11 (chondroitin-4-sulfotransferase; C4ST) mRNA expression in human colonic epithelial cells and in colonic epithelium of ARSB-deficient mice is presented. ARSB controls the degradation of chondroitin 4-sulfate (C4S) by removing the 4-sulfate group at the non-reducing end of the C4S chain, but has not previously been shown to affect C4S biosynthesis. The decline in CHST11 expression following ARSB reduction is attributable to effects of ARSB on bone morphogenetic protein (BMP)4, since BMP4 expression and secretion declined when ARSB was silenced. Inhibition of BMP4 by neutralizing antibody also reduced CHST11 expression. When C4S was more sulfated due to decline in ARSB, more BMP4 was sequestered by C4S in the cell membrane, and CHST11 expression declined. Exogenous recombinant BMP4, acting through a phospho-Smad3 binding site in the CHST11 promoter, increased the mRNA expression of CHST11. In contrast to the decline in BMP4 that followed decline in ARSB, Wnt9A mRNA expression was previously shown to increase when ARSB was silenced and C4S was more highly sulfated. Galectin-3 bound less to the more highly sulfated C4S, leading to increased nuclear translocation and enhanced galectin-3 interaction with Sp1 in the Wnt9A promoter. Silencing Wnt9A increased the expression of CHST11 in the colonic epithelial cells, and chromatin immunoprecipitation assay demonstrated enhancing effects of Wnt9A siRNA and exogenous BMP4 on the CHST11 promoter through the pSmad3 binding site. These findings suggest that cellular processes mediated by differential effects of Wnt9A and BMP4 can result from opposing effects on CHST11 expression.
Collapse
Affiliation(s)
- Sumit Bhattacharyya
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, United States; Jesse Brown VA Medical Center, Chicago, IL 60612, United States
| | - Leo Feferman
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, United States; Jesse Brown VA Medical Center, Chicago, IL 60612, United States
| | - Joanne K Tobacman
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, United States; Jesse Brown VA Medical Center, Chicago, IL 60612, United States.
| |
Collapse
|
11
|
Bhattacharyya S, Feferman L, Tobacman JK. Arylsulfatase B regulates versican expression by galectin-3 and AP-1 mediated transcriptional effects. Oncogene 2014; 33:5467-76. [PMID: 24240681 PMCID: PMC4024465 DOI: 10.1038/onc.2013.483] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/18/2013] [Accepted: 09/24/2013] [Indexed: 12/15/2022]
Abstract
Arylsulfatase B (N-acetylgalactosamine-4-sulfatase; ARSB) removes 4-sulfate groups from chondroitin-4-sulfate (C4S) and dermatan sulfate and is required for their degradation. In human prostate stromal and epithelial cells, when ARSB was silenced, C4S, versican and versican promoter activity increased, and the galectin-3 that co-immunoprecipitated with C4S declined. Galectin-3 silencing inhibited the ARSB-silencing-induced increases in versican and versican promoter due to effects on the AP-1-binding site in the versican promoter. These findings demonstrate for the first time the transcriptional mechanism whereby ARSB can regulate expression of an extracellular matrix proteoglycan with C4S attachments. In addition, following ARSB silencing, C4S that co-immunoprecipitated with versican increased, whereas co-immunoprecipitated EGFR declined, total EGFR increased and exogenous EGF-induced cell proliferation increased, suggesting profound effects of ARSB on vital cell processes.
Collapse
Affiliation(s)
- Sumit Bhattacharyya
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612
- Jesse Brown VA Medical Center, Chicago, Illinois 60612
| | - Leonid Feferman
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612
- Jesse Brown VA Medical Center, Chicago, Illinois 60612
| | - Joanne K. Tobacman
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612
- Jesse Brown VA Medical Center, Chicago, Illinois 60612
| |
Collapse
|
12
|
McKim JM. Food additive carrageenan: Part I: A critical review of carrageenanin vitrostudies, potential pitfalls, and implications for human health and safety. Crit Rev Toxicol 2014; 44:211-43. [DOI: 10.3109/10408444.2013.861797] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Zhang X, Bhattacharyya S, Kusumo H, Goodlett CR, Tobacman JK, Guizzetti M. Arylsulfatase B modulates neurite outgrowth via astrocyte chondroitin-4-sulfate: dysregulation by ethanol. Glia 2013; 62:259-71. [PMID: 24311516 DOI: 10.1002/glia.22604] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 10/07/2013] [Accepted: 11/06/2013] [Indexed: 11/10/2022]
Abstract
In utero ethanol exposure causes fetal alcohol spectrum disorders, associated with reduced brain plasticity; the mechanisms of these effects are not well understood, particularly with respect to glial involvement. Astrocytes release factors that modulate neurite outgrowth. We explored the hypothesis that ethanol inhibits neurite outgrowth by increasing the levels of inhibitory chondroitin sulfate proteoglycans (CSPGs) in astrocytes. Astrocyte treatment with ethanol inhibited the activity of arylsulfatase B (ARSB), the enzyme that removes sulfate groups from chondroitin-4-sulfate (C4S) and triggers the degradation of C4S, increased total sulfated glycosaminoglycans (GAGs), C4S, and neurocan core-protein content and inhibited neurite outgrowth in neurons cocultured with ethanol-treated astrocytes in vitro, effects reversed by treatment with recombinant ARSB. Ethanol also inhibited ARSB activity and increased sulfate GAG and neurocan levels in the developing hippocampus after in vivo ethanol exposure. ARSB silencing increased the levels of sulfated GAGs, C4S, and neurocan in astrocytes and inhibited neurite outgrowth in cocultured neurons, indicating that ARSB activity directly regulates C4S and affects neurocan expression. In summary, this study reports two major findings: ARSB modulates sulfated GAG and neurocan levels in astrocytes and astrocyte-mediated neurite outgrowth in cocultured neurons; and ethanol inhibits the activity of ARSB, increases sulfated GAG, C4S, and neurocan levels, and thereby inhibits astrocyte-mediated neurite outgrowth. An unscheduled increase in CSPGs in the developing brain may lead to altered brain connectivity and to premature decrease in neuronal plasticity and therefore represents a novel mechanism by which ethanol can exert its neurodevelopmental effects.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois; Jesse Brown VA Medical Center, Chicago, Illinois
| | | | | | | | | | | |
Collapse
|
14
|
Feferman L, Bhattacharyya S, Deaton R, Gann P, Guzman G, Kajdacsy-Balla A, Tobacman JK. Arylsulfatase B (N-acetylgalactosamine-4-sulfatase): potential role as a biomarker in prostate cancer. Prostate Cancer Prostatic Dis 2013; 16:277-84. [PMID: 23835622 PMCID: PMC3763935 DOI: 10.1038/pcan.2013.18] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/10/2013] [Accepted: 05/26/2013] [Indexed: 01/08/2023]
Abstract
BACKGROUND The enzyme Arylsulfatase B (ARSB; N-acetylgalactosamine-4-sulfatase)
degrades chondroitin-4-sulfate (C4S) and is reduced in malignant colonic and
mammary tissues, but has not previously been evaluated in prostate
cancer. METHODS ARSB immunostaining was performed on two tissue microarrays (TMA) and
analyzed by digital image analysis, generating ARSB H-scores for prevalence
and intensity of epithelial, stromal, and combined epithelial and stromal
immunostaining. Also, paired malignant and normal prostate tissues were
analyzed for ARSB activity, C4S, total sulfated glycosaminoglycans, and
versican content. The quantities of C4S and of the epidermal growth factor
receptor that co-immunoprecipitated with versican were determined in the
normal and malignant paired prostate tissues. RESULTS 44 cases of prostate cancer were paired by age (± 5y), race,
Gleason score (in order), and pathologic TNM score. The pairs differed by
recurrence vs. non-recurrence of elevated PSA at 4 or more years. When TMA
cores were analyzed for ARSB H-score, 18 of the 22 pairs had lower ARSB
H-scores in the recurrent member of the pair, whereas higher initial PSA
values were associated with recurrence in only 65% of the paired
cases. In a second TMA, Gleason scores 6 and 7 were associated with higher
ARSB H-scores than Gleason scores 8 and 9 for stroma, epithelium, and stroma
and epithelium combined (p=0.052, p=0.015, p<0.0001, respectively)
and were inversely correlated (r = −0.98, −0.97, and
−0.99, respectively). In other paired normal and malignant prostate
tissues, ARSB activity was significantly higher in the normal tissues, and
C4S and versican values were lower (p<0.0001). C4S that
co-immunoprecipitated with versican was greater in the malignant than in the
normal tissue, whereas total EGFR that co-immunoprecipitated with versican
was reduced. DISCUSSION Study findings suggest that ARSB may be useful as a prognostic
biomarker in prostate cancer, and that the biological action of ARSB on
chondroitin sulfate may impact upon versican’s effects in the tumor
microenvironment.
Collapse
Affiliation(s)
- L Feferman
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Sharma G, Burke J, Bhattacharyya S, Sharma N, Katyal S, Park RL, Tobacman J. Reduced Arylsulfatase B activity in leukocytes from cystic fibrosis patients. Pediatr Pulmonol 2013; 48:236-44. [PMID: 22550062 PMCID: PMC3638799 DOI: 10.1002/ppul.22567] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 03/31/2012] [Indexed: 11/12/2022]
Abstract
The enzyme Arylsulfatase B (ARSB; N-acetylgalactosamine-4-sulfatase) removes 4-sulfate groups from chondroitin-4-sulfate and dermatan sulfate and is required for the degradation of these sulfated glycosaminoglycans (sGAGs). Since these GAGs accumulate in patients with Cystic Fibrosis (CF), we investigated the activity of ARSB in leukocytes of patients with CF, to consider if reduced activity of ARSB might contribute to the pathophysiology of CF. Previous cell-based experiments had demonstrated that when the deficiency of the cystic fibrosis transmembrane regulator (CFTR) was corrected in bronchial epithelial cells, the ARSB activity increased significantly. De-identified, citrated blood samples were collected from 16 children with CF and 31 control subjects, seen in the Pediatric Clinic at Rush University Medical Center. Polymorphonuclear leukocytes (PMN) and mononuclear cell (MC) populations were separated by density gradient, and blinded determinations of ARSB activity were performed using the exogenous substrate 4-methylumbilliferyl sulfate. Interleukin-6 was measured in the plasma samples by ELISA. ARSB activity was significantly less in the PMN and MC from the CF patients than controls (P < 0.0001, unpaired t-test, two-tailed). Interleukin-6 levels in plasma were significantly greater in the CF population (P < 0.001). Mean age, age range, and male:female ratio of CF patients and controls were similar, and no association of ARSB activity with age, gender, or CFTR genotype was evident. Since recombinant human ARSB is used successfully for replacement therapy in Mucopolysaccharidosis VI, it may be useful to restore ARSB activity to normal levels and increase degradation of sulfated GAGs in CF patients.
Collapse
Affiliation(s)
- Girish Sharma
- Department of Pediatrics, Rush University Medical Center, Chicago Illinois, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Kotlo K, Bhattacharyya S, Yang B, Feferman L, Tejaskumar S, Linhardt R, Danziger R, Tobacman JK. Impact of salt exposure on N-acetylgalactosamine-4-sulfatase (arylsulfatase B) activity, glycosaminoglycans, kininogen, and bradykinin. Glycoconj J 2013; 30:667-76. [PMID: 23385884 DOI: 10.1007/s10719-013-9468-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 01/23/2013] [Indexed: 10/27/2022]
Abstract
N-acetylgalactosamine-4-sulfatase (Arylsulfatase B; ARSB) is the enzyme that removes sulfate groups from the N-acetylgalactosamine-4-sulfate residue at the non-reducing end of chondroitin-4-sulfate (C4S) and dermatan sulfate (DS). Previous studies demonstrated reduction in cell-bound high molecular weight kininogen in normal rat kidney (NRK) epithelial cells when chondroitin-4-sulfate content was reduced following overexpression of ARSB activity, and chondroitinase ABC produced similar decline in cell-bound kininogen. Reduction in the cell-bound kininogen was associated with increase in secreted bradykinin. In this report, we extend the in vitro findings to in vivo models, and present findings in Dahl salt-sensitive (SS) rats exposed to high (SSH) and low salt (SSL) diets. In the renal tissue of the SSH rats, ARSB activity was significantly less than in the SSL rats, and chondroitin-4-sulfate and total sulfated glycosaminoglycan content were significantly greater. Disaccharide analysis confirmed marked increase in C4S disaccharides in the renal tissue of the SSH rats. In contrast, unsulfated, hyaluronan-derived disaccharides were increased in the rats on the low salt diet. In the SSH rats, with lower ARSB activity and higher C4S levels, cell-bound, high-molecular weight kininogen was greater and urinary bradykinin was lower. ARSB activity in renal tissue and NRK cells declined when exogenous chloride concentration was increased in vitro. The impact of high chloride exposure in vivo on ARSB, chondroitin-4-sulfation, and C4S-kininogen binding provides a mechanism that links dietary salt intake with bradykinin secretion and may be a factor in blood pressure regulation.
Collapse
Affiliation(s)
- Kumar Kotlo
- University of Illinois at Chicago, Chicago, IL, 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Reeves EP, Molloy K, Pohl K, McElvaney NG. Hypertonic saline in treatment of pulmonary disease in cystic fibrosis. ScientificWorldJournal 2012; 2012:465230. [PMID: 22645424 PMCID: PMC3356721 DOI: 10.1100/2012/465230] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 02/16/2012] [Indexed: 12/21/2022] Open
Abstract
The pathogenesis of lung disease in cystic fibrosis is characterised by decreased airway surface liquid volume and subsequent failure of normal mucociliary clearance. Mucus within the cystic fibrosis airways is enriched in negatively charged matrices composed of DNA released from colonizing bacteria or inflammatory cells, as well as F-actin and elevated concentrations of anionic glycosaminoglycans. Therapies acting against airway mucus in cystic fibrosis include aerosolized hypertonic saline. It has been shown that hypertonic saline possesses mucolytic properties and aids mucociliary clearance by restoring the liquid layer lining the airways. However, recent clinical and bench-top studies are beginning to broaden our view on the beneficial effects of hypertonic saline, which now extend to include anti-infective as well as anti-inflammatory properties. This review aims to discuss the described therapeutic benefits of hypertonic saline and specifically to identify novel models of hypertonic saline action independent of airway hydration.
Collapse
Affiliation(s)
- Emer P Reeves
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland.
| | | | | | | |
Collapse
|
18
|
Bhattacharyya S, Tobacman JK. Hypoxia reduces arylsulfatase B activity and silencing arylsulfatase B replicates and mediates the effects of hypoxia. PLoS One 2012; 7:e33250. [PMID: 22428001 PMCID: PMC3302843 DOI: 10.1371/journal.pone.0033250] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 02/13/2012] [Indexed: 12/24/2022] Open
Abstract
This report presents evidence of 1) a role for arylsulfatase B (ARSB; N-acetylgalactosamine-4-sulfatase) in mediating intracellular oxygen signaling; 2) replication between the effects of ARSB silencing and hypoxia on sulfated glycosaminoglycan content, cellular redox status, and expression of hypoxia-associated genes; and 3) a mechanism whereby changes in chondroitin-4-sulfation that follow either hypoxia or ARSB silencing can induce transcriptional changes through galectin-3. ARSB removes 4-sulfate groups from the non-reducing end of chondroitin-4-sulfate and dermatan sulfate and is required for their degradation. For activity, ARSB requires modification of a critical cysteine residue by the formylglycine generating enzyme and by molecular oxygen. When primary human bronchial and human colonic epithelial cells were exposed to 10% O2×1 h, ARSB activity declined by ∼41% and ∼30% from baseline, as nuclear hypoxia inducible factor (HIF)-1α increased by ∼53% and ∼37%. When ARSB was silenced, nuclear HIF-1α increased by ∼81% and ∼61% from baseline, and mRNA expression increased to 3.73 (±0.34) times baseline. Inversely, ARSB overexpression reduced nuclear HIF-1α by ∼37% and ∼54% from baseline in the epithelial cells. Hypoxia, like ARSB silencing, significantly increased the total cellular sulfated glycosaminoglycans and chondroitin-4-sulfate (C4S) content. Both hypoxia and ARSB silencing had similar effects on the cellular redox status and on mRNA expression of hypoxia-associated genes. Transcriptional effects of both ARSB silencing and hypoxia may be mediated by reduction in galectin-3 binding to more highly sulfated C4S, since the galectin-3 that co-immunoprecipitated with C4S declined and the nuclear galectin-3 increased following ARSB knockdown and hypoxia.
Collapse
Affiliation(s)
- Sumit Bhattacharyya
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Medicine, Jesse Brown VA Medical Center, Chicago, Illinois, United States of America
| | - Joanne K. Tobacman
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Medicine, Jesse Brown VA Medical Center, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
19
|
Reeves EP, McElvaney NG. The facilitating effect of hypertonic saline on resolution of airway inflammation in cystic fibrosis. Am J Respir Crit Care Med 2012; 185:226-7. [PMID: 22351955 DOI: 10.1164/ajrccm.185.2.226a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
20
|
Exposure to common food additive carrageenan leads to reduced sulfatase activity and increase in sulfated glycosaminoglycans in human epithelial cells. Biochimie 2012; 94:1309-16. [PMID: 22410212 DOI: 10.1016/j.biochi.2012.02.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 02/26/2012] [Indexed: 11/21/2022]
Abstract
The commonly used food additive carrageenan, including lambda (λ), kappa (κ) and iota (ι) forms, is composed of galactose disaccharides linked in alpha-1,3 and beta-1,4 glycosidic bonds with up to three sulfate groups per disaccharide residue. Carrageenan closely resembles the endogenous galactose or N-acetylgalactosamine-containing glycosaminoglycans (GAGs), chondroitin sulfate (CS), dermatan sulfate (DS), and keratan sulfate. However, these GAGs have beta-1,3 and beta-1,4 glycosidic bonds, in contrast to the unusual alpha-1,3 glycosidic bond in carrageenan. Since sulfatase activity is inhibited by sulfate, and carrageenan is so highly sulfated, we tested the effect of carrageenan exposure on sulfatase activity in human intestinal and mammary epithelial cell lines and found that carrageenan exposure significantly reduced the activity of sulfatases, including N-acetylgalactosamine-4-sulfatase, galactose-6-sulfatase, iduronate sulfatase, steroid sulfatase, arylsulfatase A, SULF-1,2, and heparan sulfamidase. Consistent with the inhibition of sulfatase activity, following exposure to carrageenan, GAG content increased significantly and showed marked differences in disaccharide composition. Specific changes in CS disaccharides included increases in di-sulfated disaccharide components of CSD (2S6S) and CS-E (4S6S), with declines in CS-A (4S) and CS-C (6S). Specific changes in heparin-heparan sulfate disaccharides included increases in 6S disaccharides, as well as increases in NS and 2S6S disaccharides. Study results suggest that carrageenan inhibition of sulfatase activity leads to re-distribution of the cellular GAG composition with increase in di-sulfated CS and with potential consequences for cell structure and function.
Collapse
|
21
|
Bhattacharyya S, Tobacman JK. Molecular signature of kappa-carrageenan mimics chondroitin-4-sulfate and dermatan sulfate and enables interaction with arylsulfatase B. J Nutr Biochem 2011; 23:1058-63. [PMID: 22079206 DOI: 10.1016/j.jnutbio.2011.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 04/24/2011] [Accepted: 05/24/2011] [Indexed: 12/31/2022]
Abstract
The common food additive kappa-carrageenan (κ-CGN) is a sulfated polysaccharide that resembles chondroitin-4-sulfate (C4S) and dermatan sulfate (DS). All have a sulfate group on C4 of a glycoside (galactose for CGN and N-acetylgalactosamine for C4S), and the sulfate-bearing glycoside is linked in a β-1,4-configuration to an unsulfated, six-carbon sugar (galactose for CGN, glucuronate for C4S and iduronate for DS). The enzyme arylsulfatase B (ARSB; N-acetylgalactosamine-4-sulfate) is the highly selective enzyme that removes the four-sulfate group from the nonreducing terminus of C4S and DS, thereby regulating subsequent degradation. In this report, κ-CGN is shown to be a substrate for recombinant human ARSB (rhARSB). Sulfate was generated from both C4S and κ-CGN following incubation with rhARSB. Exposure of human colonic epithelial cells to κ-CGN, but not to C4S, produced reactive oxygen species (ROS) and increased interleukin (IL)-8 secretion. The ROS production from κ-CGN was reduced by exposure to rhARSB, but increased by competition from C4S or DS, but not from chondroitin-6-sulfate. Prior treatment of either lambda- or iota-CGN with rhARSB had no impact on ROS, IL-8 or inorganic sulfate production, demonstrating a specific effect of the molecular configuration of κ-CGN. By mimicry of C4S and DS and by interaction with ARSB, κ-CGN can directly interfere with the normal cellular functions of C4S, DS and ARSB. Since C4S and DS are present in high concentration in tissues, the impact of κ-CGN exposure may be due to some extent to interference with the normal biological functions of ARSB, C4S and DS.
Collapse
Affiliation(s)
- Sumit Bhattacharyya
- Department of Medicine, University of Illinois at Chicago and Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | | |
Collapse
|
22
|
Wang Z, Ly M, Zhang F, Zhong W, Suen A, Hickey AM, Dordick JS, Linhardt RJ. E. coli K5 fermentation and the preparation of heparosan, a bioengineered heparin precursor. Biotechnol Bioeng 2011; 107:964-73. [PMID: 20717972 DOI: 10.1002/bit.22898] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Heparosan is an acidic polysaccharide natural product, which serves as the critical precursor in heparin biosynthesis and in the chemoenzymatic synthesis of bioengineered heparin. Heparosan is also the capsular polysaccharide of Escherichia coli K5 strain. The current study was focused on the examination of the fermentation of E. coli K5 with the goal of producing heparosan in high yield and volumetric productivity. The structure and molecular weight properties of this bacterial heparosan were determined using polyacrylamide gel electrophoresis (PAGE) and Fourier transform mass spectrometry. Fermentation of E. coli K5 in a defined medium using exponential fed-batch glucose addition with oxygen enrichment afforded heparosan at 15 g/L having a number average molecular weight of 58,000 Da and a weight average molecular weight of 84,000 Da.
Collapse
Affiliation(s)
- Zhenyu Wang
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Prabhu SV, Bhattacharyya S, Guzman-Hartman G, Macias V, Kajdacsy-Balla A, Tobacman JK. Extra-lysosomal localization of arylsulfatase B in human colonic epithelium. J Histochem Cytochem 2011; 59:328-35. [PMID: 21378286 DOI: 10.1369/0022155410395511] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The enzyme arylsulfatase B (N-acetylgalactosamine-4-sulfatase; ARSB; ASB) removes 4-sulfate groups from the sulfated glycosaminoglycans (sGAG) chondroitin-4-sulfate (C4S) and dermatan sulfate (DS). Inborn deficiency of ARSB leads to the lysosomal storage disease mucopolysaccharidosis VI, characterized by accumulation of sGAG in vital organs, disruption of normal physiological processes, severe morbidity, and premature death. Recent published work demonstrated extra-lysosomal localization with nuclear and cell membrane ARSB observed in bronchial and colonic epithelial cells, cerebrovascular cells, and hepatic cells. In this report, the authors present ARSB immunostaining in a colonic microarray and show differences in distribution, intensity, and pattern of ARSB staining among normal colon, adenomas, and adenocarcinomas. Distinctive, intense luminal membrane staining was present in the normal epithelial cells but reduced in the malignancies and less in the grade 3 than in the grade 1 adenocarcinomas. In the normal cores, a distinctive pattern of intense cytoplasmic positivity at the luminal surface was followed by reduced staining deeper in the crypts. ARSB enzymatic activity was significantly greater in normal than in malignant tissue. These study findings affirm extra-lysosomal localization of ARSB and suggest that altered ARSB immunostaining and reduced activity may be useful indicators of malignant transformation in human colonic tissue.
Collapse
Affiliation(s)
- Sanjiv V Prabhu
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | | | | | |
Collapse
|
24
|
Arylsulfatase B regulates interaction of chondroitin-4-sulfate and kininogen in renal epithelial cells. Biochim Biophys Acta Mol Basis Dis 2010; 1802:472-7. [PMID: 20152898 DOI: 10.1016/j.bbadis.2010.01.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 01/26/2010] [Accepted: 01/29/2010] [Indexed: 11/23/2022]
Abstract
The enzyme arylsulfatase B (N-acetylgalactosamine 4-sulfatase; ASB; ARSB), which removes 4-sulfate groups from the nonreducing end of chondroitin-4-sulfate (C4S;CSA) and dermatan sulfate, has cellular effects, beyond those associated with the lysosomal storage disease mucopolysaccharidosis VI. Previously, reduced ASB activity was reported in cystic fibrosis patients and in malignant human mammary epithelial cell lines in tissue culture compared to normal cells. ASB silencing and overexpression were associated with alterations in syndecan-1 and decorin expression in MCF-7 cells and in IL-8 secretion in human bronchial epithelial cells. In this report, we present the role of ASB in the regulation of the kininogen-bradykinin axis owing to its effect on chondroitin-4-sulfation and the interaction of C4S with kininogen. Silencing or overexpression of ASB in normal rat kidney epithelial cells in tissue culture modified the content of total sulfated glycosaminoglycans (sGAGs), C4S, kininogen, and bradykinin in spent media and cell lysates. Treatment of the cultured cells with chondroitinase ABC also increased the secretion of bradykinin into the spent media and reduced the C4S-associated kininogen. When ASB was overexpressed, the cellular kininogen that associated with C4S declined, suggesting a vital role for chondroitin-4-sulfation in regulating the kininogen-C4S interaction. These findings suggest that ASB, owing to its effect on chondroitin-4-sulfation, may impact on the kininogen-bradykinin axis and, thereby, may influence blood pressure. Because ASB activity is influenced by several ions, including chloride and phosphate, ASB activity may provide a link between salt responsiveness and the bradykinin-associated mechanism of blood pressure regulation.
Collapse
|
25
|
Reeves EP, Williamson M, Byrne B, Bergin DA, Smith SGJ, Greally P, O’Kennedy R, O’Neill SJ, McElvaney NG. IL-8 Dictates Glycosaminoglycan Binding and Stability of IL-18 in Cystic Fibrosis. THE JOURNAL OF IMMUNOLOGY 2009; 184:1642-52. [DOI: 10.4049/jimmunol.0902605] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Chloroquine reduces arylsulphatase B activity and increases chondroitin-4-sulphate: implications for mechanisms of action and resistance. Malar J 2009; 8:303. [PMID: 20017940 PMCID: PMC2805689 DOI: 10.1186/1475-2875-8-303] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 12/17/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The receptors for adhesion of Plasmodium falciparum-infected red blood cells (RBC) in the placenta have been identified as chondroitin-4-sulphate (C4S) proteoglycans, and the more sulphate-rich chondroitin oligosaccharides have been reported to inhibit adhesion. Since the anti-malarial drug chloroquine accumulates in lysosomes and alters normal lysosomal processes, the effects of chloroquine on the lysosomal enzyme arylsulphatase B (ASB, N-acetylgalactosamine-4-sulphatase), which removes 4-sulphate groups from chondroitin-4-sulphate, were addressed. The underlying hypothesis derived from the recognized impairment of attachment of parasite-infected erythrocytes in the placenta, when chondroitin-4-sulphation was increased. If chloroquine reduced ASB activity, leading to increased chondroitin-4-sulphation, it was hypothesized that the anti-malarial mechanism of chloroquine might derive, at least in part, from suppression of ASB. METHODS Experimental methods involved cell culture of human placental, bronchial epithelial, and cerebrovascular cells, and the in vitro exposure of the cells to chloroquine at increasing concentrations and durations. Measurements of arylsulphatase B enzymatic activity, total sulphated glycosaminoglycans (sGAG), and chondroitin-4-sulphate (C4S) were performed using in vitro assays, following exposure to chloroquine and in untreated cell preparations. Fluorescent immunostaining of ASB was performed to determine the effect of chloroquine on cellular ASB content and localization. Mass spectrometry and high performance liquid chromatography were performed to document and to quantify the changes in chondroitin disaccharides following chloroquine exposure. RESULTS In the human placental, bronchial epithelial, and cerebrovascular cells, exposure to increasing concentrations of chloroquine was associated with reduced ASB activity and with increased concentrations of sGAG, largely attributable to increased C4S. The study data demonstrated: 1) decline in ASB activity following chloroquine exposure; 2) inverse correlation between ASB activity and C4S content; 3) increased content of chondroitin-4-sulphate disaccharides following chloroquine exposure; and 4) decline in extent of chloroquine-induced ASB reduction with lower baseline ASB activity. Confocal microscopy demonstrated the presence of ASB along the cell periphery, indicating extra-lysosomal localization. CONCLUSIONS The study data indicate that the therapeutic mechanism of chloroquine action may be attributable, at least in part, to reduction of ASB activity, leading to increased chondroitin-4-sulphation in human placental, bronchial epithelial, and cerebrovascular cells. In vivo, increased chondroitin-4-sulphation may reduce the attachment of P. falciparum-infected erythrocytes to human cells. Extra-lysosomal localization of ASB and reduced impact of chloroquine when baseline ASB activity is less suggest possible mechanisms of resistance to the effects of chloroquine.
Collapse
|