1
|
Bakalenko N, Kuznetsova E, Malashicheva A. The Complex Interplay of TGF-β and Notch Signaling in the Pathogenesis of Fibrosis. Int J Mol Sci 2024; 25:10803. [PMID: 39409132 PMCID: PMC11477142 DOI: 10.3390/ijms251910803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Fibrosis is a major medical challenge, as it leads to irreversible tissue remodeling and organ dysfunction. Its progression contributes significantly to morbidity and mortality worldwide, with limited therapeutic options available. Extensive research on the molecular mechanisms of fibrosis has revealed numerous factors and signaling pathways involved. However, the interactions between these pathways remain unclear. A comprehensive understanding of the entire signaling network that drives fibrosis is still missing. The TGF-β and Notch signaling pathways play a key role in fibrogenesis, and this review focuses on their functional interplay and molecular mechanisms. Studies have shown synergy between TGF-β and Notch cascades in fibrosis, but antagonistic interactions can also occur, especially in cardiac fibrosis. The molecular mechanisms of these interactions vary depending on the cell context. Understanding these complex and context-dependent interactions is crucial for developing effective strategies for treating fibrosis.
Collapse
Affiliation(s)
| | | | - Anna Malashicheva
- Institute of Cytology, Russian Academy of Sciences, St-Petersburg 194064, Russia; (N.B.); (E.K.)
| |
Collapse
|
2
|
[Research Progress on the Pathogenesis of Lung Cancer Associated with
Idiopathic Pulmonary Fibrosis]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2022; 25:811-818. [PMID: 36419395 PMCID: PMC9720683 DOI: 10.3779/j.issn.1009-3419.2022.101.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common interstitial lung disease (ILD) of unknown causes, which is characterized by pulmonary fibrosis. The median survival period after diagnosis is about 2-4 years. In recent years, the incidence rate of lung cancer associated with IPF (IPF-LC) is increasing, and the prognosis is worse than that of IPF alone. Pulmonary fibrosis may be closely associated with the occurrence and development of lung cancer. Although the pathogenesis of IPF-LC is still unclear, the current research shows that there are similarities between the pathogenesis of these two diseases at molecular and cellular levels. At present, the research on the cellular and molecular mechanism of lung cancer related to pulmonary fibrosis has become the focus of researchers' attention. This article reviews the related literature, focusing on the latest status of the cellular and molecular mechanisms and treatment of IPF-LC, hoping to help clinicians understand IPF-LC.
.
Collapse
|
3
|
Huang S, Lai X, Yang L, Ye F, Huang C, Qiu Y, Lin S, Pu L, Wang Z, Huang W. Asporin Promotes TGF-β-induced Lung Myofibroblast Differentiation by Facilitating Rab11-dependent Recycling of TβRI. Am J Respir Cell Mol Biol 2021; 66:158-170. [PMID: 34705621 DOI: 10.1165/rcmb.2021-0257oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive fibrotic lung disease with high mortality and morbidity. Asporin (ASPN), a member of the small leucine-rich proteoglycan (SLRP) family, plays crucial roles in tissue injury and regeneration. However, the precise pathophysiological role of ASPN and its molecular mechanisms in IPF remain unknown. We sought to investigate the role of ASPN during the development of pulmonary fibrosis and the therapeutic potential of targeting ASPN-related signaling pathways. In our study, three microarray datasets were downloaded from the Gene Expression Omnibus (GEO) database, and differentially expressed genes (DEGs) were screened out by bioinformatic analysis. Hub genes were selected from the protein-protein interaction network. ASPN was examined in lung tissues from pulmonary fibrosis mouse models and the role of ASPN in TGF-β/Smad signaling was determined by transfection with ASPN shRNA vectors in vitro. Biotinylation assays were conducted to measure plasma membrane TβRI and TβRI recycling after ASPN knockdown. The results showed ASPN expression was increased in the lungs of pulmonary fibrosis mouse models, and ASPN was primarily localized in α-SMA+ myofibroblasts. In vitro experiments proved that ASPN knockdown inhibited TGF-β/Smad signaling and myofibroblast differentiation by regulating the stability of TβRI. Further molecular mechanisms revealed that ASPN knockdown inhibited TGF-β/Smad signaling by suppressing recycling of TβRI to the cell surface in a Rab11-dependent manner and facilitated lysosome-mediated degradation of TβRI. In conclusion, our findings provide important evidence for the use of ASPN as a novel pharmacological target for treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Shaojie Huang
- Sun Yat-sen University First Affiliated Hospital, 71068, Department of Cardiac Surgery, Guangzhou, China
| | - Xiaofan Lai
- Sun Yat-sen University First Affiliated Hospital, 71068, Department of Anesthesiology, Guangzhou, China
| | - Lu Yang
- Sun Yat-sen University First Affiliated Hospital, 71068, Department of Anesthesiology, Guangzhou, China
| | - Fang Ye
- Sun Yat-sen University First Affiliated Hospital, 71068, Department of Anesthesiology, Guangzhou, China
| | - Chanyan Huang
- Sun Yat-sen University First Affiliated Hospital, 71068, Department of Anesthesiology, Guangzhou, China
| | - Yuan Qiu
- Sun Yat-Sen University, 26469, Center for stem cell biology and tissue engineering, Guangzhou, China
| | - Sijia Lin
- Sun Yat-Sen University, 26469, Guangzhou, China
| | - Lvya Pu
- Sun Yat-Sen University, 26469, Guangzhou, China
| | - Zhongxing Wang
- Sun Yat-sen University First Affiliated Hospital, 71068, Department of Anesthesiology, Guangzhou, China
| | - Wenqi Huang
- Sun Yat-sen University First Affiliated Hospital, 71068, Department of Anesthesiology, Guangzhou, China;
| |
Collapse
|
4
|
Liu X, Liu H, Jia X, He R, Zhang X, Zhang W. Changing Expression Profiles of Messenger RNA, MicroRNA, Long Non-coding RNA, and Circular RNA Reveal the Key Regulators and Interaction Networks of Competing Endogenous RNA in Pulmonary Fibrosis. Front Genet 2020; 11:558095. [PMID: 33193637 PMCID: PMC7541945 DOI: 10.3389/fgene.2020.558095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/24/2020] [Indexed: 01/20/2023] Open
Abstract
Pulmonary fibrosis is a kind of interstitial lung disease with architectural remodeling of tissues and excessive matrix deposition. Apart from messenger RNA (mRNA), microRNA (miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA) could also play important roles in the regulatory processes of occurrence and progression of pulmonary fibrosis. In the present study, the pulmonary fibrosis model was administered with bleomycin. Whole transcriptome sequencing analysis was applied to investigate the expression profiles of mRNAs, lncRNAs, circRNAs, and miRNAs. After comparing bleomycin-induced pulmonary fibrosis model lung samples and controls, 286 lncRNAs, 192 mRNAs, 605 circRNAs, and 32 miRNAs were found to be differentially expressed. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to investigate the potential functions of these differentially expressed (DE) mRNAs and non-coding RNAs (ncRNAs). The terms related to inflammatory response and tumor necrosis factor (TNF) signaling pathway were enriched, implying potential roles in regulatory process. In addition, two co-expression networks were also constructed to understand the internal regulating relationships of these mRNAs and ncRNAs. Our study provides a systematic perspective on the potential functions of these DE mRNAs and ncRNAs during PF process and could help pave the way for effective therapeutics for this devastating and complex disease.
Collapse
Affiliation(s)
- Xue Liu
- Department of Respiration, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huaman Liu
- Department of Respiration, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinhua Jia
- Department of Respiration, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Rong He
- Department of Respiration, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinyue Zhang
- Department of Respiration, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Zhang
- Department of Respiration, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
5
|
Zhou L, Gao R, Hong H, Li X, Yang J, Shen W, Wang Z, Yang J. Emodin inhibiting neutrophil elastase-induced epithelial-mesenchymal transition through Notch1 signalling in alveolar epithelial cells. J Cell Mol Med 2020; 24:11998-12007. [PMID: 32935466 PMCID: PMC7578861 DOI: 10.1111/jcmm.15827] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 12/21/2022] Open
Abstract
The transition of alveolar type II epithelial cells into fibroblasts has been reported to cause and/or aggravate pulmonary fibrosis (PF), which is characterized by fibroblast proliferation, an enhanced production and accumulation of ECM (extracellular matrix), alveolar wall damage and functional capillary unit loss. Traditional Chinese medicine Emodin has been reported to inhibit TGF‐β‐induced epithelial‐mesenchymal transition (EMT) in alveolar epithelial cells through Notch signalling. In the present study, neutrophil elastase (NE, also known as ELA2) treatment promoted EMT, Notch1 cleavage (NICD/Notch1 ratio increase) and NICD nuclear translocation in RLE‐6TN cells and A549 cells. The promotive roles of NE treatment in these events were significantly reversed by Notch1 knockdown. Traditional Chinese medicine Emodin treatment remarkably inhibited the enzyme activity of NE, suppressed EMT, Notch1 cleavage and NICD nuclear translocation within RLE‐6TN and A549 cells, while NE treatment significantly reversed the effects of Emodin. Moreover, in RLE‐6TN, the effects of NE on EMT, Notch1 cleavage and NICD nuclear translocation were remarkably attenuated by Emodin treatment and more attenuated by the combination of Emodin and neutrophil elastase inhibitor Sivelestat or notch signal pathway inhibitor DAPT. In conclusion, we revealed the involvement of NE‐induced Notch1 cleavage in the functions of Emodin suppressing NE‐caused EMT in RLE‐6TN cells and A549 cells. This novel mechanism of Emodin inhibiting EMT might extend the application of Emodin in PF treatment.
Collapse
Affiliation(s)
- Linshui Zhou
- Department of Respiration, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Rundi Gao
- Department of Respiration, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Huihua Hong
- Department of Respiration, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaojuan Li
- Department of Pulmonary Function, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jia Yang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wei Shen
- Department of Traditional Chinese medicine preparation, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhen Wang
- Department of Respiration, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Junchao Yang
- Department of Respiration, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
6
|
Zhang N, Yang K, Bai J, Yi J, Gao C, Zhao J, Liang S, Wei T, Feng L, Song L, Han H, Qin H. Myeloid-specific blockade of Notch signaling alleviates murine pulmonary fibrosis through regulating monocyte-derived Ly6c lo MHCII hi alveolar macrophages recruitment and TGF-β secretion. FASEB J 2020; 34:11168-11184. [PMID: 32638441 DOI: 10.1096/fj.201903086rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022]
Abstract
Macrophages in lung, including resident alveolar macrophages (AMs) and interstitial macrophages (IMs), and monocyte-derived macrophages, play important roles in pulmonary fibrosis (PF), but mechanisms underlying their differential regulation remain unclear. Recombination signal-binding protein Jκ (RBP-J)-mediated Notch signaling regulates macrophage development and phenotype. Here, using bleomycin-induced fibrosis model combined with myeloid-specific RBP-J disruption (RBP-JcKO ) mouse, we investigated the role of Notch signaling in macrophages during PF. Compared with the control, RBP-JcKO mice exhibited alleviated lung fibrosis as manifested by reduced collagen deposition and inflammation, and decreased TGF-β production. FACS analysis suggested that decreased Ly6clo MHCIIhi AMs might make the major contribution to attenuated fibrogenesis in RBP-JcKO mice, probably by reduced inflammatory factor release and enhanced matrix metalloproteinases expression. Using clodronate-mediated macrophage depletion in RBP-JckO mice, we demonstrated that embryonic-derived AMs play negligible role in lung fibrosis, which was further supported by adoptive transfer experiments. Moreover, on CCR2 knockout background, the effect of RBP-J deficiency on fibrogenesis was not elicited, suggesting that Notch regulated monocyte-derived AMs. Co-culture experiment showed that monocyte-derived AMs from RBP-JcKO mice exhibit reduced myofibroblast activation due to decreased TGF-β secretion. In conclusion, monocyte-derived Ly6clo MHCIIhi AMs, which are regulated by RBP-J-mediated Notch signaling, play an essential role in lung fibrosis.
Collapse
Affiliation(s)
- Ni Zhang
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China.,Department of Basic Medicine, Xi'an Medical University, Xi'an, China
| | - Kui Yang
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China.,Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jian Bai
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Jing Yi
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Chunchen Gao
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Junlong Zhao
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Shiqian Liang
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Tiaoxia Wei
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Lei Feng
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Liqiang Song
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hua Han
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China.,Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Hongyan Qin
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
7
|
Kiyokawa H, Morimoto M. Notch signaling in the mammalian respiratory system, specifically the trachea and lungs, in development, homeostasis, regeneration, and disease. Dev Growth Differ 2019; 62:67-79. [PMID: 31613406 PMCID: PMC7028093 DOI: 10.1111/dgd.12628] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/04/2019] [Accepted: 09/04/2019] [Indexed: 12/18/2022]
Abstract
The respiratory system has ideal tissue structure and cell types for efficient gas exchange to intake oxygen and release carbon dioxide. This complex system develops through orchestrated intercellular signaling among various cell types, such as club, ciliated, basal, neuroendocrine, AT1, AT2, endothelial, and smooth muscle cells. Notch signaling is a highly conserved cell-cell signaling pathway ideally suited for very short-range cellular communication because Notch signals are transmitted by direct contact with an adjacent cell. Enthusiastic efforts by Notch researchers over the last two decades have led to the identification of critical roles of this signaling pathway during development, homeostasis, and regeneration of the respiratory system. The dysregulation of Notch signaling results in a wide range of respiratory diseases such as pulmonary artery hypertension (PAH), chronic obstructive pulmonary disease (COPD), interstitial pulmonary fibrosis (IPF), and lung cancer. Thus, a deep understanding of the biological functions of Notch signaling will help identify novel treatment targets in various respiratory diseases.
Collapse
Affiliation(s)
- Hirofumi Kiyokawa
- Laboratory for Lung Development and Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Mitsuru Morimoto
- Laboratory for Lung Development and Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
8
|
Selman M, Martinez FJ, Pardo A. Why Does an Aging Smoker’s Lung Develop Idiopathic Pulmonary Fibrosis and Not Chronic Obstructive Pulmonary Disease? Am J Respir Crit Care Med 2019; 199:279-285. [DOI: 10.1164/rccm.201806-1166pp] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Moisés Selman
- Instituto Nacional de Enfermedades Respiratorias, Ismael Cosío Villegas, Mexico City, Mexico
| | - Fernando J. Martinez
- Weill Cornell Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, New York, New York
- Deputy Editor, AJRCCM; and
| | - Annie Pardo
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
9
|
Fang CY, Yu CC, Liao YW, Hsieh PL, Lu MY, Lin KC, Wu CZ, Tsai LL. LncRNA LINC00974 activates TGF-β/Smad signaling to promote oral fibrogenesis. J Oral Pathol Med 2018; 48:151-158. [PMID: 30447113 DOI: 10.1111/jop.12805] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/31/2018] [Accepted: 11/05/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND Oral submucous fibrosis (OSF) is a progressive scarring disease and has been considered as a premalignant condition of the oral cavity. However, the detailed molecular mechanisms underlying the pathogenesis of OSF are still unclear. METHOD Here, we examined the expression of a novel long non-coding RNA LINC00974 in OSF and investigated its function role in myofibroblast transdifferentiation. Phenotypic analyses, including collagen gel contraction, migration, invasion and wound healing assays, were used to assess the myofibroblast activities following overexpression or inhibition of LINC00974. RESULTS We found that the expression of LINC00974 in OSF tissues or myofibroblasts was aberrantly upregulated, and there was a positive correlation between LINC00974 and myofibroblast markers. Our results showed that inhibition of LINC00974 suppressed the myofibroblast activities, while overexpression of LINC00974 increased the activation. We demonstrated that the expression levels of α-SMA, α-1 type I collagen, fibronectin were downregulated in the LINC00974-inhibited myofibroblasts. Additionally, the TGF-β secretion and phosphorylated Smad2 expression were also repressed in the LINC00974-inhibited myofibroblasts. We further demonstrated that silence of LINC00974 prevented the arecoline-induced myofibroblast activation, and LINC00974-increased myofibroblast activities were via TGF-β pathway. CONCLUSION Altogether, these findings suggested that arecoline-increased myofibroblast transdifferentiation was via LINC00974-mediated activation of TGF-β signaling.
Collapse
Affiliation(s)
- Chih-Yuan Fang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Oral and Maxillofacial Surgery, Department of Dentistry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Chia Yu
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan.,School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Wen Liao
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Pei-Ling Hsieh
- Department of Anatomy, School of Medicine, China Medical University, Taichung, Taiwan
| | - Ming-Yi Lu
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan.,School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Kuan-Chou Lin
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ching-Zong Wu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Lo-Lin Tsai
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Oral and Maxillofacial Surgery, Department of Dentistry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
10
|
Hussain M, Xu C, Ahmad M, Yang Y, Lu M, Wu X, Tang L, Wu X. Notch Signaling: Linking Embryonic Lung Development and Asthmatic Airway Remodeling. Mol Pharmacol 2017; 92:676-693. [PMID: 29025966 DOI: 10.1124/mol.117.110254] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/11/2017] [Indexed: 12/12/2022] Open
Abstract
Lung development is mediated by assorted signaling proteins and orchestrated by complex mesenchymal-epithelial interactions. Notch signaling is an evolutionarily conserved cell-cell communication mechanism that exhibits a pivotal role in lung development. Notably, both aberrant expression and loss of regulation of Notch signaling are critically linked to the pathogenesis of various lung diseases, in particular, pulmonary fibrosis, lung cancer, pulmonary arterial hypertension, and asthmatic airway remodeling; implying that precise regulation of intensity and duration of Notch signaling is imperative for appropriate lung development. Moreover, evidence suggests that Notch signaling links embryonic lung development and asthmatic airway remodeling. Herein, we summarized all-recent advances associated with the mechanistic role of Notch signaling in lung development, consequences of aberrant expression or deletion of Notch signaling in linking early-impaired lung development and asthmatic airway remodeling, and all recently investigated potential therapeutic strategies to treat asthmatic airway remodeling.
Collapse
Affiliation(s)
- Musaddique Hussain
- Department of Pharmacology and The Key Respiratory Drug Research Laboratory of China Food and Drug Administration, School of Medicine, Zhejiang University, Hangzhou City, China (M.H., C.X., M.A., Xim.W.); The Second People's Hospital of Wenling, Wenling City, Zhejiang Province, China (Y.Y.); and Department of Respiratory Medicine, the Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou City, China (M.L., Xil.W., L.T.)
| | - Chengyun Xu
- Department of Pharmacology and The Key Respiratory Drug Research Laboratory of China Food and Drug Administration, School of Medicine, Zhejiang University, Hangzhou City, China (M.H., C.X., M.A., Xim.W.); The Second People's Hospital of Wenling, Wenling City, Zhejiang Province, China (Y.Y.); and Department of Respiratory Medicine, the Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou City, China (M.L., Xil.W., L.T.)
| | - Mashaal Ahmad
- Department of Pharmacology and The Key Respiratory Drug Research Laboratory of China Food and Drug Administration, School of Medicine, Zhejiang University, Hangzhou City, China (M.H., C.X., M.A., Xim.W.); The Second People's Hospital of Wenling, Wenling City, Zhejiang Province, China (Y.Y.); and Department of Respiratory Medicine, the Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou City, China (M.L., Xil.W., L.T.)
| | - Youping Yang
- Department of Pharmacology and The Key Respiratory Drug Research Laboratory of China Food and Drug Administration, School of Medicine, Zhejiang University, Hangzhou City, China (M.H., C.X., M.A., Xim.W.); The Second People's Hospital of Wenling, Wenling City, Zhejiang Province, China (Y.Y.); and Department of Respiratory Medicine, the Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou City, China (M.L., Xil.W., L.T.)
| | - Meiping Lu
- Department of Pharmacology and The Key Respiratory Drug Research Laboratory of China Food and Drug Administration, School of Medicine, Zhejiang University, Hangzhou City, China (M.H., C.X., M.A., Xim.W.); The Second People's Hospital of Wenling, Wenling City, Zhejiang Province, China (Y.Y.); and Department of Respiratory Medicine, the Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou City, China (M.L., Xil.W., L.T.)
| | - Xiling Wu
- Department of Pharmacology and The Key Respiratory Drug Research Laboratory of China Food and Drug Administration, School of Medicine, Zhejiang University, Hangzhou City, China (M.H., C.X., M.A., Xim.W.); The Second People's Hospital of Wenling, Wenling City, Zhejiang Province, China (Y.Y.); and Department of Respiratory Medicine, the Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou City, China (M.L., Xil.W., L.T.)
| | - Lanfang Tang
- Department of Pharmacology and The Key Respiratory Drug Research Laboratory of China Food and Drug Administration, School of Medicine, Zhejiang University, Hangzhou City, China (M.H., C.X., M.A., Xim.W.); The Second People's Hospital of Wenling, Wenling City, Zhejiang Province, China (Y.Y.); and Department of Respiratory Medicine, the Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou City, China (M.L., Xil.W., L.T.)
| | - Ximei Wu
- Department of Pharmacology and The Key Respiratory Drug Research Laboratory of China Food and Drug Administration, School of Medicine, Zhejiang University, Hangzhou City, China (M.H., C.X., M.A., Xim.W.); The Second People's Hospital of Wenling, Wenling City, Zhejiang Province, China (Y.Y.); and Department of Respiratory Medicine, the Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou City, China (M.L., Xil.W., L.T.)
| |
Collapse
|
11
|
|
12
|
Paraquat poisoning induced pulmonary epithelial mesenchymal transition through Notch1 pathway. Sci Rep 2017; 7:924. [PMID: 28424456 PMCID: PMC5430447 DOI: 10.1038/s41598-017-01069-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/21/2017] [Indexed: 12/20/2022] Open
Abstract
Progressive pulmonary fibrosis is the most characteristic feature of subacute PQ poisoning. Epithelial-to-mesenchymal transition (EMT) is reported to be involved in the pulmonary fibrosis after PQ exposure. Recent evidence suggested Notch signaling is required for EMT. In this study, we investigated whether Notch1 and TGF-β1/Smad3 signaling was involved in EMT caused by PQ. It is demonstrated that A549 cells underwent EMT after treated with PQ at dose of 300 μmol/L for 6 days, charactered by increasing expression of mesenchymal marker α-SMA and decreasing expression of epithelial marker E-cadherin. We found that there was an apparent increased expression of Notch1 and jagged-1 in PQ induced EMT process. EMT could be enhanced by Jagged-1 ligand of Notch1, and be blocked by DAPT, a γ-secretase inhibitor. Our data also showed that the expression of TGF-β1/Smad3 increased after Notch1 is elevated in EMT caused by PQ. Jagged-1 significantly induced SMA expression, and this induction was completely inhibited by SB431542 in A549 cells. In conclusion, we demonstrated that Notch1 pathway was important in EMT induced by PQ, and TGF-β1/Smad3 signaling partly plays a role as the downstream of Notch1.
Collapse
|
13
|
Craig VJ, Zhang L, Hagood JS, Owen CA. Matrix metalloproteinases as therapeutic targets for idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol 2015; 53:585-600. [PMID: 26121236 PMCID: PMC4742954 DOI: 10.1165/rcmb.2015-0020tr] [Citation(s) in RCA: 323] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 06/29/2015] [Indexed: 12/14/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a restrictive lung disease that is associated with high morbidity and mortality. Current medical therapies are not fully effective at limiting mortality in patients with IPF, and new therapies are urgently needed. Matrix metalloproteinases (MMPs) are proteinases that, together, can degrade all components of the extracellular matrix and numerous nonmatrix proteins. MMPs and their inhibitors, tissue inhibitors of MMPs (TIMPs), have been implicated in the pathogenesis of IPF based upon the results of clinical studies reporting elevated levels of MMPs (including MMP-1, MMP-7, MMP-8, and MMP-9) in IPF blood and/or lung samples. Surprisingly, studies of gene-targeted mice in murine models of pulmonary fibrosis (PF) have demonstrated that most MMPs promote (rather than inhibit) the development of PF and have identified diverse mechanisms involved. These mechanisms include MMPs: (1) promoting epithelial-to-mesenchymal transition (MMP-3 and MMP-7); (2) increasing lung levels or activity of profibrotic mediators or reducing lung levels of antifibrotic mediators (MMP-3, MMP-7, and MMP-8); (3) promoting abnormal epithelial cell migration and other aberrant repair processes (MMP-3 and MMP-9); (4) inducing the switching of lung macrophage phenotypes from M1 to M2 types (MMP-10 and MMP-28); and (5) promoting fibrocyte migration (MMP-8). Two MMPs, MMP-13 and MMP-19, have antifibrotic activities in murine models of PF, and two MMPs, MMP-1 and MMP-10, have the potential to limit fibrotic responses to injury. Herein, we review what is known about the contributions of MMPs and TIMPs to the pathogenesis of IPF and discuss their potential as therapeutic targets for IPF.
Collapse
Affiliation(s)
- Vanessa J. Craig
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, Massachusetts
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California–San Diego, La Jolla, California
| | - Li Zhang
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, Massachusetts
| | - James S. Hagood
- Division of Pediatric Respiratory Medicine, University of California–San Diego, La Jolla, California, and
- Rady Children’s Hospital of San Diego, San Diego, California; and
| | - Caroline A. Owen
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, Massachusetts
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| |
Collapse
|
14
|
Keshari RS, Silasi-Mansat R, Zhu H, Popescu NI, Peer G, Chaaban H, Lambris JD, Polf H, Lupu C, Kinasewitz G, Lupu F. Acute lung injury and fibrosis in a baboon model of Escherichia coli sepsis. Am J Respir Cell Mol Biol 2014; 50:439-50. [PMID: 24066737 DOI: 10.1165/rcmb.2013-0219oc] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Sepsis-induced inflammation of the lung leads to acute respiratory distress syndrome (ARDS), which may trigger persistent fibrosis. The pathology of ARDS is complex and poorly understood, and the therapeutic approaches are limited. We used a baboon model of Escherichia coli sepsis that mimics the complexity of human disease to study the pathophysiology of ARDS. We performed extensive biochemical, histological, and functional analyses to characterize the disease progression and the long-term effects of sepsis on the lung structure and function. Similar to humans, sepsis-induced ARDS in baboons displays an early inflammatory exudative phase, with extensive necrosis. This is followed by a regenerative phase dominated by proliferation of type 2 epithelial cells, expression of epithelial-to-mesenchymal transition markers, myofibroblast migration and proliferation, and collagen synthesis. Baboons that survived sepsis showed persistent inflammation and collagen deposition 6-27 months after the acute episodes. Long-term survivors had almost double the amount of collagen in the lung as compared with age-matched control animals. Immunostaining for procollagens showed persistent active collagen synthesis within the fibroblastic foci and interalveolar septa. Fibroblasts expressed markers of transforming growth factor-β and platelet-derived growth factor signaling, suggesting their potential role as mediators of myofibroblast migration and proliferation, and collagen deposition. In parallel, up-regulation of the inhibitors of extracellular proteases supports a deregulated matrix remodeling that may contribute to fibrosis. The primate model of sepsis-induced ARDS mimics the disease progression in humans, including chronic inflammation and long-lasting fibrosis. This model helps our understanding of the pathophysiology of fibrosis and the testing of new therapies.
Collapse
Affiliation(s)
- Ravi S Keshari
- 1 Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Transforming growth factor-β (TGF-β) is extensively involved in the development of fibrosis in different organs. Overproduction or potentiation of its profibrotic effects leads to an aberrant wound healing response during the initiation of fibrotic processes. Idiopathic pulmonary fibrosis (IPF) is a chronic, devastating disease, in which TGF-β\x{2013}induced disturbances of the homeostatic microenvironment are critical to promote cell activation, migration, invasion, or hyperplastic changes. In addition, excess extracellular matrix production contributes in a major way to disease pathogenesis. For this reason, this review will focus on discussing novel data and highlight growing interest in deepening the understanding of the profibrotic role of TGF-β and its direct or indirect targeting for disease modulation.
Collapse
|
16
|
Selman M, Pardo A. Alveolar Epithelial Cell Disintegrity and Subsequent Activation. Am J Respir Crit Care Med 2012; 186:119-21. [DOI: 10.1164/rccm.201206-0997ed] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
17
|
Tian J, Zhao W, Tian S, Slater JM, Deng Z, Gridley DS. Expression of Genes Involved in Mouse Lung Cell Differentiation/Regulation after Acute Exposure to Photons and Protons with or without Low-Dose Preirradiation. Radiat Res 2011; 176:553-64. [DOI: 10.1667/rr2601.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Jian Tian
- Department of Radiation Medicine, Radiation Research Laboratories, Loma Linda University, Loma Linda, California
| | - WeiLing Zhao
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Sisi Tian
- School of Medicine, Loma Linda University, Loma Linda, California
| | - James M. Slater
- Department of Radiation Medicine, Radiation Research Laboratories, Loma Linda University, Loma Linda, California
| | - Zhiyong Deng
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Daila S. Gridley
- Department of Radiation Medicine, Radiation Research Laboratories, Loma Linda University, Loma Linda, California
| |
Collapse
|
18
|
Fan YH, Dong H, Pan Q, Cao YJ, Li H, Wang HC. Notch signaling may negatively regulate neonatal rat cardiac fibroblast-myofibroblast transformation. Physiol Res 2011; 60:739-48. [PMID: 21812518 DOI: 10.33549/physiolres.932149] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cardiac fibroblast-myofibroblast transformation (CMT) is a critical event in the initiation of myocardial fibrosis. Notch signaling has been shown to regulate myofibroblast transformation from other kinds of cells. However, whether Notch signaling is also involved in CMT remains unclear. In the present study, expressions of Notch receptors in cardiac fibroblasts (CFs) were examined, effects of Notch signaling inhibitor N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT) and transforming growth factor-beta1 (TGF-beta1) on CMT were determined by increasing alpha-smooth muscle actin (alpha-SMA) expression and collagen synthesis, and Notch signaling was examined by analyzing expressions of Notch receptors. The results showed that: (1) Notch receptor 1, 2, 3 and 4 were all expressed in CFs; (2) DAPT promoted CMT in a time-dependent manner; (3) During the period of CMT induced by TGF-beta1, expressions of Notch receptor 1, 3 and 4 in CFs were down-regulated, whereas there was no change for Notch receptor 2. Moreover, the downtrends of Notch 1, 3 and 4 were corresponding to the trend growth of alpha-SMA expression and collagen synthesis. These results suggested that inhibiting of Notch signaling might promote CMT. The down-regulations of Notch receptor 1, 3 and 4 induced by TGF-beta1 may facilitate CMT. In conclusion, inhibition of Notch signaling might be a novel mechanism of CMT in myocardial fibrosis.
Collapse
Affiliation(s)
- Y-H Fan
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, PR China
| | | | | | | | | | | |
Collapse
|