1
|
Chen X, Wang Q, Gong M, Wu Y, Huang X, Ye F, Huang L, Jiang S, Shi J. SCGB1A1 as a Key Regulator of Splenic Immune Dysfunction in COPD: Insights From a Murine Model. Int J Chron Obstruct Pulmon Dis 2025; 20:497-509. [PMID: 40060920 PMCID: PMC11887496 DOI: 10.2147/copd.s506332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/23/2025] [Indexed: 05/13/2025] Open
Abstract
Introduction Chronic Obstructive Pulmonary Disease (COPD) is a chronic inflammatory disorder characterized by irreversible airflow limitation and systemic immune impacts. COPD patients demonstrate an increased susceptibility to sepsis and septic shock, underscoring the importance of understanding its effects on splenic function. Methods A rat COPD model was established using lipopolysaccharide (LPS) and cigarette smoke exposure. Splenic function was assessed through carbon clearance assays, histological analysis, and high-throughput mRNA sequencing. In vitro assays were conducted to evaluate the role of secretoglobin family 1a member 1 (SCGB1A1) in macrophage activation and lymphocyte proliferation. Results Carbon clearance assays revealed a significant reduction in splenic phagocytic activity in the smoke-exposed group. Histological analysis showed lymphoid follicle atrophy and connective tissue hyperplasia. High-throughput mRNA sequencing identified 102 upregulated and 32 downregulated genes in the smoke-exposed group, with SCGB1A1 notably upregulated. In vitro assays confirmed that SCGB1A1 inhibits LPS-induced macrophage activation and Phytohemagglutinin (PHA)-induced lymphocyte proliferation. Conclusion These findings suggest that SCGB1A1 contributes to splenic immune dysfunction in COPD. Targeted inhibition of SCGB1A1 expression in the spleen may represent a potential therapeutic strategy to reduce the risk of sepsis in COPD patients.
Collapse
Affiliation(s)
- Xinye Chen
- Department of General Practice, Shenshan Medical Center, Memorial Hospital of Sun Yet-Sen University, Shanwei, People’s Republic of China
- Department of General Practice, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Qiujie Wang
- Department of Respiratory and Critical Care Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Mingyan Gong
- Department of Respiratory Medicine, Shenshan Medical Center, Memorial Hospital of Sun Yet-Sen University, Shanwei, People’s Republic of China
| | - Yanru Wu
- Department of Respiratory Medicine, Shenshan Medical Center, Memorial Hospital of Sun Yet-Sen University, Shanwei, People’s Republic of China
| | - Xiaoping Huang
- Department of Respiratory Medicine, Shenshan Medical Center, Memorial Hospital of Sun Yet-Sen University, Shanwei, People’s Republic of China
| | - Fengzhan Ye
- Department of Respiratory and Critical Care Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Linjie Huang
- Department of Respiratory and Critical Care Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Shanping Jiang
- Department of Respiratory and Critical Care Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Jianting Shi
- Department of Respiratory and Critical Care Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Department of Respiratory Medicine, Shenshan Medical Center, Memorial Hospital of Sun Yet-Sen University, Shanwei, People’s Republic of China
| |
Collapse
|
2
|
Bruno S, Lamberty A, McCoy M, Mark Z, Daphtary N, Aliyeva M, Butnor K, Poynter ME, Anathy V, Cunniff B. Deletion of Miro1 in airway club cells potentiates allergic asthma phenotypes. FRONTIERS IN ALLERGY 2023; 4:1187945. [PMID: 37377691 PMCID: PMC10291198 DOI: 10.3389/falgy.2023.1187945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Mitochondria are multifaceted organelles necessary for numerous cellular signaling and regulatory processes. Mitochondria are dynamic organelles, trafficked and anchored to subcellular sites depending upon the cellular and tissue requirements. Precise localization of mitochondria to apical and basolateral membranes in lung epithelial cells is important for key mitochondrial processes. Miro1 is an outer mitochondrial membrane GTPase that associates with adapter proteins and microtubule motors to promote intracellular movement of mitochondria. We show that deletion of Miro1 in lung epithelial cells leads to perinuclear clustering of mitochondria. However, the role of Miro1 in epithelial cell response to allergic insults remains unknown. We generated a conditional mouse model to delete Miro1 in Club Cell Secretory Protein (CCSP) positive lung epithelial cells to examine the potential roles of Miro1 and mitochondrial trafficking in the lung epithelial response to the allergen, house dust mite (HDM). Our data show that Miro1 suppresses epithelial induction and maintenance of the inflammatory response to allergen, as Miro1 deletion modestly induces increases in pro-inflammatory signaling, specifically IL-6, IL-33, CCL20 and eotaxin levels, tissue reorganization, and airway hyperresponsiveness. Furthermore, loss of Miro1 in CCSP+ lung epithelial cells blocks resolution of the asthmatic insult. This study further demonstrates the important contribution of mitochondrial dynamic processes to the airway epithelial allergen response and the pathophysiology of allergic asthma.
Collapse
Affiliation(s)
- Sierra Bruno
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, United States
| | - Amelia Lamberty
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, United States
| | - Margaret McCoy
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, United States
| | - Zoe Mark
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, United States
| | - Nirav Daphtary
- Department of Medicine, University of Vermont, Burlington, VT, United States
| | - Minara Aliyeva
- Department of Medicine, University of Vermont, Burlington, VT, United States
| | - Kelly Butnor
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, United States
| | - Matthew E. Poynter
- Department of Medicine, University of Vermont, Burlington, VT, United States
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, United States
| | - Brian Cunniff
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, United States
| |
Collapse
|
3
|
Li X, Zhao F, Wang A, Cheng P, Chen H. Role and mechanisms of autophagy in lung metabolism and repair. Cell Mol Life Sci 2021; 78:5051-5068. [PMID: 33864479 PMCID: PMC11072280 DOI: 10.1007/s00018-021-03841-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/23/2021] [Accepted: 04/09/2021] [Indexed: 02/05/2023]
Abstract
Mammalian lungs are metabolically active organs that frequently encounter environmental insults. Stress responses elicit protective autophagy in epithelial barrier cells and the supportive niche. Autophagy promotes the recycling of damaged intracellular organelles, denatured proteins, and other biological macromolecules for reuse as components required for lung cell survival. Autophagy, usually induced by metabolic defects, regulates cellular metabolism. Autophagy is a major adaptive response that protects cells and organisms from injury. Endogenous region-specific stem/progenitor cell populations are found in lung tissue, which are responsible for epithelial repair after lung damage. Additionally, glucose and fatty acid metabolism is altered in lung stem/progenitor cells in response to injury-related lung fibrosis. Autophagy deregulation has been observed to be involved in the development and progression of other respiratory diseases. This review explores the role and mechanisms of autophagy in regulating lung metabolism and epithelial repair.
Collapse
Affiliation(s)
- Xue Li
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, China
| | - Fuxiaonan Zhao
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin, China
| | - An Wang
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin, China
| | - Peiyong Cheng
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, China
| | - Huaiyong Chen
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, China.
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin, China.
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, China.
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe Hospital, Tianjin University, Tianjin, China.
| |
Collapse
|
4
|
Chen C, Breslin MB, Lan MS. Ectopic expression of a small cell lung cancer transcription factor, INSM1 impairs alveologenesis in lung development. BMC Pulm Med 2016; 16:49. [PMID: 27072116 PMCID: PMC4830008 DOI: 10.1186/s12890-016-0215-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/04/2016] [Indexed: 02/08/2023] Open
Abstract
Background Insulinoma associated-1 (INSM1) gene is expressed exclusively in early embryonic neuroendocrine tissues, but has been found highly re-activated in most of the neuroendocrine tumors including small cell lung carcinoma. Methods In order to elucidate the functional effects of INSM1 in normal lung development, we used a conditional lung-specific INSM1 transgenic mouse model. Transgenic (Tet-on system) CMV-INSM1 responder mice were bred with the lung-specific, club cell secretory protein (CCSP) promoter-rtTA activator mice to produce bi-transgenic progeny carrying both alleles, CCSP-rtTA and Tet-on-INSM1. Mice were fed with doxycycline containing food at the initial mating day to the postnatal day 21. Lung samples were collected at embryonic day 17.5, newborn, and postnatal day 21 for analyses. Results Northern blot, RT-PCR, and immunohistochemical analyses revealed that doxycycline induced respiratory epithelium-specific INSM1 expression in bi-transgenic mice. Samples from postnatal day 21 mice revealed a larger lung size in the bi-transgenic mouse as compared to the single-transgenic or wild-type littermates. The histopathology results showed that the alveolar space in the bi-transgenic mice were 4 times larger than those in the single transgenic or wild-type littermates. In contrast, the size was not significantly different in the lungs collected at E17.5 or newborn among the bi-transgenic, single transgenic, or wild type mice. The respiratory epithelium with INSM1 ectopic expression suppressed cyclin D1 signal. Further in vitro studies revealed that the ectopic expression of INSM1 suppresses cyclin D1 expression and delays cell cycle progression. Conclusion The current study suggests that CCSP promoter-driven INSM1 ectopic expression impairs normal lung development especially in postnatal alveologenesis.
Collapse
Affiliation(s)
- Chiachen Chen
- Research Institute for Children, Children's Hospital, 200 Henry Clay Avenue, Research and Education Building, Room. 2211, New Orleans, LA, 70118, USA.,Departments of Pediatrics, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Mary B Breslin
- Research Institute for Children, Children's Hospital, 200 Henry Clay Avenue, Research and Education Building, Room. 2211, New Orleans, LA, 70118, USA.,Departments of Pediatrics, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Michael S Lan
- Research Institute for Children, Children's Hospital, 200 Henry Clay Avenue, Research and Education Building, Room. 2211, New Orleans, LA, 70118, USA. .,Departments of Pediatrics, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA. .,Departments of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
| |
Collapse
|
5
|
Laucho-Contreras ME, Polverino F, Tesfaigzi Y, Pilon A, Celli BR, Owen CA. Club Cell Protein 16 (CC16) Augmentation: A Potential Disease-modifying Approach for Chronic Obstructive Pulmonary Disease (COPD). Expert Opin Ther Targets 2016; 20:869-83. [PMID: 26781659 DOI: 10.1517/14728222.2016.1139084] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Club cell protein 16 (CC16) is the most abundant protein in bronchoalveolar lavage fluid. CC16 has anti-inflammatory properties in smoke-exposed lungs, and chronic obstructive pulmonary disease (COPD) is associated with CC16 deficiency. Herein, we explored whether CC16 is a therapeutic target for COPD. AREAS COVERED We reviewed the literature on the factors that regulate airway CC16 expression, its biologic functions and its protective activities in smoke-exposed lungs using PUBMED searches. We generated hypotheses on the mechanisms by which CC16 limits COPD development, and discuss its potential as a new therapeutic approach for COPD. EXPERT OPINION CC16 plasma and lung levels are reduced in smokers without airflow obstruction and COPD patients. In COPD patients, airway CC16 expression is inversely correlated with severity of airflow obstruction. CC16 deficiency increases smoke-induced lung pathologies in mice by its effects on epithelial cells, leukocytes, and fibroblasts. Experimental augmentation of CC16 levels using recombinant CC16 in cell culture systems, plasmid and adenoviral-mediated over-expression of CC16 in epithelial cells or smoke-exposed murine airways reduces inflammation and cellular injury. Additional studies are necessary to assess the efficacy of therapies aimed at restoring airway CC16 levels as a new disease-modifying therapy for COPD patients.
Collapse
Affiliation(s)
- Maria E Laucho-Contreras
- a Division of Pulmonary and Critical Care Medicine , Brigham and Women's Hospital/Harvard Medical School , Boston , MA , USA
| | - Francesca Polverino
- a Division of Pulmonary and Critical Care Medicine , Brigham and Women's Hospital/Harvard Medical School , Boston , MA , USA.,b COPD Program , Lovelace Respiratory Research Institute , Albuquerque , NM , USA.,c Department of Medicine , University of Parma , Parma , Italy
| | - Yohannes Tesfaigzi
- b COPD Program , Lovelace Respiratory Research Institute , Albuquerque , NM , USA
| | - Aprile Pilon
- d Therabron Therapeutics Inc. , Rockville , MD , USA
| | - Bartolome R Celli
- a Division of Pulmonary and Critical Care Medicine , Brigham and Women's Hospital/Harvard Medical School , Boston , MA , USA.,b COPD Program , Lovelace Respiratory Research Institute , Albuquerque , NM , USA
| | - Caroline A Owen
- a Division of Pulmonary and Critical Care Medicine , Brigham and Women's Hospital/Harvard Medical School , Boston , MA , USA.,b COPD Program , Lovelace Respiratory Research Institute , Albuquerque , NM , USA
| |
Collapse
|
6
|
Misra RS, Johnston CJ, Groves AM, DeDiego ML, St Martin J, Reed C, Hernady E, Miller JN, Love T, Finkelstein JN, Williams JP. Examining the Effects of External or Internal Radiation Exposure of Juvenile Mice on Late Morbidity after Infection with Influenza A. Radiat Res 2015; 184:3-13. [PMID: 26114328 DOI: 10.1667/rr13917.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A number of investigators have suggested that exposure to low-dose radiation may pose a potentially serious health risk. However, the majority of these studies have focused on the short-term rather than long-term effects of exposure to fixed source radiation, and few have examined the effects of internal contamination. Additionally, very few studies have focused on exposure in juveniles, when organs are still developing and could be more sensitive to the toxic effects of radiation. To specifically address whether early-life radiation injury may affect long-term immune competence, we studied 14-day-old juvenile pups that were either 5 Gy total-body irradiated or injected internally with 50 μCi soluble (137)Cs, then infected with influenza A virus at 26 weeks after exposure. After influenza infection, all groups demonstrated immediate weight loss. We found that externally irradiated, infected animals failed to recover weight relative to age-matched infected controls, but internally (137)Cs contaminated and infected animals had a weight recovery with a similar rate and degree as controls. Externally and internally irradiated mice demonstrated reduced levels of club cell secretory protein (CCSP) message in their lungs after influenza infection. The externally irradiated group did not recover CCSP expression even at the two-week time point after infection. Although the antibody response and viral titers did not appear to be affected by either radiation modality, there was a slight increase in monocyte chemoattractant protein (MCP)-1 expression in the lungs of externally irradiated animals 14 days after influenza infection, with increased cellular infiltration present. Notably, an increase in the number of regulatory T cells was seen in the mediastinal lymph nodes of irradiated mice relative to uninfected mice. These data confirm the hypothesis that early-life irradiation may have long-term consequences on the immune system, leading to an altered antiviral response.
Collapse
Affiliation(s)
- Ravi S Misra
- a Department of Pediatrics and Neonatology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Carl J Johnston
- a Department of Pediatrics and Neonatology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642.,b Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Angela M Groves
- b Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Marta L DeDiego
- c Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Joe St Martin
- d Department of Environmental Health and Safety: Radiation Safety Unit, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Christina Reed
- b Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Eric Hernady
- b Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Jen-Nie Miller
- b Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Tanzy Love
- e Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Jacob N Finkelstein
- a Department of Pediatrics and Neonatology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642.,b Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Jacqueline P Williams
- b Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| |
Collapse
|
7
|
Bustos ML, Mura M, Hwang D, Ludkovski O, Wong AP, Keating A, Waddell TK. Depletion of bone marrow CCSP-expressing cells delays airway regeneration. Mol Ther 2014; 23:561-9. [PMID: 25409745 DOI: 10.1038/mt.2014.223] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 10/16/2014] [Indexed: 02/08/2023] Open
Abstract
The contribution of bone marrow cells (BMC) in lung repair is controversial. We previously reported a subpopulation of BMC that express Clara cell secretory protein (CCSP). To determine the contribution of endogenous CCSP(+) BMC to airway regeneration, we performed bone marrow transplantation studies using the CCtk mouse, which expresses a thymidine kinase suicide gene under regulation of the CCSP promoter. Mice were transplanted with wild-type or CCtk BMC and treated with ganciclovir to eliminate CCSP(+) cells. After airway injury using naphthalene, mice depleted of CCSP(+) BMC had more inflammatory cells in lung and decreased levels of oxygen in arterial blood. They also had reduced expression of airway epithelial genes and less Clara cells compared to control mice that had intact CCSP(+) BMC and bone marrow derived CCSP(+) cells in the airways. After naphthalene injury, administration of CCSP reproduced the beneficial effect of CCSP(+) BMC by improving recovery of airway epithelium, reducing lung inflammation and increasing oxygen in arterial blood from mice depleted of CCSP(+) BMC. Our data demonstrate that ablation of CCSP(+) BMC delays airway recovery and suggests the beneficial effect of CCSP(+) BMC in lung recovery is in part due to production of CCSP itself.
Collapse
Affiliation(s)
- Martha L Bustos
- Latner Thoracic Surgery Research Laboratories and McEwen Centre for Regenerative Medicine, University of Toronto, Toronto General Hospital, Toronto Medical Discovery Tower, Toronto, Ontario, Canada
| | - Marco Mura
- Latner Thoracic Surgery Research Laboratories and McEwen Centre for Regenerative Medicine, University of Toronto, Toronto General Hospital, Toronto Medical Discovery Tower, Toronto, Ontario, Canada
| | - David Hwang
- Latner Thoracic Surgery Research Laboratories and McEwen Centre for Regenerative Medicine, University of Toronto, Toronto General Hospital, Toronto Medical Discovery Tower, Toronto, Ontario, Canada
| | - Olga Ludkovski
- Department of Pathology, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Amy P Wong
- Latner Thoracic Surgery Research Laboratories and McEwen Centre for Regenerative Medicine, University of Toronto, Toronto General Hospital, Toronto Medical Discovery Tower, Toronto, Ontario, Canada
| | - Armand Keating
- Cell Therapy Program, University Health Network, Toronto, Ontario, Canada
| | - Thomas K Waddell
- Latner Thoracic Surgery Research Laboratories and McEwen Centre for Regenerative Medicine, University of Toronto, Toronto General Hospital, Toronto Medical Discovery Tower, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Dayanim S, Lopez B, Maisonet TM, Grewal S, Londhe VA. Caffeine induces alveolar apoptosis in the hyperoxia-exposed developing mouse lung. Pediatr Res 2014; 75:395-402. [PMID: 24321990 PMCID: PMC3943688 DOI: 10.1038/pr.2013.233] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 05/29/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND Caffeine is a nonspecific adenosine receptor antagonist used in premature neonates to treat apnea of prematurity. While its use may reduce the incidence of bronchopulmonary dysplasia (BPD), the precise mechanisms remain unknown. Evidence of increased adenosine levels are noted in chronic lung diseases including tracheal aspirates of infants with BPD. Utilizing a well-characterized newborn mouse model of alveolar hypoplasia, we hypothesized that hyperoxia-induced alveolar inflammation and hypoplasia is associated with alterations in the adenosine signaling pathway. METHODS Newborn murine pups were exposed to a 14-d period of hyperoxia and daily caffeine administration followed by a 14-d recovery period in room air. Lungs were collected at both time points for bronchoalveolar lavage (BAL) analysis as well as histopathology and mRNA and protein expression. RESULTS Caffeine treatment increased inflammation and worsened alveolar hypoplasia in hyperoxia-exposed newborn mice. These changes were associated with decreased alveolar type II (ATII) cell numbers, increased cell apoptosis, and decreased expression of A2A receptors. Following discontinuation of caffeine and hyperoxia, lung histology returned to baseline levels comparable to hyperoxia exposure alone. CONCLUSION Results of this study suggest a potentially adverse role of caffeine on alveolar development in a murine model of hyperoxia-induced alveolar hypoplasia.
Collapse
Affiliation(s)
- Sara Dayanim
- Department of Pediatrics, Division of Neonatology and Developmental Biology, Neonatal Research Center, David Geffen School of Medicine at University of California, Los Angeles, CA 90095
| | - Benjamin Lopez
- Department of Pediatrics, Division of Neonatology and Developmental Biology, Neonatal Research Center, David Geffen School of Medicine at University of California, Los Angeles, CA 90095
| | - Tiffany M. Maisonet
- Department of Pediatrics, Division of Neonatology and Developmental Biology, Neonatal Research Center, David Geffen School of Medicine at University of California, Los Angeles, CA 90095
| | - Sungat Grewal
- Department of Pediatrics, Division of Neonatology and Developmental Biology, Neonatal Research Center, David Geffen School of Medicine at University of California, Los Angeles, CA 90095
| | - Vedang A. Londhe
- Department of Pediatrics, Division of Neonatology and Developmental Biology, Neonatal Research Center, David Geffen School of Medicine at University of California, Los Angeles, CA 90095
| |
Collapse
|
9
|
Asselin-Labat ML, Filby CE. Adult lung stem cells and their contribution to lung tumourigenesis. Open Biol 2013; 2:120094. [PMID: 22977734 PMCID: PMC3438537 DOI: 10.1098/rsob.120094] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 07/23/2012] [Indexed: 12/14/2022] Open
Abstract
The isolation and characterization of lung stem and progenitor cells represent an important step towards the understanding of lung repair after injury, lung disease pathogenesis and the identification of the target cells of transformation in lung carcinogenesis. Different approaches using prospective isolation of progenitor cells by flow cytometry or lineage-tracing experiments in mouse models of lung injury have led to the identification of distinct progenitor subpopulations in different morphological regions of the adult lung. Genetically defined mouse models of lung cancer are offering new perspectives on the cells of origin of different subtypes of lung cancer. These mouse models pave the way to further investigate human lung progenitor cells at the origin of lung cancers, as well as to define the nature of the lung cancer stem cells. It will be critical to establish the link between oncogenic driver mutations recently discovered in lung cancers, target cells of transformation and subtypes of lung cancers to enable better stratification of patients for improved therapeutic strategies.
Collapse
Affiliation(s)
- Marie-Liesse Asselin-Labat
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
| | | |
Collapse
|
10
|
Lee JH, Kim J, Gludish D, Roach RR, Saunders AH, Barrios J, Woo AJ, Chen H, Conner DA, Fujiwara Y, Stripp BR, Kim CF. Surfactant protein-C chromatin-bound green fluorescence protein reporter mice reveal heterogeneity of surfactant protein C-expressing lung cells. Am J Respir Cell Mol Biol 2013; 48:288-298. [PMID: 23204392 PMCID: PMC3604082 DOI: 10.1165/rcmb.2011-0403oc] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 10/19/2012] [Indexed: 02/05/2023] Open
Abstract
The regeneration of alveolar epithelial cells is a critical aspect of alveolar reorganization after lung injury. Although alveolar Type II (AT2) cells have been described as progenitor cells for alveolar epithelia, more remains to be understood about how their progenitor cell properties are regulated. A nuclear, chromatin-bound green fluorescence protein reporter (H2B-GFP) was driven from the murine surfactant protein-C (SPC) promoter to generate SPC H2B-GFP transgenic mice. The SPC H2B-GFP allele allowed the FACS-based enrichment and gene expression profiling of AT2 cells. Approximately 97% of AT2 cells were GFP-labeled on Postnatal Day 1, and the percentage of GFP-labeled AT2 cells decreased to approximately 63% at Postnatal Week 8. Isolated young adult SPC H2B-GFP(+) cells displayed proliferation, differentiation, and self-renewal capacity in the presence of lung fibroblasts in a Matrigel-based three-dimensional culture system. Heterogeneity within the GFP(+) population was revealed, because cells with distinct alveolar and bronchiolar gene expression arose in three-dimensional cultures. CD74, a surface marker highly enriched on GFP(+) cells, was identified as a positive selection marker, providing 3-fold enrichment for AT2 cells. In vivo, GFP expression was induced within other epithelial cell types during maturation of the distal lung. The utility of the SPC H2B-GFP murine model for the identification of AT2 cells was greatest in early postnatal lungs and more limited with age, when some discordance between SPC and GFP expression was observed. In adult mice, this allele may allow for the enrichment and future characterization of other SPC-expressing alveolar and bronchiolar cells, including putative stem/progenitor cell populations.
Collapse
Affiliation(s)
- Joo-Hyeon Lee
- Stem Cell Program and
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
- Harvard Stem Cell Institute, Cambridge, Massachusetts; and
| | - Jonghwan Kim
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts
| | - David Gludish
- Stem Cell Program and
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
- Harvard Stem Cell Institute, Cambridge, Massachusetts; and
| | - Rebecca R. Roach
- Stem Cell Program and
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
- Harvard Stem Cell Institute, Cambridge, Massachusetts; and
| | - Arven H. Saunders
- Stem Cell Program and
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
- Harvard Stem Cell Institute, Cambridge, Massachusetts; and
| | - Juliana Barrios
- Stem Cell Program and
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
- Harvard Stem Cell Institute, Cambridge, Massachusetts; and
| | - Andrew Jonghan Woo
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts
| | - Huaiyong Chen
- Department of Medicine and Department of Cell Biology, Duke University Medical Center, Durham, North Carolina
| | - David A. Conner
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Yuko Fujiwara
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts
| | - Barry R. Stripp
- Department of Medicine and Department of Cell Biology, Duke University Medical Center, Durham, North Carolina
| | - Carla F. Kim
- Stem Cell Program and
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
- Harvard Stem Cell Institute, Cambridge, Massachusetts; and
| |
Collapse
|
11
|
Huang Y, Kapere Ochieng J, Kempen MBV, Munck ABD, Swagemakers S, van IJcken W, Grosveld F, Tibboel D, Rottier RJ. Hypoxia inducible factor 3α plays a critical role in alveolarization and distal epithelial cell differentiation during mouse lung development. PLoS One 2013; 8:e57695. [PMID: 23451260 PMCID: PMC3581546 DOI: 10.1371/journal.pone.0057695] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 01/28/2013] [Indexed: 12/18/2022] Open
Abstract
Lung development occurs under relative hypoxia and the most important oxygen-sensitive response pathway is driven by Hypoxia Inducible Factors (HIF). HIFs are heterodimeric transcription factors of an oxygen-sensitive subunit, HIFα, and a constitutively expressed subunit, HIF1β. HIF1α and HIF2α, encoded by two separate genes, contribute to the activation of hypoxia inducible genes. A third HIFα gene, HIF3α, is subject to alternative promoter usage and splicing, leading to three major isoforms, HIF3α, NEPAS and IPAS. HIF3α gene products add to the complexity of the hypoxia response as they function as dominant negative inhibitors (IPAS) or weak transcriptional activators (HIF3α/NEPAS). Previously, we and others have shown the importance of the Hif1α and Hif2α factors in lung development, and here we investigated the role of Hif3α during pulmonary development. Therefore, HIF3α was conditionally expressed in airway epithelial cells during gestation and although HIF3α transgenic mice were born alive and appeared normal, their lungs showed clear abnormalities, including a post-pseudoglandular branching defect and a decreased number of alveoli. The HIF3α expressing lungs displayed reduced numbers of Clara cells, alveolar epithelial type I and type II cells. As a result of HIF3α expression, the level of Hif2α was reduced, but that of Hif1α was not affected. Two regulatory genes, Rarβ, involved in alveologenesis, and Foxp2, a transcriptional repressor of the Clara cell specific Ccsp gene, were significantly upregulated in the HIF3α expressing lungs. In addition, aberrant basal cells were observed distally as determined by the expression of Sox2 and p63. We show that Hif3α binds a conserved HRE site in the Sox2 promoter and weakly transactivated a reporter construct containing the Sox2 promoter region. Moreover, Hif3α affected the expression of genes not typically involved in the hypoxia response, providing evidence for a novel function of Hif3α beyond the hypoxia response.
Collapse
Affiliation(s)
- Yadi Huang
- Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, Rotterdam, The Netherlands
| | - Joshua Kapere Ochieng
- Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, Rotterdam, The Netherlands
| | - Marjon Buscop-van Kempen
- Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, Rotterdam, The Netherlands
| | - Anne Boerema-de Munck
- Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, Rotterdam, The Netherlands
| | - Sigrid Swagemakers
- Department of Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
- Department of Genetics, Erasmus MC, Rotterdam, The Netherlands
| | | | - Frank Grosveld
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Dick Tibboel
- Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, Rotterdam, The Netherlands
| | - Robbert J. Rottier
- Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, Rotterdam, The Netherlands
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
12
|
Londhe VA, Maisonet TM, Lopez B, Shin BC, Huynh J, Devaskar SU. Retinoic acid rescues alveolar hypoplasia in the calorie-restricted developing rat lung. Am J Respir Cell Mol Biol 2012; 48:179-87. [PMID: 23087051 DOI: 10.1165/rcmb.2012-0229oc] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Infants born with intrauterine growth retardation (IUGR) are at increased risk of adverse pulmonary outcomes at birth, including meconium aspiration and persistent pulmonary hypertension. Preterm infants with IUGR are at especially high risk of developing bronchopulmonary dysplasia (BPD), a disease hallmarked by alveolar hypoplasia. Although vitamin A supplementation has been shown to decrease the incidence of BPD or death in preterm very low birth weight infants, its potential to reduce BPD or death in preterm infants with IUGR remains unknown. We used a well-characterized rat model of caloric restriction to mimic IUGR and determine the impact of IUGR on lung development. We hypothesized that retinoic acid treatment would preserve alveolar formation through increases in key signaling molecules of the retinoic acid signaling pathway. Our results showed that alveolar hypoplasia caused by caloric restriction can be reversed with refeeding, and that retinoic acid prevents the alveolar hypoplasia coincident with the increased expression of elastin and retinoic acid receptor-α and decreased transforming growth factor-β activity in developing rat lungs. These findings suggest that alveolar hypoplasia attributable to caloric restriction is reversible, and raises the possibility that retinoic acid therapy may prove a useful strategy to prevent adverse pulmonary sequelae such as BPD in preterm infants with IUGR.
Collapse
Affiliation(s)
- Vedang A Londhe
- Neonatal Research Center, Division of Neonatology and Developmental Biology, Department of Pediatrics, David Geffen School of Medicine, University of California at Los Angeles, 10833 Le Conte Ave., Mailcode 175217, B2-375 MDCC, Los Angeles, CA 90095-1752, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Kang MJ, Choi JM, Kim BH, Lee CM, Cho WK, Choe G, Kim DH, Lee CG, Elias JA. IL-18 induces emphysema and airway and vascular remodeling via IFN-γ, IL-17A, and IL-13. Am J Respir Crit Care Med 2012; 185:1205-17. [PMID: 22383501 PMCID: PMC3373071 DOI: 10.1164/rccm.201108-1545oc] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 02/20/2012] [Indexed: 01/27/2023] Open
Abstract
RATIONALE Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation, alveolar destruction, and airway and vascular remodeling. However, the mechanisms that lead to these diverse alterations have not been defined. OBJECTIVES We hypothesized that IL-18 plays a central role in the pathogenesis of these lesions. METHODS We generated and characterized lung-specific, inducible IL-18 transgenic mice. MEASUREMENTS AND MAIN RESULTS Here we demonstrate that the expression of IL-18 in the mature murine lung induces inflammation that is associated with the accumulation of CD4(+), CD8(+), CD19(+), and NK1.1(+) cells; emphysema; mucus metaplasia; airway fibrosis; vascular remodeling; and right ventricle cardiac hypertrophy. We also demonstrate that IL-18 induces type 1, type 2, and type 17 cytokines with IFN-γ-inhibiting macrophage, lymphocyte, and eosinophil accumulation while stimulating alveolar destruction and genes associated with cell cytotoxicity and IL-13 and IL-17A inducing mucus metaplasia, airway fibrosis, and vascular remodeling. We also highlight interactions between these responses with IL-18 inducing IL-13 via an IL-17A-dependent mechanism and the type 1 and type17/type 2 responses counterregulating each another. CONCLUSIONS These studies define the spectrum of inflammatory, parenchymal, airway, and vascular alterations that are induced by pulmonary IL-18; highlight the similarities between these responses and the lesions in COPD; and define the selective roles that type 1, type 2, and type 17 responses play in the generation of IL-18-induced pathologies.
Collapse
Affiliation(s)
- Min-Jong Kang
- Section of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Je-Min Choi
- Department of Life Science, Research Institute for Natural Sciences, and
- Hanyang Biomedical Research Institute, Hanyang University, Seoul, Republic of Korea
| | - Bo Hye Kim
- Section of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Chang-Min Lee
- Section of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Won-Kyung Cho
- Section of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Gina Choe
- Section of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Do-Hyun Kim
- Department of Life Science, Research Institute for Natural Sciences, and
- Hanyang Biomedical Research Institute, Hanyang University, Seoul, Republic of Korea
| | - Chun Geun Lee
- Section of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Jack A. Elias
- Section of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
14
|
Peter Y, Sen N, Levantini E, Keller S, Ingenito EP, Ciner A, Sackstein R, Shapiro SD. CD45/CD11b positive subsets of adult lung anchorage-independent cells harness epithelial stem cells in culture. J Tissue Eng Regen Med 2012; 7:572-83. [PMID: 22585451 DOI: 10.1002/term.553] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 08/19/2011] [Accepted: 11/15/2011] [Indexed: 01/02/2023]
Abstract
Compensatory growth is mediated by multiple cell types that interact during organ repair. To elucidate the relationship between stem/progenitor cells that proliferate or differentiate and somatic cells of the lung, we used a novel organotypic ex vivo pneumoexplant system. Applying this technique, we identified a sustained culture of repopulating adult progenitors in the form of free-floating anchorage-independent cells (AICs). AICs did not express integrin proteins α5, β3 and β7, and constituted 37% of the total culture at day 14, yielding a mixed yet conservative population that recapitulated RNA expression patterns of the healthy lung. AICs exhibited rapid proliferation manifested by a marked 60-fold increase in cell numbers by day 21. More than 50% of the AIC population was c-KIT(+) or double-positive for CD45(+) and CD11b(+) antigenic determinants, consistent with cells of hematopoietic origin. The latter subset was found to be enriched with prosurfactant protein-C and SCGB1A1 expressing putative stem cells and with aquaporin-5 producing cells, characteristic of terminally differentiated alveolar epithelial type-1 pneumocytes. At the air/gel interface, AICs undergo remodeling to form a cellular lining, whereas TGF(β)1 treatment modifies protein expression properties to further imply a robust effect of the microenvironment on AIC phenotypic changes. These data confirm the active participation of clonogenic hematopoietic stem cells in a mammalian model of lung repair and validate mixed stem/somatic cell cultures, which license sustained cell viability, proliferation and differentiation, for use in studies of compensatory pulmonary growth.
Collapse
Affiliation(s)
- Yakov Peter
- Department of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Tropea KA, Leder E, Aslam M, Lau AN, Raiser DM, Lee JH, Balasubramaniam V, Fredenburgh LE, Alex Mitsialis S, Kourembanas S, Kim CF. Bronchioalveolar stem cells increase after mesenchymal stromal cell treatment in a mouse model of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2012; 302:L829-37. [PMID: 22328358 DOI: 10.1152/ajplung.00347.2011] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) remains a major complication of prematurity resulting in significant morbidity and mortality. The pathology of BPD is multifactorial and leads to alveolar simplification and distal lung injury. Previous studies have shown a beneficial effect of systemic treatment with bone marrow-derived mesenchymal stromal cells (MSCs) and MSC-conditioned media (MSC-CM) leading to amelioration of the lung parenchymal and vascular injury in vivo in the hyperoxia murine model of BPD. It is possible that the beneficial response from the MSCs is at least in part due to activation of endogenous lung epithelial stem cells. Bronchioalveolar stem cells (BASCs) are an adult lung stem cell population capable of self-renewal and differentiation in culture, and BASCs proliferate in response to bronchiolar and alveolar lung injury in vivo. Systemic treatment of neonatal hyperoxia-exposed mice with MSCs or MSC-CM led to a significant increase in BASCs compared with untreated controls. Treatment of BASCs with MSC-CM in culture showed an increase in growth efficiency, indicating a direct effect of MSCs on BASCs. Lineage tracing data in bleomycin-treated adult mice showed that Clara cell secretory protein-expressing cells including BASCs are capable of contributing to alveolar repair after lung injury. MSCs and MSC-derived factors may stimulate BASCs to play a role in the repair of alveolar lung injury found in BPD and in the restoration of distal lung cell epithelia. This work highlights the potential important role of endogenous lung stem cells in the repair of chronic lung diseases.
Collapse
Affiliation(s)
- Kristen A Tropea
- Division of Newbork Medicine, Department of Pediatrics, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Londhe VA, Maisonet TM, Lopez B, Jeng JM, Xiao J, Li C, Minoo P. Conditional deletion of epithelial IKKβ impairs alveolar formation through apoptosis and decreased VEGF expression during early mouse lung morphogenesis. Respir Res 2011; 12:134. [PMID: 21985298 PMCID: PMC3202236 DOI: 10.1186/1465-9921-12-134] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 10/10/2011] [Indexed: 02/05/2023] Open
Abstract
Background Alveolar septation marks the beginning of the transition from the saccular to alveolar stage of lung development. Inflammation can disrupt this process and permanently impair alveolar formation resulting in alveolar hypoplasia as seen in bronchopulmonary dysplasia in preterm newborns. NF-κB is a transcription factor central to multiple inflammatory and developmental pathways including dorsal-ventral patterning in fruit flies; limb, mammary and submandibular gland development in mice; and branching morphogenesis in chick lungs. We have previously shown that epithelial overexpression of NF-κB accelerates lung maturity using transgenic mice. The purpose of this study was to test our hypothesis that targeted deletion of NF-κB signaling in lung epithelium would impair alveolar formation. Methods We generated double transgenic mice with lung epithelium-specific deletion of IKKβ, a known activating kinase upstream of NF-κB, using a cre-loxP transgenic recombination strategy. Lungs of resulting progeny were analyzed at embryonic and early postnatal stages to determine specific effects on lung histology, and mRNA and protein expression of relevant lung morphoreulatory genes. Lastly, results measuring expression of the angiogenic factor, VEGF, were confirmed in vitro using a siRNA-knockdown strategy in cultured mouse lung epithelial cells. Results Our results showed that IKKβ deletion in the lung epithelium transiently decreased alveolar type I and type II cells and myofibroblasts and delayed alveolar formation. These effects were mediated through increased alveolar type II cell apoptosis and decreased epithelial VEGF expression. Conclusions These results suggest that epithelial NF-κB plays a critical role in early alveolar development possibly through regulation of VEGF.
Collapse
Affiliation(s)
- Vedang A Londhe
- Department of Pediatrics, Division of Neonatology and Developmental Biology, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, Mailcode 175217, Los Angeles, CA, USA.
| | | | | | | | | | | | | |
Collapse
|