1
|
Ha AW, Letsiou E, Dudek SM. Can ENaC "TIP" the Scales to Reduce Endothelial Reactive Oxygen Species and Vascular Leak during Pneumococcal Lung Injury? Am J Respir Cell Mol Biol 2025; 72:349-351. [PMID: 39514001 PMCID: PMC12004999 DOI: 10.1165/rcmb.2024-0486ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Affiliation(s)
- Alison W Ha
- Division of Pulmonary, Critical Care, Sleep, and Allergy University of Illinois Chicago Chicago, Illinois
| | - Eleftheria Letsiou
- Division of Pulmonary, Critical Care, Sleep, and Allergy University of Illinois Chicago Chicago, Illinois
| | - Steven M Dudek
- Division of Pulmonary, Critical Care, Sleep, and Allergy University of Illinois Chicago Chicago, Illinois
| |
Collapse
|
2
|
Romero MJ, Yue Q, Ahn WM, Hamacher J, Zaidi Y, Haigh S, Sridhar S, Gonzales J, Hudel M, Huo Y, Verin AD, Pace BS, Stansfield BK, Maishan M, Neptune ER, Enkhbaatar P, Su Y, Chakraborty T, Gonsalvez G, Hummler E, Davis WB, Bogdanov VY, Fulton DJR, Csanyi G, Matthay MA, Eaton DC, Lucas R. Endothelial ENaC-α Restrains Oxidative Stress in Lung Capillaries in Murine Pneumococcal Pneumonia-associated Acute Lung Injury. Am J Respir Cell Mol Biol 2025; 72:429-440. [PMID: 39405473 PMCID: PMC12005010 DOI: 10.1165/rcmb.2023-0440oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 10/15/2024] [Indexed: 03/12/2025] Open
Abstract
Infection of lung endothelial cells with pneumococci activates the superoxide-generating enzyme NOX2 (nicotinamide adenine dinucleotide phosphate hydrogen [NADPH] oxidase 2), involving the pneumococcal virulence factor PLY (pneumolysin). Excessive NOX2 activity disturbs capillary barriers, but its global inhibition can impair bactericidal phagocyte activity during pneumococcal pneumonia. Depletion of the α subunit of ENaC (epithelial sodium channel) in pulmonary endothelial cells increases expression and PMA-induced activity of NOX2. Direct ENaC activation by TIP peptide improves capillary barrier function-measured by electrical cell substrate impedance sensing in endothelial monolayers and by Evans blue dye incorporation in mouse lungs-after infection with pneumococci. PLY-induced hyperpermeability in human lung microvascular endothelial cell monolayers is abrogated by both NOX2 inhibitor gp91dstat and TIP peptide. Endothelial NOX2 expression is assessed by increased surface membrane presence of phosphorylated p47phox subunit (Western blotting) in vitro and by colocalization of CD31 and gp91phox in mouse lung slices using DuoLink, whereas NOX2-generated superoxide is measured by chemiluminescence. TIP peptide blunts PMA-induced NOX2 activity in cells expressing ENaC-α, but not in neutrophils, which lack ENaC. Conditional endothelial ENaC-α knockout (enENaC-α knockout) mice develop increased capillary leak upon intratracheal instillation with PLY or pneumococci, compared with wild-type animals. TIP peptide diminishes capillary leak in Streptococcus pneumoniae-infected wild-type mice, without significantly increasing lung bacterial load. Lung slices from S. pneumoniae-infected enENaC-α knockout mice have significantly increased endothelial NOX2 expression, compared with infected cyclization recombination mice. In conclusion, enENaC may represent a novel therapeutic target to reduce NOX2-mediated oxidative stress and capillary leak in acute respiratory distress syndrome, without impairing host defense.
Collapse
Affiliation(s)
| | - Qian Yue
- Department of Medicine, Emory School of Medicine, Atlanta, Georgia
| | | | - Jürg Hamacher
- Pneumology, Clinic for General Internal Medicine, Lindenhofspital, Bern, Switzerland
- Lungen-und Atmungsstiftung, Bern, Switzerland
- Medical Clinic V—Pneumology, Allergology, Intensive Care Medicine, and Environmental Medicine, Faculty of Medicine, Saarland University, University Medical Centre of the Saarland, Homburg, Germany
| | | | | | | | - Joyce Gonzales
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Martina Hudel
- Institute for Medical Microbiology, German Centre for Infection Giessen-Marburg-Langen Site, Faculty of Medicine, Justus-Liebig University, Giessen, Germany
| | - Yuqing Huo
- Vascular Biology Center
- Department of Cell Biology and Anatomy
| | - Alexander D. Verin
- Vascular Biology Center
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Betty S. Pace
- Department of Pediatrics, and
- Division of Hematology/Oncology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | | | - Mazharul Maishan
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California
| | - Enid R. Neptune
- Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Perenlei Enkhbaatar
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Yunchao Su
- Department of Pharmacology and Toxicology
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Trinad Chakraborty
- Institute for Medical Microbiology, German Centre for Infection Giessen-Marburg-Langen Site, Faculty of Medicine, Justus-Liebig University, Giessen, Germany
| | | | - Edith Hummler
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- National Center of Competence in Research Kidney.CH, Lausanne, Switzerland; and
| | - William B. Davis
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Vladimir Y. Bogdanov
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | | | - Gabor Csanyi
- Vascular Biology Center
- Department of Pharmacology and Toxicology
| | - Michael A. Matthay
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California
| | - Douglas C. Eaton
- Department of Medicine, Emory School of Medicine, Atlanta, Georgia
| | - Rudolf Lucas
- Vascular Biology Center
- Department of Pharmacology and Toxicology
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| |
Collapse
|
3
|
Xia T, Yu J, Du M, Chen X, Wang C, Li R. Vascular endothelial cell injury: causes, molecular mechanisms, and treatments. MedComm (Beijing) 2025; 6:e70057. [PMID: 39931738 PMCID: PMC11809559 DOI: 10.1002/mco2.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 02/13/2025] Open
Abstract
Vascular endothelial cells form a single layer of flat cells that line the inner surface of blood vessels, extending from large vessels to the microvasculature of various organs. These cells are crucial metabolic and endocrine components of the body, playing vital roles in maintaining circulatory stability, regulating vascular tone, and preventing coagulation and thrombosis. Endothelial cell injury is regarded as a pivotal initiating factor in the pathogenesis of various diseases, triggered by multiple factors, including infection, inflammation, and hemodynamic changes, which significantly compromise vascular integrity and function. This review examines the causes, underlying molecular mechanisms, and potential therapeutic approaches for endothelial cell injury, focusing specifically on endothelial damage in cardiac ischemia/reperfusion (I/R) injury, sepsis, and diabetes. It delves into the intricate signaling pathways involved in endothelial cell injury, emphasizing the roles of oxidative stress, mitochondrial dysfunction, inflammatory mediators, and barrier damage. Current treatment strategies-ranging from pharmacological interventions to regenerative approaches and lifestyle modifications-face ongoing challenges and limitations. Overall, this review highlights the importance of understanding endothelial cell injury within the context of various diseases and the necessity for innovative therapeutic methods to improve patient outcomes.
Collapse
Affiliation(s)
- Tian Xia
- Department of Laboratory MedicineThe First Medical Center of Chinese PLA General HospitalBeijingChina
- Department of Laboratory MedicineMedical School of Chinese PLABeijingChina
| | - Jiachi Yu
- Department of Laboratory MedicineThe First Medical Center of Chinese PLA General HospitalBeijingChina
- Department of Laboratory MedicineMedical School of Chinese PLABeijingChina
| | - Meng Du
- Department of Laboratory MedicineThe First Medical Center of Chinese PLA General HospitalBeijingChina
- Department of Clinical LaboratoryHuaian Hospital of Huaian CityHuaianJiangsuChina
| | - Ximeng Chen
- Department of Laboratory MedicineThe First Medical Center of Chinese PLA General HospitalBeijingChina
- Department of Laboratory MedicineMedical School of Chinese PLABeijingChina
| | - Chengbin Wang
- Department of Laboratory MedicineThe First Medical Center of Chinese PLA General HospitalBeijingChina
- Department of Laboratory MedicineMedical School of Chinese PLABeijingChina
| | - Ruibing Li
- Department of Laboratory MedicineThe First Medical Center of Chinese PLA General HospitalBeijingChina
- Department of Laboratory MedicineMedical School of Chinese PLABeijingChina
| |
Collapse
|
4
|
Zhao BH, Ruze A, Zhao L, Li QL, Tang J, Xiefukaiti N, Gai MT, Deng AX, Shan XF, Gao XM. The role and mechanisms of microvascular damage in the ischemic myocardium. Cell Mol Life Sci 2023; 80:341. [PMID: 37898977 PMCID: PMC11073328 DOI: 10.1007/s00018-023-04998-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/08/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023]
Abstract
Following myocardial ischemic injury, the most effective clinical intervention is timely restoration of blood perfusion to ischemic but viable myocardium to reduce irreversible myocardial necrosis, limit infarct size, and prevent cardiac insufficiency. However, reperfusion itself may exacerbate cell death and myocardial injury, a process commonly referred to as ischemia/reperfusion (I/R) injury, which primarily involves cardiomyocytes and cardiac microvascular endothelial cells (CMECs) and is characterized by myocardial stunning, microvascular damage (MVD), reperfusion arrhythmia, and lethal reperfusion injury. MVD caused by I/R has been a neglected problem compared to myocardial injury. Clinically, the incidence of microvascular angina and/or no-reflow due to ineffective coronary perfusion accounts for 5-50% in patients after acute revascularization. MVD limiting drug diffusion into injured myocardium, is strongly associated with the development of heart failure. CMECs account for > 60% of the cardiac cellular components, and their role in myocardial I/R injury cannot be ignored. There are many studies on microvascular obstruction, but few studies on microvascular leakage, which may be mainly due to the lack of corresponding detection methods. In this review, we summarize the clinical manifestations, related mechanisms of MVD during myocardial I/R, laboratory and clinical examination means, as well as the research progress on potential therapies for MVD in recent years. Better understanding the characteristics and risk factors of MVD in patients after hemodynamic reconstruction is of great significance for managing MVD, preventing heart failure and improving patient prognosis.
Collapse
Affiliation(s)
- Bang-Hao Zhao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Amanguli Ruze
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Ling Zhao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Qiu-Lin Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Jing Tang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Nilupaer Xiefukaiti
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Min-Tao Gai
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - An-Xia Deng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Xue-Feng Shan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Xiao-Ming Gao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China.
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China.
| |
Collapse
|
5
|
Age-Related Changes in Skeletal Muscle Oxygen Utilization. J Funct Morphol Kinesiol 2022; 7:jfmk7040087. [PMID: 36278748 PMCID: PMC9590092 DOI: 10.3390/jfmk7040087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
The cardiovascular and skeletal muscle systems are intrinsically interconnected, sharing the goal of delivering oxygen to metabolically active tissue. Deficiencies within those systems that affect oxygen delivery to working tissues are a hallmark of advancing age. Oxygen delivery and utilization are reflected as muscle oxygen saturation (SmO2) and are assessed using near-infrared resonance spectroscopy (NIRS). SmO2 has been observed to be reduced by ~38% at rest, ~24% during submaximal exercise, and ~59% during maximal exercise with aging (>65 y). Furthermore, aging prolongs restoration of SmO2 back to baseline by >50% after intense exercise. Regulatory factors that contribute to reduced SmO2 with age include blood flow, capillarization, endothelial cells, nitric oxide, and mitochondrial function. These mechanisms are governed by reactive oxygen species (ROS) at the cellular level. However, mishandling of ROS with age ultimately leads to alterations in structure and function of the regulatory factors tasked with maintaining SmO2. The purpose of this review is to provide an update on the current state of the literature regarding age-related effects in SmO2. Furthermore, we attempt to bridge the gap between SmO2 and associated underlying mechanisms affected by aging.
Collapse
|
6
|
Sylvester AL, Zhang DX, Ran S, Zinkevich NS. Inhibiting NADPH Oxidases to Target Vascular and Other Pathologies: An Update on Recent Experimental and Clinical Studies. Biomolecules 2022; 12:biom12060823. [PMID: 35740948 PMCID: PMC9221095 DOI: 10.3390/biom12060823] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/31/2022] [Accepted: 06/10/2022] [Indexed: 11/18/2022] Open
Abstract
Reactive oxygen species (ROS) can be beneficial or harmful in health and disease. While low levels of ROS serve as signaling molecules to regulate vascular tone and the growth and proliferation of endothelial cells, elevated levels of ROS contribute to numerous pathologies, such as endothelial dysfunctions, colon cancer, and fibrosis. ROS and their cellular sources have been extensively studied as potential targets for clinical intervention. Whereas various ROS sources are important for different pathologies, four NADPH oxidases (NOX1, NOX2, NOX4, and NOX5) play a prominent role in homeostasis and disease. NOX1-generated ROS have been implicated in hypertension, suggesting that inhibition of NOX1 may be a promising therapeutic approach. NOX2 and NOX4 oxidases are of specific interest due to their role in producing extra- and intracellular hydrogen peroxide (H2O2). NOX4-released hydrogen peroxide activates NOX2, which in turn stimulates the release of mitochondrial ROS resulting in ROS-induced ROS release (RIRR) signaling. Increased ROS production from NOX5 contributes to atherosclerosis. This review aims to summarize recent findings on NOX enzymes and clinical trials inhibiting NADPH oxidases to target pathologies including diabetes, idiopathic pulmonary fibrosis (IPF), and primary biliary cholangitis (PBC).
Collapse
Affiliation(s)
- Anthony L. Sylvester
- Department of Biology, University of Illinois at Springfield, Springfield, IL 62703, USA; or
| | - David X. Zhang
- Department of Medicine, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Sophia Ran
- Department of Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| | - Natalya S. Zinkevich
- Department of Biology, University of Illinois at Springfield, Springfield, IL 62703, USA; or
- Correspondence: ; Tel.: +1-(217)-206-8367
| |
Collapse
|
7
|
Chang X, Lochner A, Wang HH, Wang S, Zhu H, Ren J, Zhou H. Coronary microvascular injury in myocardial infarction: perception and knowledge for mitochondrial quality control. Am J Cancer Res 2021; 11:6766-6785. [PMID: 34093852 PMCID: PMC8171103 DOI: 10.7150/thno.60143] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/14/2021] [Indexed: 12/11/2022] Open
Abstract
Endothelial cells (ECs) constitute the innermost layer in all blood vessels to maintain the structural integrity and microcirculation function for coronary microvasculature. Impaired endothelial function is demonstrated in various cardiovascular diseases including myocardial infarction (MI), which is featured by reduced myocardial blood flow as a result of epicardial coronary obstruction, thrombogenesis, and inflammation. In this context, understanding the cellular and molecular mechanisms governing the function of coronary ECs is essential for the early diagnosis and optimal treatment of MI. Although ECs contain relatively fewer mitochondria compared with cardiomyocytes, they function as key sensors of environmental and cellular stress, in the regulation of EC viability, structural integrity and function. Mitochondrial quality control (MQC) machineries respond to a broad array of stress stimuli to regulate fission, fusion, mitophagy and biogenesis in mitochondria. Impaired MQC is a cardinal feature of EC injury and dysfunction. Hence, medications modulating MQC mechanisms are considered as promising novel therapeutic options in MI. Here in this review, we provide updated insights into the key role of MQC mechanisms in coronary ECs and microvascular dysfunction in MI. We also discussed the option of MQC as a novel therapeutic target to delay, reverse or repair coronary microvascular damage in MI. Contemporary available MQC-targeted therapies with potential clinical benefits to alleviate coronary microvascular injury during MI are also summarized.
Collapse
|
8
|
Agarwal S, Sharma H, Chen L, Dhillon NK. NADPH oxidase-mediated endothelial injury in HIV- and opioid-induced pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2020; 318:L1097-L1108. [PMID: 32233792 DOI: 10.1152/ajplung.00480.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We previously demonstrated that the combined exposure of human pulmonary microvascular endothelial cells (HPMECs) to morphine and viral protein(s) results in the oxidative stress-mediated induction of autophagy, leading to shift in the cells from early apoptotic to apoptosis-resistant proliferative status associated with the angioproliferative remodeling observed in pulmonary arterial hypertension (PAH). In this study, we tried to delineate the major source of HIV-1 protein Tat and morphine induced oxidative burst in HPMECs and its consequences on vascular remodeling and PAH in an in vivo model. We observed switch from the initial increased expression of NADPH oxidase (NOX) 2 in response to acute treatment of morphine and HIV-Tat to later increased expression of NOX4 on chronic treatment in the endoplasmic reticulum of HPMECs without any alterations in the mitochondria. Furthermore, NOX-dependent induction of autophagy was observed to play a pivotal role in regulating the endothelial cell survival. Our in vivo findings showed significant increase in pulmonary vascular remodeling, right ventricular systolic pressure, and Fulton index in HIV-transgenic rats on chronic administration of morphine. This was associated with increased oxidative stress in lung tissues and rat pulmonary microvascular endothelial cells. Additionally, endothelial cells from morphine-treated HIV-transgenic rats demonstrated increased expression of NOX2 and NOX4 proteins, inhibition of which ameliorated their increased survival upon serum starvation. In conclusion, this study describes NADPH oxidases as one of the main players in the oxidative stress-mediated endothelial dysfunction on the dual hit of HIV-viral protein(s) and opioids.
Collapse
Affiliation(s)
- Stuti Agarwal
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Himanshu Sharma
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Ling Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Navneet K Dhillon
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
9
|
Suresh K, Shimoda LA. Endothelial Cell Reactive Oxygen Species and Ca 2+ Signaling in Pulmonary Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 967:299-314. [PMID: 29047094 DOI: 10.1007/978-3-319-63245-2_18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pulmonary hypertension (PH) refers to a disorder characterized by elevated pulmonary arterial pressure, leading to right ventricular overload and eventually right ventricular failure, which results in high morbidity and mortality. PH is associated with heterogeneous etiologies and distinct molecular mechanisms, including abnormal migration and proliferation of endothelial and smooth muscle cells. Although the exact details are not fully elucidated, reactive oxygen species (ROS) have been shown to play a key role in promoting abnormal function in pulmonary arterial smooth muscle and endothelial cells in PH. In endothelial cells, ROS can be generated from sources such as NADPH oxidase and mitochondria, which in turn can serve as signaling molecules in a wide variety of processes including posttranslational modification of proteins involved in Ca2+ homeostasis. In this chapter, we discuss the role of ROS in promoting abnormal vasoreactivity and endothelial migration and proliferation in various models of PH. Furthermore, we draw particular attention to the role of ROS-induced increases in intracellular Ca2+ concentration in the pathobiology of PH.
Collapse
Affiliation(s)
- Karthik Suresh
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA. .,Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Baltimore, MD, 21224, USA.
| | - Larissa A Shimoda
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| |
Collapse
|
10
|
Appukuttan B, Ma Y, Stempel A, Ashander LM, Deliyanti D, Wilkinson-Berka JL, Smith JR. Effect of NADPH oxidase 1 and 4 blockade in activated human retinal endothelial cells. Clin Exp Ophthalmol 2018; 46:652-660. [PMID: 29360265 DOI: 10.1111/ceo.13155] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 01/10/2018] [Accepted: 01/10/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Over-production of reactive oxygen species (ROS) and resulting oxidative stress contribute to retinal damage in vascular diseases that include diabetic retinopathy, retinopathy of prematurity and major retinal vessel occlusions. NADPH oxidase (Nox) proteins are professional ROS-generating enzymes, and therapeutic targeting in these diseases has strong appeal. Pharmacological inhibition of Nox4 reduces the severity of experimental retinal vasculopathy. We investigated the potential application of this drug approach in humans. METHODS Differential Nox enzyme expression was studied by real-time-quantitative polymerase chain reaction in primary human retinal endothelial cell isolates and a characterized human retinal endothelial cell line. Oxidative stress was triggered chemically in endothelial cells, by treatment with dimethyloxalylglycine (DMOG; 100 μM); Nox4 and vascular endothelial growth factor (VEGFA) transcript were measured; and production of ROS was detected by 2',7'-dichlorofluorescein. DMOG-stimulated endothelial cells were treated with two Nox1/Nox4 inhibitors, GKT136901 and GKT137831; cell growth was monitored by DNA quantification, in addition to VEGFA transcript and ROS production. RESULTS Nox4 (isoform Nox4A) was the predominant Nox enzyme expressed by human retinal endothelial cells. Treatment with DMOG significantly increased endothelial cell expression of Nox4 over 72 h, accompanied by ROS production and increased VEGFA expression. Treatment with GKT136901 or GKT137831 significantly reduced DMOG-induced ROS production and VEGFA expression by endothelial cells, and the inhibitory effect of DMOG on cell growth. CONCLUSIONS Our findings in experiments on activated human retinal endothelial cells provide translational corroboration of studies in experimental models of retinal vasculopathy and support the therapeutic application of Nox4 inhibition by GKT136901 and GKT137831 in patients with retinal vascular diseases.
Collapse
Affiliation(s)
- Binoy Appukuttan
- Eye and Vision Health, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Yuefang Ma
- Eye and Vision Health, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Andrew Stempel
- Eye and Vision Health, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Liam M Ashander
- Eye and Vision Health, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Devy Deliyanti
- Diabetic Retinopathy, Department of Diabetes, Monash University, Melbourne, Victoria, Australia
| | | | - Justine R Smith
- Eye and Vision Health, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia.,South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| |
Collapse
|
11
|
Pan M, Han Y, Si R, Guo R, Desai A, Makino A. Hypoxia-induced pulmonary hypertension in type 2 diabetic mice. Pulm Circ 2017; 7:175-185. [PMID: 28680577 PMCID: PMC5448524 DOI: 10.1086/690206] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 11/16/2016] [Indexed: 12/20/2022] Open
Abstract
Hypoxia-induced pulmonary hypertension (HPH) is a progressive disease that is mainly caused by chronic exposure to high altitude, chronic obstructive lung disease, and obstructive sleep apnea. The increased pulmonary vascular resistance and increased pulmonary arterial pressure result in increased right ventricular afterload, leading to right heart failure and increased morbidity. There are several clinical reports suggesting a link between PH and diabetes, insulin resistance, or obesity; however, it is unclear whether HPH is associated with diabetes as a progressive complication in diabetes. The major goal of this study is to examine the effect of diabetic "preconditioning" or priming effect on the progression of HPH and define the molecular mechanisms that explain the link between diabetes and HPH. Our data show that HPH is significantly enhanced in diabetic mice, while endothelium-dependent relaxation in pulmonary arteries is significantly attenuated in chronically hypoxic diabetic mice (DH). In addition, we demonstrate that mouse pulmonary endothelial cells (MPECs) isolated from DH mice exhibit a significant increase in mitochondrial reactive oxygen species (ROS) concentration and decreased SOD2 protein expression. Finally, scavenging mitochondrial ROS by mitoTempol restores endothelium-dependent relaxation in pulmonary arteries that is attenuated in DH mice. These data suggest that excessive mitochondrial ROS production in diabetic MPECs leads to the development of severe HPH in diabetic mice exposed to hypoxia.
Collapse
Affiliation(s)
- Minglin Pan
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ying Han
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | - Rui Si
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | - Rui Guo
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | - Ankit Desai
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | - Ayako Makino
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
12
|
Pircher A, Treps L, Bodrug N, Carmeliet P. Endothelial cell metabolism: A novel player in atherosclerosis? Basic principles and therapeutic opportunities. Atherosclerosis 2016; 253:247-257. [PMID: 27594537 DOI: 10.1016/j.atherosclerosis.2016.08.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/09/2016] [Accepted: 08/18/2016] [Indexed: 12/28/2022]
Abstract
Atherosclerosis is a leading cause of morbidity and mortality in Western society. Despite improved insight into disease pathogenesis and therapeutic options, additional treatment strategies are required. Emerging evidence highlights the relevance of endothelial cell (EC) metabolism for angiogenesis, and indicates that EC metabolism is perturbed when ECs become dysfunctional to promote atherogenesis. In this review, we overview the latest insights on EC metabolism and discuss current knowledge on how atherosclerosis deregulates EC metabolism, and how maladaptation of deregulated EC metabolism can contribute to atherosclerosis progression. We will also highlight possible therapeutic avenues, based on targeting EC metabolism.
Collapse
Affiliation(s)
- Andreas Pircher
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, Leuven, B-3000, Belgium
| | - Lucas Treps
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, Leuven, B-3000, Belgium
| | - Natalia Bodrug
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, Leuven, B-3000, Belgium; Laboratory of Adhesion and Angiogenesis, Centre for Tumour Biology, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, United Kingdom
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, Leuven, B-3000, Belgium.
| |
Collapse
|
13
|
Vázquez-Medina JP, Dodia C, Weng L, Mesaros C, Blair IA, Feinstein SI, Chatterjee S, Fisher AB. The phospholipase A2 activity of peroxiredoxin 6 modulates NADPH oxidase 2 activation via lysophosphatidic acid receptor signaling in the pulmonary endothelium and alveolar macrophages. FASEB J 2016; 30:2885-98. [PMID: 27178323 DOI: 10.1096/fj.201500146r] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/26/2016] [Indexed: 01/04/2023]
Abstract
Peroxiredoxin 6 (Prdx6) is essential for activation of NADPH oxidase type 2 (NOX2) in pulmonary microvascular endothelial cells (PMVECs), alveolar macrophages (AMs), and polymorphonuclear leukocytes. Angiotensin II and phorbol ester increased superoxide/H2O2 generation in PMVECs, AMs, and isolated lungs from wild-type (WT) mice, but had much less effect on cells or lungs from Prdx6-null or Prdx6-D140A-knock-in mice that lack the phospholipase A2 activity (PLA2) of Prdx6; addition of either lysophosphatidylcholine (LPC) or lysophosphatidic acid (LPA) to cells restored their oxidant generation. The generation of LPC by PMVECs required Prdx6-PLA2 We propose that Prdx6-PLA2 modulates NOX2 activation by generation of LPC that is converted to LPA by the lysophospholipase D activity of autotaxin (ATX/lysoPLD). Inhibition of lysoPLD with HA130 (cells,10 μM; lungs, 20 μM; IC50, 29 nM) decreased agonist-induced oxidant generation. LPA stimulates pathways regulated by small GTPases through binding to G-protein-coupled LPA receptors (LPARs). The LPAR blocker Ki16425 (cells, 10 μM; lungs, 25 μM; Ki, 0.34 μM) or cellular knockdown of LPAR type 1 decreased oxidant generation and blocked translocation of rac1 to plasma membrane. Thus, Prdx6-PLA2 modulates NOX2 activation through generation of LPC for conversion to LPA; binding of LPA to LPAR1 signals rac activation.-Vázquez-Medina, J. P., Dodia, C., Weng, L., Mesaros, C., Blair, I. A., Feinstein, S. I., Chatterjee, S., Fisher, A. B. The phospholipase A2 activity of peroxiredoxin 6 modulates NADPH oxidase 2 activation via lysophosphatidic acid receptor signaling in the pulmonary endothelium and alveolar macrophages.
Collapse
Affiliation(s)
- José Pablo Vázquez-Medina
- Institute for Environmental Medicine, Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; and
| | - Chandra Dodia
- Institute for Environmental Medicine, Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; and
| | - Liwei Weng
- Center for Cancer Pharmacology, Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA Center for Excellence in Environmental Toxicology, Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Clementina Mesaros
- Center for Cancer Pharmacology, Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA Center for Excellence in Environmental Toxicology, Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ian A Blair
- Center for Cancer Pharmacology, Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA Center for Excellence in Environmental Toxicology, Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sheldon I Feinstein
- Institute for Environmental Medicine, Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; and
| | - Shampa Chatterjee
- Institute for Environmental Medicine, Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; and
| | - Aron B Fisher
- Institute for Environmental Medicine, Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; and
| |
Collapse
|
14
|
Inflammatory response and pneumocyte apoptosis during lung ischemia-reperfusion injury in an experimental pulmonary thromboembolism model. J Thromb Thrombolysis 2016; 40:42-53. [PMID: 25677043 PMCID: PMC4445764 DOI: 10.1007/s11239-015-1182-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Lung ischemia-reperfusion injury (LIRI) may occur in the region of the affected lung after reperfusion therapy. The inflammatory response mechanisms related to LIRI in pulmonary thromboembolism (PTE), especially in chronic PTE, need to be studied further. In a PTE model, inflammatory response and apoptosis may occur during LIRI and nitric oxide (NO) inhalation may alleviate the inflammatory response and apoptosis of pneumocytes during LIRI. A PTE canine model was established through blood clot embolism to the right lower lobar pulmonary artery. Two weeks later, we performed embolectomy with reperfusion to examine the LIRI changes among different groups. In particular, the ratio of arterial oxygen partial pressure to fractional inspired oxygen (PaO2/FiO2), serum concentrations of tumor necrosis factor-α (TNF-α), myeloperoxidase concentrations in lung homogenates, alveolar polymorphonuclear neutrophils (PMNs), lobar lung wet to dry ratio (W/D ratio), apoptotic pneumocytes, and lung sample ultrastructure were assessed. The PaO2/FiO2 in the NO inhalation group increased significantly when compared with the reperfusion group 4 and 6 h after reperfusion (368.83 ± 55.29 vs. 287.90 ± 54.84 mmHg, P < 0.05 and 380.63 ± 56.83 vs. 292.83 ± 6 0.34 mmHg, P < 0.05, respectively). In the NO inhalation group, TNF-α concentrations and alveolar PMN infiltration were significantly decreased as compared with those of the reperfusion group, 6 h after reperfusion (7.28 ± 1.49 vs. 8.90 ± 1.43 pg/mL, P < 0.05 and [(19 ± 6)/10 high power field (HPF) vs. (31 ± 11)/10 HPF, P < 0.05, respectively]. The amount of apoptotic pneumocytes in the lower lobar lung was negatively correlated with the arterial blood PaO2/FiO2, presented a positive correlation trend with the W/D ratio of the lower lobar lung, and a positive correlation with alveolar PMN in the reperfusion group and NO inhalation group. NO provided at 20 ppm for 6 h significantly alleviated LIRI in the PTE model. Our data indicate that, during LIRI, an obvious inflammatory response and apoptosis occur in our PTE model and NO inhalation may be useful in treating LIRI by alleviating the inflammatory response and pneumocyte apoptosis. This potential application warrants further investigation.
Collapse
|
15
|
Fallica J, Varela L, Johnston L, Kim B, Serebreni L, Wang L, Damarla M, Kolb TM, Hassoun PM, Damico R. Macrophage Migration Inhibitory Factor: A Novel Inhibitor of Apoptosis Signal-Regulating Kinase 1-p38-Xanthine Oxidoreductase-Dependent Cigarette Smoke-Induced Apoptosis. Am J Respir Cell Mol Biol 2016; 54:504-14. [PMID: 26390063 PMCID: PMC4821049 DOI: 10.1165/rcmb.2014-0403oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 09/08/2015] [Indexed: 12/29/2022] Open
Abstract
Cigarette smoke (CS) exposure is the leading cause of emphysema. CS mediates pathologic emphysematous remodeling of the lung via apoptosis of lung parenchymal cells resulting in enlargement of the airspaces, loss of the capillary bed, and diminished surface area for gas exchange. Macrophage migration inhibitory factor (MIF), a pleiotropic cytokine, is reduced both in a preclinical model of CS-induced emphysema and in patients with chronic obstructive pulmonary disease, particularly those with the most severe disease and emphysematous phenotype. MIF functions to antagonize CS-induced DNA damage, p53-dependent apoptosis of pulmonary endothelial cells (EndoCs) and resultant emphysematous tissue remodeling. Using primary alveolar EndoCs and a mouse model of CS-induced lung damage, we investigated the capacity and molecular mechanism(s) by which MIF modifies oxidant injury. Here, we demonstrate that both the activity of xanthine oxidoreductase (XOR), a superoxide-generating enzyme obligatory for CS-induced DNA damage and EndoC apoptosis, and superoxide concentrations are increased after CS exposure in the absence of MIF. Both XOR hyperactivation and apoptosis in the absence of MIF occurred via a p38 mitogen-activated protein kinase-dependent mechanism. Furthermore, a mitogen-activated protein kinase kinase kinase family member, apoptosis signal-regulating kinase 1 (ASK1), was necessary for CS-induced p38 activation and EndoC apoptosis. MIF was sufficient to directly suppress ASK1 enzymatic activity. Taken together, MIF suppresses CS-mediated cytotoxicity in the lung, in part by antagonizing ASK1-p38-XOR-dependent apoptosis.
Collapse
Affiliation(s)
- Jonathan Fallica
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland; and
- Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Lidenys Varela
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland; and
| | - Laura Johnston
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland; and
| | - Bo Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland; and
| | - Leonid Serebreni
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland; and
| | - Lan Wang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland; and
| | - Mahendra Damarla
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland; and
| | - Todd M. Kolb
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland; and
| | - Paul M. Hassoun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland; and
| | - Rachel Damico
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland; and
- Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
16
|
Goldenberg NM, Kuebler WM. Endothelial cell regulation of pulmonary vascular tone, inflammation, and coagulation. Compr Physiol 2016; 5:531-59. [PMID: 25880504 DOI: 10.1002/cphy.c140024] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The pulmonary endothelium represents a heterogeneous cell monolayer covering the luminal surface of the entire lung vasculature. As such, this cell layer lies at a critical interface between the blood, airways, and lung parenchyma, and must act as a selective barrier between these diverse compartments. Lung endothelial cells are able to produce and secrete mediators, display surface receptor, and cellular adhesion molecules, and metabolize circulating hormones to influence vasomotor tone, both local and systemic inflammation, and coagulation functions. In this review, we will explore the role of the pulmonary endothelium in each of these systems, highlighting key regulatory functions of the pulmonary endothelial cell, as well as novel aspects of the pulmonary endothelium in contrast to the systemic cell type. The interactions between pulmonary endothelial cells and both leukocytes and platelets will be discussed in detail, and wherever possible, elements of endothelial control over physiological and pathophysiological processes will be examined.
Collapse
Affiliation(s)
- Neil M Goldenberg
- The Keenan Research Centre for Biomedical Science of St. Michael's, Toronto, Ontario, Canada; Department of Anesthesia, University of Toronto, Ontario, Canada
| | - Wolfgang M Kuebler
- The Keenan Research Centre for Biomedical Science of St. Michael's, Toronto, Ontario, Canada; German Heart Institute Berlin, Germany; Institute of Physiology, Charité-Universitätsmedizin Berlin, Germany; Department of Surgery, University of Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Ontario,Canada
| |
Collapse
|
17
|
Santillo M, Colantuoni A, Mondola P, Guida B, Damiano S. NOX signaling in molecular cardiovascular mechanisms involved in the blood pressure homeostasis. Front Physiol 2015. [PMID: 26217233 PMCID: PMC4493385 DOI: 10.3389/fphys.2015.00194] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Blood pressure homeostasis is maintained by several mechanisms regulating cardiac output, vascular resistances, and blood volume. At cellular levels, reactive oxygen species (ROS) signaling is involved in multiple molecular mechanisms controlling blood pressure. Among ROS producing systems, NADPH oxidases (NOXs), expressed in different cells of the cardiovascular system, are the most important enzymes clearly linked to the development of hypertension. NOXs exert a central role in cardiac mechanosensing, endothelium-dependent relaxation, and Angiotensin-II (Ang-II) redox signaling regulating vascular tone. The central role of NOXs in redox-dependent cardiovascular cell functions renders these enzymes a promising pharmacological target for the treatment of cardiovascular diseases, including hypertension. The aim of the present review is to focus on the physiological role of the cardiovascular NOX-generating ROS in the molecular and cellular mechanisms affecting blood pressure.
Collapse
Affiliation(s)
- Mariarosaria Santillo
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II" Naples, Italy
| | - Antonio Colantuoni
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II" Naples, Italy
| | - Paolo Mondola
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II" Naples, Italy
| | - Bruna Guida
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II" Naples, Italy
| | - Simona Damiano
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II" Naples, Italy
| |
Collapse
|
18
|
Deng C, Yang M, Lin Q, Yang Y, Zhai Z, Liu K, Ding H, Cao X, Huang Z, Zhang L, Zhao J. Beneficial effects of inhaled NO on apoptotic pneumocytes in pulmonary thromboembolism model. Theor Biol Med Model 2014; 11:36. [PMID: 25109474 PMCID: PMC4135342 DOI: 10.1186/1742-4682-11-36] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 08/07/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Lung ischemia-reperfusion injury (LIRI) may occur in the region of the affected lung after reperfusion therapy. Inhaled NO may be useful in treating acute and chronic pulmonary thromboembolism (PTE) due to the biological effect property of NO. METHODS A PTE canine model was established through selectively embolizing blood clots to an intended right lower lobar pulmonary artery. PaO2/FiO2, the mPAP and PVR were investigated at the time points of 2, 4, 6 hours after inhaled NO. Masson's trichrome stain, apoptotic pneumocytes and lung sample ultrastructure were also investigated among different groups. RESULTS The PaO2/FiO2 in the Inhaled NO group increased significantly when compared with the Reperfusion group at time points of 4 and 6 hours after reperfusion, mPAP decreased significantly at point of 2 hours and the PVR decreased significantly at point of 6 hours after reperfusion. The amounts of apoptotic type II pneumocytes in the lower lobar lung have negative correlation trend with the arterial blood PaO2/FiO2 in Reperfusion group and Inhaled NO group. Inhaled nitric oxide given at 20 ppm for 6 hours can significantly alleviate the LIRI in the model. CONCLUSIONS Dramatic physiological improvements are seen during the therapeutic use of inhaled NO in pulmonary thromboembolism canine model. Inhaled NO may be useful in treating LIRI in acute or chronic PTE by alleviating apoptotic type II pneumocytes. This potential application warrants further investigation.
Collapse
Affiliation(s)
- Chaosheng Deng
- Department of Respiratory Disease, First Affiliated Hospital of Fujian Medical University, 350005 Fuzhou, Fujian Province, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Downregulation of NOX4 expression by roflumilast N-oxide reduces markers of fibrosis in lung fibroblasts. Mediators Inflamm 2013; 2013:745984. [PMID: 24027357 PMCID: PMC3763264 DOI: 10.1155/2013/745984] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 06/21/2013] [Accepted: 07/17/2013] [Indexed: 02/07/2023] Open
Abstract
The phosphodiesterase 4 inhibitor roflumilast prevents bleomycin- (BLM-) induced lung fibrosis in animal models. However, its mechanism of action remains unknown. We investigated whether roflumilast N-oxide (RNO), the active metabolite of roflumilast, can modulate in vitro the oxidative effects of BLM on human lung fibroblasts (HLF). In addition, since BLM increases the production of F₂-isoprostanes that have per se fibrogenic activity, the effect of RNO on oxidative stress and fibrogenesis induced by the F₂-isoprostane 8-epi-PGF₂α was investigated. HLF were preincubated either with the vehicle or with RNO and exposed to either BLM or 8-epi-PGF₂α. Proliferation and collagen synthesis were assessed as [(3)H]-thymidine and [(3)H]-proline incorporation. Reactive oxygen species (ROS) and F₂-isoprostanes were measured. NADPH oxidase 4 (NOX4) protein and mRNA were also evaluated. BLM increased both cell proliferation and collagen synthesis and enhanced ROS and F₂-isoprostane production. These effects were significantly prevented by RNO. Also, RNO significantly reduced the increase in both NOX4 mRNA and protein, induced by BLM. Finally, 8-epi-PGF₂α per se stimulated HLF proliferation, collagen synthesis, and NOX4 expression and ROS generation, and RNO prevented these effects. Thus, the antifibrotic effect of RNO observed in vivo may be related to its ability to mitigate ROS generation via downregulation of NOX4.
Collapse
|
20
|
Lung oxidative damage by hypoxia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:856918. [PMID: 22966417 PMCID: PMC3433143 DOI: 10.1155/2012/856918] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 07/11/2012] [Indexed: 12/12/2022]
Abstract
One of the most important functions of lungs is to maintain an adequate oxygenation in the organism. This organ can be affected by hypoxia facing both physiological and pathological situations. Exposure to this condition favors the increase of reactive oxygen species from mitochondria, as from NADPH oxidase, xanthine oxidase/reductase, and nitric oxide synthase enzymes, as well as establishing an inflammatory process. In lungs, hypoxia also modifies the levels of antioxidant substances causing pulmonary oxidative damage. Imbalance of redox state in lungs induced by hypoxia has been suggested as a participant in the changes observed in lung function in the hypoxic context, such as hypoxic vasoconstriction and pulmonary edema, in addition to vascular remodeling and chronic pulmonary hypertension. In this work, experimental evidence that shows the implied mechanisms in pulmonary redox state by hypoxia is reviewed. Herein, studies of cultures of different lung cells and complete isolated lung and tests conducted in vivo in the different forms of hypoxia, conducted in both animal models and humans, are described.
Collapse
|