1
|
Çubuk C, Lau R, Cutillas P, Rajeeve V, John CR, Surace AEA, Hands R, Fossati-Jimack L, Lewis MJ, Pitzalis C. Phosphoproteomic profiling of early rheumatoid arthritis synovium reveals active signalling pathways and differentiates inflammatory pathotypes. Arthritis Res Ther 2024; 26:120. [PMID: 38867295 PMCID: PMC11167927 DOI: 10.1186/s13075-024-03351-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Kinases are intracellular signalling mediators and key to sustaining the inflammatory process in rheumatoid arthritis (RA). Oral inhibitors of Janus Kinase family (JAKs) are widely used in RA, while inhibitors of other kinase families e.g. phosphoinositide 3-kinase (PI3K) are under development. Most current biomarker platforms quantify mRNA/protein levels, but give no direct information on whether proteins are active/inactive. Phosphoproteome analysis has the potential to measure specific enzyme activation status at tissue level. METHODS We validated the feasibility of phosphoproteome and total proteome analysis on 8 pre-treatment synovial biopsies from treatment-naive RA patients using label-free mass spectrometry, to identify active cell signalling pathways in synovial tissue which might explain failure to respond to RA therapeutics. RESULTS Differential expression analysis and functional enrichment revealed clear separation of phosphoproteome and proteome profiles between lymphoid and myeloid RA pathotypes. Abundance of specific phosphosites was associated with the degree of inflammatory state. The lymphoid pathotype was enriched with lymphoproliferative signalling phosphosites, including Mammalian Target Of Rapamycin (MTOR) signalling, whereas the myeloid pathotype was associated with Mitogen-Activated Protein Kinase (MAPK) and CDK mediated signalling. This analysis also highlighted novel kinases not previously linked to RA, such as Protein Kinase, DNA-Activated, Catalytic Subunit (PRKDC) in the myeloid pathotype. Several phosphosites correlated with clinical features, such as Disease-Activity-Score (DAS)-28, suggesting that phosphosite analysis has potential for identifying novel biomarkers at tissue-level of disease severity and prognosis. CONCLUSIONS Specific phosphoproteome/proteome signatures delineate RA pathotypes and may have clinical utility for stratifying patients for personalised medicine in RA.
Collapse
Affiliation(s)
- Cankut Çubuk
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London and Barts NIHR BRC & NHS Trust, Charterhouse Square, London, EC1M 6BQ, UK
| | - Rachel Lau
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London and Barts NIHR BRC & NHS Trust, Charterhouse Square, London, EC1M 6BQ, UK
| | - Pedro Cutillas
- Cell Signalling and Proteomics Group, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Vinothini Rajeeve
- Cell Signalling and Proteomics Group, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Christopher R John
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London and Barts NIHR BRC & NHS Trust, Charterhouse Square, London, EC1M 6BQ, UK
| | - Anna E A Surace
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London and Barts NIHR BRC & NHS Trust, Charterhouse Square, London, EC1M 6BQ, UK
| | - Rebecca Hands
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London and Barts NIHR BRC & NHS Trust, Charterhouse Square, London, EC1M 6BQ, UK
| | - Liliane Fossati-Jimack
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London and Barts NIHR BRC & NHS Trust, Charterhouse Square, London, EC1M 6BQ, UK
| | - Myles J Lewis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London and Barts NIHR BRC & NHS Trust, Charterhouse Square, London, EC1M 6BQ, UK.
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London and Barts NIHR BRC & NHS Trust, Charterhouse Square, London, EC1M 6BQ, UK.
- IRCCS Istituto Clinico Humanitas, Via Manzoni 56, Rozzao, Milan, Italy.
| |
Collapse
|
2
|
Kruk D, Yeung ACY, Faiz A, ten Hacken NHT, Timens W, van Kuppevelt TH, Daamen W, Hof D, Harmsen MC, Rojas M, Heijink IH. Gene expression profiles in mesenchymal stromal cells from bone marrow, adipose tissue and lung tissue of COPD patients and controls. Respir Res 2023; 24:22. [PMID: 36681830 PMCID: PMC9863276 DOI: 10.1186/s12931-023-02314-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/03/2023] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is characterized by irreversible lung tissue damage. Novel regenerative strategies are urgently awaited. Cultured mesenchymal stem/stromal cells (MSCs) have shown promising results in experimental models of COPD, but differences between sources may impact on their potential use in therapeutic strategies in patients. AIM To assess the transcriptome of lung-derived MSCs (LMSCs), bone marrow-derived MSCs (BM-MSC) and adipose-derived MSCs (AD-MSCs) from COPD patients and non-COPD controls. METHODS We studied differences in gene expression profiles between the MSC-subtypes, as well as between COPD and control using RNA sequencing (RNA-seq). RESULTS We show that besides heterogeneity between donors, MSCs from different sources have strongly divergent gene signatures. The growth factors FGF10 and HGF were predominantly expressed in LMSCs. MSCs from all sources displayed altered expression profiles in COPD, with most pronounced significantly up- and downregulated genes in MSCs from adipose tissue. Pathway analysis revealed that the most differentially expressed genes in COPD-derived AD-MSCs are involved in extracellular matrix (ECM) binding and expression. In LMSCs, the gene that differed most strongly between COPD and control was CSGALNACT1, an ECM modulating gene. CONCLUSION Autologous MSCs from COPD patients display abnormalities with respect to their transcriptome, which were surprisingly most profound in MSCs from extrapulmonary sources. LMSCs may be optimally equipped for lung tissue repair because of the expression of specific growth factor genes.
Collapse
Affiliation(s)
- Dennis Kruk
- grid.4494.d0000 0000 9558 4598Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, Groningen The Netherlands ,grid.4494.d0000 0000 9558 4598Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anna C. Y. Yeung
- grid.117476.20000 0004 1936 7611Respiratory Bioinformatics and Molecular Biology (RBMB) Group, The University of Technology Sydney, Ultimo, NSW Australia ,grid.1013.30000 0004 1936 834XWoolcock Institute of Medical Research, The University of Sydney, Glebe, NSW Australia
| | - Alen Faiz
- grid.117476.20000 0004 1936 7611Respiratory Bioinformatics and Molecular Biology (RBMB) Group, The University of Technology Sydney, Ultimo, NSW Australia
| | - Nick H. T. ten Hacken
- grid.4494.d0000 0000 9558 4598Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands ,grid.4494.d0000 0000 9558 4598Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Wim Timens
- grid.4494.d0000 0000 9558 4598Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, Groningen The Netherlands ,grid.4494.d0000 0000 9558 4598Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Toin H. van Kuppevelt
- grid.5590.90000000122931605Department of Biochemistry, University of Nijmegen, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Willeke Daamen
- grid.5590.90000000122931605Department of Biochemistry, University of Nijmegen, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Danique Hof
- grid.5590.90000000122931605Department of Biochemistry, University of Nijmegen, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martin C. Harmsen
- grid.4494.d0000 0000 9558 4598Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, Groningen The Netherlands
| | - Mauricio Rojas
- grid.261331.40000 0001 2285 7943Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH USA
| | - Irene H. Heijink
- grid.4494.d0000 0000 9558 4598Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, Groningen The Netherlands ,grid.4494.d0000 0000 9558 4598Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands ,grid.4494.d0000 0000 9558 4598Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
3
|
Qiao L, Li RX, Hu SG, Liu Y, Liu HQ, Wu HJ. microRNA-145-5p attenuates acute lung injury via targeting ETS2. Kaohsiung J Med Sci 2022; 38:565-573. [PMID: 35579106 DOI: 10.1002/kjm2.12556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/21/2022] [Accepted: 02/16/2022] [Indexed: 11/11/2022] Open
Abstract
The protective effect of microRNA (miR)-145-5p in acute lung injury (ALI) has been discovered previously. Thus, in this study, we attempted to further investigate the mechanism of miR-145-5p in ALI through the downstream E26 transformation-specific proto-oncogene 2 (ETS2)/transforming growth factor β1 (TGF-β1)/Smad pathway. A lipopolysaccharide (LPS)-induced ALI rat model was established. The expression of miR-145-5p in ALI rat lung tissues was up-regulated. Afterward, pathological damage in the lung tissue, the wet/dry (W/D) ratio, apoptosis, and serum inflammatory factor contents were observed. miR-145-5p, ETS2, TGF-β1, Smad2/3, and phosphorylated Smad2/3 levels were measured in rats. miR-145-5p expression was down-regulated, ETS2 expression was up-regulated, and the TGF-β1/Smad pathway was activated in LPS-exposed rats. Overexpression of miR-145-5p inactivated the TGF-β1/Smad pathway and attenuated ALI, as reflected by relieved pathological damage, a decreased W/D ratio, reduced apoptosis, and suppressed inflammatory response. In contrast, loss of miR-145-5p or elevated ETS2 levels worsened ALI and activated the TGF-β1/Smad pathway. Moreover, elevation of ETS2 diminished miR-145-5p-mediated protection against ALI. Evidently, miR-145-5p negatively regulates ETS2 expression and inactivates the TGF-β1/Smad pathway to ameliorate ALI in rats.
Collapse
Affiliation(s)
- Liang Qiao
- Department of Emergency, Henan Province Hospital of TCM (The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Zhengzhou, Henan, China
| | - Rong-Xia Li
- Emergency Center, Qinghai Provincial People's Hospital, Xining, Qinghai, China
| | - Shan-Gang Hu
- Department of Emergency, Henan Province Hospital of TCM (The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Zhengzhou, Henan, China
| | - Yu Liu
- Department of Emergency, Henan Province Hospital of TCM (The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Zhengzhou, Henan, China
| | - Hong-Qiang Liu
- Department of Emergency, Henan Province Hospital of TCM (The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Zhengzhou, Henan, China
| | - Hong-Jun Wu
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
4
|
A novel tissue specific alternative splicing variant mitigates phenotypes in Ets2 frame-shift mutant models. Sci Rep 2021; 11:8297. [PMID: 33859300 PMCID: PMC8050053 DOI: 10.1038/s41598-021-87751-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 04/05/2021] [Indexed: 11/08/2022] Open
Abstract
E26 avian leukemia oncogene 2, 3′ domain (Ets2) has been implicated in various biological processes. An Ets2 mutant model (Ets2db1/db1), which lacks the DNA-binding domain, was previously reported to exhibit embryonic lethality caused by a trophoblast abnormality. This phenotype could be rescued by tetraploid complementation, resulting in pups with wavy hair and curly whiskers. Here, we generated new Ets2 mutant models with a frame-shift mutation in exon 8 using the CRISPR/Cas9 method. Homozygous mutants could not be obtained by natural mating as embryonic development stopped before E8.5, as previously reported. When we rescued them by tetraploid complementation, these mice did not exhibit wavy hair or curly whisker phenotypes. Our newly generated mice exhibited exon 8 skipping, which led to in-frame mutant mRNA expression in the skin and thymus but not in E7.5 Ets2em1/em1 embryos. This exon 8-skipped Ets2 mRNA was translated into protein, suggesting that this Ets2 mutant protein complemented the Ets2 function in the skin. Our data implies that novel splicing variants incidentally generated after genome editing may complicate the phenotypic analysis but may also give insight into the new mechanisms related to biological gene functions.
Collapse
|
5
|
Chen YC, Chuang TY, Liu CW, Liu CW, Lee TL, Lai TC, Chen YL. Particulate matters increase epithelial-mesenchymal transition and lung fibrosis through the ETS-1/NF-κB-dependent pathway in lung epithelial cells. Part Fibre Toxicol 2020; 17:41. [PMID: 32799885 PMCID: PMC7429884 DOI: 10.1186/s12989-020-00373-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023] Open
Abstract
Background Particulate matters (PMs) in ambient air pollution are closely related to the incidence of respiratory diseases and decreased lung function. Our previous report demonstrated that PMs-induced oxidative stress increased the expression of proinflammatory intracellular adhesion molecule-1 (ICAM-1) through the IL-6/AKT/STAT3/NF-κB pathway in A549 cells. However, the role of O-PMs in epithelial-mesenchymal transition (EMT) development and pulmonary fibrosis and the related mechanisms have not been determined. The aim of this study was to investigate the effects of O-PMs on the pathogenesis of EMT and pulmonary fibrosis as well as the expression of ETS-1 and NF-κB p65, in vitro and in vivo. Results O-PMs treatment induced EMT development, fibronectin expression, and cell migration. O-PMs affected the expression of the EMT-related transcription factors NF-κB p65 and ETS-1. Interference with NF-κB p65 significantly decreased O-PMs-induced fibronectin expression. In addition, O-PMs affected the expression of fibronectin, E-cadherin, and vimentin through modulating ETS-1 expression. ATN-161, an antagonist of integrin α5β1, decreased the expression of fibronectin and ETS-1 and EMT development. EMT development and the expression of fibronectin and ETS-1 were increased in the lung tissue of mice after exposure to PMs for 7 and 14 days. There was a significant correlation between fibronectin and ETS-1 expression in human pulmonary fibrosis tissue. Conclusion O-PMs can induce EMT and fibronectin expression through the activation of transcription factors ETS-1 and NF-κB in A549 cells. PMs can induce EMT development and the expression of fibronectin and ETS-1 in mouse lung tissues. These findings suggest that the ETS-1 pathway could be a novel and alternative mechanism for EMT development and pulmonary fibrosis.
Collapse
Affiliation(s)
- Yu-Chen Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, No. 1, Sec 1, Jen-Ai Road, Taipei, Taiwan, Republic of China
| | - Tzu-Yi Chuang
- Division of Pulmonary Medicine, Department of Internal Medicine, Min-Sheng General Hospital, No. 168 Ching-Kuo Road, Taoyuan, Taiwan, Republic of China. .,Department of Internal Medicine, College of Medicine and National Taiwan University Hospital, No.7, Chung-Shan South Road, Taipei, Taiwan, Republic of China.
| | - Chen-Wei Liu
- Department of Basic Medical Science, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Chi-Wei Liu
- Department of Internal Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan, Republic of China
| | - Tzu-Lin Lee
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, No. 1, Sec 1, Jen-Ai Road, Taipei, Taiwan, Republic of China
| | - Tsai-Chun Lai
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, No. 1, Sec 1, Jen-Ai Road, Taipei, Taiwan, Republic of China
| | - Yuh-Lien Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, No. 1, Sec 1, Jen-Ai Road, Taipei, Taiwan, Republic of China.
| |
Collapse
|
6
|
Ets-2 deletion in myeloid cells attenuates IL-1α-mediated inflammatory disease caused by a Ptpn6 point mutation. Cell Mol Immunol 2020; 18:1798-1808. [PMID: 32203187 DOI: 10.1038/s41423-020-0398-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/26/2020] [Indexed: 11/08/2022] Open
Abstract
The SHP-1 protein encoded by the Ptpn6 gene has been extensively studied in hematopoietic cells in the context of inflammation. A point mutation in this gene (Ptpn6spin) causes spontaneous inflammation in mice, which has a striking similarity to neutrophilic dermatoses in humans. Recent findings highlighted the role of signaling adapters and kinases in promoting inflammation in Ptpn6spin mice; however, the underlying transcriptional regulation is poorly understood. Here, we report that SYK is important for driving neutrophil infiltration and initiating wound healing responses in Ptpn6spin mice. Moreover, we found that deletion of the transcription factor Ets2 in myeloid cells ameliorates cutaneous inflammatory disease in Ptpn6spin mice through transcriptional regulation of its target inflammatory genes. Furthermore, Ets-2 drives IL-1α-mediated inflammatory signaling in neutrophils of Ptpn6spin mice. Overall, in addition to its well-known role in driving inflammation in cancer, Ets-2 plays a major role in regulating IL-1α-driven Ptpn6spin-mediated neutrophilic dermatoses. Model for the role of ETS-2 in neutrophilic inflammation in Ptpn6spin mice. Mutation of the Ptpn6 gene results in SYK phosphorylation which then sequentially activates MAPK signaling pathways and activation of ETS-2. This leads to activation of ETS-2 target genes that contribute to neutrophil migration and inflammation. When Ets2 is deleted in Ptpn6spin mice, the expression of these target genes is reduced, leading to the reduced pathology in neutrophilic dermatoses.
Collapse
|
7
|
ETS2 promotes epithelial-to-mesenchymal transition in renal fibrosis by targeting JUNB transcription. J Transl Med 2020; 100:438-453. [PMID: 31641227 DOI: 10.1038/s41374-019-0331-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 08/16/2019] [Accepted: 09/23/2019] [Indexed: 12/21/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) plays an important role in the progression of renal tubulointerstitial fibrosis, a common mechanism leading to end-stage renal failure. V-ets erythroblastosis virus E26 oncogene homolog 2 (ETS2), a transcription factor, exhibits diverse roles in pathogenesis; however, its role in renal fibrosis is not yet fully understood. In this study, we detected the expression of ETS2 in an animal model of renal fibrosis and evaluated the potential role of ETS2 in tubular EMT induced by TGF-β1. We found that ETS2 and profibrogenic factors, alpha-smooth muscle actin (α-SMA) and fibronectin (FN), were significantly increased in the unilateral ureteral obstruction (UUO)-induced renal fibrosis model in mice. In vitro, TGF-β1 induced a high expression of ETS2 dependent on Smad3 and ERK signaling pathway in human proximal tubular epithelial cells (HK2). Knockdown of ETS2 abrogated TGF-β1-mediated expression of profibrogenic factors vimentin, α-SMA, collagen I, and FN in HK2 cells. Mechanistically, ETS2 promoted JUNB expression in HK2 cells after TGF-β1 stimulation. Furthermore, luciferase and Chromatin Immunoprecipitation (ChIP) assays revealed that the binding of ETS2 to three EBS motifs on the promoter of JUNB triggered its transcription. Notably, silencing JUNB reversed the ETS2-induced upregulation of the profibrogenic factors in HK2 cells after TGF-β1 stimulation. These findings suggest that ETS2 mediates TGF-β1-induced EMT in renal tubular cells through JUNB, a novel pathway for preventing renal fibrosis.
Collapse
|
8
|
Jiang X, Yu M, Zhu T, Lou L, Chen X, Li Q, Wei D, Sun R. Kcnq1ot1/miR-381-3p/ETS2 Axis Regulates Inflammation in Mouse Models of Acute Respiratory Distress Syndrome. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 19:179-189. [PMID: 31841990 PMCID: PMC6920288 DOI: 10.1016/j.omtn.2019.10.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 10/26/2019] [Accepted: 10/28/2019] [Indexed: 12/29/2022]
Abstract
Inflammatory mediators play a key role in the pathogenesis of acute respiratory distress syndrome (ARDS). In this study, we aimed to explore the involvement of the Kcnq1 opposite strand/antisense transcript 1 (Kcnq1ot1)/miR-381-3p/E26 transformation-specific proto-oncogene 2 (ETS2) axis in inflammation of lipopolysaccharide (LPS)-induced ARDS. Microarray analysis revealed ETS2 as an upregulated gene in ARDS. Then, a LPS-induced ARDS mouse model was constructed, with a series of gain- or loss-of-function experiments conducted to evaluate the lung function and neutrophil extracellular trap (NET) formation in lung tissue and determine the neutrophil number, myeloperoxidase (MPO) activity, and inflammatory factor levels in bronchoalveolar lavage fluid (BALF). As the results revealed, downregulated expression of ETS2 resulted in improved lung function, decreased NETs, MPO activity, and levels of interleukin (IL)-6 and tumor necrosis factor alpha (TNF-α), as well as increased IL-10 level. Then, the assays of dual-luciferase reporter, RNA-binding protein immunoprecipitation (RIP), and RNA pull-down were performed to validate that Kcnq1ot1 promoted ETS2 expression by competitively binding to miR-381-3p. Meanwhile, it was also found that Kcnq1ot1 silencing reversed the promotive effect of EST2 on ARDS. Our results provide evidence that Kcnq1ot1 silencing may reduce the inflammatory response in LPS-induced ARDS via inhibition of miR-381-30-dependent ETS2, thereby presenting new molecular understanding for the development of ARDS.
Collapse
Affiliation(s)
- Xiaohui Jiang
- Department of Critical Care Medicine, Chun'an First People's Hospital (Zhejiang Provincial People's Hospital, Chun'an Branch), Hangzhou 311700, P.R. China; Department of Critical Care Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, P.R. China.
| | - Meihong Yu
- Department of Critical Care Medicine, Chun'an First People's Hospital (Zhejiang Provincial People's Hospital, Chun'an Branch), Hangzhou 311700, P.R. China
| | - Taiping Zhu
- Department of Critical Care Medicine, Chun'an First People's Hospital (Zhejiang Provincial People's Hospital, Chun'an Branch), Hangzhou 311700, P.R. China
| | - Lulu Lou
- Internal Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, P.R. China
| | - Xu Chen
- Department of Critical Care Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, P.R. China
| | - Qian Li
- Department of Critical Care Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, P.R. China
| | - Danhong Wei
- Department of Neuroscience Care Unit, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, P.R. China
| | - Renhua Sun
- Department of Critical Care Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, P.R. China
| |
Collapse
|
9
|
Heinbockel L, Marwitz S, Schromm AB, Watz H, Kugler C, Ammerpohl O, Schnepf K, Rabe KF, Droemann D, Goldmann T. Identification of novel target genes in human lung tissue involved in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2018; 13:2255-2259. [PMID: 30100715 PMCID: PMC6065552 DOI: 10.2147/copd.s161958] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Introduction As part of a study aimed at illuminating at least some of the complex molecular events taking place in COPD, we screened tissues by means of transcriptome analyses. Materials and methods Tissues were subjected to transcriptome analysis. Candidate genes were identified and validated by immunohistochemistry. Primary human lung cells were subjected to stimulation with cigarette smoke extract for further validation by real time PCR. Results Six candidate genes were selected for further investigations: Aquaporin 3 (AQP3), extracellular matrix protein 1 (ECM1), four and a half LIM domain 1 (FHL1), milk fat globule epidermal growth factor 8 (MFGE8, lactadherin), phosphodiesterase 4D-interacting protein (PDE4DIP), and creatine transporter SLC6A8. All six proteins were allocated to distinct cell types by immunohistochemistry. Upon stimulation with cigarette smoke extract, human type II pneumocytes showed a dose-dependent down-regulation of MFGE8, while ECM1 and FHL1 also tended to be down-regulated. Although present, none of the candidates was regulated by cigarette smoke extract in primary human macrophages. Discussion MFGE8 turned out to be an interesting new candidate gene in COPD deserving further studies.
Collapse
Affiliation(s)
- Lena Heinbockel
- Pathology of the University Medical Center Schleswig-Holstein (UKSH), Campus Luebeck and Research Center Borstel, Borstel, Germany, .,Airway Research Center North (ARCN), German Center for Lung Research (DZL), Großhansdorf, Germany,
| | - Sebastian Marwitz
- Pathology of the University Medical Center Schleswig-Holstein (UKSH), Campus Luebeck and Research Center Borstel, Borstel, Germany, .,Airway Research Center North (ARCN), German Center for Lung Research (DZL), Großhansdorf, Germany,
| | | | - Henrik Watz
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), Großhansdorf, Germany, .,Pulmonary Research Institute at LungenClinic Grosshansdorf, Grosshansdorf, Germany
| | - Christian Kugler
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), Großhansdorf, Germany, .,LungenClinic Grosshansdorf, Grosshansdorf, Germany
| | - Ole Ammerpohl
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), Großhansdorf, Germany, .,Institute of Human Genetics, University Medical Center Ulm, Ulm, Germany
| | - Karoline Schnepf
- Medical Clinic III, Pulmonology/Infectious Diseases, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Klaus F Rabe
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), Großhansdorf, Germany, .,LungenClinic Grosshansdorf, Grosshansdorf, Germany
| | - Daniel Droemann
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), Großhansdorf, Germany, .,Medical Clinic III, Pulmonology/Infectious Diseases, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Torsten Goldmann
- Pathology of the University Medical Center Schleswig-Holstein (UKSH), Campus Luebeck and Research Center Borstel, Borstel, Germany, .,Airway Research Center North (ARCN), German Center for Lung Research (DZL), Großhansdorf, Germany,
| |
Collapse
|
10
|
Fausther M, Lavoie EG, Goree JR, Dranoff JA. An Elf2-like transcription factor acts as repressor of the mouse ecto-5'-nucleotidase gene expression in hepatic myofibroblasts. Purinergic Signal 2017; 13:417-428. [PMID: 28667437 PMCID: PMC5714833 DOI: 10.1007/s11302-017-9570-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 05/12/2017] [Indexed: 01/20/2023] Open
Abstract
Hepatic fibrosis represents a pathological wound healing and tissue repair process triggered in response to chronic liver injury. A heterogeneous population of activated non-parenchymal liver cells, known as liver myofibroblasts, functions as the effector cells in hepatic fibrosis. Upon activation, liver myofibroblasts become fibrogenic, acquiring contractile properties and increasing collagen production capacity, while developing enhanced sensitivity to endogenous molecules and factors released in the local microenvironment. Hepatic extracellular adenosine is a bioactive small molecule, increasingly recognized as an important regulator of liver myofibroblast functions, and an important mediator in the pathogenesis of liver fibrosis overall. Remarkably, ecto-5'-nucleotidase/Nt5e/Cd73 enzyme, which accounts for the dominant adenosine-generating activity in the extracellular medium, is expressed by activated liver myofibroblasts. However, the molecular signals regulating Nt5e gene expression in liver myofibroblasts remain poorly understood. Here, we show that activated mouse liver myofibroblasts express Nt5e gene products and characterize the putative Nt5e minimal promoter in the mouse species. We describe the existence of an enhancer sequence upstream of the mouse Nt5e minimal promoter and establish that the mouse Nt5e minimal promoter transcriptional activity is negatively regulated by an Elf2-like Ets-related transcription factor in activated mouse liver myofibroblasts.
Collapse
Affiliation(s)
- Michel Fausther
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR, 72205, USA.
- Research Service, Central Arkansas Veterans Administration Health System, Little Rock, AR, 72205, USA.
| | - Elise G Lavoie
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR, 72205, USA
- Research Service, Central Arkansas Veterans Administration Health System, Little Rock, AR, 72205, USA
| | - Jessica R Goree
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR, 72205, USA
- Research Service, Central Arkansas Veterans Administration Health System, Little Rock, AR, 72205, USA
| | - Jonathan A Dranoff
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR, 72205, USA
- Research Service, Central Arkansas Veterans Administration Health System, Little Rock, AR, 72205, USA
| |
Collapse
|
11
|
Huang C, Xiao X, Yang Y, Mishra A, Liang Y, Zeng X, Yang X, Xu D, Blackburn MR, Henke CA, Liu L. MicroRNA-101 attenuates pulmonary fibrosis by inhibiting fibroblast proliferation and activation. J Biol Chem 2017; 292:16420-16439. [PMID: 28726637 DOI: 10.1074/jbc.m117.805747] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Indexed: 01/03/2023] Open
Abstract
Aberrant proliferation and activation of lung fibroblasts contribute to the initiation and progression of idiopathic pulmonary fibrosis (IPF). However, the mechanisms responsible for the proliferation and activation of fibroblasts are not fully understood. The objective of this study was to investigate the role of miR-101 in the proliferation and activation of lung fibroblasts. miR-101 expression was determined in lung tissues from patients with IPF and mice with bleomycin-induced pulmonary fibrosis. The regulation of miR-101 and cellular signaling was investigated in pulmonary fibroblasts in vitro The role of miR-101 in pulmonary fibrosis in vivo was studied using adenovirus-mediated gene transfer in mice. The expression of miR-101 was down-regulated in fibrotic lungs from patients with IPF and bleomycin-treated mice. The down-regulation of miR-101 occurred via the E26 transformation-specific (ETS) transcription factor. miR-101 suppressed the WNT5a-induced proliferation of lung fibroblasts by inhibiting NFATc2 signaling via targeting Frizzled receptor 4/6 and the TGF-β-induced activation of lung fibroblasts by inhibition of SMAD2/3 signaling via targeting the TGF-β receptor 1. Adenovirus-mediated miR-101 gene transfer in the mouse lung attenuated bleomycin-induced lung fibrosis and improved lung function. Our data suggest that miR-101 is an anti-fibrotic microRNA and a potential therapeutic target for pulmonary fibrosis.
Collapse
Affiliation(s)
- Chaoqun Huang
- From the Oklahoma Center for Respiratory and Infectious Diseases and.,Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma 74078
| | - Xiao Xiao
- From the Oklahoma Center for Respiratory and Infectious Diseases and.,Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma 74078
| | - Ye Yang
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma 74078
| | - Amorite Mishra
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma 74078
| | - Yurong Liang
- From the Oklahoma Center for Respiratory and Infectious Diseases and.,Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma 74078
| | - Xiangming Zeng
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma 74078
| | - Xiaoyun Yang
- From the Oklahoma Center for Respiratory and Infectious Diseases and.,Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma 74078
| | - Dao Xu
- From the Oklahoma Center for Respiratory and Infectious Diseases and.,Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma 74078
| | - Michael R Blackburn
- the Department of Biochemistry and Molecular Biology, University of Texas-Houston Medical School, Houston, Texas, and
| | - Craig A Henke
- the Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455
| | - Lin Liu
- From the Oklahoma Center for Respiratory and Infectious Diseases and .,Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma 74078
| |
Collapse
|
12
|
Liu X, Yan D, Li Y, Sha X, Wu K, Zhao J, Yang C, Zhang C, Shi J, Wu X. Erythroblast transformation-specific 2 correlates with vascular smooth muscle cell apoptosis in rat heterotopic heart transplantation model. J Thorac Dis 2016; 8:2027-37. [PMID: 27621856 DOI: 10.21037/jtd.2016.07.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Cardiac allograft vasculopathy (CAV) decreases the long-term survival of heart transplantation recipients. Vascular smooth muscle cell (VSMC) apoptosis is an important pathological feature of CAV. Erythroblast transformation-specific 2 (Ets-2), as a transcription factor, participates in cell apoptosis and plays an important role in organ transplantation. METHODS Hearts from Wistar-Furth (WF:RT1u) rats were heterotopically transplanted into Lewis (Lew:RT1(l)) rats without immunosuppression. Additional syngeneic heterotopic cardiac transplantations were performed in Lewis rats. HE staining was used to identify CAV. Ets-2 expression was examined by western blot. Ets-2 tissue location was examined by immunohistochemical assay and double immunostaining. Cleaved caspase 3 expression was detected by western blot. Co-localization of Ets-2 and cleaved caspase 3 was detected by double immunostaining. Ets-2, p53, cleaved caspase 3 and Bcl-xl expression in rat VSMC line A7R5 was examined after Ets-2 siRNA transfection. TUNEL assay was applied to detect A7R5 apoptosis with or without ETS-2 siRNA transfection. Immunoprecipitation was performed to explore the interaction between Ets-2 and p53. RESULTS Ets-2 expression decreased in the allograft group but had no obvious change in the isograft group. Meanwhile, the phenomenon of CAV was observed in the allograft group and there is neointima formation in the isograft group which is not obvious compared with allograft group. Additionally, Ets-2 expression was opposite to VSMC apoptosis in the allograft group. In vitro, Ets-2 siRNA transfection in A7R5cells resulted in enhanced cell apoptosis. Finally, Ets-2 interacted with p53. CONCLUSIONS Ets-2 might inhibit VSMC apoptosis via p53 pathway. The results further elucidate the molecular mechanism of VSMC apoptosis after heart transplantation during CAV and provide theoretical basis for seeking new specific drug targets for CAV prevention and treatment.
Collapse
Affiliation(s)
- Xiaojuan Liu
- Department of Pathogen Biology, Medical College, Nantong University, Nantong 226001, China;; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong 226001, China
| | - Daliang Yan
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong 226001, China;; Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yangcheng Li
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong 226001, China;; Department of Thoracic Surgery, Affiliated Cancer Hospital of Nantong University, Nantong 226361, China
| | - Xilin Sha
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong 226001, China;; Department of Thoracic Surgery, Rugao People's Hospital, Rugao 226500, China
| | - Kunpeng Wu
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong 226001, China;; Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Jianhua Zhao
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong 226001, China;; Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Chen Yang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong 226001, China;; Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Chao Zhang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong 226001, China;; Department of Vasculocardiology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Jiahai Shi
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong 226001, China;; Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Xiang Wu
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong 226001, China;; Department of Vasculocardiology, Affiliated Hospital of Nantong University, Nantong 226001, China
| |
Collapse
|
13
|
Huang LS, Mathew B, Li H, Zhao Y, Ma SF, Noth I, Reddy SP, Harijith A, Usatyuk PV, Berdyshev EV, Kaminski N, Zhou T, Zhang W, Zhang Y, Rehman J, Kotha SR, Gurney TO, Parinandi NL, Lussier YA, Garcia JGN, Natarajan V. The mitochondrial cardiolipin remodeling enzyme lysocardiolipin acyltransferase is a novel target in pulmonary fibrosis. Am J Respir Crit Care Med 2014; 189:1402-15. [PMID: 24779708 DOI: 10.1164/rccm.201310-1917oc] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Lysocardiolipin acyltransferase (LYCAT), a cardiolipin-remodeling enzyme regulating the 18:2 linoleic acid pattern of mammalian mitochondrial cardiolipin, is necessary for maintaining normal mitochondrial function and vascular development. We hypothesized that modulation of LYCAT expression in lung epithelium regulates development of pulmonary fibrosis. OBJECTIVES To define a role for LYCAT in human and murine models of pulmonary fibrosis. METHODS We analyzed the correlation of LYCAT expression in peripheral blood mononuclear cells (PBMCs) with the outcomes of pulmonary functions and overall survival, and used the murine models to establish the role of LYCAT in fibrogenesis. We studied the LYCAT action on cardiolipin remodeling, mitochondrial reactive oxygen species generation, and apoptosis of alveolar epithelial cells under bleomycin challenge. MEASUREMENTS AND MAIN RESULTS LYCAT expression was significantly altered in PBMCs and lung tissues from patients with idiopathic pulmonary fibrosis (IPF), which was confirmed in two preclinical murine models of IPF, bleomycin- and radiation-induced pulmonary fibrosis. LYCAT mRNA expression in PBMCs directly and significantly correlated with carbon monoxide diffusion capacity, pulmonary function outcomes, and overall survival. In both bleomycin- and radiation-induced pulmonary fibrosis murine models, hLYCAT overexpression reduced several indices of lung fibrosis, whereas down-regulation of native LYCAT expression by siRNA accentuated fibrogenesis. In vitro studies demonstrated that LYCAT modulated bleomycin-induced cardiolipin remodeling, mitochondrial membrane potential, reactive oxygen species generation, and apoptosis of alveolar epithelial cells, potential mechanisms of LYCAT-mediated lung protection. CONCLUSIONS This study is the first to identify modulation of LYCAT expression in fibrotic lungs and offers a novel therapeutic approach for ameliorating lung inflammation and pulmonary fibrosis.
Collapse
|
14
|
Asano Y, Trojanowska M. Fli1 represses transcription of the human α2(I) collagen gene by recruitment of the HDAC1/p300 complex. PLoS One 2013; 8:e74930. [PMID: 24058639 PMCID: PMC3772867 DOI: 10.1371/journal.pone.0074930] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/07/2013] [Indexed: 12/28/2022] Open
Abstract
Fli1, a member of the Ets transcription factor family, is a key repressor of the human α2(I) collagen (COL1A2) gene. Although our previous studies have delineated that TGF-β induces displacement of Fli1 from the COL1A2 promoter through sequential post-translational modifications, the detailed mechanism by which Fli1 functions as a potent transcriptional repressor of the COL1A2 gene has not been fully investigated. To address this issue, we carried out a series of experiments especially focusing on protein-protein interaction and epigenetic transcriptional regulation. The combination of tandem affinity purification and mass spectrometry identified HDAC1 as a Fli1 interacting protein. Under quiescent conditions, HDAC1 induced deacetylation of Fli1 resulting in an increase of Fli1 DNA binding ability and p300 enhanced this process by promoting the formation of a Fli1-HDAC1-p300 complex. TGF-β-induced phosphorylation of Fli1 at threonine 312 led to disassembly of this protein complex. In quiescent dermal fibroblasts Fli1, HDAC1, and p300 occupied the −404 to −237 region, including the Fli1 binding site, of the COL1A2 promoter. TGF-β induced Fli1 and HDAC1 dissociation from the COL1A2 promoter, while promoting Ets1 and p300 recruitment. Furthermore, acetylation levels of histone H3 around the Fli1 binding site in the COL1A2 promoter inversely correlated with the DNA occupancy of Fli1 and HDAC1, while positively correlating with that of Ets1 and p300. In the functional studies, HDAC1 overexpression magnified the inhibitory effect of Fli1 on the COL1A2 promoter. Moreover, pharmacological blockade of HDAC1 by entinostat enhanced collagen production in dermal fibroblasts. Collectively, these results indicate that under quiescent conditions Fli1 recruits HDAC1/p300 to the COL1A2 promoter and suppresses the expression of the COL1A2 gene by chromatin remodeling through histone deacetylation. TGF-β-dependent phosphorylation of Fli1 at threonine 312 is a critical step regulating the remodeling of the Fli1 transcription repressor complex, leading to transcriptional activation of the COL1A2 gene.
Collapse
Affiliation(s)
- Yoshihide Asano
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
- * E-mail:
| | - Maria Trojanowska
- Arthritis Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
15
|
Dakhlallah D, Batte K, Wang Y, Cantemir-Stone CZ, Yan P, Nuovo G, Mikhail A, Hitchcock CL, Wright VP, Nana-Sinkam SP, Piper MG, Marsh CB. Epigenetic regulation of miR-17~92 contributes to the pathogenesis of pulmonary fibrosis. Am J Respir Crit Care Med 2013; 187:397-405. [PMID: 23306545 DOI: 10.1164/rccm.201205-0888oc] [Citation(s) in RCA: 214] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
RATIONALE Idiopathic pulmonary fibrosis (IPF) is a disease of progressive lung fibrosis with a high mortality rate. In organ repair and remodeling, epigenetic events are important. MicroRNAs (miRNAs) regulate gene expression post-transcriptionally and can target epigenetic molecules important in DNA methylation. The miR-17~92 miRNA cluster is critical for lung development and lung epithelial cell homeostasis and is predicted to target fibrotic genes and DNA methyltransferase (DNMT)-1 expression. OBJECTIVES We investigated the miR-17~92 cluster expression and its role in regulating DNA methylation events in IPF lung tissue. METHODS Expression and DNA methylation patterns of miR-17~92 were determined in human IPF lung tissue and fibroblasts and fibrotic mouse lung tissue. The relationship between the miR-17~92 cluster and DNMT-1 expression was examined in vitro. Using a murine model of pulmonary fibrosis, we examined the therapeutic potential of the demethylating agent, 5'-aza-2'-deoxycytidine. MEASUREMENTS AND MAIN RESULTS Compared with control samples, miR-17~92 expression was reduced in lung biopsies and lung fibroblasts from patients with IPF, whereas DNMT-1 expression and methylation of the miR-17~92 promoter was increased. Several miRNAs from the miR-17~92 cluster targeted DNMT-1 expression resulting in a negative feedback loop. Similarly, miR-17~92 expression was reduced in the lungs of bleomycin-treated mice. Treatment with 5'-aza-2'-deoxycytidine in a murine bleomycin-induced pulmonary fibrosis model reduced fibrotic gene and DNMT-1 expression, enhanced miR-17~92 cluster expression, and attenuated pulmonary fibrosis. CONCLUSIONS This study provides insight into the pathobiology of IPF and identifies a novel epigenetic feedback loop between miR-17~92 and DNMT-1 in lung fibrosis.
Collapse
Affiliation(s)
- Duaa Dakhlallah
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, College of Medicine, Davis Heart and Lung Research Institute, Columbus, OH, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Leask A. Eureka! Ets a target for fibrosis! J Cell Commun Signal 2011; 5:325-6. [PMID: 21748431 DOI: 10.1007/s12079-011-0145-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 07/06/2011] [Indexed: 11/28/2022] Open
Abstract
The oncogenic Ets family of transcription factors is now recognized to play a key role in fibroblasts as it controls the expression of a variety of pro-fibrotic genes, including the induction of CCN2 by transforming growth factor β. A recent report (Baran et al., Am J Respir Cell Mol Biol. 2011 May 11) shows that mice containing a version of ets2 that is incapable of being phosphorylated are resistant to bleomycin-induced lung fibrosis. This latter paper is the subject of this commentary.
Collapse
Affiliation(s)
- Andrew Leask
- Department of Dentistry, Dental Sciences Building, University of Western Ontario, London, ON, Canada, N6A 5C1,
| |
Collapse
|