1
|
O'Reilly S, Tsou PS, Varga J. Senescence and tissue fibrosis: opportunities for therapeutic targeting. Trends Mol Med 2024; 30:1113-1125. [PMID: 38890028 DOI: 10.1016/j.molmed.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024]
Abstract
Cellular senescence is a key hallmark of aging. It has now emerged as a key mediator in normal tissue turnover and is associated with a variety of age-related diseases, including organ-specific fibrosis and systemic sclerosis (SSc). This review discusses the recent evidence of the role of senescence in tissue fibrosis, with an emphasis on SSc, a systemic autoimmune rheumatic disease. We discuss the physiological role of these cells, their role in fibrosis, and that targeting these cells specifically could be a new therapeutic avenue in fibrotic disease. We argue that targeting senescent cells, with senolytics or senomorphs, is a viable therapeutic target in fibrotic diseases which remain largely intractable.
Collapse
Affiliation(s)
- Steven O'Reilly
- Bioscience Department, Durham University, South Road, Durham, UK.
| | - Pei-Suen Tsou
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - John Varga
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Mari YM, Fraix MP, Agrawal DK. Pulmonary Fibrosis and Diabetes Mellitus: Two coins with the same face. ARCHIVES OF INTERNAL MEDICINE RESEARCH 2024; 7:53-70. [PMID: 38576768 PMCID: PMC10994216 DOI: 10.26502/aimr.0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) constitutes a long-term disease with a complex pathophysiology composed of multiple molecular actors that lead to the deposition of extracellular matrix, the loss of pulmonary function and ultimately the patient's death. Despite the approval of pirfenidone and nintedanib for the treatment of the disease, lung transplant is the only long-term solution to fully recover the respiratory capacity and gain quality of life. One of the risk factors for the development of IPF is the pre-existing condition of diabetes mellitus. Both, IPF and diabetes mellitus, share similar pathological damage mechanisms, including inflammation, endoplasmic reticulum stress, mitochondrial failure, oxidative stress, senescence and signaling from glycated proteins through receptors. In this critical review article, we provide information about this interrelationship, examining molecular mediators that play an essential role in both diseases and identify targets of interest for the development of potential drugs. We review the findings of clinical trials examining the progression of IPF and how novel molecules may be used to stop this process. The results highlight the importance of early detection and addressing multiple therapeutic targets simultaneously to achieve better therapeutic efficacy and potentially reverse lung fibrosis.
Collapse
Affiliation(s)
- Yssel Mendoza Mari
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona CA 91766
| | - Marcel P Fraix
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona CA 91766
| | - Devendra K Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona CA 91766
| |
Collapse
|
3
|
Parimon T, Chen P, Stripp BR, Liang J, Jiang D, Noble PW, Parks WC, Yao C. Senescence of alveolar epithelial progenitor cells: a critical driver of lung fibrosis. Am J Physiol Cell Physiol 2023; 325:C483-C495. [PMID: 37458437 PMCID: PMC10511168 DOI: 10.1152/ajpcell.00239.2023] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 08/04/2023]
Abstract
Pulmonary fibrosis comprises a range of chronic interstitial lung diseases (ILDs) that impose a significant burden on patients and public health. Among these, idiopathic pulmonary fibrosis (IPF), a disease of aging, is the most common and most severe form of ILD and is treated largely by lung transplantation. The lack of effective treatments to stop or reverse lung fibrosis-in fact, fibrosis in most organs-has sparked the need to understand causative mechanisms with the goal of identifying critical points for potential therapeutic intervention. Findings from many groups have indicated that repeated injury to the alveolar epithelium-where gas exchange occurs-leads to stem cell exhaustion and impaired alveolar repair that, in turn, triggers the onset and progression of fibrosis. Cellular senescence of alveolar epithelial progenitors is a critical cause of stemness failure. Hence, senescence impairs repair and thus contributes significantly to fibrosis. In this review, we discuss recent evidence indicating that senescence of epithelial progenitor cells impairs alveolar homeostasis and repair creating a profibrotic environment. Moreover, we discuss the impact of senescent alveolar epithelial progenitors, alveolar type 2 (AT2) cells, and AT2-derived transitional epithelial cells in fibrosis. Emerging evidence indicates that transitional epithelial cells are prone to senescence and, hence, are a new player involved in senescence-associated lung fibrosis. Understanding the complex interplay of cell types and cellular regulatory factors contributing to alveolar epithelial progenitor senescence will be crucial to developing targeted therapies to mitigate their downstream profibrotic sequelae and to promote normal alveolar repair.NEW & NOTEWORTHY With an aging population, lung fibrotic diseases are becoming a global health burden. Dysfunctional repair of the alveolar epithelium is a key causative process that initiates lung fibrosis. Normal alveolar regeneration relies on functional progenitor cells; however, the senescence of these cells, which increases with age, hinders their ability to contribute to repair. Here, we discuss studies on the control and consequence of progenitor cell senescence in fibrosis and opportunities for research.
Collapse
Affiliation(s)
- Tanyalak Parimon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Peter Chen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Barry R Stripp
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Jiurong Liang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Dianhua Jiang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Paul W Noble
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - William C Parks
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Changfu Yao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| |
Collapse
|
4
|
Han S, Lu Q, Liu X. Advances in cellular senescence in idiopathic pulmonary fibrosis (Review). Exp Ther Med 2023; 25:145. [PMID: 36911379 PMCID: PMC9995810 DOI: 10.3892/etm.2023.11844] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 01/05/2023] [Indexed: 02/17/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, irreversible and fatal interstitial lung disease of unknown cause, with a median survival of 2-3 years. Its pathogenesis is unclear and there is currently no effective treatment for IPF. Approximately two-thirds of patients with IPF are >60 years old, with a mean age of 66 years, suggesting a link between aging and IPF. However, the mechanism by which aging promotes development of PF remains unclear. Senescence of alveolar epithelial cells and lung fibroblasts (LFs) and their senescence-associated secretion phenotype (SASP) may be involved in the occurrence and development of IPF. The present review focus on senescence of LFs and epithelial and stem cells, as well as SASP, the activation of profibrotic signaling pathways and potential treatments for pathogenesis of IPF.
Collapse
Affiliation(s)
- Shan Han
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China.,Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi 712000, P.R. China
| | - Qiangwei Lu
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Xiaoqiu Liu
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
5
|
Cellular and Molecular Mechanisms in Idiopathic Pulmonary Fibrosis. Adv Respir Med 2023; 91:26-48. [PMID: 36825939 PMCID: PMC9952569 DOI: 10.3390/arm91010005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 02/04/2023]
Abstract
The respiratory system is a well-organized multicellular organ, and disruption of cellular homeostasis or abnormal tissue repair caused by genetic deficiency and exposure to risk factors lead to life-threatening pulmonary disease including idiopathic pulmonary fibrosis (IPF). Although there is no clear etiology as the name reflected, its pathological progress is closely related to uncoordinated cellular and molecular signals. Here, we review the advances in our understanding of the role of lung tissue cells in IPF pathology including epithelial cells, mesenchymal stem cells, fibroblasts, immune cells, and endothelial cells. These advances summarize the role of various cell components and signaling pathways in the pathogenesis of idiopathic pulmonary fibrosis, which is helpful to further study the pathological mechanism of the disease, provide new opportunities for disease prevention and treatment, and is expected to improve the survival rate and quality of life of patients.
Collapse
|
6
|
Tu M, Wei T, Jia Y, Wang Y, Wu J. Molecular mechanisms of alveolar epithelial cell senescence and idiopathic pulmonary fibrosis: a narrative review. J Thorac Dis 2023; 15:186-203. [PMID: 36794134 PMCID: PMC9922607 DOI: 10.21037/jtd-22-886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 11/25/2022] [Indexed: 12/29/2022]
Abstract
Background and Objective Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial pneumonia of unknown etiology. An increasing number of studies have reported that the incidence of IPF increases with age. Simultaneously, the number of senescent cells increased in IPF. Epithelial cell senescence, an important component of epithelial cell dysfunction, plays a key role in IPF pathogenesis. This article summarizes the molecular mechanisms associated with alveolar epithelial cell senescence and recent advances in the applications of drugs targeting pulmonary epithelial cell senescence to explore novel therapeutic approaches for the treatment of pulmonary fibrosis. Methods All literature published in English on PubMed, Web of Science, and Google Scholar were electronically searched online using the following keyword combinations: aging, alveolar epithelial cell, cell senescence, idiopathic pulmonary fibrosis, WNT/β-catenin, phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt), mammalian target of rapamycin (mTOR), and nuclear factor kappa B (NF-κB). Key Content and Findings We focused on signaling pathways associated with alveolar epithelial cell senescence in IPF, including WNT/β-catenin, PI3K/Akt, NF-κB, and mTOR signaling pathways. Some of these signaling pathways are involved in alveolar epithelial cell senescence by affecting cell cycle arrest and secretion of senescence-associated secretory phenotype-associated markers. We also found that changes in lipid metabolism in alveolar epithelial cells can be induced by mitochondrial dysfunction, both of which contribute to cellular senescence and development of IPF. Conclusions Decreasing senescent alveolar epithelial cells may be a promising strategy for the treatment of IPF. Therefore, further investigations into new treatments of IPF by applying inhibitors of relevant signaling pathways, as well as senolytic drugs, are warranted.
Collapse
Affiliation(s)
- Mingjin Tu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China;,Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China;,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China;,Peptide and Protein Research and Application Key Laboratory of Guangdong Medical University, Zhanjiang, China
| | - Ting Wei
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China;,Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China;,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China;,Peptide and Protein Research and Application Key Laboratory of Guangdong Medical University, Zhanjiang, China
| | - Yufang Jia
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China;,Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China;,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China;,Peptide and Protein Research and Application Key Laboratory of Guangdong Medical University, Zhanjiang, China
| | - Yajun Wang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China;,Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China;,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China;,Peptide and Protein Research and Application Key Laboratory of Guangdong Medical University, Zhanjiang, China;,Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Jun Wu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China;,Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China;,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China;,Peptide and Protein Research and Application Key Laboratory of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
7
|
Wei L, Li J, Yang Y, Zhu M, Zhao M, Yang J, Yang Z, Zhou L, Zhou S, Gong J, Jiang X, Liu J, Li Y, Zhang J. Characterization and potential bioactivity of polyphenols of Rosa rugosa. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Caveolin-1 scaffolding domain peptide abrogates autophagy dysregulation in pulmonary fibrosis. Sci Rep 2022; 12:11086. [PMID: 35773303 PMCID: PMC9246916 DOI: 10.1038/s41598-022-14832-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/13/2022] [Indexed: 11/09/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common and fatal form of interstitial lung disease. IPF is characterized by irreversible scarring of the lungs leading to lung function decline. Although the etiology remains poorly understood, dysregulated autophagy in alveolar-epithelial cells (AECs) together with interplay between apoptotic-AECs and proliferative-myofibroblasts have been strongly implicated in IPF pathogenesis. Recent studies have revealed that a caveolin-1-derived 7-mer peptide, CSP7, mitigates established PF at least in part by improving AEC viability. In the present study, we aimed to determine whether and how CSP7 regulates autophagy in fibrotic-lung AECs. We found that p53 and autophagic proteins were markedly upregulated in AECs from mice with single/multi-doses of bleomycin—or silica-induced PF. This was abolished following treatment of PF-mice with CSP7. Further, CSP7 abrogated silica- or bleomycin-induced p53 and autophagy proteins in AECs. Immunoprecipitation further revealed that CSP7 abolishes the interaction of caveolin-1 with LC3BII and p62 in AECs. AEC-specific p53-knockout mice resisted silica- or bleomycin-induced changes in autophagy proteins, or CSP7 treatment. Our findings provide a novel mechanism by which CSP7 inhibits dysregulated autophagy in injured AECs and mitigates existing PF. These results affirm the potential of CSP7 for treating established PF, including IPF and silicosis.
Collapse
|
9
|
Effects of Hypocalcemic Vitamin D Analogs in the Expression of DNA Damage Induced in Minilungs from hESCs: Implications for Lung Fibrosis. Int J Mol Sci 2022; 23:ijms23094921. [PMID: 35563311 PMCID: PMC9104735 DOI: 10.3390/ijms23094921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/03/2022] Open
Abstract
In our previous work, we evaluated the therapeutic effects of 1α,25-Dihydroxyvitamin D3, the biologically active form of vitamin D, in the context of bleomycin-induced lung fibrosis. Contrary to the expected, vitamin D supplementation increased the DNA damage expression and cellular senescence in alveolar epithelial type II cells and aggravated the overall lung pathology induced in mice by bleomycin. These effects were probably due to an alteration in the cellular DNA double-strand breaks’ repair capability. In the present work, we have evaluated the effects of two hypocalcemic vitamin D analogs (calcipotriol and paricalcitol) in the expression of DNA damage in the context of minilungs derived from human embryonic stem cells and in the cell line A549.
Collapse
|
10
|
Hogan TB, Tiwari N, Nagaraja M, Shetty SK, Fan L, Shetty RS, Bhandary YP, Shetty S. Caveolin-1 peptide regulates p53-microRNA-34a feedback in fibrotic lung fibroblasts. iScience 2022; 25:104022. [PMID: 35330685 PMCID: PMC8938287 DOI: 10.1016/j.isci.2022.104022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/02/2021] [Accepted: 03/01/2022] [Indexed: 11/22/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a life-threatening disease resulting from dysregulated repair responses to lung injury. Excessive extracellular matrix deposition by expanding myofibroblasts and fibrotic lung fibroblasts (fLfs) has been implicated in the pathogenesis of PF, including IPF. We explored fLfs' microRNA-34a (miR-34a) expression from IPF tissues. Basal miR-34a levels were decreased with reduced binding of p53 to the promoter DNA and 3'UTR mRNA sequences. Overexpression of miR-34a in fLfs increased p53, PAI-1, and reduced pro-fibrogenic markers. The regulatory effects of miR-34a were altered by modifying the p53 expression. Precursor-miR-34a lung transduction reduced bleomycin-induced PF in wild-type mice. fLfs treated with caveolin-1 scaffolding domain peptide (CSP) or its fragment, CSP7, restored miR-34a, p53, and PAI-1. CSP/CSP7 reduced PDGFR-β and pro-fibrogenic markers, which was abolished in fLfs following blockade of miR-34a expression. These peptides failed to resolve PF in mice lacking miR-34a in fLfs, indicating miR-34a-p53-feedback induction required for anti-fibrotic effects.
Collapse
Affiliation(s)
- Taryn B. Hogan
- Texas Lung Injury Institute, Department of Medicine, University of Texas Health Science Center at Tyler, 11937 US Highway 271, Tyler, TX 75708, USA
| | - Nivedita Tiwari
- Texas Lung Injury Institute, Department of Medicine, University of Texas Health Science Center at Tyler, 11937 US Highway 271, Tyler, TX 75708, USA
| | - M.R. Nagaraja
- Texas Lung Injury Institute, Department of Medicine, University of Texas Health Science Center at Tyler, 11937 US Highway 271, Tyler, TX 75708, USA
| | - Shwetha K. Shetty
- Texas Lung Injury Institute, Department of Medicine, University of Texas Health Science Center at Tyler, 11937 US Highway 271, Tyler, TX 75708, USA
- Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Liang Fan
- Texas Lung Injury Institute, Department of Medicine, University of Texas Health Science Center at Tyler, 11937 US Highway 271, Tyler, TX 75708, USA
| | - Rashmi S. Shetty
- Texas Lung Injury Institute, Department of Medicine, University of Texas Health Science Center at Tyler, 11937 US Highway 271, Tyler, TX 75708, USA
| | - Yashodhar P. Bhandary
- Texas Lung Injury Institute, Department of Medicine, University of Texas Health Science Center at Tyler, 11937 US Highway 271, Tyler, TX 75708, USA
| | - Sreerama Shetty
- Texas Lung Injury Institute, Department of Medicine, University of Texas Health Science Center at Tyler, 11937 US Highway 271, Tyler, TX 75708, USA
| |
Collapse
|
11
|
Talukdar S, Das SK, Emdad L, Fisher PB. Autophagy and senescence: Insights from normal and cancer stem cells. Adv Cancer Res 2021; 150:147-208. [PMID: 33858596 DOI: 10.1016/bs.acr.2021.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Autophagy is a fundamental cellular process, which allows cells to adapt to metabolic stress through the degradation and recycling of intracellular components to generate macromolecular precursors and produce energy. Autophagy is also critical in maintaining cellular/tissue homeostasis, as well preserving immunity and preventing human disease. Deregulation of autophagic processes is associated with cancer, neurodegeneration, muscle and heart disease, infectious diseases and aging. Research on a variety of stem cell types establish that autophagy plays critical roles in normal and cancer stem cell quiescence, activation, differentiation, and self-renewal. Considering its critical function in regulating the metabolic state of stem cells, autophagy plays a dual role in the regulation of normal and cancer stem cell senescence, and cellular responses to various therapeutic strategies. The relationships between autophagy, senescence, dormancy and apoptosis frequently focus on responses to various forms of stress. These are interrelated processes that profoundly affect normal and abnormal human physiology that require further elucidation in cancer stem cells. This review provides a current perspective on autophagy and senescence in both normal and cancer stem cells.
Collapse
Affiliation(s)
- Sarmistha Talukdar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
12
|
Immune Stroma in Lung Cancer and Idiopathic Pulmonary Fibrosis: A Common Biologic Landscape? Int J Mol Sci 2021; 22:ijms22062882. [PMID: 33809111 PMCID: PMC8000622 DOI: 10.3390/ijms22062882] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/06/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) identifies a specific entity characterized by chronic, progressive fibrosing interstitial pneumonia of unknown cause, still lacking effective therapies. Growing evidence suggests that the biologic processes occurring in IPF recall those which orchestrate cancer onset and progression and these findings have already been exploited for therapeutic purposes. Notably, the incidence of lung cancer in patients already affected by IPF is significantly higher than expected. Recent advances in the knowledge of the cancer immune microenvironment have allowed a paradigm shift in cancer therapy. From this perspective, recent experimental reports suggest a rationale for immune checkpoint inhibition in IPF. Here, we recapitulate the most recent knowledge on lung cancer immune stroma and how it can be translated into the IPF context, with both diagnostic and therapeutic implications.
Collapse
|
13
|
Abstract
Cellular senescence is a feature of most somatic cells. It is characterized by an irreversible cell cycle arrest and by the ability to secrete a plethora of mediators of inflammation and growth factors, which can alter the senescent cell's microenvironment. Senescent cells accumulate in tissues over time and contribute to both aging and the development of age-associated diseases. Senescent cells have antagonistic pleiotropic roles in cancer. Given the inability of senescent cells to proliferate, cellular senescence is a powerful tumor suppressor mechanism in young individuals. However, accumulation of senescent stromal cells during aging can fuel cancer cell growth in virtue of their capacity to release factors that stimulate cell proliferation. Caveolin-1 is a structural protein component of caveolae, invaginations of the plasma membrane involved in a variety of cellular processes, including signal transduction. Mounting evidence over the last 10-15 years has demonstrated a central role of caveolin-1 in the development of a senescent phenotype and the regulation of both the anti-tumorigenic and pro-tumorigenic properties of cellular senescence. In this review, we discuss the cellular mechanisms and functions of caveolin-1 in the context of cellular senescence and their relevance to the biology of cancer.
Collapse
|
14
|
Jarzebska N, Karetnikova ES, Markov AG, Kasper M, Rodionov RN, Spieth PM. Scarred Lung. An Update on Radiation-Induced Pulmonary Fibrosis. Front Med (Lausanne) 2021; 7:585756. [PMID: 33521012 PMCID: PMC7843914 DOI: 10.3389/fmed.2020.585756] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
Radiation-induced pulmonary fibrosis is a common severe long-time complication of radiation therapy for tumors of the thorax. Current therapeutic options used in the clinic include only supportive managements strategies, such as anti-inflammatory treatment using steroids, their efficacy, however, is far from being satisfactory. Recent studies have demonstrated that the development of lung fibrosis is a dynamic and complex process, involving the release of reactive oxygen species, activation of Toll-like receptors, recruitment of inflammatory cells, excessive production of nitric oxide and production of collagen by activated myofibroblasts. In this review we summarized the current state of knowledge on the pathophysiological processes leading to the development of lung fibrosis and we also discussed the possible treatment options.
Collapse
Affiliation(s)
- Natalia Jarzebska
- Department of Anesthesiology and Critical Care Medicine, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany
- Division of Angiology, Department of Internal Medicine III, University Center for Vascular Medicine, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany
| | | | - Alexander G. Markov
- Department of General Physiology, Saint-Petersburg State University, Saint Petersburg, Russia
| | - Michael Kasper
- Institute of Anatomy, Technische Universität Dresden, Dresden, Germany
| | - Roman N. Rodionov
- Division of Angiology, Department of Internal Medicine III, University Center for Vascular Medicine, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany
| | - Peter M. Spieth
- Department of Anesthesiology and Critical Care Medicine, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
15
|
Lin Y, Xu Z. Fibroblast Senescence in Idiopathic Pulmonary Fibrosis. Front Cell Dev Biol 2020; 8:593283. [PMID: 33324646 PMCID: PMC7723977 DOI: 10.3389/fcell.2020.593283] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/31/2020] [Indexed: 12/13/2022] Open
Abstract
Aging is an inevitable and complex natural phenomenon due to the increase in age. Cellular senescence means a non-proliferative but viable cellular physiological state. It is the basis of aging, and it exists in the body at any time point. Idiopathic pulmonary fibrosis (IPF) is an interstitial fibrous lung disease with unknown etiology, characterized by irreversible destruction of lung structure and function. Aging is one of the most critical risk factors for IPF, and extensive epidemiological data confirms IPF as an aging-related disease. Senescent fibroblasts in IPF show abnormal activation, telomere shortening, metabolic reprogramming, mitochondrial dysfunction, apoptosis resistance, autophagy deficiency, and senescence-associated secretory phenotypes (SASP). These characteristics of senescent fibroblasts establish a close link between cellular senescence and IPF. The treatment of senescence-related molecules and pathways is continually emerging, and using senolytics eliminating senescent fibroblasts is also actively tried as a new therapy for IPF. In this review, we discuss the roles of aging and cellular senescence in IPF. In particular, we summarize the signaling pathways through which senescent fibroblasts influence the occurrence and development of IPF. On this basis, we further talk about the current treatment ideas, hoping this paper can be used as a helpful reference for future researches.
Collapse
Affiliation(s)
- Yifan Lin
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| | - Zhihao Xu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| |
Collapse
|
16
|
Melo-Narváez MC, Stegmayr J, Wagner DE, Lehmann M. Lung regeneration: implications of the diseased niche and ageing. Eur Respir Rev 2020; 29:29/157/200222. [DOI: 10.1183/16000617.0222-2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022] Open
Abstract
Most chronic and acute lung diseases have no cure, leaving lung transplantation as the only option. Recent work has improved our understanding of the endogenous regenerative capacity of the lung and has helped identification of different progenitor cell populations, as well as exploration into inducing endogenous regeneration through pharmaceutical or biological therapies. Additionally, alternative approaches that aim at replacing lung progenitor cells and their progeny through cell therapy, or whole lung tissue through bioengineering approaches, have gained increasing attention. Although impressive progress has been made, efforts at regenerating functional lung tissue are still ineffective. Chronic and acute lung diseases are most prevalent in the elderly and alterations in progenitor cells with ageing, along with an increased inflammatory milieu, present major roadblocks for regeneration. Multiple cellular mechanisms, such as cellular senescence and mitochondrial dysfunction, are aberrantly regulated in the aged and diseased lung, which impairs regeneration. Existing as well as new human in vitro models are being developed, improved and adapted in order to study potential mechanisms of lung regeneration in different contexts. This review summarises recent advances in understanding endogenous as well as exogenous regeneration and the development of in vitro models for studying regenerative mechanisms.
Collapse
|
17
|
Wang B, Kohli J, Demaria M. Senescent Cells in Cancer Therapy: Friends or Foes? Trends Cancer 2020; 6:838-857. [PMID: 32482536 DOI: 10.1016/j.trecan.2020.05.004] [Citation(s) in RCA: 302] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 01/10/2023]
Abstract
Several cancer interventions induce DNA damage and promote senescence in cancer and nonmalignant cells. Senescent cells secrete a collection of proinflammatory factors collectively termed the senescence-associated secretory phenotype (SASP). SASP factors are able to potentiate various aspects of tumorigenesis, including proliferation, metastasis, and immunosuppression. Moreover, the accumulation and persistence of therapy-induced senescent cells can promote tissue dysfunction and the early onset of various age-related symptoms in treated cancer patients. Here, we review in detail the mechanisms by which cellular senescence contributes to cancer development and the side effects of cancer therapies. We also review how pharmacological interventions to eliminate senescent cells or inhibit SASP production can mitigate these negative effects and propose therapeutic strategies based on the age of the patient.
Collapse
Affiliation(s)
- Boshi Wang
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, 9713AV Groningen, The Netherlands
| | - Jaskaren Kohli
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, 9713AV Groningen, The Netherlands
| | - Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, 9713AV Groningen, The Netherlands.
| |
Collapse
|
18
|
Liu RM, Liu G. Cell senescence and fibrotic lung diseases. Exp Gerontol 2020; 132:110836. [PMID: 31958492 PMCID: PMC7036279 DOI: 10.1016/j.exger.2020.110836] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/14/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive fatal lung disorder with an unknown etiology and very limited therapeutic options. The incidence and severity of IPF increase with advanced age, suggesting that aging is a major risk factor for IPF. The mechanism underlying the aging-related susceptibility to IPF, however, remains unclear. Cellular senescence, a permanent arrest of cell growth, has been increasingly recognized as an important contributor to aging and aging-related diseases, including IPF. Senescent cells have been identified in IPF lungs and in experimental lung fibrosis models. Removal of senescent cells pharmacologically or genetically improves lung function and reverses pulmonary fibrosis induced by different stimuli in experimental fibrosis models. Treatment with senolytic drugs also improves clinical symptoms in IPF patients. These intriguing findings suggest that cellular senescence contributes importantly to the pathogenesis of fibrotic lung diseases and targeting senescent cells may represent a novel approach for the treatment of fibrotic lung disorders. In this mini review, we summarize the recent advance in the field regarding the role of cellular senescence in fibrotic lung diseases, with a focus on IPF.
Collapse
Affiliation(s)
- Rui-Ming Liu
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Gang Liu
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
19
|
Otoupalova E, Smith S, Cheng G, Thannickal VJ. Oxidative Stress in Pulmonary Fibrosis. Compr Physiol 2020; 10:509-547. [PMID: 32163196 DOI: 10.1002/cphy.c190017] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oxidative stress has been linked to various disease states as well as physiological aging. The lungs are uniquely exposed to a highly oxidizing environment and have evolved several mechanisms to attenuate oxidative stress. Idiopathic pulmonary fibrosis (IPF) is a progressive age-related disorder that leads to architectural remodeling, impaired gas exchange, respiratory failure, and death. In this article, we discuss cellular sources of oxidant production, and antioxidant defenses, both enzymatic and nonenzymatic. We outline the current understanding of the pathogenesis of IPF and how oxidative stress contributes to fibrosis. Further, we link oxidative stress to the biology of aging that involves DNA damage responses, loss of proteostasis, and mitochondrial dysfunction. We discuss the recent findings on the role of reactive oxygen species (ROS) in specific fibrotic processes such as macrophage polarization and immunosenescence, alveolar epithelial cell apoptosis and senescence, myofibroblast differentiation and senescence, and alterations in the acellular extracellular matrix. Finally, we provide an overview of the current preclinical studies and clinical trials targeting oxidative stress in fibrosis and potential new strategies for future therapeutic interventions. © 2020 American Physiological Society. Compr Physiol 10:509-547, 2020.
Collapse
Affiliation(s)
- Eva Otoupalova
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sam Smith
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Guangjie Cheng
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Victor J Thannickal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
20
|
Lin X, Barravecchia M, Matthew Kottmann R, Sime P, Dean DA. Caveolin-1 gene therapy inhibits inflammasome activation to protect from bleomycin-induced pulmonary fibrosis. Sci Rep 2019; 9:19643. [PMID: 31873099 PMCID: PMC6928213 DOI: 10.1038/s41598-019-55819-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 11/30/2019] [Indexed: 01/04/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating and fatal disease and characterized by increased deposition of extracellular matrix proteins and scar formation in the lung, resulting from alveolar epithelial damage and accumulation of inflammatory cells. Evidence suggests that Caveolin-1 (Cav-1), a major component of caveolae which regulates cell signaling and endocytosis, is a potential target to treat fibrotic diseases, although the mechanisms and responsible cell types are unclear. We show that Cav-1 expression was downregulated both in alveolar epithelial type I cells in bleomycin-injured mouse lungs and in lung sections from IPF patients. Increased expression of IL-1β and caspase-1 has been observed in IPF patients, indicating inflammasome activation associated with IPF. Gene transfer of a plasmid expressing Cav-1 using transthoracic electroporation reduced infiltration of neutrophils and monocytes/macrophages and protected from subsequent bleomycin-induced pulmonary fibrosis. Overexpression of Cav-1 suppressed bleomycin- or silica-induced activation of caspase-1 and maturation of pro-IL-1β to secrete cleaved IL-1β both in mouse lungs and in primary type I cells. These results demonstrate that gene transfer of Cav-1 downregulates inflammasome activity and protects from subsequent bleomycin-mediated pulmonary fibrosis. This indicates a pivotal regulation of Cav-1 in inflammasome activity and suggests a novel therapeutic strategy for patients with IPF.
Collapse
Affiliation(s)
- Xin Lin
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Michael Barravecchia
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - R Matthew Kottmann
- Department of Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Patricia Sime
- Department of Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - David A Dean
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA.
| |
Collapse
|
21
|
Wiley CD, Brumwell AN, Davis SS, Jackson JR, Valdovinos A, Calhoun C, Alimirah F, Castellanos CA, Ruan R, Wei Y, Chapman HA, Ramanathan A, Campisi J, Jourdan Le Saux C. Secretion of leukotrienes by senescent lung fibroblasts promotes pulmonary fibrosis. JCI Insight 2019; 4:130056. [PMID: 31687975 DOI: 10.1172/jci.insight.130056] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/29/2019] [Indexed: 12/26/2022] Open
Abstract
Accumulation of senescent cells is associated with the progression of pulmonary fibrosis, but mechanisms accounting for this linkage are not well understood. To explore this issue, we investigated whether a class of biologically active profibrotic lipids, the leukotrienes (LT), is part of the senescence-associated secretory phenotype. The analysis of conditioned medium (CM), lipid extracts, and gene expression of LT biosynthesis enzymes revealed that senescent cells secreted LT, regardless of the origin of the cells or the modality of senescence induction. The synthesis of LT was biphasic and followed by antifibrotic prostaglandin (PG) secretion. The LT-rich CM of senescent lung fibroblasts (IMR-90) induced profibrotic signaling in naive fibroblasts, which were abrogated by inhibitors of ALOX5, the principal enzyme in LT biosynthesis. The bleomycin-induced expression of genes encoding LT and PG synthases, level of cysteinyl LT in the bronchoalveolar lavage, and overall fibrosis were reduced upon senescent cell removal either in a genetic mouse model or after senolytic treatment. Quantification of ALOX5+ cells in lung explants obtained from idiopathic pulmonary fibrosis (IPF) patients indicated that half of these cells were also senescent (p16Ink4a+). Unlike human fibroblasts from unused donor lungs made senescent by irradiation, senescent IPF fibroblasts secreted LTs but failed to synthesize PGs. This study demonstrates for the first time to our knowledge that senescent cells secrete functional LTs, significantly contributing to the LT pool known to cause or exacerbate IPF.
Collapse
Affiliation(s)
| | | | - Sonnet S Davis
- Buck Institute for Research on Aging, Novato, California, USA
| | | | | | - Cheresa Calhoun
- University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | | | | | | | - Ying Wei
- UCSF, San Francisco, California, USA
| | | | - Arvind Ramanathan
- Buck Institute for Research on Aging, Novato, California, USA.,Institute for Stem Cell Biology and Regenerative Medicine (inStem), Rajiv Gandhi Nagar, Kodigehalli, Bengaluru, Karnataka, India
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, California, USA.,Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Claude Jourdan Le Saux
- UCSF, San Francisco, California, USA.,University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
22
|
Nagaraja MR, Tiwari N, Shetty SK, Marudamuthu AS, Fan L, Ostrom RS, Fu J, Gopu V, Radhakrishnan V, Idell S, Shetty S. p53 Expression in Lung Fibroblasts Is Linked to Mitigation of Fibrotic Lung Remodeling. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 188:2207-2222. [PMID: 30253845 DOI: 10.1016/j.ajpath.2018.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 06/11/2018] [Accepted: 07/02/2018] [Indexed: 02/06/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a debilitating, incurable, and life-threatening disease. A cardinal feature of the pathogenesis of IPF is excessive extracellular matrix deposition attributable to proliferation of activated fibrotic lung fibroblasts (fLfs). To assess the underlying mechanism, we analyzed the status of the tumor suppressor protein p53 in fLfs from the lungs of IPF patients or mice with bleomycin-induced established PF. We report that basal expression of p53 is markedly reduced in fLfs. Forced expression of caveolin-1 in fLfs increased basal p53 and reduced profibrogenic proteins, including collagen-1. Transduction of fLfs with adenovirus expressing p53 reduced expression of these proteins. Conversely, inhibition of baseline p53 in control lung fibroblasts from lung tissues increased profibrogenic protein expression. Lung transduction of adenovirus expressing p53 reduced bleomycin-induced PF in wild-type or caveolin-1-deficient mice. Furthermore, treatment of fLfs or fibrotic lung tissues with caveolin-1 scaffolding domain peptide (CSP) or its fragment, CSP7, restored p53 and reduced profibrogenic proteins. Treatment of wild-type mice with i.p. CSP or CSP7 resolved bleomycin-induced PF. These peptides failed to resolve PF in inducible conditional knockout mice lacking p53 in fLfs, indicating the induction of baseline fLf p53 as the basis of the antifibrotic effects.
Collapse
Affiliation(s)
- M R Nagaraja
- Texas Lung Injury Institute, Department of Medicine, University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Nivedita Tiwari
- Texas Lung Injury Institute, Department of Medicine, University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Shwetha K Shetty
- Texas Lung Injury Institute, Department of Medicine, University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Amarnath S Marudamuthu
- Texas Lung Injury Institute, Department of Medicine, University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Liang Fan
- Texas Lung Injury Institute, Department of Medicine, University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Rennolds S Ostrom
- Department of Pharmacology, Chapman University School of Pharmacy, Irvine, California
| | - Jian Fu
- Center for Research on Environmental Disease and Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Venkadesaperumal Gopu
- Texas Lung Injury Institute, Department of Medicine, University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Vijay Radhakrishnan
- Texas Lung Injury Institute, Department of Medicine, University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Steven Idell
- Texas Lung Injury Institute, Department of Medicine, University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Sreerama Shetty
- Texas Lung Injury Institute, Department of Medicine, University of Texas Health Science Center at Tyler, Tyler, Texas.
| |
Collapse
|
23
|
ZHAO S, ZHANG X, KE Y. [Progress on correlation between cell senescence and idiopathic pulmonary fibrosis]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2019; 48:111-115. [PMID: 31102365 PMCID: PMC8800647 DOI: 10.3785/j.issn.1008-9292.2019.02.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/24/2018] [Indexed: 06/09/2023]
Abstract
Cellular senescence is a key factor driving age-related diseases. Recent studies have revealed that senescence-associated secretory phenotype, telomere attrition, epigenetic changes, and mitochondrial autophagy damage may mediate the pathogenesis of senescence-related idiopathic pulmonary fibrosis (IPF). Reducing the level of cellular senescence or clearing senescent cells can down-regulate the expression of fibrosis factors and alleviate the symptoms of IPF. In this review, we outlined the role and mechanism of cellular senescence in IPF.
Collapse
|
24
|
Parikh P, Wicher S, Khandalavala K, Pabelick CM, Britt RD, Prakash YS. Cellular senescence in the lung across the age spectrum. Am J Physiol Lung Cell Mol Physiol 2019; 316:L826-L842. [PMID: 30785345 PMCID: PMC6589594 DOI: 10.1152/ajplung.00424.2018] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 12/18/2022] Open
Abstract
Cellular senescence results in cell cycle arrest with secretion of cytokines, chemokines, growth factors, and remodeling proteins (senescence-associated secretory phenotype; SASP) that have autocrine and paracrine effects on the tissue microenvironment. SASP can promote remodeling, inflammation, infectious susceptibility, angiogenesis, and proliferation, while hindering tissue repair and regeneration. While the role of senescence and the contributions of senescent cells are increasingly recognized in the context of aging and a variety of disease states, relatively less is known regarding the portfolio and influences of senescent cells in normal lung growth and aging per se or in the induction or progression of lung diseases across the age spectrum such as bronchopulmonary dysplasia, asthma, chronic obstructive pulmonary disease, or pulmonary fibrosis. In this review, we introduce concepts of cellular senescence, the mechanisms involved in the induction of senescence, and the SASP portfolio that are relevant to lung cells, presenting the potential contribution of senescent cells and SASP to inflammation, hypercontractility, and remodeling/fibrosis: aspects critical to a range of lung diseases. The potential to blunt lung disease by targeting senescent cells using a novel class of drugs (senolytics) is discussed. Potential areas for future research on cellular senescence in the lung are identified.
Collapse
Affiliation(s)
- Pavan Parikh
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Sarah Wicher
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Karl Khandalavala
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Christina M. Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Rodney D. Britt
- Center for Perinatal Research, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
- Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Y. S. Prakash
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
25
|
Fukumoto J, Sidramagowda Patil S, Krishnamurthy S, Saji S, John I, Narala VR, Hernández-Cuervo H, Alleyn M, Breitzig MT, Galam L, Soundararajan R, Chaudhari UK, Hansen BC, Lockey RF, Kolliputi N. Altered expression of p63 isoforms and expansion of p63- and club cell secretory protein-positive epithelial cells in the lung as novel features of aging. Am J Physiol Cell Physiol 2019; 316:C492-C508. [PMID: 30649915 PMCID: PMC6482668 DOI: 10.1152/ajpcell.00330.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 01/04/2019] [Accepted: 01/05/2019] [Indexed: 12/20/2022]
Abstract
Aging is a key contributor for subclinical progression of late-onset lung diseases. Basal, club, and type II alveolar epithelial cells (AECs) are lung epithelial progenitors whose capacities of differentiation are extensively studied. The timely transition of these cells in response to environmental changes helps maintain the intricate organization of lung structure. However, it remains unclear how aging affects their behavior. This paper demonstrates that the protein expression profiles of a type II AEC marker, prosurfactant protein C (pro-SPC), and a basal cell marker, p63, are altered in the lungs of 14-mo-old versus 7- to 9-wk-old mice. Expression of NH2-terminal-truncated forms of p63 (ΔNp63), a basal cell marker, and claudin-10, a club cell marker, in cytoplasmic extracts of lungs of 14-mo-old mice was upregulated. In contrast, nuclear expression of full-length forms of p63 (TAp63) decreases with age. These alterations in protein expression profiles coincide with dramatic changes in lung functions including compliance. Whole tissue lysates of middle-aged versus aged rhesus monkey lungs display similar age-associated alterations in pro-SPC expression. An age-associated decrease of TAp63 in nuclear lysates was observed in aged monkey group. Moreover, the lungs of 14-mo-old versus 7- to 9-wk-old mice display a wider spreading of ΔNp63-positive CCSP-positive bronchiolar epithelial cells. This expansion did not involve upregulation of Ki67, a representative proliferation marker. Collectively, it is postulated that 1) this expansion is secondary to a transition of progenitor cells committed to club cells from ΔNp63-negative to ΔNp63-positive status, and 2) high levels of cytoplasmic ΔNp63 expression trigger club cell migration.
Collapse
Affiliation(s)
- Jutaro Fukumoto
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Sahebgowda Sidramagowda Patil
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Sudarshan Krishnamurthy
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Smita Saji
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Irene John
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Venkata Ramireddy Narala
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida , Tampa, Florida
- Department of Zoology, Yogi Vemana University, Kadapa, India
| | - Helena Hernández-Cuervo
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida , Tampa, Florida
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Matthew Alleyn
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Mason T Breitzig
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Lakshmi Galam
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Ramani Soundararajan
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Uddhav K Chaudhari
- Departments of Internal Medicine and Pediatrics, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Barbara C Hansen
- Departments of Internal Medicine and Pediatrics, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Richard F Lockey
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida , Tampa, Florida
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida , Tampa, Florida
| |
Collapse
|
26
|
Bezzerri V, Piacenza F, Caporelli N, Malavolta M, Provinciali M, Cipolli M. Is cellular senescence involved in cystic fibrosis? Respir Res 2019; 20:32. [PMID: 30764828 PMCID: PMC6376730 DOI: 10.1186/s12931-019-0993-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/31/2019] [Indexed: 02/06/2023] Open
Abstract
Pulmonary disease is the main cause of the morbidity and mortality of patients affected by cystic fibrosis (CF). The lung pathology is dominated by excessive recruitment of neutrophils followed by an exaggerated inflammatory process that has also been reported to occur in the absence of apparent pathogenic infections. Airway surface dehydration and mucus accumulation are the driving forces of this process. The continuous release of reactive oxygen species and proteases by neutrophils contributes to tissue damage, which eventually leads to respiratory insufficiency. CF has been considered a paediatric problem for several decades. Nevertheless, during the last 40 years, therapeutic options for CF have been greatly improved, turning CF into a chronic disease and extending the life expectancy of patients. Unfortunately, chronic inflammatory processes, which are characterized by a substantial release of cytokines and chemokines, along with ROS and proteases, can accelerate cellular senescence, leading to further complications in adulthood. The alterations and mechanisms downstream of CFTR functional defects that can stimulate cellular senescence remain unclear. However, while there are correlative data suggesting that cellular senescence may be implicated in CF, a causal or consequential relationship between cellular senescence and CF is still far from being established. Senescence can be both beneficial and detrimental. Senescence may suppress bacterial infections and cooperate with tissue repair. Additionally, it may act as an effective anticancer mechanism. However, it may also promote a pro-inflammatory environment, thereby damaging tissues and leading to chronic age-related diseases. In this review, we present the most current knowledge on cellular senescence and contextualize its possible involvement in CF.
Collapse
Affiliation(s)
- Valentino Bezzerri
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Ospedali Riuniti, 60121, Ancona, Italy
| | - Francesco Piacenza
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, 60121, Ancona, Italy
| | - Nicole Caporelli
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Ospedali Riuniti, 60121, Ancona, Italy
| | - Marco Malavolta
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, 60121, Ancona, Italy
| | - Mauro Provinciali
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, 60121, Ancona, Italy
| | - Marco Cipolli
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Ospedali Riuniti, 60121, Ancona, Italy.
| |
Collapse
|
27
|
Abstract
INTRODUCTION Flask-shaped plasma membrane (PM) invaginations called caveolae and their constitutive caveolin and cavin proteins regulate cellular function via plasma membrane and intracellular signal transduction pathways. Caveolae are present in a variety of cells in the lung including airway smooth muscle (ASM) where they interact with other proteins, receptors, and ion channels and thereby have the potential to affect both normal and disease processes such as inflammation, contractility, and fibrosis. Given their involvement in cell signaling, caveolae may play important roles in mediating and modulating aging processes, and contribute to lung diseases of aging. Areas covered: This review provides a broad overview of the current state of knowledge regarding caveolae and their constituent proteins in lung diseases in the elderly and identifies potential mechanisms that can be targeted for future therapies. Expert Commentary: Caveolin-1 may play a protective role in lung disease. What is less clear is whether altered caveolin-1 with aging is a natural process, or a biomarker of disease progression in the elderly.
Collapse
Affiliation(s)
- Sarah A Wicher
- a Department of Physiology and Biomedical Engineering , Mayo Clinic , Rochester , MN , USA
| | - Y S Prakash
- a Department of Physiology and Biomedical Engineering , Mayo Clinic , Rochester , MN , USA.,b Department of Anesthesiology& Perioperative Medicine , Mayo Clinic , Rochester , MN , USA
| | - Christina M Pabelick
- a Department of Physiology and Biomedical Engineering , Mayo Clinic , Rochester , MN , USA.,b Department of Anesthesiology& Perioperative Medicine , Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
28
|
The Role of Caveolin-1 in Retinal Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1185:169-173. [PMID: 31884607 DOI: 10.1007/978-3-030-27378-1_28] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although the retina resides within the immune-protected ocular environment, inflammatory processes mounted in the eye can lead to retinal damage. Unchecked chronic ocular inflammation leads to retinal damage. Thus, retinal degenerative diseases that result in chronic inflammation accelerate retinal tissue destruction and vision loss. Treatments for chronic retinal inflammation involve corticosteroid administration, which has been associated with glaucoma and cataract formation. Therefore, we must consider novel, alternative treatments. Here, we provide a brief review of our current understanding of chronic innate inflammatory processes in retinal degeneration and the complex role of a putative inflammatory regulator, Caveolin-1 (Cav1). Furthermore, we suggest that the complex role of Cav1 in retinal inflammatory modulation is likely dictated by cell type-specific subcellular localization.
Collapse
|
29
|
Chinnakkannu P, Reese C, Gaspar JA, Panneerselvam S, Pleasant-Jenkins D, Mukherjee R, Baicu C, Tourkina E, Hoffman S, Kuppuswamy D. Suppression of angiotensin II-induced pathological changes in heart and kidney by the caveolin-1 scaffolding domain peptide. PLoS One 2018; 13:e0207844. [PMID: 30576317 PMCID: PMC6303044 DOI: 10.1371/journal.pone.0207844] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/07/2018] [Indexed: 01/15/2023] Open
Abstract
Dysregulation of the renin-angiotensin system leads to systemic hypertension and maladaptive fibrosis in various organs. We showed recently that myocardial fibrosis and the loss of cardiac function in mice with transverse aortic constriction (TAC) could be averted by treatment with the caveolin-1 scaffolding domain (CSD) peptide. Here, we used angiotensin II (AngII) infusion (2.1 mg/kg/day for 2 wk) in mice as a second model to confirm and extend our observations on the beneficial effects of CSD on heart and kidney disease. AngII caused cardiac hypertrophy (increased heart weight to body weight ratio (HW/BW) and cardiomyocyte cross-sectional area); fibrosis in heart and kidney (increased levels of collagen I and heat shock protein-47 (HSP47)); and vascular leakage (increased levels of IgG in heart and kidney). Echocardiograms of AngII-infused mice showed increased left ventricular posterior wall thickness (pWTh) and isovolumic relaxation time (IVRT), and decreased ejection fraction (EF), stroke volume (SV), and cardiac output (CO). CSD treatment (i.p. injections, 50 μg/mouse/day) of AngII-infused mice significantly suppressed all of these pathological changes in fibrosis, hypertrophy, vascular leakage, and ventricular function. AngII infusion increased β1 and β3 integrin levels and activated Pyk2 in both heart and kidney. These changes were also suppressed by CSD. Finally, bone marrow cell (BMC) isolated from AngII-infused mice showed hyper-migration toward SDF1. When AngII-infused mice were treated with CSD, BMC migration was reduced to the basal level observed in cells from control mice. Importantly, CSD did not affect the AngII-induced increase in blood pressure (BP), indicating that the beneficial effects of CSD were not mediated via normalization of BP. These results strongly indicate that CSD suppresses AngII-induced pathological changes in mice, suggesting that CSD can be developed as a treatment for patients with hypertension and pressure overload-induced heart failure.
Collapse
Affiliation(s)
- Panneerselvam Chinnakkannu
- Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Charles Reese
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | | | - Saraswathi Panneerselvam
- Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Dorea Pleasant-Jenkins
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Rupak Mukherjee
- Division of Cardiothoracic Surgery, Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Catalin Baicu
- Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Elena Tourkina
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Stanley Hoffman
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Dhandapani Kuppuswamy
- Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina, United States of America
| |
Collapse
|
30
|
Guijarro T, Magro-Lopez E, Manso J, Garcia-Martinez R, Fernandez-Aceñero MJ, Liste I, Zambrano A. Detrimental pro-senescence effects of vitamin D on lung fibrosis. Mol Med 2018; 24:64. [PMID: 30567504 PMCID: PMC6299997 DOI: 10.1186/s10020-018-0064-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/03/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The multiple biological effects of vitamin D and its novel activities on inflammation and redox homeostasis have raised high expectations on its use as a therapeutic agent for multiple fibrogenic conditions. We have assessed the therapeutic effects of 1α,25-Dihydroxyvitamin D3, the biologically active form of vitamin D, in the context of lung fibrosis. METHODS We have used representative cellular models for alveolar type II cells and human myofibroblasts. The extension of DNA damage and cellular senescence have been assessed by immunofluorescence, western-blot and senescence-associated β-galactosidase activity. We have also set up a murine model for lung fibrosis by intraperitoneal injections of bleomycin. RESULTS Vitamin D induces cellular senescence in bleomycin-treated alveolar epithelial type II cells and aggravates the lung pathology induced by bleomycin. These effects are probably due to an alteration of the cellular DNA double-strand breaks repair in bleomycin-treated cells. CONCLUSIONS The detrimental effects of vitamin D in the presence of a DNA damaging agent might preclude its use as an antifibrogenic agent for pulmonary fibrosis characterized by DNA damage occurrence and cellular senescence.
Collapse
Affiliation(s)
- Trinidad Guijarro
- Functional Unit for Research into Chronic Diseases, Institute of Health Carlos III, Ctra. Majadahonda-Pozuelo Km 2, 28220 Madrid, Spain
| | - Esmeralda Magro-Lopez
- Functional Unit for Research into Chronic Diseases, Institute of Health Carlos III, Ctra. Majadahonda-Pozuelo Km 2, 28220 Madrid, Spain
| | - Joana Manso
- Functional Unit for Research into Chronic Diseases, Institute of Health Carlos III, Ctra. Majadahonda-Pozuelo Km 2, 28220 Madrid, Spain
| | | | | | - Isabel Liste
- Functional Unit for Research into Chronic Diseases, Institute of Health Carlos III, Ctra. Majadahonda-Pozuelo Km 2, 28220 Madrid, Spain
| | - Alberto Zambrano
- Functional Unit for Research into Chronic Diseases, Institute of Health Carlos III, Ctra. Majadahonda-Pozuelo Km 2, 28220 Madrid, Spain
| |
Collapse
|
31
|
Chromatin dynamics at the core of kidney fibrosis. Matrix Biol 2018; 68-69:194-229. [DOI: 10.1016/j.matbio.2018.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 02/16/2018] [Accepted: 02/17/2018] [Indexed: 02/06/2023]
|
32
|
Abstract
Activation of TGF-β1 initiates a program of temporary collagen accumulation important to wound repair in many organs. However, the outcome of temporary extracellular matrix strengthening all too frequently morphs into progressive fibrosis, contributing to morbidity and mortality worldwide. To avoid this maladaptive outcome, TGF-β1 signaling is regulated at numerous levels and intimately connected to feedback signals that limit accumulation. Here, we examine the current understanding of the core functions of TGF-β1 in promoting collagen accumulation, parallel pathways that promote physiological repair, and pathological triggers that tip the balance toward progressive fibrosis. Implicit in better understanding of these processes is the identification of therapeutic opportunities that will need to be further advanced to limit or reverse organ fibrosis.
Collapse
Affiliation(s)
- Kevin K Kim
- Department of Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan 48109
| | - Dean Sheppard
- Department of Medicine, Cardiovascular Research Institute, and Lung Biology Center, University of California, San Francisco, San Francisco, California 94143
| | - Harold A Chapman
- Department of Medicine, Cardiovascular Research Institute, and Lung Biology Center, University of California, San Francisco, San Francisco, California 94143
| |
Collapse
|
33
|
Cav-1 deficiency promotes liver fibrosis in carbon tetrachloride (CCl 4)-induced mice by regulation of oxidative stress and inflammation responses. Biomed Pharmacother 2018; 102:26-33. [PMID: 29549726 DOI: 10.1016/j.biopha.2018.03.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/28/2018] [Accepted: 03/05/2018] [Indexed: 12/30/2022] Open
Abstract
Caveolin-1 (Cav-1), as a membrane protein involved in the formation of caveolae, binds steroid receptors and endothelial nitric oxide synthase, limiting its translocation and activation. In the present study, we investigated the role of Cav-1 in the progression of hepatic fibrosis induced by carbon tetrachloride (CCl4) in murine animals. Therefore, the wild type (WT) and Cav-1-knockout (Cav-1-/-) mice were used in our study and subjected to CCl4. The results indicated that CCl4 induced the decrease of Cav-1 expression in liver tissue samples. And Cav-1-/- intensified CCl4-triggered hepatic injury, evidenced by the stronger hepatic histological alterations, serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels and liver terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells. CCl4 led to oxidative stress, supported by the reduced superoxide dismutase (SOD) activity and glutathione (GSH) levels, as well as enhanced malondialdehyde (MDA) and O2- levels in liver samples. And the process was intensified by Cav-1-/-. Additionally, CCl4-caused hepatic inflammation was aggregated by Cav-1-/- via further increasing the secretion of pro-inflammatory cytokines. Moreover, CCl4-caused fibrosis was strengthened by Cav-1-/-, which was evidenced by the up-regulation of α-smooth muscle actin (α-SMA), collagen alpha 1 type 1 (Col1A1), lysyl oxidase (Lox) and transforming growth factor-β1 (TGF-β1) in liver tissues. Similar results were observed in TGF-β1-stimulated hepatic stellate cells (HSCs) and LX-2 cells without Cav-1 expressions that in vitro, suppressing Cav-1 further accelerated TGF-β1-induced oxidative stress, inflammation and fibrosis development. In conclusion, our results indicated that Cav-1 played an important role in CCl4-induced hepatic injury, which may be used as potential therapeutic target for hepatic fibrosis treatment.
Collapse
|
34
|
Yanai H, Fraifeld VE. The role of cellular senescence in aging through the prism of Koch-like criteria. Ageing Res Rev 2018; 41:18-33. [PMID: 29106993 DOI: 10.1016/j.arr.2017.10.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/11/2017] [Accepted: 10/23/2017] [Indexed: 12/13/2022]
Abstract
Since Hayflick's discovery of cellular senescence (CS), a great volume of knowledge in the field has been accumulated and intensively discussed. Here, we attempted to organize the evidence "for" and "against" the hypothesized causal role of CS in aging. For that purpose, we utilized robust Koch-like logical criteria, based on the assumption that some quantitative relationships between the accumulation of senescent cells and aging rate should exist. If so, it could be expected that (i) the "CS load" would be greater in the premature aging phenotype and lesser in longevity phenotype; (ii) CS would promote age-related diseases, and (iii) the interventions that modulate the levels of senescent cells should also modulate health/lifespan. The analysis shows that CS can be considered a causal factor of aging and an important player in various age-related diseases, though its contribution may greatly vary across species. While the relative impact of senescent cells to aging could overall be rather limited and their elimination is hardly expected to be the "fountain of youth", the potential benefits of the senolytic strategy seems a promising option in combating age-related diseases and extending healthspan.
Collapse
|
35
|
Abbadie C, Pluquet O, Pourtier A. Epithelial cell senescence: an adaptive response to pre-carcinogenic stresses? Cell Mol Life Sci 2017; 74:4471-4509. [PMID: 28707011 PMCID: PMC11107641 DOI: 10.1007/s00018-017-2587-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/27/2017] [Accepted: 07/06/2017] [Indexed: 01/01/2023]
Abstract
Senescence is a cell state occurring in vitro and in vivo after successive replication cycles and/or upon exposition to various stressors. It is characterized by a strong cell cycle arrest associated with several molecular, metabolic and morphologic changes. The accumulation of senescent cells in tissues and organs with time plays a role in organismal aging and in several age-associated disorders and pathologies. Moreover, several therapeutic interventions are able to prematurely induce senescence. It is, therefore, tremendously important to characterize in-depth, the mechanisms by which senescence is induced, as well as the precise properties of senescent cells. For historical reasons, senescence is often studied with fibroblast models. Other cell types, however, much more relevant regarding the structure and function of vital organs and/or regarding pathologies, are regrettably often neglected. In this article, we will clarify what is known on senescence of epithelial cells and highlight what distinguishes it from, and what makes it like, replicative senescence of fibroblasts taken as a standard.
Collapse
Affiliation(s)
- Corinne Abbadie
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, 59000, Lille, France.
| | - Olivier Pluquet
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, 59000, Lille, France
| | - Albin Pourtier
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, 59000, Lille, France
| |
Collapse
|
36
|
Yu W, Guo F, Song X. Effects and mechanisms of pirfenidone, prednisone and acetylcysteine on pulmonary fibrosis in rat idiopathic pulmonary fibrosis models. PHARMACEUTICAL BIOLOGY 2017; 55:450-455. [PMID: 27937011 PMCID: PMC6130572 DOI: 10.1080/13880209.2016.1247879] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/08/2016] [Accepted: 10/06/2016] [Indexed: 06/06/2023]
Abstract
CONTEXT Previous studies have reported that caveolin-1 (Cav-1) is associated with lung fibrosis. However, the role of Cav-1 expression in pirfenidone-treated idiopathic pulmonary fibrosis (IPF) is unknown. OBJECTIVE This study investigated Cav-1 expression in pirfenidone-treated IPF, and compared the effects of pirfenidone with acetylcysteine and prednisone on IPF. MATERIALS AND METHODS Rat IPF model was established by endotracheal injection of 5 mg/kg bleomycin A5 into the specific pathogen-free Wistar male rats. Pirfenidone (P, 100 mg/kg once daily), prednisone (H, 5 mg/kg once daily) and acetylcysteine (N, 4 mg/kg 3 times per day) were used to treat the rat model by intragastric administration for 45 consecutive days, respectively. The normal rats without IPF were used as the controls. After 15, 30 and 45 days of drug treatment, lung histopathology was assessed. The expression of Cav-1 was determined using real-time quantitative PCR and Western blot; the expression of tumour necrosis factor-α (TNF-α), transforming growth factor-β1 (TGF-β1) and platelet-derived growth factor (PDGF) was determined by enzyme-linked immunosorbent assay. RESULTS After 15, 30 and 45 days of drug treatment, comparison of the three drug-treated groups with the model group showed significantly lower (p < 0.05) significance of airsacculitis and fibrosis scores of lung tissues, as well as expression of TGF-β1, TNF-α and PDGF, but the expression of Cav-1 was higher (p < 0.05). Compared with the N group, the fibrosis score was significantly lower and the protein expression of Cav-1 was significantly higher in the P group (p < 0.05). Additionally, the expression of Cav-1 was negatively correlated with the airsacculitis and fibrosis scores (r = -0.506, p < 0.01; r = -0.676, p < 0.01) as well as expression of TGF-β1, TNF-α and PDGF (r = -0.590, p < 0.01; r = -0.530, p < 0.01; r = -0.553, p < 0.01). DISCUSSION AND CONCLUSION Pirfenidone, prednisone and acetylcysteine can inhibit airsacculitis and pulmonary fibrosis in rat IPF models, which may be related with enhanced caveolin-1, reduced TNF-α, TGF-β1, PDGF.
Collapse
Affiliation(s)
- Wencheng Yu
- Department of Respiratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fang Guo
- Department of Pediatrics, Laiwu City People’s Hospital, Laiwu, China
| | - Xiaoxia Song
- Department of Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
37
|
Potential contribution of alveolar epithelial type I cells to pulmonary fibrosis. Biosci Rep 2017; 37:BSR20171301. [PMID: 29026006 PMCID: PMC5696455 DOI: 10.1042/bsr20171301] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/28/2017] [Accepted: 09/29/2017] [Indexed: 12/13/2022] Open
Abstract
Pulmonary fibrosis (PF) is characterized by inflammation and fibrosis of the interstitium and destruction of alveolar histoarchitecture ultimately leading to a fatal impairment of lung function. Different concepts describe either a dominant role of inflammatory pathways or a disturbed remodeling of resident cells of the lung parenchyma during fibrogenesis. Further, a combination of both the mechanisms has been postulated. The present review emphasizes the particular involvement of alveolar epithelial type I cells in all these processes, their contribution to innate immune/inflammatory functions and maintenance of proper alveolar barrier functions. Amongst the different inflammatory and repair events the purinergic receptor P2X7, an ATP-gated cationic channel that regulates not only apoptosis, necrosis, autophagy, and NLPR3 inflammosome activation, but also the turnover of diverse tight junction (TJ) and water channel proteins, seems to be essential for the stability of alveolar barrier integrity and for the interaction with protective factors during lung injury.
Collapse
|
38
|
Childs BG, Gluscevic M, Baker DJ, Laberge RM, Marquess D, Dananberg J, van Deursen JM. Senescent cells: an emerging target for diseases of ageing. Nat Rev Drug Discov 2017; 16:718-735. [PMID: 28729727 PMCID: PMC5942225 DOI: 10.1038/nrd.2017.116] [Citation(s) in RCA: 842] [Impact Index Per Article: 105.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronological age represents the single greatest risk factor for human disease. One plausible explanation for this correlation is that mechanisms that drive ageing might also promote age-related diseases. Cellular senescence, which is a permanent state of cell cycle arrest induced by cellular stress, has recently emerged as a fundamental ageing mechanism that also contributes to diseases of late life, including cancer, atherosclerosis and osteoarthritis. Therapeutic strategies that safely interfere with the detrimental effects of cellular senescence, such as the selective elimination of senescent cells (SNCs) or the disruption of the SNC secretome, are gaining significant attention, with several programmes now nearing human clinical studies.
Collapse
Affiliation(s)
| | | | - Darren J Baker
- Departments of Biochemistry and Molecular Biology, Mayo Clinic
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 1st St. SW, Rochester, Minnesota 55905, USA
| | - Remi-Martin Laberge
- Unity Biotechnology, 3280 Bayshore Boulevard Suite 100, Brisbane, California 94005, USA
| | - Dan Marquess
- Unity Biotechnology, 3280 Bayshore Boulevard Suite 100, Brisbane, California 94005, USA
| | - Jamie Dananberg
- Unity Biotechnology, 3280 Bayshore Boulevard Suite 100, Brisbane, California 94005, USA
| | - Jan M van Deursen
- Departments of Biochemistry and Molecular Biology, Mayo Clinic
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 1st St. SW, Rochester, Minnesota 55905, USA
| |
Collapse
|
39
|
Shihata WA, Putra MRA, Chin-Dusting JPF. Is There a Potential Therapeutic Role for Caveolin-1 in Fibrosis? Front Pharmacol 2017; 8:567. [PMID: 28970796 PMCID: PMC5609631 DOI: 10.3389/fphar.2017.00567] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/09/2017] [Indexed: 01/06/2023] Open
Abstract
Fibrosis is a process of dysfunctional wound repair, described by a failure of tissue regeneration and excessive deposition of extracellular matrix, resulting in tissue scarring and subsequent organ deterioration. There are a broad range of stimuli that may trigger, and exacerbate the process of fibrosis, which can contribute to the growing rates of morbidity and mortality. Whilst the process of fibrosis is widely described and understood, there are no current standard treatments that can reduce or reverse the process effectively, likely due to the continuing knowledge gaps surrounding the cellular mechanisms involved. Several cellular targets have been implicated in the regulation of the fibrotic process including membrane domains, ion channels and more recently mechanosensors, specifically caveolae, particularly since these latter contain various signaling components, such as members of the TGFβ and MAPK/ERK signaling pathways, all of which are key players in the process of fibrosis. This review explores the anti-fibrotic influences of the caveola, and in particular the key underpinning protein, caveolin-1, and its potential as a novel therapeutic target.
Collapse
Affiliation(s)
- Waled A Shihata
- Vascular Pharmacology Laboratory, Cardiovascular Disease Program, Department of Pharmacology, Biomedical Discovery Institute, Monash UniversityClayton, VIC, Australia.,Department of Medicine, Monash UniversityClayton, VIC, Australia.,Baker Heart and Diabetes InstituteMelbourne, VIC, Australia
| | - Mohammad R A Putra
- Vascular Pharmacology Laboratory, Cardiovascular Disease Program, Department of Pharmacology, Biomedical Discovery Institute, Monash UniversityClayton, VIC, Australia
| | - Jaye P F Chin-Dusting
- Vascular Pharmacology Laboratory, Cardiovascular Disease Program, Department of Pharmacology, Biomedical Discovery Institute, Monash UniversityClayton, VIC, Australia.,Department of Medicine, Monash UniversityClayton, VIC, Australia.,Baker Heart and Diabetes InstituteMelbourne, VIC, Australia
| |
Collapse
|
40
|
Lehmann M, Korfei M, Mutze K, Klee S, Skronska-Wasek W, Alsafadi HN, Ota C, Costa R, Schiller HB, Lindner M, Wagner DE, Günther A, Königshoff M. Senolytic drugs target alveolar epithelial cell function and attenuate experimental lung fibrosis ex vivo. Eur Respir J 2017; 50:50/2/1602367. [PMID: 28775044 PMCID: PMC5593348 DOI: 10.1183/13993003.02367-2016] [Citation(s) in RCA: 266] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 04/21/2017] [Indexed: 12/21/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease with poor prognosis and limited therapeutic options. The incidence of IPF increases with age, and ageing-related mechanisms such as cellular senescence have been proposed as pathogenic drivers. The lung alveolar epithelium represents a major site of tissue injury in IPF and senescence of this cell population is probably detrimental to lung repair. However, the potential pathomechanisms of alveolar epithelial cell senescence and the impact of senolytic drugs on senescent lung cells and fibrosis remain unknown. Here we demonstrate that lung epithelial cells exhibit increased P16 and P21 expression as well as senescence-associated β-galactosidase activity in experimental and human lung fibrosis tissue and primary cells. Primary fibrotic mouse alveolar epithelial type (AT)II cells secreted increased amounts of senescence-associated secretory phenotype (SASP) factors in vitro, as analysed using quantitative PCR, mass spectrometry and ELISA. Importantly, pharmacological clearance of senescent cells by induction of apoptosis in fibrotic ATII cells or ex vivo three-dimensional lung tissue cultures reduced SASP factors and extracellular matrix markers, while increasing alveolar epithelial markers. These data indicate that alveolar epithelial cell senescence contributes to lung fibrosis development and that senolytic drugs may be a viable therapeutic option for IPF. Alveolar epithelial cell senescence occurs in IPF and senolytic treatment attenuates experimental lung fibrosishttp://ow.ly/nFlz30bsmNm
Collapse
Affiliation(s)
- Mareike Lehmann
- Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München and University Hospital of the Ludwig Maximilians Universität, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Martina Korfei
- Dept of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-Universität Giessen, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Kathrin Mutze
- Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München and University Hospital of the Ludwig Maximilians Universität, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Stephan Klee
- Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München and University Hospital of the Ludwig Maximilians Universität, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Wioletta Skronska-Wasek
- Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München and University Hospital of the Ludwig Maximilians Universität, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Hani N Alsafadi
- Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München and University Hospital of the Ludwig Maximilians Universität, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Chiharu Ota
- Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München and University Hospital of the Ludwig Maximilians Universität, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Rita Costa
- Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München and University Hospital of the Ludwig Maximilians Universität, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Herbert B Schiller
- Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München and University Hospital of the Ludwig Maximilians Universität, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Michael Lindner
- Center for Thoracic Surgery, Asklepios Biobank for Lung Diseases, Comprehensive Pneumology Center, Asklepios Clinic Munich-Gauting, Munich, Germany
| | - Darcy E Wagner
- Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München and University Hospital of the Ludwig Maximilians Universität, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Andreas Günther
- Dept of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-Universität Giessen, Member of the German Center for Lung Research (DZL), Giessen, Germany.,Agaplesion Lung Clinic Waldhof Elgershausen, Greifenstein, Germany.,European IPF Network and European IPF Registry
| | - Melanie Königshoff
- Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München and University Hospital of the Ludwig Maximilians Universität, Member of the German Center for Lung Research (DZL), Munich, Germany .,Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Denver, CO, USA
| |
Collapse
|
41
|
Cui H, Ge J, Xie N, Banerjee S, Zhou Y, Antony VB, Thannickal VJ, Liu G. miR-34a Inhibits Lung Fibrosis by Inducing Lung Fibroblast Senescence. Am J Respir Cell Mol Biol 2017; 56:168-178. [PMID: 27635790 DOI: 10.1165/rcmb.2016-0163oc] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Cellular senescence has been implicated in diverse pathologies. However, there is conflicting evidence regarding the role of this process in tissue fibrosis. Although dysregulation of microRNAs is a key mechanism in the pathogenesis of lung fibrosis, it is unclear whether microRNAs function by regulating cellular senescence in the disease. In this study, we found that miR-34a demonstrated greater expression in the lungs of patients with idiopathic pulmonary fibrosis and in mice with experimental pulmonary fibrosis, with its primary localization in lung fibroblasts. More importantly, miR-34a was up-regulated significantly in both human and mouse lung myofibroblasts. We found that mice with miR-34a ablation developed more severe pulmonary fibrosis than did wild-type animals after fibrotic lung injury. Mechanistically, we found that miR-34a induced a senescent phenotype in lung fibroblasts because this microRNA increased senescence-associated β-galactosidase activity, enhanced expression of senescence markers, and decreased cell proliferative capacities. Consistently, we found that primary lung fibroblasts from fibrotic lungs of miR-34a-deficient mice had a diminished senescent phenotype and enhanced resistance to apoptosis as compared with those from wild-type animals. We also identified multiple miR-34a targets that likely mediated its activities in inducing senescence in lung fibroblasts. In conclusion, our data suggest that miR-34a functions through a negative feedback mechanism to restrain fibrotic response in the lungs by promoting senescence of pulmonary fibroblasts.
Collapse
Affiliation(s)
- Huachun Cui
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Jing Ge
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and.,2 Department of Geriatrics and Institute of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Xie
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Sami Banerjee
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Yong Zhou
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Veena B Antony
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Victor J Thannickal
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Gang Liu
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| |
Collapse
|
42
|
Kim J, An Y, Choi WH, Kim J, Cho S, Yoo BR, Kang JW, Lee Y, Lee Y, Cho J. Pro-apoptotic Noxa is involved in ablative focal irradiation-induced lung injury. J Cell Mol Med 2017; 21:711-719. [PMID: 27862899 PMCID: PMC5345661 DOI: 10.1111/jcmm.13014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 09/19/2016] [Indexed: 11/29/2022] Open
Abstract
Although lung injury including fibrosis is a well-documented side effect of lung irradiation, the mechanisms underlying its pathology are poorly understood. X-rays are known to cause apoptosis in the alveolar epithelial cells of irradiated lungs, which results in fibrosis due to the proliferation and differentiation of fibroblasts and the deposition of collagen. Apoptosis and BH3-only pro-apoptotic proteins have been implicated in the pathogenesis of pulmonary fibrosis. Recently, we have established a clinically analogous experimental model that reflects focal high-dose irradiation of the ipsilateral lung. The goal of this study was to elucidate the mechanism underlying radiation-induced lung injury based on this model. A radiation dose of 90 Gy was focally delivered to the left lung of C57BL/6 mice for 14 days. About 9 days after irradiation, the mice began to show increased levels of the pro-apoptotic protein Noxa in the irradiated lung alongside increased apoptosis and fibrosis. Suppression of Noxa expression by small interfering RNA protected cells from radiation-induced cell death and decreased expression of fibrogenic markers. Furthermore, we showed that reactive oxygen species participate in Noxa-mediated, radiation-induced cell death. Taken together, our results show that Noxa is involved in X-ray-induced lung injury.
Collapse
Affiliation(s)
- Jee‐Youn Kim
- Department of Radiation OncologyYonsei University College of MedicineSeoulSouth Korea
| | - Yong‐Min An
- Department of Radiation OncologyYonsei University College of MedicineSeoulSouth Korea
| | - Won Hoon Choi
- Department of Radiation OncologyYonsei University College of MedicineSeoulSouth Korea
| | - Jin‐Mo Kim
- Department of Radiation OncologyYonsei University College of MedicineSeoulSouth Korea
| | - Samju Cho
- Department of Radiation OncologyYonsei University College of MedicineSeoulSouth Korea
| | - Byung Rok Yoo
- Department of Radiation OncologyYonsei University College of MedicineSeoulSouth Korea
| | - Jeong Wook Kang
- Department of Radiation OncologyYonsei University College of MedicineSeoulSouth Korea
| | - Yun‐Sil Lee
- College of Pharmacy and Division of Life and Pharmaceutical ScienceEwha Womans UniversitySeoulSouth Korea
| | - Yoon‐Jin Lee
- Division of Radiation EffectsKorea Institute of Radiological and Medical SciencesSeoulSouth Korea
| | - Jaeho Cho
- Department of Radiation OncologyYonsei University College of MedicineSeoulSouth Korea
| |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW Diabetic nephropathy, a major microvascular complication of diabetes and the most common cause of end-stage renal disease, is characterized by prominent accumulation of extracellular matrix. The membrane microdomains caveolae, and their integral protein caveolin-1, play critical roles in the regulation of signal transduction. In this review we discuss current knowledge of the contribution of caveolin-1/caveolae to profibrotic signaling and the pathogenesis of diabetic kidney disease, and assess its potential as a therapeutic target. RECENT FINDINGS Caveolin (cav)-1 is key to facilitating profibrotic signal transduction induced by several stimuli known to be pathogenic in diabetic nephropathy, including the most prominent factors hyperglycemia and angiotensin II. Phosphorylation of cav-1 on Y14 is an important regulator of these responses. In vivo studies support a pathogenic role for caveolae in the progression of diabetic nephropathy. Targeting caveolin-1/caveolae would enable inhibition of multiple profibrotic pathways, representing a novel and potentially potent therapeutic option for diabetic nephropathy.
Collapse
Affiliation(s)
- Richard Van Krieken
- Department of Medicine, Division of Nephrology, St. Joseph's Hospital, McMaster University, 50 Charlton Ave E, T3311, Hamilton, ON, L8N 4A6, Canada
| | - Joan C Krepinsky
- Department of Medicine, Division of Nephrology, St. Joseph's Hospital, McMaster University, 50 Charlton Ave E, T3311, Hamilton, ON, L8N 4A6, Canada.
| |
Collapse
|
44
|
Mora AL, Bueno M, Rojas M. Mitochondria in the spotlight of aging and idiopathic pulmonary fibrosis. J Clin Invest 2017; 127:405-414. [PMID: 28145905 DOI: 10.1172/jci87440] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic age-related lung disease with high mortality that is characterized by abnormal scarring of the lung parenchyma. There has been a recent attempt to define the age-associated changes predisposing individuals to develop IPF. Age-related perturbations that are increasingly found in epithelial cells and fibroblasts from IPF lungs compared with age-matched cells from normal lungs include defective autophagy, telomere attrition, altered proteostasis, and cell senescence. These divergent processes seem to converge in mitochondrial dysfunction and metabolic distress, which potentiate maladaptation to stress and susceptibility to age-related diseases such as IPF. Therapeutic approaches that target aging processes may be beneficial for halting the progression of disease and improving quality of life in IPF patients.
Collapse
|
45
|
Chen JR, Lazarenko OP, Blackburn ML, Shankar K. Dietary factors during early life program bone formation in female rats. FASEB J 2016; 31:376-387. [PMID: 27733448 DOI: 10.1096/fj.201600703r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/28/2016] [Indexed: 01/10/2023]
Abstract
Nutritional status during intrauterine and early postnatal life impacts the risk of chronic diseases; however, evidence for an association between early-life dietary factors and bone health in adults is limited. Soy protein isolate (SPI) may be one such dietary factor that promotes bone accretion during early life with persistent effects into adulthood. In the present study, we fed postnatal day (PND) 24 weanling female rats an SPI diet for 30 d [short-term SPI (ST-SPI)], and on PND 55, we switched SPI diet to control Cas diet until age 6 mo. Rats then underwent either ovariectomy (OVX) or sham surgery and thereafter either continued to be fed an SPI diet or control diet for 1 or 3 wk. We showed significantly increased bone mass in 30-d SPI-fed young rats compared with controls. OVX-induced bone loss was associated with increased osteoblastic cell senescence. On the one hand, both long-term SPI (continuous SPI diet throughout life) and ST-SPI diet only in early life protected against 1 wk post-OVX-associated bone loss. On the other hand, long-term SPI diet diminished the loss of total, trabecular, and cortical bone mineral density, whereas ST-SPI diet only reduced cortical bone mineral density loss 3 wk post-OVX. Persistent and protective effects of SPI diets on OVX-induced bone loss were associated with down-regulation of the caveolin-1/p53-mediated senescence pathway in bone. We recapitulated these results in cell cultures. Reprogramming of cellular senescence signaling by SPI-associated isoflavones in osteoblastic cells may explain the persistent effects of SPI on bone. These results suggest that OVX-induced bone loss, in part, is a result of increased osteoblastic cell senescence, and that ST-SPI diet early in life has modest but persistent programming effects on bone formation to prevent OVX-induced bone loss in adult female rats.-Chen, J.-R., Lazarenko, O. P., Blackburn, M. L., Shankar, K. Dietary factors during early life program bone formation in female rats.
Collapse
Affiliation(s)
- Jin-Ran Chen
- Arkansas Children's Nutrition Center, Little Rock, Arkansas, USA; and .,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Oxana P Lazarenko
- Arkansas Children's Nutrition Center, Little Rock, Arkansas, USA; and.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Michael L Blackburn
- Arkansas Children's Nutrition Center, Little Rock, Arkansas, USA; and.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Kartik Shankar
- Arkansas Children's Nutrition Center, Little Rock, Arkansas, USA; and.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
46
|
Kurundkar A, Thannickal VJ. Redox mechanisms in age-related lung fibrosis. Redox Biol 2016; 9:67-76. [PMID: 27394680 PMCID: PMC4943089 DOI: 10.1016/j.redox.2016.06.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 06/24/2016] [Accepted: 06/24/2016] [Indexed: 12/12/2022] Open
Abstract
Redox signaling and oxidative stress are associated with tissue fibrosis and aging. Aging is recognized as a major risk factor for fibrotic diseases involving multiple organ systems, including that of the lung. A number of oxidant generating enzymes are upregulated while antioxidant defenses are deficient with aging and cellular senescence, leading to redox imbalance and oxidative stress. However, the precise mechanisms by which redox signaling and oxidative stress contribute to the pathogenesis of lung fibrosis are not well understood. Tissue repair is a highly regulated process that involves the interactions of several cell types, including epithelial cells, fibroblasts and inflammatory cells. Fibrosis may develop when these interactions are dysregulated with the acquisition of pro-fibrotic cellular phenotypes. In this review, we explore the roles of redox mechanisms that promote and perpetuate fibrosis in the context of cellular senescence and aging.
Collapse
Affiliation(s)
- Ashish Kurundkar
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Victor J Thannickal
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
47
|
Yue L, Yao H. Mitochondrial dysfunction in inflammatory responses and cellular senescence: pathogenesis and pharmacological targets for chronic lung diseases. Br J Pharmacol 2016; 173:2305-18. [PMID: 27189175 DOI: 10.1111/bph.13518] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/04/2016] [Accepted: 05/05/2016] [Indexed: 12/16/2022] Open
Abstract
Mitochondria are dynamic organelles, which couple the various cellular processes that regulate metabolism, cell proliferation and survival. Environmental stress can cause mitochondrial dysfunction and dynamic changes including reduced mitochondrial biogenesis, oxidative phosphorylation and ATP production, as well as mitophagy impairment, which leads to increased ROS, inflammatory responses and cellular senescence. Oxidative stress, inflammation and cellular senescence all have important roles in the pathogenesis of chronic lung diseases, such as chronic obstructive pulmonary disease, pulmonary fibrosis and bronchopulmonary dysplasia. In this review, we discuss the current state on how mitochondrial dysfunction affects inflammatory responses and cellular senescence, the mechanisms of mitochondrial dysfunction underlying the pathogenesis of chronic lung diseases and the potential of mitochondrial transfer and replacement as treatments for these diseases.
Collapse
Affiliation(s)
- Li Yue
- Department of Orthopaedics and Rehabilitation, University of Rochester, Rochester, NY, USA
| | - Hongwei Yao
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Alpert Medical School, Providence, RI, USA
| |
Collapse
|
48
|
Zhan H, Huang F, Ma W, Zhao Z, Zhang H, Zhang C. Protective Effect of Ginsenoside Rg1 on Bleomycin-Induced Pulmonary Fibrosis in Rats: Involvement of Caveolin-1 and TGF-β1 Signal Pathway. Biol Pharm Bull 2016; 39:1284-92. [DOI: 10.1248/bpb.b16-00046] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Heqin Zhan
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University
| | - Feng Huang
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University
| | - Wenzhuo Ma
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center
| | - Zhenghang Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center
| | - Haifang Zhang
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University
| | - Chong Zhang
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University
| |
Collapse
|
49
|
Amin M, Pushpakumar S, Muradashvili N, Kundu S, Tyagi SC, Sen U. Regulation and involvement of matrix metalloproteinases in vascular diseases. FRONT BIOSCI-LANDMRK 2016; 21:89-118. [PMID: 26709763 PMCID: PMC5462461 DOI: 10.2741/4378] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc dependent endopeptidases whose main function is to degrade and deposit structural proteins within the extracellular matrix (ECM). A dysregulation of MMPs is linked to vascular diseases. MMPs are classified into collagenases, gelatinases, membrane-type, metalloelastase, stromelysins, matrilysins, enamelysins, and unclassified subgroups. The production of MMPs is stimulated by factors such as oxidative stress, growth factors and inflammation which lead to its up- or down-regulation with subsequent ECM remodeling. Normally, excess activation of MMPs is controlled by their endogenous inhibitors, tissue inhibitors of metalloproteinases (TIMPs). An imbalance of MMPs and TIMPs has been implicated in hypertension, atherosclerotic plaque formation and instability, aortic aneurysms and varicose vein wall remodeling. Also, recent evidence suggests epigenetic regulation of some MMPs in angiogenesis and atherosclerosis. Over the years, pharmacological inhibitors of MMPs have been used to modify or prevent the development of the disease with some success. In this review, we discuss recent advances in MMP biology, and their involvement in the manifestation of vascular disease.
Collapse
Affiliation(s)
- Matthew Amin
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY-40202
| | - Sathnur Pushpakumar
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY-40202
| | - Nino Muradashvili
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY-40202
| | - Sourav Kundu
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY-40202
| | - Suresh C Tyagi
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY-40202
| | - Utpal Sen
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY-40202,
| |
Collapse
|
50
|
Halaney DL, Zahedivash A, Phipps JE, Wang T, Dwelle J, Saux CJL, Asmis R, Milner TE, Feldman MD. Differences in forward angular light scattering distributions between M1 and M2 macrophages. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:115002. [PMID: 26538329 PMCID: PMC4881287 DOI: 10.1117/1.jbo.20.11.115002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 10/09/2015] [Indexed: 05/11/2023]
Abstract
The ability to distinguish macrophage subtypes noninvasively could have diagnostic potential in cancer, atherosclerosis, and diabetes, where polarized M1 and M2 macrophages play critical and often opposing roles. Current methods to distinguish macrophage subtypes rely on tissue biopsy. Optical imaging techniques based on light scattering are of interest as they can be translated into biopsy-free strategies. Because mitochondria are relatively strong subcellular light scattering centers, and M2 macrophages are known to have enhanced mitochondrial biogenesis compared to M1, we hypothesized that M1 and M2 macrophages may have different angular light scattering profiles. To test this, we developed an in vitro angle-resolved forward light scattering measurement system. We found that M1 and M2 macrophage monolayers scatter relatively unequal amounts of light in the forward direction between 1.6 deg and 3.2 deg with M2 forward scattering significantly more light than M1 at increasing angles. The ratio of forward scattering can be used to identify the polarization state of macrophage populations in culture.
Collapse
Affiliation(s)
- David L. Halaney
- University of Texas Health Science Center at San Antonio, Division of Cardiology, Department of Medicine, 7703 Floyd Curl Drive, San Antonio, Texas 78229, United States
- South Texas Veterans Health Care System, Department of Veterans Affairs, 7400 Merton Minter, San Antonio, Texas 78229, United States
| | - Aydin Zahedivash
- University of Texas at Austin, Department of Biomedical Engineering, 1 University Station C0800, Austin, Texas 78712, United States
| | - Jennifer E. Phipps
- University of Texas Health Science Center at San Antonio, Division of Cardiology, Department of Medicine, 7703 Floyd Curl Drive, San Antonio, Texas 78229, United States
| | - Tianyi Wang
- University of Texas at Austin, Department of Biomedical Engineering, 1 University Station C0800, Austin, Texas 78712, United States
| | - Jordan Dwelle
- South Texas Veterans Health Care System, Department of Veterans Affairs, 7400 Merton Minter, San Antonio, Texas 78229, United States
- University of Texas at Austin, Department of Biomedical Engineering, 1 University Station C0800, Austin, Texas 78712, United States
| | - Claude Jourdan Le Saux
- University of Texas Health Science Center at San Antonio, Division of Cardiology, Department of Medicine, 7703 Floyd Curl Drive, San Antonio, Texas 78229, United States
| | - Reto Asmis
- University of Texas Health Science Center at San Antonio, Departments of Clinical Laboratory Sciences and Biochemistry, 7703 Floyd Curl Drive, San Antonio, Texas 78229, United States
| | - Thomas E. Milner
- University of Texas at Austin, Department of Biomedical Engineering, 1 University Station C0800, Austin, Texas 78712, United States
| | - Marc D. Feldman
- University of Texas Health Science Center at San Antonio, Division of Cardiology, Department of Medicine, 7703 Floyd Curl Drive, San Antonio, Texas 78229, United States
- South Texas Veterans Health Care System, Department of Veterans Affairs, 7400 Merton Minter, San Antonio, Texas 78229, United States
- Address all correspondence to: Marc D. Feldman, E-mail:
| |
Collapse
|