1
|
Horvath B, Halasz J, Tanner NN, Kohler ZM, Trencsenyi G, Juhasz L, Rovo L, Kiss A, Keller-Pinter A. Tilorone attenuates high-fat diet-induced hepatic steatosis by enhancing BMP9-Smad1/5/8 signaling. GeroScience 2025:10.1007/s11357-025-01685-8. [PMID: 40423936 DOI: 10.1007/s11357-025-01685-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 04/27/2025] [Indexed: 05/28/2025] Open
Abstract
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is rapidly increasing and is caused by excessive fat deposition in the liver due to non-alcoholic factors. Aging is a major risk factor for the development and progression of MASLD. In this study, we investigated the metabolic effects of tilorone, a synthetic small molecule, in a high-fat diet (HFD) mouse model, with a focus on the liver function and signaling. We demonstrate that tilorone attenuated HFD-induced steatosis by restoring bone morphogenetic protein 9 (BMP9)-Smad1/5/8 signaling and upregulating peroxisome proliferator-activated receptor gamma (PPARγ) expression. Tilorone reduced HFD-induced increases in body weight, adipose tissue and liver weight, and blood glucose levels, and improved glucose tolerance in HFD mice. PET/MRI imaging demonstrated enhanced 18FDG (18F-fluoro-2-deoxyglucose) uptake in liver, skeletal muscle, adipose tissue, and myocardium of tilorone-treated HFD animals. Histological analysis showed that tilorone reduced the HFD-induced diffuse, macrovesicular steatosis (S3/3), and machine learning-based image analysis revealed a decrease in lipid droplet size and lipid content. HFD caused the disappearance of liver glycogen, but tilorone increased glycogen levels. High-resolution respirometry indicated that tilorone reduced HFD-induced increases in mitochondrial complex II-linked oxidative phosphorylation and complex IV activity. These findings revealed the beneficial effects of tilorone on HFD and highlight its therapeutic potential in MASLD, particularly given that tilorone is a synthetic small molecule and can be administered orally. Further studies are required to explore its clinical application.
Collapse
Affiliation(s)
- Barnabas Horvath
- Department of Biochemistry, Albert Szent-Gyorgyi Medical School, Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary
| | - Judit Halasz
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Norman Noel Tanner
- Department of Biochemistry, Albert Szent-Gyorgyi Medical School, Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary
| | - Zoltan Marton Kohler
- Department of Biochemistry, Albert Szent-Gyorgyi Medical School, Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary
| | - Gyorgy Trencsenyi
- Department of Medical Imaging, Divison of Nuclear Medicine and Translation Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Laszlo Juhasz
- Institute of Surgical Research, Albert Szent-Gyorgyi Medical School, University of Szeged, Szeged, Hungary
| | - Laszlo Rovo
- Department of Oto- Rhino- Laryngology and Head and Neck Surgery, University of Szeged, Szeged, Hungary
| | - Andras Kiss
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Aniko Keller-Pinter
- Department of Biochemistry, Albert Szent-Gyorgyi Medical School, Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary.
- Department of Internal Medicine, Albert Szent-Gyorgyi Medical School, University of Szeged, Szeged, Hungary.
| |
Collapse
|
2
|
Abdelghafour MM, Deák Á, Kiss T, Budai-Szűcs M, Katona G, Ambrus R, Lőrinczi B, Keller-Pintér A, Szatmári I, Szabó D, Rovó L, Janovák L. Self-Assembling Injectable Hydrogel for Controlled Drug Delivery of Antimuscular Atrophy Drug Tilorone. Pharmaceutics 2022; 14:2723. [PMID: 36559217 PMCID: PMC9782908 DOI: 10.3390/pharmaceutics14122723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
A two-component injectable hydrogel was suitably prepared for the encapsulation and prolonged release of tilorone which is an antimuscular atrophy drug. The rapid (7-45 s, depending on the polymer concentration) in situ solidifications of the hydrogel were evoked by the evolving Schiff-base bonds between the aldehyde groups of modified PVA (4-formyl benzoate PVA, PVA-CHO, 5.9 mol% functionalization degree) and the amino groups of 3-mercaptopropionate chitosan (CHIT-SH). The successful modification of the initial polymers was confirmed by both FTIR and NMR measurements; moreover, a new peak appeared in the FTIR spectrum of the 10% w/v PVA-CHO/CHIT-SH hydrogel at 1647 cm-1, indicating the formation of a Schiff base (-CH=N-) and confirming the interaction between the NH2 groups of CHIT-SH and the CHO groups of PVA-CHO for the formation of the dynamic hydrogel. The reaction between the NH2 and CHO groups of the modified biopolymers resulted in a significant increase in the hydrogel's viscosity which was more than one thousand times greater (9800 mPa·s) than that of the used polymer solutions, which have a viscosity of only 4.6 and 5.8 mPa·s, respectively. Furthermore, the initial chitosan was modified with mercaptopropionic acid (thiol content = 201.85 ± 12 µmol/g) to increase the mucoadhesive properties of the hydrogel. The thiolated chitosan showed a significant increase (~600 mN/mm) in adhesion to the pig intestinal membrane compared to the initial one (~300 mN/mm). The in vitro release of tilorone from the hydrogel was controlled with the crosslinking density/concentration of the hydrogel; the 10% w/v PVA-CHO/CHIT-SH hydrogel had the slowest releasing (21.7 h-1/2) rate, while the 2% w/v PVA-CHO/CHIT-SH hydrogel had the fastest releasing rate (34.6 h-1/2). Due to the characteristics of these hydrogels, their future uses include tissue regeneration scaffolds, wound dressings for skin injuries, and injectable or in situ forming drug delivery systems. Eventually, we hope that the developed hydrogel will be useful in the local treatment of muscle atrophy, such as laryngotracheal atrophy.
Collapse
Affiliation(s)
- Mohamed M. Abdelghafour
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Ágota Deák
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary
| | - Tamás Kiss
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös str. 6., H-6720 Szeged, Hungary
| | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös str. 6., H-6720 Szeged, Hungary
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös str. 6., H-6720 Szeged, Hungary
| | - Rita Ambrus
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös str. 6., H-6720 Szeged, Hungary
| | - Bálint Lőrinczi
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös str. 6, H-6720 Szeged, Hungary
| | - Anikó Keller-Pintér
- Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary
| | - István Szatmári
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös str. 6, H-6720 Szeged, Hungary
| | - Diána Szabó
- Department of Oto-Rhino-Laryngology and Head & Neck Surgery, University of Szeged, Tisza Lajos krt. 111, H-6724 Szeged, Hungary
| | - László Rovó
- Department of Oto-Rhino-Laryngology and Head & Neck Surgery, University of Szeged, Tisza Lajos krt. 111, H-6724 Szeged, Hungary
| | - László Janovák
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary
| |
Collapse
|
3
|
Dai X, Yang Z, Zhang W, Liu S, Zhao Q, Liu T, Chen L, Li L, Wang Y, Shao R. Identification of diagnostic gene biomarkers related to immune infiltration in patients with idiopathic pulmonary fibrosis based on bioinformatics strategies. Front Med (Lausanne) 2022; 9:959010. [PMID: 36507532 PMCID: PMC9729277 DOI: 10.3389/fmed.2022.959010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022] Open
Abstract
Objective The study aims to identify potential diagnostic markers of idiopathic pulmonary fibrosis (IPF) and analyze the significance of immune cell infiltration in this pathology. Materials and methods Download two publicly available gene expression profiles (GSE10667 and GSE24206 datasets) from the GEO database including 48 Idiopathic pulmonary fibrosis (IPF) samples and 21 human control samples and select for distinctly expressed genes (DEG) from them. Lasso regression model and support vector machine recursive feature elimination S,V,R,F analysis were used to check candidate biomarkers. The area under the subject's work characteristic curve (AUC) value is used to evaluate its recognition ability. The GSE53845 dataset (40 IPF patients and 8 controls) continue to validate the expression level and diagnostic value of biomarkers in IPF. Comprehensive analysis of immune infiltrated cells of IPF was performed using R software and immune cell infiltration estimation analysis tool- deconvolution algorithm (CIBERSORT). Results 43 DEGs were identified in total. The identified DEGs mostly involve pneumonia, lung disease, collagen disease, obstructive pulmonary disease and other diseases. The activation of IL-17 signaling pathways, amoebic disease, interaction of viral proteins with cytokines and cytokine receptors, protein digestion and absorption, and flaccid hormone signaling pathways in IPF were different from the control group. The expression degree of CRTAC1, COL10A1, COMP, RPS4Y1, IGFL2, NECAB1, SCG5, SLC6A4, and SPP1 in IPF tissue were prominently higher than the normal group. Immune cell infiltration analysis showed that CRTAC1, COL10A1, COMP, IGFL2, NECAB1, SCG5, SLC6A4, and SPP1 were associated with monocytes, plasma cells, neutrophils, and regulatory (treg) T cells. Conclusion CRTAC1, COL10A1, COMP, IGFL2, NECAB1, SCG5, SLC6A4, and SPP1 can be used as diagnostic markers for IPF, providing new ideas for the future study of IPF occurrence and molecular mechanisms.
Collapse
Affiliation(s)
- Xiangdong Dai
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhihua Yang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenjing Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shuai Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qianru Zhao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tao Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lu Chen
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China,Yi Wang,
| | - Rui Shao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China,*Correspondence: Rui Shao,
| |
Collapse
|
4
|
Tumours block protective muscle and nerve signals to cause cachexia. Nature 2021; 598:37-38. [PMID: 34548663 DOI: 10.1038/d41586-021-02492-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
Sartori R, Hagg A, Zampieri S, Armani A, Winbanks CE, Viana LR, Haidar M, Watt KI, Qian H, Pezzini C, Zanganeh P, Turner BJ, Larsson A, Zanchettin G, Pierobon ES, Moletta L, Valmasoni M, Ponzoni A, Attar S, Da Dalt G, Sperti C, Kustermann M, Thomson RE, Larsson L, Loveland KL, Costelli P, Megighian A, Merigliano S, Penna F, Gregorevic P, Sandri M. Perturbed BMP signaling and denervation promote muscle wasting in cancer cachexia. Sci Transl Med 2021; 13:eaay9592. [PMID: 34349036 DOI: 10.1126/scitranslmed.aay9592] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 03/18/2021] [Indexed: 02/05/2023]
Abstract
Most patients with advanced solid cancers exhibit features of cachexia, a debilitating syndrome characterized by progressive loss of skeletal muscle mass and strength. Because the underlying mechanisms of this multifactorial syndrome are incompletely defined, effective therapeutics have yet to be developed. Here, we show that diminished bone morphogenetic protein (BMP) signaling is observed early in the onset of skeletal muscle wasting associated with cancer cachexia in mouse models and in patients with cancer. Cancer-mediated factors including Activin A and IL-6 trigger the expression of the BMP inhibitor Noggin in muscle, which blocks the actions of BMPs on muscle fibers and motor nerves, subsequently causing disruption of the neuromuscular junction (NMJ), denervation, and muscle wasting. Increasing BMP signaling in the muscles of tumor-bearing mice by gene delivery or pharmacological means can prevent muscle wasting and preserve measures of NMJ function. The data identify perturbed BMP signaling and denervation of muscle fibers as important pathogenic mechanisms of muscle wasting associated with tumor growth. Collectively, these findings present interventions that promote BMP-mediated signaling as an attractive strategy to counteract the loss of functional musculature in patients with cancer.
Collapse
Affiliation(s)
- Roberta Sartori
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Adam Hagg
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Centre for Muscle Research, Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
- Biomedicine Discovery Institute, Department of Physiology, Monash University, Melbourne, VIC 3800, Australia
| | - Sandra Zampieri
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, 3rd Surgical Clinic, University of Padova, 35128 Padua, Italy
- Myology Center, University of Padova, 35122 Padua, Italy
| | - Andrea Armani
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | | | - Laís R Viana
- Centre for Muscle Research, Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Structural and Functional Biology, Biology Institute, University of Campinas, Campinas, São Paulo 13083-97, Brazil
| | - Mouna Haidar
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia
| | - Kevin I Watt
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Centre for Muscle Research, Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Hongwei Qian
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Centre for Muscle Research, Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Camilla Pezzini
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Pardis Zanganeh
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia
| | - Bradley J Turner
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia
| | - Anna Larsson
- Theme Cancer, Karolinska University Hospital, Solna 171 76, Sweden
| | - Gianpietro Zanchettin
- Department of Surgery, Oncology and Gastroenterology, 3rd Surgical Clinic, University of Padova, 35128 Padua, Italy
| | - Elisa S Pierobon
- Department of Surgery, Oncology and Gastroenterology, 3rd Surgical Clinic, University of Padova, 35128 Padua, Italy
| | - Lucia Moletta
- Department of Surgery, Oncology and Gastroenterology, 3rd Surgical Clinic, University of Padova, 35128 Padua, Italy
| | - Michele Valmasoni
- Department of Surgery, Oncology and Gastroenterology, 3rd Surgical Clinic, University of Padova, 35128 Padua, Italy
| | - Alberto Ponzoni
- Department of Radiology, Padova General Hospital, 35121 Padova, Italy
| | - Shady Attar
- Department of Medicine, University Hospital of Padova, 35121 Padova, Italy
| | - Gianfranco Da Dalt
- Department of Surgery, Oncology and Gastroenterology, 3rd Surgical Clinic, University of Padova, 35128 Padua, Italy
| | - Cosimo Sperti
- Department of Surgery, Oncology and Gastroenterology, 3rd Surgical Clinic, University of Padova, 35128 Padua, Italy
| | - Monika Kustermann
- Center for Anatomy and Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Rachel E Thomson
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Centre for Muscle Research, Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Lars Larsson
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kate L Loveland
- Centre for Reproductive Health. Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Sciences, and Anatomy and Developmental Biology, Monash University, VIC 3800, Australia
| | - Paola Costelli
- Department of Clinical and Biological Sciences, University of Turin, 10125 Turin, Italy
| | - Aram Megighian
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Stefano Merigliano
- Department of Surgery, Oncology and Gastroenterology, 3rd Surgical Clinic, University of Padova, 35128 Padua, Italy
| | - Fabio Penna
- Department of Clinical and Biological Sciences, University of Turin, 10125 Turin, Italy
| | - Paul Gregorevic
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia.
- Centre for Muscle Research, Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Biochemistry and Molecular Biology, Monash University, VIC 3800, Australia
- Department of Neurology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Marco Sandri
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy.
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Myology Center, University of Padova, 35122 Padua, Italy
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
6
|
Horlock D, Kaye DM, Winbanks CE, Gao XM, Kiriazis H, Donner DG, Gregorevic P, McMullen JR, Bernardo BC. Old Drug, New Trick: Tilorone, a Broad-Spectrum Antiviral Drug as a Potential Anti-Fibrotic Therapeutic for the Diseased Heart. Pharmaceuticals (Basel) 2021; 14:ph14030263. [PMID: 33804032 PMCID: PMC7998193 DOI: 10.3390/ph14030263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 11/16/2022] Open
Abstract
Cardiac fibrosis is associated with most forms of cardiovascular disease. No reliable therapies targeting cardiac fibrosis are available, thus identifying novel drugs that can resolve or prevent fibrosis is needed. Tilorone, an antiviral agent, can prevent fibrosis in a mouse model of lung disease. We investigated the anti-fibrotic effects of tilorone in human cardiac fibroblasts in vitro by performing a radioisotopic assay for [3H]-proline incorporation as a proxy for collagen synthesis. Exploratory studies in human cardiac fibroblasts treated with tilorone (10 µM) showed a significant reduction in transforming growth factor-β induced collagen synthesis compared to untreated fibroblasts. To determine if this finding could be recapitulated in vivo, mice with established pathological remodelling due to four weeks of transverse aortic constriction (TAC) were administered tilorone (50 mg/kg, i.p) or saline every third day for eight weeks. Treatment with tilorone was associated with attenuation of fibrosis (assessed by Masson's trichrome stain), a favourable cardiac gene expression profile and no further deterioration of cardiac systolic function determined by echocardiography compared to saline treated TAC mice. These data demonstrate that tilorone has anti-fibrotic actions in human cardiac fibroblasts and the adult mouse heart, and represents a potential novel therapy to treat fibrosis associated with heart failure.
Collapse
Affiliation(s)
- Duncan Horlock
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (D.H.); (D.M.K.); (C.E.W.); (X.-M.G.); (H.K.); (D.G.D.); (P.G.); (J.R.M.)
| | - David M. Kaye
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (D.H.); (D.M.K.); (C.E.W.); (X.-M.G.); (H.K.); (D.G.D.); (P.G.); (J.R.M.)
- Department of Cardiology, Alfred Hospital, Melbourne, VIC 3004, Australia
- Department of Medicine, Monash University, Clayton, VIC 3800, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Catherine E. Winbanks
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (D.H.); (D.M.K.); (C.E.W.); (X.-M.G.); (H.K.); (D.G.D.); (P.G.); (J.R.M.)
| | - Xiao-Ming Gao
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (D.H.); (D.M.K.); (C.E.W.); (X.-M.G.); (H.K.); (D.G.D.); (P.G.); (J.R.M.)
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Disease in Central Asia, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi 830054, China
| | - Helen Kiriazis
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (D.H.); (D.M.K.); (C.E.W.); (X.-M.G.); (H.K.); (D.G.D.); (P.G.); (J.R.M.)
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Daniel G. Donner
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (D.H.); (D.M.K.); (C.E.W.); (X.-M.G.); (H.K.); (D.G.D.); (P.G.); (J.R.M.)
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Paul Gregorevic
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (D.H.); (D.M.K.); (C.E.W.); (X.-M.G.); (H.K.); (D.G.D.); (P.G.); (J.R.M.)
- Centre for Muscle Research, Department of Physiology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Julie R. McMullen
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (D.H.); (D.M.K.); (C.E.W.); (X.-M.G.); (H.K.); (D.G.D.); (P.G.); (J.R.M.)
- Department of Medicine, Monash University, Clayton, VIC 3800, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Diabetes, Central Clinical School, Monash University, Clayton, VIC 3800, Australia
- Department of Physiology, Monash University, Clayton, VIC 3800, Australia
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia
| | - Bianca C. Bernardo
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (D.H.); (D.M.K.); (C.E.W.); (X.-M.G.); (H.K.); (D.G.D.); (P.G.); (J.R.M.)
- Department of Diabetes, Central Clinical School, Monash University, Clayton, VIC 3800, Australia
- Department of Paediatrics, University of Melbourne, VIC 3010, Australia
- Correspondence: ; Tel.: +61-(0)3-8532-1167; Fax: +61-(0)3-8532-1100
| |
Collapse
|
7
|
Li C, Rezov V, Joensuu E, Vartiainen V, Rönty M, Yin M, Myllärniemi M, Koli K. Pirfenidone decreases mesothelioma cell proliferation and migration via inhibition of ERK and AKT and regulates mesothelioma tumor microenvironment in vivo. Sci Rep 2018; 8:10070. [PMID: 29968778 PMCID: PMC6030186 DOI: 10.1038/s41598-018-28297-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/13/2018] [Indexed: 12/29/2022] Open
Abstract
Malignant mesothelioma is an aggressive cancer with poor prognosis. It is characterized by prominent extracellular matrix, mesenchymal tumor cell phenotypes and chemoresistance. In this study, the ability of pirfenidone to alter mesothelioma cell proliferation and migration as well as mesothelioma tumor microenvironment was evaluated. Pirfenidone is an anti-fibrotic drug used in the treatment of idiopathic pulmonary fibrosis and has also anti-proliferative activities. Mesothelioma cell proliferation was decreased by pirfenidone alone or in combination with cisplatin. Pirfenidone also decreased significantly Transwell migration/invasion and 3D collagen invasion. This was associated with increased BMP pathway activity, decreased GREM1 expression and downregulation of MAPK/ERK and AKT/mTOR signaling. The canonical Smad-mediated TGF-β signaling was not affected by pirfenidone. However, pirfenidone blocked TGF-β induced upregulation of ERK and AKT pathways. Treatment of mice harboring mesothelioma xenografts with pirfenidone alone did not reduce tumor proliferation in vivo. However, pirfenidone modified the tumor microenvironment by reducing the expression of extracellular matrix associated genes. In addition, GREM1 expression was downregulated by pirfenidone in vivo. By reducing two major upregulated pathways in mesothelioma and by targeting tumor cells and the microenvironment pirfenidone may present a novel anti-fibrotic and anti-cancer adjuvant therapy for mesothelioma.
Collapse
Affiliation(s)
- Chang Li
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland.,Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Soochow, China
| | - Veronika Rezov
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland
| | - Emmi Joensuu
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland
| | - Ville Vartiainen
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland.,University of Helsinki and Helsinki University Hospital, Heart and Lung Center and HUH diagnostics, Pulmonary Medicine, Helsinki, Finland
| | - Mikko Rönty
- Department of Pathology, University of Helsinki and Fimlab laboratories, Pathology, Tampere, Finland
| | - Miao Yin
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland
| | - Marjukka Myllärniemi
- University of Helsinki and Helsinki University Hospital, Heart and Lung Center and HUH diagnostics, Pulmonary Medicine, Helsinki, Finland
| | - Katri Koli
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
8
|
Shah TA, Rogers MB. Unanswered Questions Regarding Sex and BMP/TGF-β Signaling. J Dev Biol 2018; 6:jdb6020014. [PMID: 29914150 PMCID: PMC6027345 DOI: 10.3390/jdb6020014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/02/2018] [Accepted: 06/14/2018] [Indexed: 01/23/2023] Open
Abstract
Crosstalk between the BMP and TGF-β signaling pathways regulates many complex developmental processes from the earliest stages of embryogenesis throughout adult life. In many situations, the two signaling pathways act reciprocally. For example, TGF-β signaling is generally pro-fibrotic, whereas BMP signaling is anti-fibrotic and pro-calcific. Sex-specific differences occur in many diseases including cardiovascular pathologies. Differing ratios of fibrosis and calcification in stenotic valves suggests that BMP/TGF-β signaling may vary in men and women. In this review, we focus on the current understanding of the interplay between sex and BMP/TGF-β signaling and pose several unanswered questions.
Collapse
Affiliation(s)
- Tapan A Shah
- Rutgers-New Jersey Medical School, Microbiology, Biochemistry, & Molecular Genetics, Newark, NJ 07103, USA.
| | - Melissa B Rogers
- Rutgers-New Jersey Medical School, Microbiology, Biochemistry, & Molecular Genetics, Newark, NJ 07103, USA.
| |
Collapse
|
9
|
Vartiainen V, Raula J, Bimbo LM, Viinamäki J, Backman JT, Ugur N, Kauppinen E, Sutinen E, Joensuu E, Koli K, Myllärniemi M. Pulmonary administration of a dry powder formulation of the antifibrotic drug tilorone reduces silica-induced lung fibrosis in mice. Int J Pharm 2018; 544:121-128. [PMID: 29655797 DOI: 10.1016/j.ijpharm.2018.04.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 11/17/2022]
Abstract
The aim of this work was to study the antifibrotic effect of pulmonary administration of tilorone to lung fibrosis. L-leucine coated tilorone particles were prepared and their aerosolization properties were analyzed using two dry powder inhalers (Easyhaler and Twister). In addition, the biological activity and cell monolayer permeation was tested. The antifibrotic effect of tilorone delivered by oropharyngeal aspiration was studied in vivo using a silica-induced model of pulmonary fibrosis in mice in a preventive setting. When delivered from the Easyhaler in an inhalation simulator, the emitted dose and fine particle fraction were independent from the pressure applied and showed dose repeatability. However, with Twister the aerosolization was pressure-dependent indicating poor compatibility between the device and the formulation. The formulation showed more consistent permeation through a differentiated Calu-3 cell monolayer compared to pristine tilorone. Tilorone decreased the histological fibrosis score in vivo in systemic and local administration, but only systemic administration decreased the mRNA expression of type I collagen. The difference was hypothesized to result from 40-fold higher drug concentration in tissue samples in the systemic administration group. These results show that tilorone can be formulated as inhalable dry powder and has potential as an oral and inhalable antifibrotic drug.
Collapse
Affiliation(s)
- Ville Vartiainen
- Department of Clinical Medicine, Division of Pulmonary Medicine, University of Helsinki, Finland; Research Programs Unit, Translational Cancer Biology, University of Helsinki, Finland.
| | - Janne Raula
- Department of Applied Physics, Aalto University School of Science, Finland
| | - Luis M Bimbo
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, United Kingdom; Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Finland
| | - Jenni Viinamäki
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Finland
| | - Janne T Backman
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Finland
| | - Nurcin Ugur
- Department of Applied Physics, Aalto University School of Science, Finland
| | - Esko Kauppinen
- Department of Applied Physics, Aalto University School of Science, Finland
| | - Eva Sutinen
- Department of Clinical Medicine, Division of Pulmonary Medicine, University of Helsinki, Finland
| | - Emmi Joensuu
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, Finland
| | - Katri Koli
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, Finland
| | - Marjukka Myllärniemi
- University of Helsinki and Helsinki University Hospital, Heart and Lung Center and HUH Diagnostics, Pulmonary Medicine, Finland
| |
Collapse
|
10
|
Sun Y, Fu J, Xue X, Yang H, Wu L. BMP7 regulates lung fibroblast proliferation in newborn rats with bronchopulmonary dysplasia. Mol Med Rep 2018; 17:6277-6284. [PMID: 29512787 PMCID: PMC5928605 DOI: 10.3892/mmr.2018.8692] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 10/03/2017] [Indexed: 01/04/2023] Open
Abstract
The present study investigated the expression of bone morphogenetic protein (BMP) 7 in a newborn rat model of bronchopulmonary dysplasia (BPD) and the biological effects of BMP7 on newborn rat lung fibroblast (LF) cells. For this purpose, a total of 196 newborn rats were randomly and equally assigned to a model group and a control group. Lung tissue was collected at days 3, 7, 14 and 21 for histological analysis. The location and expression of BMP7 was examined by immunohistochemical staining and reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) analysis. A total of 38 full‑term newborn rats on the day of birth were sacrificed and LF cells were isolated and treated with BMP7. The biological effects of BMP7 on LF cells were assessed by cell proliferation and cell cycle analysis. The findings demonstrated that abnormal alveolar development due to BPD was gradually intensified in the model group over time. Immunohistochemical staining revealed that the location of BMP7 in lung tissue was altered. Immunohistochemistry and RT‑qPCR assays demonstrated a gradual decrease in BMP7 expression in the model group induced by hyperoxia. MTT assays demonstrated that BMP7 inhibited LF cells and the inhibitory effect was dose‑dependent and time‑dependent. Flow cytometry revealed that the inhibitory effect of BMP7 in LF cells was causing cell cycle arrest at the G1 phase. The present study demonstrated that BMP7 may serve an important role in alveolar development in a BPD model. BMP7 may be involved in abnormal alveolar development through the regulation of LF proliferation.
Collapse
Affiliation(s)
- Yanli Sun
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xindong Xue
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Haiping Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Linlin Wu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
11
|
Efficacy of Tilorone Dihydrochloride against Ebola Virus Infection. Antimicrob Agents Chemother 2018; 62:AAC.01711-17. [PMID: 29133569 DOI: 10.1128/aac.01711-17] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/24/2017] [Indexed: 11/20/2022] Open
Abstract
Tilorone dihydrochloride (tilorone) is a small-molecule, orally bioavailable drug that is used clinically as an antiviral outside the United States. A machine-learning model trained on anti-Ebola virus (EBOV) screening data previously identified tilorone as a potent in vitro EBOV inhibitor, making it a candidate for the treatment of Ebola virus disease (EVD). In the present study, a series of in vitro ADMET (absorption, distribution, metabolism, excretion, toxicity) assays demonstrated the drug has excellent solubility, high Caco-2 permeability, was not a P-glycoprotein substrate, and had no inhibitory activity against five human CYP450 enzymes (3A4, 2D6, 2C19, 2C9, and 1A2). Tilorone was shown to have 52% human plasma protein binding with excellent plasma stability and a mouse liver microsome half-life of 48 min. Dose range-finding studies in mice demonstrated a maximum tolerated single dose of 100 mg/kg of body weight. A pharmacokinetics study in mice at 2- and 10-mg/kg dose levels showed that the drug is rapidly absorbed, has dose-dependent increases in maximum concentration of unbound drug in plasma and areas under the concentration-time curve, and has a half-life of approximately 18 h in both males and females, although the exposure was ∼2.5-fold higher in male mice. Tilorone doses of 25 and 50 mg/kg proved efficacious in protecting 90% of mice from a lethal challenge with mouse-adapted with once-daily intraperitoneal (i.p.) dosing for 8 days. A subsequent study showed that 30 mg/kg/day of tilorone given i.p. starting 2 or 24 h postchallenge and continuing through day 7 postinfection was fully protective, indicating promising activity for the treatment of EVD.
Collapse
|
12
|
Masalskas BF, Martins Júnior W, Leoni GB, Faloni APDS, Marcaccini AM, Silva Sousa YTC, Castro-Raucci LMSD. Local delivery of strontium ranelate promotes regeneration of critical size bone defects filled with collagen sponge. J Biomed Mater Res A 2017; 106:333-341. [PMID: 28913909 DOI: 10.1002/jbm.a.36237] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/31/2017] [Accepted: 09/12/2017] [Indexed: 01/12/2023]
Abstract
The effect of local delivery of strontium ranelate (SR) on bone regeneration of critical size bone defects filled with collagen sponge was evaluated. Bone defects of 5 mm diameter created in rat calvaria were filled with collagen sponge (C); collagen sponge with 5 mM Sr2+ SR (C5SR) or collagen sponge with 50 mM Sr2+ SR (C50SR). After 2, 4, and 6 weeks, bone volume (BV), bone surface (BS), trabecular thickness (Tb.Th), trabecular number (Tb.N), and trabecular separation (Tb.Sp) were evaluated by computed microtomography. At 6 weeks, histological analysis was performed. Intragroup comparisons were made by the Friedman test, while comparisons between groups were made by Kruskal-Wallis test (α = 5%). All groups showed increased BV, BS, Tb.Th, and Tb.N over time, but only C50SR promoted the reduction of Tb.Sp (p < 0.05). No significant differences between groups were detected at weeks 2 and 4. However, C50SR showed the highest values of BV, BS, and Tb.Th at 6 weeks (p < 0.05). Histological analysis revealed connective tissue in C and C5SR and immature bone tissue in C50SR. Local delivery of SR 50 mM Sr2+ associated with collagen sponge increased and accelerated bone regeneration in critical bone defects. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 333-341, 2018.
Collapse
Affiliation(s)
| | - Walter Martins Júnior
- School of Dentistry, University of Ribeirao Preto, Ribeirao Preto, Sao Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
Fibrosis is a major player in cardiovascular disease, both as a contributor to the development of disease, as well as a post-injury response that drives progression. Despite the identification of many mechanisms responsible for cardiovascular fibrosis, to date no treatments have emerged that have effectively reduced the excess deposition of extracellular matrix associated with fibrotic conditions. Novel treatments have recently been identified that hold promise as potential therapeutic agents for cardiovascular diseases associated with fibrosis, as well as other fibrotic conditions. The purpose of this review is to provide an overview of emerging antifibrotic agents that have shown encouraging results in preclinical or early clinical studies, but have not yet been approved for use in human disease. One of these agents is bone morphogenetic protein-7 (BMP7), which has beneficial effects in multiple models of fibrotic disease. Another approach discussed involves altering the levels of micro-RNA (miR) species, including miR-29 and miR-101, which regulate the expression of fibrosis-related gene targets. Further, the antifibrotic potential of agonists of the peroxisome proliferator-activated receptors will be discussed. Finally, evidence will be reviewed in support of the polypeptide hormone relaxin. Relaxin is long known for its extracellular remodeling properties in pregnancy, and is rapidly emerging as an effective antifibrotic agent in a number of organ systems. Moreover, relaxin has potent vascular and renal effects that make it a particularly attractive approach for the treatment of cardiovascular diseases. In each case, the mechanism of action and the applicability to various fibrotic diseases will be discussed.
Collapse
Affiliation(s)
- Benita L McVicker
- Research Service, VA Nebraska-Western Iowa Health Care System, OmahaNE, United States.,Division of Gastroenterology and Hepatology, University of Nebraska Medical Center, OmahaNE, United States
| | - Robert G Bennett
- Research Service, VA Nebraska-Western Iowa Health Care System, OmahaNE, United States.,The Division of Diabetes, Endocrinology, and Metabolism, Department of Internal Medicine, University of Nebraska Medical Center, OmahaNE, United States.,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, OmahaNE, United States
| |
Collapse
|
14
|
Koli K, Sutinen E, Rönty M, Rantakari P, Fortino V, Pulkkinen V, Greco D, Sipilä P, Myllärniemi M. Gremlin-1 Overexpression in Mouse Lung Reduces Silica-Induced Lymphocyte Recruitment - A Link to Idiopathic Pulmonary Fibrosis through Negative Correlation with CXCL10 Chemokine. PLoS One 2016; 11:e0159010. [PMID: 27428020 PMCID: PMC4948891 DOI: 10.1371/journal.pone.0159010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/25/2016] [Indexed: 12/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by activation and injury of epithelial cells, the accumulation of connective tissue and changes in the inflammatory microenvironment. The bone morphogenetic protein (BMP) inhibitor protein gremlin-1 is associated with the progression of fibrosis both in human and mouse lung. We generated a transgenic mouse model expressing gremlin-1 in type II lung epithelial cells using the surfactant protein C (SPC) promoter and the Cre-LoxP system. Gremlin-1 protein expression was detected specifically in the lung after birth and did not result in any signs of respiratory insufficiency. Exposure to silicon dioxide resulted in reduced amounts of lymphocyte aggregates in transgenic lungs while no alteration in the fibrotic response was observed. Microarray gene expression profiling and analyses of bronchoalveolar lavage fluid cytokines indicated a reduced lymphocytic response and a downregulation of interferon-induced gene program. Consistent with reduced Th1 response, there was a downregulation of the mRNA and protein expression of the anti-fibrotic chemokine CXCL10, which has been linked to IPF. In human IPF patient samples we also established a strong negative correlation in the mRNA expression levels of gremlin-1 and CXCL10. Our results suggest that in addition to regulation of epithelial-mesenchymal crosstalk during tissue injury, gremlin-1 modulates inflammatory cell recruitment and anti-fibrotic chemokine production in the lung.
Collapse
Affiliation(s)
- Katri Koli
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland
- * E-mail:
| | - Eva Sutinen
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland
- University of Helsinki and Helsinki University Hospital, Heart and Lung Center, Department of Pulmonary Medicine, Helsinki, Finland
| | - Mikko Rönty
- Department of Pathology, University of Helsinki and Fimlab laboratories, Pathology, Tampere, Finland
| | - Pia Rantakari
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Vittorio Fortino
- Unit of Systems Toxicology and Nanosafety Centre, Finnish Institute of Occupational Health (FIOH), Helsinki, Finland
| | - Ville Pulkkinen
- University of Helsinki and Helsinki University Hospital, Heart and Lung Center, Department of Pulmonary Medicine, Helsinki, Finland
| | - Dario Greco
- Unit of Systems Toxicology and Nanosafety Centre, Finnish Institute of Occupational Health (FIOH), Helsinki, Finland
| | - Petra Sipilä
- Department of Physiology, Institute of Biomedicine and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Marjukka Myllärniemi
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland
- University of Helsinki and Helsinki University Hospital, Heart and Lung Center, Department of Pulmonary Medicine, Helsinki, Finland
| |
Collapse
|
15
|
Ali IHA, Brazil DP. Bone morphogenetic proteins and their antagonists: current and emerging clinical uses. Br J Pharmacol 2016; 171:3620-32. [PMID: 24758361 DOI: 10.1111/bph.12724] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/02/2014] [Accepted: 04/08/2014] [Indexed: 12/13/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are members of the TGFβ superfamily of secreted cysteine knot proteins that includes TGFβ1, nodal, activins and inhibins. BMPs were first discovered by Urist in the 1960s when he showed that implantation of demineralized bone into intramuscular tissue of rabbits induced bone and cartilage formation. Since this seminal discovery, BMPs have also been shown to play key roles in several other biological processes, including limb, kidney, skin, hair and neuronal development, as well as maintaining vascular homeostasis. The multifunctional effects of BMPs make them attractive targets for the treatment of several pathologies, including bone disorders, kidney and lung fibrosis, and cancer. This review will summarize current knowledge on the BMP signalling pathway and critically evaluate the potential of recombinant BMPs as pharmacological agents for the treatment of bone repair and tissue fibrosis in patients.
Collapse
Affiliation(s)
- Imran H A Ali
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, UK
| | | |
Collapse
|
16
|
Ekins S, Freundlich JS, Clark AM, Anantpadma M, Davey RA, Madrid P. Machine learning models identify molecules active against the Ebola virus in vitro. F1000Res 2016; 4:1091. [PMID: 26834994 DOI: 10.12688/f1000research.7217.2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/23/2015] [Indexed: 12/15/2022] Open
Abstract
The search for small molecule inhibitors of Ebola virus (EBOV) has led to several high throughput screens over the past 3 years. These have identified a range of FDA-approved active pharmaceutical ingredients (APIs) with anti-EBOV activity in vitro and several of which are also active in a mouse infection model. There are millions of additional commercially-available molecules that could be screened for potential activities as anti-EBOV compounds. One way to prioritize compounds for testing is to generate computational models based on the high throughput screening data and then virtually screen compound libraries. In the current study, we have generated Bayesian machine learning models with viral pseudotype entry assay and the EBOV replication assay data. We have validated the models internally and externally. We have also used these models to computationally score the MicroSource library of drugs to select those likely to be potential inhibitors. Three of the highest scoring molecules that were not in the model training sets, quinacrine, pyronaridine and tilorone, were tested in vitro and had EC50 values of 350, 420 and 230 nM, respectively. Pyronaridine is a component of a combination therapy for malaria that was recently approved by the European Medicines Agency, which may make it more readily accessible for clinical testing. Like other known antimalarial drugs active against EBOV, it shares the 4-aminoquinoline scaffold. Tilorone, is an investigational antiviral agent that has shown a broad array of biological activities including cell growth inhibition in cancer cells, antifibrotic properties, α7 nicotinic receptor agonist activity, radioprotective activity and activation of hypoxia inducible factor-1. Quinacrine is an antimalarial but also has use as an anthelmintic. Our results suggest data sets with less than 1,000 molecules can produce validated machine learning models that can in turn be utilized to identify novel EBOV inhibitors in vitro.
Collapse
Affiliation(s)
- Sean Ekins
- Collaborations in Chemistry, Fuquay-Varina, NC, 27526, USA
- Collaborations Pharmaceuticals Inc, Fuquay-Varina, NC, 27526, USA
- Collaborative Drug Discovery, Burlingame, CA, 94010, USA
| | - Joel S Freundlich
- Departments of Pharmacology & Physiology and Medicine, Center for Emerging and Reemerging Pathogens, UMDNJ, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Alex M Clark
- Molecular Materials Informatics, Inc., Montreal, 94025, Canada
| | - Manu Anantpadma
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Robert A Davey
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | | |
Collapse
|
17
|
An Effective Synthesis Method for Tilorone Dihydrochloride with Obvious IFN-α Inducing Activity. Molecules 2015; 20:21458-63. [PMID: 26633340 PMCID: PMC6332401 DOI: 10.3390/molecules201219781] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/18/2015] [Accepted: 11/26/2015] [Indexed: 12/01/2022] Open
Abstract
Tilorone dihydrochloride (1) has great potential for inducing interferon against pathogenic infection. In this paper, we describe a convenient preparation method for 2,7-dihydroxyfluoren-9-one (2), which is a usual pharmaceutical intermediate for preparing tilorone dihydrochloride (1). In the novel method, methyl esterification of 4,4′-dihydroxy-[1,1′-biphenyl]-2-carboxylic acid (4) was carried out under milder conditions with higher yield and played an important role in the preparation of compound 2. The structures of the relative intermediates and target compound were characterized by melting point, IR, MS, and 1H-NMR. Furthermore, the synthesized tilorone dihydrochloride exhibited an obvious effect on induction of interferon-α (IFN-α) in mice within 12 h, and the peak level was observed until 24 h. This fruitful work has resulted in tilorone dihydrochloride becoming available in large-scale and wide application in clinics, which has a good pharmaceutical development prospects.
Collapse
|
18
|
Kim YH, Tabata Y. Dual-controlled release system of drugs for bone regeneration. Adv Drug Deliv Rev 2015; 94:28-40. [PMID: 26079284 DOI: 10.1016/j.addr.2015.06.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/23/2015] [Accepted: 06/08/2015] [Indexed: 02/08/2023]
Abstract
Controlled release systems have been noted to allow drugs to enhance their ability for bone regeneration. To this end, various biomaterials have been used as the release carriers of drugs, such as low-molecular-weight drugs, growth factors, and others. The drugs are released from the release carriers in a controlled fashion to maintain their actions for a long time period. Most research has been focused on the controlled release of single drugs to demonstrate the therapeutic feasibility. Controlled release of two combined drugs, so-called dual release systems, are promising and important for tissue regeneration. This is because the tissue regeneration process of bone formation is generally achieved by multiple bioactive molecules, which are produced from cells by other molecules. If two types of bioactive molecules, (i.e., drugs), are supplied in an appropriate fashion, the regeneration process of living bodies will be efficiently promoted. This review focuses on the bone regeneration induced by dual-controlled release of drugs. In this paper, various dual-controlled release systems of drugs aiming at bone regeneration are overviewed explaining the type of drugs and their release materials.
Collapse
|
19
|
Ekins S, Freundlich JS, Clark AM, Anantpadma M, Davey RA, Madrid P. Machine learning models identify molecules active against the Ebola virus in vitro. F1000Res 2015; 4:1091. [PMID: 26834994 DOI: 10.12688/f1000research.7217.1] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/15/2015] [Indexed: 12/23/2022] Open
Abstract
The search for small molecule inhibitors of Ebola virus (EBOV) has led to several high throughput screens over the past 3 years. These have identified a range of FDA-approved active pharmaceutical ingredients (APIs) with anti-EBOV activity in vitro and several of which are also active in a mouse infection model. There are millions of additional commercially-available molecules that could be screened for potential activities as anti-EBOV compounds. One way to prioritize compounds for testing is to generate computational models based on the high throughput screening data and then virtually screen compound libraries. In the current study, we have generated Bayesian machine learning models with viral pseudotype entry assay and the EBOV replication assay data. We have validated the models internally and externally. We have also used these models to computationally score the MicroSource library of drugs to select those likely to be potential inhibitors. Three of the highest scoring molecules that were not in the model training sets, quinacrine, pyronaridine and tilorone, were tested in vitro and had EC 50 values of 350, 420 and 230 nM, respectively. Pyronaridine is a component of a combination therapy for malaria that was recently approved by the European Medicines Agency, which may make it more readily accessible for clinical testing. Like other known antimalarial drugs active against EBOV, it shares the 4-aminoquinoline scaffold. Tilorone, is an investigational antiviral agent that has shown a broad array of biological activities including cell growth inhibition in cancer cells, antifibrotic properties, α7 nicotinic receptor agonist activity, radioprotective activity and activation of hypoxia inducible factor-1. Quinacrine is an antimalarial but also has use as an anthelmintic. Our results suggest data sets with less than 1,000 molecules can produce validated machine learning models that can in turn be utilized to identify novel EBOV inhibitors in vitro.
Collapse
Affiliation(s)
- Sean Ekins
- Collaborations in Chemistry, Fuquay-Varina, NC, 27526, USA.,Collaborations Pharmaceuticals Inc, Fuquay-Varina, NC, 27526, USA.,Collaborative Drug Discovery, Burlingame, CA, 94010, USA
| | - Joel S Freundlich
- Departments of Pharmacology & Physiology and Medicine, Center for Emerging and Reemerging Pathogens, UMDNJ, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Alex M Clark
- Molecular Materials Informatics, Inc., Montreal, 94025, Canada
| | - Manu Anantpadma
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Robert A Davey
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | | |
Collapse
|
20
|
Ekins S, Freundlich JS, Clark AM, Anantpadma M, Davey RA, Madrid P. Machine learning models identify molecules active against the Ebola virus in vitro. F1000Res 2015; 4:1091. [PMID: 26834994 PMCID: PMC4706063 DOI: 10.12688/f1000research.7217.3] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/17/2017] [Indexed: 12/21/2022] Open
Abstract
The search for small molecule inhibitors of Ebola virus (EBOV) has led to several high throughput screens over the past 3 years. These have identified a range of FDA-approved active pharmaceutical ingredients (APIs) with anti-EBOV activity
in vitro and several of which are also active in a mouse infection model. There are millions of additional commercially-available molecules that could be screened for potential activities as anti-EBOV compounds. One way to prioritize compounds for testing is to generate computational models based on the high throughput screening data and then virtually screen compound libraries. In the current study, we have generated Bayesian machine learning models with viral pseudotype entry assay and the EBOV replication assay data. We have validated the models internally and externally. We have also used these models to computationally score the MicroSource library of drugs to select those likely to be potential inhibitors. Three of the highest scoring molecules that were not in the model training sets, quinacrine, pyronaridine and tilorone, were tested
in vitro and had EC
50 values of 350, 420 and 230 nM, respectively. Pyronaridine is a component of a combination therapy for malaria that was recently approved by the European Medicines Agency, which may make it more readily accessible for clinical testing. Like other known antimalarial drugs active against EBOV, it shares the 4-aminoquinoline scaffold. Tilorone, is an investigational antiviral agent that has shown a broad array of biological activities including cell growth inhibition in cancer cells, antifibrotic properties, α7 nicotinic receptor agonist activity, radioprotective activity and activation of hypoxia inducible factor-1. Quinacrine is an antimalarial but also has use as an anthelmintic. Our results suggest data sets with less than 1,000 molecules can produce validated machine learning models that can in turn be utilized to identify novel EBOV inhibitors
in vitro.
Collapse
Affiliation(s)
- Sean Ekins
- Collaborations in Chemistry, Fuquay-Varina, NC, 27526, USA.,Collaborations Pharmaceuticals Inc, Fuquay-Varina, NC, 27526, USA.,Collaborative Drug Discovery, Burlingame, CA, 94010, USA
| | - Joel S Freundlich
- Departments of Pharmacology & Physiology and Medicine, Center for Emerging and Reemerging Pathogens, UMDNJ, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Alex M Clark
- Molecular Materials Informatics, Inc., Montreal, 94025, Canada
| | - Manu Anantpadma
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Robert A Davey
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | | |
Collapse
|
21
|
|
22
|
Brazil DP, Church RH, Surae S, Godson C, Martin F. BMP signalling: agony and antagony in the family. Trends Cell Biol 2015; 25:249-64. [DOI: 10.1016/j.tcb.2014.12.004] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/01/2014] [Accepted: 12/02/2014] [Indexed: 01/14/2023]
|
23
|
De Langhe E, Cailotto F, De Vooght V, Aznar-Lopez C, Vanoirbeek JA, Luyten FP, Lories RJU. Enhanced endogenous bone morphogenetic protein signaling protects against bleomycin induced pulmonary fibrosis. Respir Res 2015; 16:38. [PMID: 25849157 PMCID: PMC4364322 DOI: 10.1186/s12931-015-0202-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 03/04/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Effective treatments for fibrotic diseases such as idiopathic pulmonary fibrosis are largely lacking. Transforming growth factor beta (TGFβ) plays a central role in the pathophysiology of fibrosis. We hypothesized that bone morphogenetic proteins (BMP), another family within the TGFβ superfamily of growth factors, modulate fibrogenesis driven by TGFβ. We therefore studied the role of endogenous BMP signaling in bleomycin induced lung fibrosis. METHODS Lung fibrosis was induced in wild-type or noggin haploinsufficient (Nog +/LacZ ) mice by intratracheal instillation of bleomycin, or phosphate buffered saline as a control. Invasive pulmonary function tests were performed using the flexiVent® SCIREQ system. The mice were sacrificed and lung tissue was collected for analysis using histopathology, collagen quantification, immunohistochemistry and gene expression analysis. RESULTS Nog +/LacZ mice are a known model of increased BMP signaling and were partially protected from bleomycin-induced lung fibrosis with reduced Ashcroft score, reduced collagen content and preservation of pulmonary compliance. In bleomycin-induced lung fibrosis, TGFβ and BMP signaling followed an inverse course, with dynamic activation of TGFβ signaling and repression of BMP signaling activity. CONCLUSIONS Upon bleomycin exposure, active BMP signaling is decreased. Derepression of BMP signaling in Nog +/LacZ mice protects against bleomycin-induced pulmonary fibrosis. Modulating the balance between BMP and TGFβ, in particular increasing endogenous BMP signals, may therefore be a therapeutic target in fibrotic lung disease.
Collapse
|
24
|
Gremlin1 preferentially binds to bone morphogenetic protein-2 (BMP-2) and BMP-4 over BMP-7. Biochem J 2015; 466:55-68. [DOI: 10.1042/bj20140771] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gremlin1 has a distinct preference for which bone morphogenetic protein it binds to in kidney epithelial cells. Grem1–BMP-2 complexes are favoured over other BMPs, and this may play an important role in fibrotic kidney disease.
Collapse
|
25
|
Liang D, Wang Y, Zhu Z, Yang G, An G, Li X, Niu P, Chen L, Tian L. Increased expression of bone morphogenetic protein-7 and its related pathway provides an anti-fibrotic effect on silica induced fibrosis in vitro. Toxicol Res (Camb) 2015. [DOI: 10.1039/c5tx00159e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BMP-7 exerts an inhibitory effect on silica induced fibrosis in RLE-6TN cells via suppressing TGF-β signaling and activating BMP signaling.
Collapse
Affiliation(s)
- Di Liang
- School of Public Health
- Capital Medical University
- Beijing 100069
- China
- Beijing Key Laboratory of Environmental Toxicology
| | - Yan Wang
- School of Public Health
- Capital Medical University
- Beijing 100069
- China
- Beijing Key Laboratory of Environmental Toxicology
| | - Zhonghui Zhu
- School of Public Health
- Capital Medical University
- Beijing 100069
- China
- Beijing Key Laboratory of Environmental Toxicology
| | - Gengxia Yang
- Oncology Minimally Invasive Interventional Center
- Beijing Youan Hospital
- Capital Medical University
- Beijing 100069
- China
| | - Guoliang An
- School of Public Health
- Capital Medical University
- Beijing 100069
- China
- Beijing Key Laboratory of Environmental Toxicology
| | - Xiaoli Li
- School of Public Health
- Capital Medical University
- Beijing 100069
- China
- Beijing Key Laboratory of Environmental Toxicology
| | - Piye Niu
- School of Public Health
- Capital Medical University
- Beijing 100069
- China
- Beijing Key Laboratory of Environmental Toxicology
| | - Li Chen
- School of Public Health
- Capital Medical University
- Beijing 100069
- China
- Beijing Key Laboratory of Environmental Toxicology
| | - Lin Tian
- School of Public Health
- Capital Medical University
- Beijing 100069
- China
- Beijing Key Laboratory of Environmental Toxicology
| |
Collapse
|
26
|
Myllärniemi M, Tikkanen J, Hulmi JJ, Pasternack A, Sutinen E, Rönty M, Leppäranta O, Ma H, Ritvos O, Koli K. Upregulation of activin-B and follistatin in pulmonary fibrosis - a translational study using human biopsies and a specific inhibitor in mouse fibrosis models. BMC Pulm Med 2014; 14:170. [PMID: 25361680 PMCID: PMC4271359 DOI: 10.1186/1471-2466-14-170] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 10/14/2014] [Indexed: 01/08/2023] Open
Abstract
Background Activins are members of the TGF-ß superfamily of growth factors. First, we identified by expression array screening that activin-B and follistatin are upregulated in human idiopathic pulmonary fibrosis (IPF). Next, we wanted to clarify their specific role in lung fibrosis formation. Methods We used specific antibodies for activin-A and -B subunits and follistatin to measure and localize their levels in idiopathic pulmonary fibrosis and control lung biopsies. To inhibit activin signaling, we used soluble activin type IIB receptor fused to the Fc portion of human IgG1 (sActRIIB-Fc) in two different mouse models of pulmonary fibrosis. Results Activin-B and follistatin mRNA levels were elevated in the human IPF lung. Immunoreactivity to activin-A, -B and follistatin localized predominantly to the hyperplastic, activated alveolar epithelium, but was also seen in inflammatory cells. Mice treated with sActRIIB-Fc showed increased skeletal muscle mass and a clear reduction in alveolar cell counts in bronchoalveolar lavage fluid, but no significant antifibrotic effect in the lung was observed. Conclusions The upregulation of activin-B and follistatin in IPF is a novel finding. Our results indicate that activin inhibition is not an efficient tool for antifibrotic therapy, but could be useful in reducing alveolar cellular response to injury. Activin-B and follistatin levels may be useful as biomarkers of IPF.
Collapse
Affiliation(s)
- Marjukka Myllärniemi
- Department of Medicine, Division of Pulmonary Medicine, University of Helsinki and Helsinki University Central Hospital, PO Box 63, FI-00014 Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Oncostatin M overexpression induces matrix deposition, STAT3 activation, and SMAD1 Dysregulation in lungs of fibrosis-resistant BALB/c mice. J Transl Med 2014; 94:1003-16. [PMID: 24933422 DOI: 10.1038/labinvest.2014.81] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 05/02/2014] [Accepted: 05/15/2014] [Indexed: 02/06/2023] Open
Abstract
Adverse health outcomes in pulmonary fibrosis are associated with extracellular matrix (ECM) accumulation. Although transforming growth factor-β (TGF-β) has been reported to be an important regulator of fibrosis pathogenesis, TGF-β-independent pathways may also be involved. Here, we investigated responses of putative relatively fibrosis-resistant BALB/c mice to transient pulmonary overexpression of oncostatin M (OSM) using an adenovirus vector encoding OSM (AdOSM) and compared responses with the relatively fibrosis-prone C57Bl/6 strain. Interestingly, BALB/c mice showed similar ECM accumulation and collagen 1A1 and 3A1 mRNA elevation to C57Bl/6 mice 7 days after endotracheal administration of AdOSM. TGF-β1 mRNA levels and pSMAD2 signal were not regulated in either strain in total lung extracts. In contrast to C57Bl/6 mice, BALB/c mice lacked eosinophil, Th2 cytokine, and pro-inflammatory cytokine elevation in the broncholveolar space. OSM overexpression induced STAT3 activation and SMAD1/5/8 signaling suppression in lung from both mice strains, which was associated with a downregulation of BMPR2 and BMP ligands, and increased expression of the BMP antagonist gremlin. Although we also observed STAT3 activation and SMAD1/5/8 signaling suppression in mouse lung fibroblast cultures in vitro upon OSM stimulation, immunohistochemistry analyses indicated that the AdOSM-induced pSMAD1/5/8 signal suppression was primarily localized to the airway epithelium. Other gp130 cytokines including IL-6, LIF, CT-1, but not IL-31, also induced STAT3 activation and SMAD1/5/8 signaling suppression in C10 mouse lung epithelial cells and BEAS 2B bronchial epithelial cells, and we found that pharmacological inhibition of STAT3 activation reversed OSM-induced SMAD1/5/8 signaling suppression in vitro. The results demonstrate that OSM induces ECM accumulation in fibrosis-resistant BALB/c mouse lung in the absence of Th2 inflammation or TGF-β signaling, and highlight a dichotomy of STAT3 activation versus SMAD1 suppression in this process.
Collapse
|
28
|
Lo KWH, Jiang T, Gagnon KA, Nelson C, Laurencin CT. Small-molecule based musculoskeletal regenerative engineering. Trends Biotechnol 2014; 32:74-81. [PMID: 24405851 DOI: 10.1016/j.tibtech.2013.12.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 12/09/2013] [Accepted: 12/10/2013] [Indexed: 01/13/2023]
Abstract
Clinicians and scientists working in the field of regenerative engineering are actively investigating a wide range of methods to promote musculoskeletal tissue regeneration. Small-molecule-mediated tissue regeneration is emerging as a promising strategy for regenerating various musculoskeletal tissues and a large number of small-molecule compounds have been recently discovered as potential bioactive molecules for musculoskeletal tissue repair and regeneration. In this review, we summarize the recent literature encompassing the past 4 years in the area of small bioactive molecules for promoting repair and regeneration of various musculoskeletal tissues including bone, muscle, cartilage, tendon, and nerve.
Collapse
Affiliation(s)
- Kevin W-H Lo
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; Department of Medicine, Division of Endocrinology, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; Department of Biomedical Engineering, University of Connecticut, School of Engineering, Storrs, CT 06268, USA.
| | - Tao Jiang
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; Department of Medicine, Division of Endocrinology, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA
| | - Keith A Gagnon
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA
| | - Clarke Nelson
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA
| | - Cato T Laurencin
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; Department of Biomedical Engineering, University of Connecticut, School of Engineering, Storrs, CT 06268, USA; Department of Orthopaedic Surgery, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; Department of Chemical, Materials and Biomolecular Engineering, University of Connecticut, School of Engineering, Storrs, CT 06268, USA.
| |
Collapse
|
29
|
Forrester HB, Ivashkevich A, McKay MJ, Leong T, de Kretser DM, Sprung CN. Follistatin is induced by ionizing radiation and potentially predictive of radiosensitivity in radiation-induced fibrosis patient derived fibroblasts. PLoS One 2013; 8:e77119. [PMID: 24204752 PMCID: PMC3799767 DOI: 10.1371/journal.pone.0077119] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 08/30/2013] [Indexed: 02/06/2023] Open
Abstract
Follistatin is a potent regulator of the inflammatory response and binds to and inhibits activin A action. Activin A is a member of the TGFβ protein superfamily which has regulatory roles in the inflammatory response and in the fibrotic process. Fibrosis can occur following cell injury and cell death induced by agents such as ionizing radiation (IR). IR is used to treat cancer and marked fibrotic response is a normal tissue (non-tumour) consequence in a fraction of patients under the current dose regimes. The discovery and development of a therapeutic to abate fibrosis in these radiosensitive patients would be a major advance for cancer radiotherapy. Likewise, prediction of which patients are susceptible to fibrosis would enable individualization of treatment and provide an opportunity for pre-emptive fibrosis control and better tumour treatment outcomes. The levels of activin A and follistatin were measured in fibroblasts derived from patients who developed severe radiation-induced fibrosis following radiotherapy and compared to fibroblasts from patients who did not. Both follistatin and activin A gene expression levels were increased following IR and the follistatin gene expression level was lower in the fibroblasts from fibrosis patients compared to controls at both basal levels and after IR. The major follistatin transcript variants were found to have a similar response to IR and both were reduced in fibrosis patients. Levels of follistatin and activin A secreted in the fibroblast culture medium also increased in response to IR and the relative follistatin protein levels were significantly lower in the samples derived from fibrosis patients. The decrease in the follistatin levels can lead to an increased bioactivity of activin A and hence may provide a useful measurement to identify patients at risk of a severe fibrotic response to IR. Additionally, follistatin, by its ability to neutralise the actions of activin A may be of value as an anti-fibrotic for radiation induced fibrosis.
Collapse
Affiliation(s)
- Helen B. Forrester
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Alesia Ivashkevich
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Michael J. McKay
- North Coast Cancer Institute, Lismore, New South Wales, Australia
| | - Trevor Leong
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - David M. de Kretser
- Centre for Reproduction and Development, Monash Institute of Medical Research, Clayton, Victoria, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Carl N. Sprung
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|