1
|
Xuan S, Ma Y, Zhou H, Gu S, Yao X, Zeng X. The implication of dendritic cells in lung diseases: Immunological role of toll-like receptor 4. Genes Dis 2024; 11:101007. [PMID: 39238498 PMCID: PMC11375267 DOI: 10.1016/j.gendis.2023.04.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 09/07/2024] Open
Abstract
The immune responses play a profound role in the progression of lung lesions in both infectious and non-infectious diseases. Dendritic cells, as the "frontline" immune cells responsible for antigen presentation, set up a bridge between innate and adaptive immunity in the course of these diseases. Among the receptors equipped in dendritic cells, Toll-like receptors are a group of specialized receptors as one type of pattern recognition receptors, capable of sensing environmental signals including invading pathogens and self-antigens. Toll-like receptor 4, a pivotal member of the Toll-like receptor family, was formerly recognized as a receptor sensitive to the outer membrane component lipopolysaccharide derived from Gram-negative bacteria, triggering the subsequent response. Moreover, its other essential roles in immune responses have drawn significant attention in the past decade. A better understanding of the implication of Toll-like receptor 4 in dendritic cells could contribute to the management of pulmonary diseases including pneumonia, pulmonary tuberculosis, asthma, acute lung injury, and lung cancer.
Collapse
Affiliation(s)
- Shurui Xuan
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China
| | - Yuan Ma
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Honglei Zhou
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Shengwei Gu
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xin Yao
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiaoning Zeng
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
2
|
Rüterbusch MJ, Hondowicz BD, Takehara KK, Pruner KB, Griffith TS, Pepper M. Allergen exposure functionally alters influenza-specific CD4+ Th1 memory cells in the lung. J Exp Med 2023; 220:e20230112. [PMID: 37698553 PMCID: PMC10497397 DOI: 10.1084/jem.20230112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/11/2023] [Accepted: 08/22/2023] [Indexed: 09/13/2023] Open
Abstract
CD4+ lung-resident memory T cells (TRM) generated in response to influenza infection confer effective protection against subsequent viral exposures. Whether these cells can be altered by environmental antigens and cytokines released during heterologous, antigen-independent immune responses is currently unclear. We therefore investigated how influenza-specific CD4+ Th1 TRM in the lung are impacted by a subsequent Th2-inducing respiratory house dust mite (HDM) exposure. Although naïve influenza-specific CD4+ T cells in the lymph nodes do not respond to HDM, influenza-specific CD4+ TRM in the lungs do respond to a subsequent allergen exposure by decreasing expression of the transcription factor T-bet. This functional alteration is associated with decreased IFN-γ production upon restimulation and improved disease outcomes following heterosubtypic influenza challenge. Further investigation revealed that ST2 signaling in CD4+ T cells during allergic challenge is necessary to induce these changes in lung-resident influenza-specific CD4+ TRM. Thus, heterologous antigen exposure or ST2-signaling can drive persistent changes in CD4+ Th1 TRM populations and impact protection upon reinfection.
Collapse
Affiliation(s)
- Mikel J. Rüterbusch
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Brian D. Hondowicz
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Kennidy K. Takehara
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Kurt B. Pruner
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Thomas S. Griffith
- Department of Urology, University of Minnesota, Minneapolis, MN, USA
- Microbiology, Immunology, and Cancer Biology Ph.D. Program, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Marion Pepper
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
3
|
Wang M, Qu J, Yang J, Zhang T, Tan WR, Liao S, Chen X, Liu Y, Long X, Li X, Xia Y, Tan NS, Li L, Fang M. A missing jigsaw within the hygiene hypothesis: Low-dose bisphenol A exposure attenuates lipopolysaccharide-induced asthma protection. PNAS NEXUS 2023; 2:pgad312. [PMID: 37954159 PMCID: PMC10635653 DOI: 10.1093/pnasnexus/pgad312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 09/07/2023] [Indexed: 11/14/2023]
Abstract
The rising occurrence of allergic asthma in early life across industrialized countries suggests that environmental factors play a crucial role in determining asthma susceptibility and severity. While prior exposure to microbial lipopolysaccharides (LPSs) has been found to offer protection against allergic asthma, infants residing in urban environments are increasingly exposed to environmental pollutants. Utilizing limulus lysate test screens and virtual screening models, we identified pollutants that can modulate LPS bioactivity. This investigation revealed that bisphenol A (BPA), a chemical commonly used in numerous household items and previously implicated in obesity and cancer, effectively neutralizes LPS. In-depth mechanistic analyses showed that BPA specifically binds to the lipid A component of LPS, leading to inactivation. This interaction eliminates the immunostimulatory activity of LPS, making mice more susceptible to house dust mite (HDM)-induced allergic asthma. BPA reactivates lung epithelial cells, consequently amplifying type 2 responses to HDMs in dendritic cells. This chemical interplay provides new insights into the pathophysiology of asthma in relation to human exposure. Understanding the intricate relationships between environmental chemicals and microbial antigens, as well as their impacts on innate immunity, is critical for the development of intervention strategies to address immune disorders resulting from urbanization.
Collapse
Affiliation(s)
- Mengjing Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jing Qu
- Department of Pathogen Biology, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Junjie Yang
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Tian Zhang
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 639798, Singapore
| | - Wei Ren Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 639798, Singapore
| | - Shumin Liao
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xing Chen
- Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou 510632, China
| | - Yingzi Liu
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Xiang Long
- Department of Respiratory Medicine and Critical Care, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Xue Li
- Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou 510632, China
| | - Yun Xia
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 639798, Singapore
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 639798, Singapore
| | - Liang Li
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, Shenzhen 518055, China
| | - Mingliang Fang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
4
|
Barrett A, Humeniuk P, Drevinge C, Corciulo C, Weidner J, Rådinger M, Carlsten H, Scheffler JM, Islander U. Physiological estrogen levels are dispensable for the sex difference in immune responses during allergen-induced airway inflammation. Immunobiology 2023; 228:152360. [PMID: 36871362 DOI: 10.1016/j.imbio.2023.152360] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/01/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023]
Abstract
Women show an increased prevalence of adult-onset asthma compared to men and previous studies have shown that testosterone inhibits while estrogen worsens allergen-induced airway inflammation. However, detailed knowledge about the aggravating effects of estrogen on immune responses remain unclear. Defining the effects of physiological levels of estrogen on immune responses in asthma would aid in the development of improved treatment strategies. In this study, the importance of estrogen for the sex difference in asthma was determined using a murine model of house dust mite (HDM)-induced airway inflammation on intact female and male mice, as well as on ovariectomized (OVX) female mice treated with a physiological dose of 17β-estradiol (E2). Innate and adaptive immune responses were defined in bronchoalveolar lavage fluid, mediastinal lymph node (mLN) and lung tissue. The results reveal increased numbers of lung eosinophils, macrophages, and dendritic cells in female but not in male mice after HDM challenge. Females also exhibit higher numbers of Th17 cells in both mLN and lung in response to HDM. However, treatment of OVX mice with physiological levels of E2 does not influence any of the analyzed cell populations. Together, this study confirms the previously reported sex difference in allergen-induced airway inflammation and show that female mice mount stronger innate and adaptive immune responses to HDM challenge, but these effects are not mediated by physiological levels of E2.
Collapse
Affiliation(s)
- Aidan Barrett
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Piotr Humeniuk
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Christina Drevinge
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carmen Corciulo
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Julie Weidner
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Madeleine Rådinger
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hans Carlsten
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Julia M Scheffler
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ulrika Islander
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
5
|
Chen Z, Shang Y, Yuan Y, He Y, Wasti B, Duan W, Ouyang R, Jia J, Xiao B, Zhang D, Zhang X, Li J, Chen B, Liu Y, Zeng Q, Ji X, Ma L, Liu S, Xiang X. MBD2 mediates Th17 cell differentiation by regulating MINK1 in Th17-dominant asthma. Front Genet 2022; 13:959059. [PMID: 36303542 PMCID: PMC9592806 DOI: 10.3389/fgene.2022.959059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives: .Asthma is a highly heterogeneous disease, and T-helper cell type 17 (Th17) cells play a pathogenic role in the development of non-T2 severe asthma. Misshapen like kinase 1 (MINK1) is involved in the regulation of Th17 cell differentiation, but its effect on severe asthma remains unclear. Our previous studies showed that methyl-CpG binding domain protein 2 (MBD2) expression was significantly increased in patients with Th17 severe asthma and could regulate Th17 cell differentiation. The aim of this study was to investigate how MBD2 interacts with MINK1 to regulate Th17 cell differentiation in Th17-dominant asthma.Materials and methods: Female C57BL/6 mice and bronchial epithelial cells (BECs) were used to establish mouse and cell models of Th17-dominant asthma, respectively. Flow cytometry was used to detect Th17 cell differentiation, and the level of IL-17 was detected by enzyme-linked immunosorbent assay (ELISA). Western blot and quantitative real-time PCR (qRT-PCR) were used to detect MBD2 and MINK1 expression. To investigate the role of MBD2 and MINK1 in Th17 cell differentiation in Th17-dominant asthma, the MBD2 and MINK1 genes were silenced or overexpressed by small interfering RNA and plasmid transfection.Results: Mouse and BEC models of Th17-dominant asthma were established successfully. The main manifestations were increased neutrophils in BALF, airway hyperresponsiveness (AHR), activated Th17 cell differentiation, and high IL-17 levels. The expression of MBD2 in lung tissues and BECs from the Th17-dominant asthma group was significantly increased, while the corresponding expression of MINK1 was significantly impaired. Through overexpression or silencing of MBD2 and MINK1 genes, we have concluded that MBD2 and MINK1 regulate Th17 cell differentiation and IL-17 release. Interestingly, MBD2 was also found to negatively regulate the expression of MINK1.Conclusion: Our findings have revealed new roles for MBD2 and MINK1, and provide new insights into epigenetic regulation of Th17-dominant asthma, which is dominated by neutrophils and Th17 cells. This study could lead to new therapeutic targets for patients with Th17-dominant asthma.
Collapse
Affiliation(s)
- Zhifeng Chen
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yulin Shang
- Ophthalmology and Otorhinolaryngology, Zigui County Traditional Chinese Medicine Hospital, Zigui, Hubei, China
| | - Yu Yuan
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi He
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Binaya Wasti
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wentao Duan
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ruoyun Ouyang
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingsi Jia
- Department of Emergency, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bing Xiao
- Department of Emergency, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dongshan Zhang
- Department of Emergency, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiufeng Zhang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Jianmin Li
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People’s Hospital, Changsha, Hunan, China
| | - Bolin Chen
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People’s Hospital, Changsha, Hunan, China
| | - Yi Liu
- Department of Respiratory Medicine, Zhuzhou City Central Hospital, Zhuzhou, Hunan, China
| | - Qingping Zeng
- Department of Respiratory and Critical Care Medicine, Longshan County People’s Hospital, Longshan, Hunan, China
| | - Xiaoying Ji
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Libing Ma
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
- *Correspondence: Libing Ma, ; Shaokun Liu, ; Xudong Xiang,
| | - Shaokun Liu
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Libing Ma, ; Shaokun Liu, ; Xudong Xiang,
| | - Xudong Xiang
- Department of Emergency, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Libing Ma, ; Shaokun Liu, ; Xudong Xiang,
| |
Collapse
|
6
|
Coadministration of Stigmasterol and Dexamethasone (STIG+DEX) Modulates Steroid-Resistant Asthma. Mediators Inflamm 2022; 2022:2222270. [PMID: 36060927 PMCID: PMC9433298 DOI: 10.1155/2022/2222270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/25/2022] [Accepted: 07/24/2022] [Indexed: 11/18/2022] Open
Abstract
Airway inflammation in asthma is managed with anti-inflammatory steroids such as dexamethasone (DEX). However, about 20% of asthmatics do not respond to this therapy and are classified as steroid-resistant. Currently, no effective therapy is available for steroid-resistant asthma. This work therefore evaluated the effect of a plant sterol, stigmasterol (STIG), and stigmasterol-dexamethasone combination (STIG+DEX) in LPS-ovalbumin-induced steroid-resistant asthma in Guinea pigs. To do this, the effect of drugs on inflammatory features such as airway hyperreactivity and histopathology of lung tissue was evaluated. Additionally, the possible pathway of drug action was assessed by measuring events such neutrophil levels, oxidative and nitrative stress, and histone deacetylase 2 (HDAC2) and interleukin 17 (IL-17) levels. STIG alone did not affect inflammatory features, although it caused some changes in the molecular events associated with steroid-resistant asthma. However, STIG+DEX caused significant modulation of inflammatory features by protecting against destruction of lung tissue. The modulation of inflammatory features was associated with significant inhibition of neutrophilia and oxidative and nitrative stress, decrease in HDAC2, and increase in IL-17 levels that are usually associated with steroid-resistant asthma. Our findings show that although STIG and DEX individually do not protect against steroid-resistant asthma, their coadministration results in significant modulation of inflammatory features and the associated molecular events that lead to steroid-resistant asthma.
Collapse
|
7
|
Lipopolysaccharide from the Cyanobacterium Geitlerinema sp. Induces Neutrophil Infiltration and Lung Inflammation. Toxins (Basel) 2022; 14:toxins14040267. [PMID: 35448876 PMCID: PMC9024439 DOI: 10.3390/toxins14040267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022] Open
Abstract
Glucocorticoid-resistant asthma, which predominates with neutrophils instead of eosinophils, is an increasing health concern. One potential source for the induction of neutrophil-predominant asthma is aerosolized lipopolysaccharide (LPS). Cyanobacteria have recently caused significant tidal blooms, and aerosolized cyanobacterial LPS has been detected near the cyanobacterial overgrowth. We hypothesized that cyanobacterial LPS contributes to lung inflammation by increasing factors that promote lung inflammation and neutrophil recruitment. To test this hypothesis, c57Bl/6 mice were exposed intranasally to LPS from the cyanobacterium member, Geitlerinema sp., in vivo to assess neutrophil infiltration and the production of pro-inflammatory cytokines and chemokines from the bronchoalveolar fluid by ELISA. Additionally, we exposed the airway epithelial cell line, A549, to Geitlerinema sp. LPS in vitro to confirm that airway epithelial cells were stimulated by this LPS to increase cytokine production and the expression of the adhesion molecule, ICAM-1. Our data demonstrate that Geitlerinema sp. LPS induces lung neutrophil infiltration, the production of pro-inflammatory cytokines such as Interleukin (IL)-6, Tumor necrosis factor-alpha, and Interferongamma as well as the chemokines IL-8 and RANTES. Additionally, we demonstrate that Geitlerinema sp. LPS directly activates airway epithelial cells to produce pro-inflammatory cytokines and the adhesion molecule, Intercellular Adhesion Molecule-1 (ICAM-1), in vitro using the airway epithelial cell line, A549. Based on our findings that use Geitlerinema sp. LPS as a model system, the data indicate that cyanobacteria LPS may contribute to the development of glucocorticoid-resistant asthma seen near water sources that contain high levels of cyanobacteria.
Collapse
|
8
|
Jonckheere AC, Seys SF, Steelant B, Decaesteker T, Dekoster K, Cremer J, Dilissen E, Schols D, Iwakura Y, Vande Velde G, Breynaert C, Schrijvers R, Vanoirbeek J, Ceuppens JL, Dupont LJ, Bullens DMA. Innate Lymphoid Cells Are Required to Induce Airway Hyperreactivity in a Murine Neutrophilic Asthma Model. Front Immunol 2022; 13:849155. [PMID: 35371094 PMCID: PMC8965562 DOI: 10.3389/fimmu.2022.849155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/14/2022] [Indexed: 12/04/2022] Open
Abstract
Rationale Non-allergic asthma is driven by multiple endotypes of which neutrophilic and pauci-granulocytic asthma have been best established. However, it is still puzzling what drives inflammation and airway hyperreactivity (AHR) in these patients and how it can be treated effectively. Recently, a potential role of the innate immune system and especially the innate lymphoid cells (ILC) has been proposed. Objective In this study, we investigated the effects of LPS inhalation on airway inflammation and AHR as a potential model for elucidating the pathogenesis of non-allergic asthma. Methods Wild-type (BALB/c), SCID, IL-17A-/-, and Rag2-/- γC-/- mice were endonasally exposed to lipopolysaccharide (LPS, 2 µg) on four consecutive days. Twenty-four hours after the last exposure, AHR to methacholine was assessed. Cytokine levels and ILC subpopulations were determined in lung tissue. Cellular differential analysis was performed in BAL fluid. Main Results In this study, we developed a murine model for non-allergic neutrophilic asthma. We found that repeated endonasal applications of low-dose LPS in BALB/c mice led to AHR, BAL neutrophilia, and a significant increase in lung ILC3 as well as a significant increase in lung chemokines KC and MIP-2 and cytokines IL-1β, IL-17A, IL-22, and TNF. The adoptive transfer of ILC in Rag2-/- γC-/- mice showed that ILC played a causal role in the induction of AHR in this model. Antagonising IL-1β, but not IL-17A or neutrophils, resulted in a partial reduction in LPS-induced AHR. Conclusion In conclusion, we report here a murine model for neutrophilic asthma where ILC are required to induce airway hyperreactivity.
Collapse
Affiliation(s)
- Anne-Charlotte Jonckheere
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
| | - Sven F Seys
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
| | - Brecht Steelant
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
| | - Tatjana Decaesteker
- Department of Chronic Diseases, Metabolism and Ageing, Laboratory of Respiratory Diseases and Thoracic Surgery, KU Leuven, Leuven, Belgium
| | - Kaat Dekoster
- Department of Imaging and Pathology, Biomedical MRI Unit/Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, Leuven, Belgium
| | - Jonathan Cremer
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
| | - Ellen Dilissen
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
| | - Dominique Schols
- Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Yoichiro Iwakura
- Centre for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Greetje Vande Velde
- Department of Imaging and Pathology, Biomedical MRI Unit/Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, Leuven, Belgium
| | - Christine Breynaert
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
| | - Rik Schrijvers
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
| | - Jeroen Vanoirbeek
- Department of Public Health and Primary Care, Centre for Environment and Health, KU Leuven, Leuven, Belgium
| | - Jan L Ceuppens
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
| | - Lieven J Dupont
- Department of Chronic Diseases, Metabolism and Ageing, Laboratory of Respiratory Diseases and Thoracic Surgery, KU Leuven, Leuven, Belgium.,Clinical Division of Respiratory Medicine, UZ Leuven, Leuven, Belgium
| | - Dominique M A Bullens
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium.,Clinical Division of Paediatrics, UZ Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Yang L, Zheng Y, Miao YM, Yan WX, Geng YZ, Dai Y, Wei ZF. Bergenin, a PPARγ agonist, inhibits Th17 differentiation and subsequent neutrophilic asthma by preventing GLS1-dependent glutaminolysis. Acta Pharmacol Sin 2022; 43:963-976. [PMID: 34267342 PMCID: PMC8975945 DOI: 10.1038/s41401-021-00717-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023]
Abstract
Bergenin is a natural PPARγ agonist that can prevent neutrophil aggregation, and often be used in clinics for treating respiratory diseases. Recent data show that Th17 cells are important for neutrophil aggregation and asthma through secreting IL-17A. In this study, we investigated the effects of bergenin on Th17 differentiation in vitro and subsequent neutrophilic asthma in mice. Naïve T cells isolated from mouse mesenteric lymph nodes were treated with IL-23, TGF-β, and IL-6 to induce Th17 differentiation. We showed that in naïve T cells under Th17-polarizing condition, the addition of bergenin (3, 10, 30 μM) concentration-dependently decreased the percentage of CD4+ IL-17A+ T cells and mRNA expression of specific transcription factor RORγt, and function-related factors IL-17A/F, IL-21, and IL-22, but did not affect the cell vitality and apoptosis. Furthermore, bergenin treatment prevented GLS1-dependent glutaminolysis in the progress of Th17 differentiation, slightly affected the levels of SLC1A5, SLC38A1, GLUD1, GOT1, and GPT2. Glutamine deprivation, the addition of glutamate (1 mM), α-ketoglutarate (1 mM), or GLS1 plasmid all significantly attenuated the above-mentioned actions of bergenin. Besides, we demonstrated that bergenin (3, 10, and 30 μM) concentration-dependently activated PPARγ in naïve T cells, whereas PPARγ antagonist GW9662 and siPPARγ abolished bergenin-caused inhibition on glutaminolysis and Th17 differentiation. Furthermore, we revealed that bergenin inhibited glutaminolysis by regulating the level of CDK1, phosphorylation and degradation of Cdh1, and APC/C-Cdh1-mediated ubiquitin-proteasomal degradation of GLS1 after activating PPARγ. We demonstrated a correlation existing among bergenin-affected GLS1-dependent glutaminolysis, PPARγ, "CDK1-APC/C-Cdh1" signaling, and Th17 differentiation. Finally, the therapeutic effect and mechanisms for bergenin-inhibited Th17 responses and neutrophilic asthma were confirmed in a mouse model of neutrophilic asthma by administration of GW9662 or GLS1 overexpression plasmid in vivo. In conclusion, bergenin repressed Th17 differentiation and then alleviated neutrophilic asthma in mice by inhibiting GLS1-dependent glutaminolysis via regulating the "CDK1-APC/C-Cdh1" signaling after activating PPARγ.
Collapse
Affiliation(s)
- Ling Yang
- grid.254147.10000 0000 9776 7793Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Yun Zheng
- grid.254147.10000 0000 9776 7793Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Yu-meng Miao
- grid.254147.10000 0000 9776 7793Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Wen-xin Yan
- grid.254147.10000 0000 9776 7793Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Yan-zhi Geng
- grid.254147.10000 0000 9776 7793Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Yue Dai
- grid.254147.10000 0000 9776 7793Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Zhi-feng Wei
- grid.254147.10000 0000 9776 7793Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| |
Collapse
|
10
|
Zhang X, Xu Z, Wen X, Huang G, Nian S, Li L, Guo X, Ye Y, Yuan Q. The onset, development and pathogenesis of severe neutrophilic asthma. Immunol Cell Biol 2022; 100:144-159. [PMID: 35080788 DOI: 10.1111/imcb.12522] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/02/2021] [Accepted: 01/23/2022] [Indexed: 12/12/2022]
Abstract
Bronchial asthma is divided into Th2 high, Th2 low and mixed types. The Th2 high type is dominated by eosinophils while the Th2 low type is divided into neutrophilic and paucigranulocytic types. Eosinophilic asthma has gained increased attention recently, and its pathogenesis and treatment are well understood. However, severe neutrophilic asthma requires more in-depth research because its pathogenesis is not well understood, and no effective treatment exists. This review looks at the advances made in asthma research, the pathogenesis of neutrophilic asthma, the mechanisms of progression to severe asthma, risk factors for asthma exacerbations, and biomarkers and treatment of neutrophilic asthma. The pathogenesis of neutrophilic asthma is further discussed from four aspects: Th17-type inflammatory response, inflammasomes, exosomes and microRNAs. This review provides direction for the mechanistic study, diagnosis and treatment of neutrophilic asthma. The treatment of neutrophilic asthma remains a significant challenge for clinical therapists and is an important area of future clinical research.
Collapse
Affiliation(s)
- Xingli Zhang
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| | - Zixi Xu
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| | - Xue Wen
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Guoping Huang
- Zigong Hospital of Woman and Children Healthcare, Sichuan, China
| | - Siji Nian
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| | - Lin Li
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| | - Xiyuan Guo
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| | - Yingchun Ye
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| | - Qing Yuan
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
11
|
Hu RH, Wu CT, Wu TS, Yu FY, Ko JL, Lue KH, Liu YF. Systematic Characterization of the Group 2 House Dust Mite Allergen in Dermatophagoides microceras. Front Cell Infect Microbiol 2022; 11:793559. [PMID: 35111694 PMCID: PMC8801679 DOI: 10.3389/fcimb.2021.793559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/17/2021] [Indexed: 02/01/2023] Open
Abstract
BackgroundAllergic asthma, a chronic airway inflammatory disease, is a critical public health problem. Indoor house dust mites (HDMs) could cause allergic asthma. The prevalence of sensitization to Dermatophagoides microceras (Der m) was approximately 80% and is related to the immunoglobulin E crossing-reactivity of mites belonging to the same genus, Dermatophagoides pteronyssinus (Der p) and Dermatophagoides farina (Der f). However, studies on Der m are scant.MethodsWe used integrated OMICs approaches to identify and characterize the group 2 mite allergen-like protein in Der m (Der m 2). We established a Der m 2-induced allergic asthma mouse model and treated the mice with a fungal immunomodulatory protein (FIP-fve) isolated from Flammulina veluptipes to evaluate the allergenicity of Der m 2 and the immunomodulatory effects of FIP-fve.ResultsBy performing de novo draft genome assembly and comparative genome analysis, we identified the putative 144-amino acid Der m 2 in silico and further confirmed its existence through liquid chromatography–tandem mass spectrometry. Der m 2 is a lipopolysaccharides (LPS)-binding protein. Thus, we examined the LPS-binding activity of recombinant Der m 2 by performing molecular docking analysis, co-immunoprecipitation (Co-IP), and a pull-down assay. Der m 2 elicited the production of pro-inflammatory cytokines, interleukin (IL)-6, and IL-8 in BEAS-2B cells, a human bronchial epithelial cell line, and induced airway hyperresponsiveness in mice. Furthermore, in mice sensitized with Der m 2, the administration of FIP-fve in either the earlier stage or the late stage, FIP-fve alleviated allergic asthma by moderating airway inflammation and remodeling.ConclusionsDer m 2 induced inflammatory responses in cell and mouse models. FIP-fve alleviated inflammation in Der m 2-induced asthma in mice by exerting an immunomodulatory effect.
Collapse
Affiliation(s)
- Rei-Hsing Hu
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Chia-Ta Wu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Emergency Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Ting-Shuan Wu
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Feng-Yih Yu
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Jiunn-Liang Ko
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ko-Huang Lue
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Allergy, Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
- *Correspondence: Yu-Fan Liu, ; Ko-Huang Lue,
| | - Yu-Fan Liu
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
- Division of Allergy, Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
- *Correspondence: Yu-Fan Liu, ; Ko-Huang Lue,
| |
Collapse
|
12
|
Zhu H, Rollier CS, Pollard AJ. Recent advances in lipopolysaccharide-based glycoconjugate vaccines. Expert Rev Vaccines 2021; 20:1515-1538. [PMID: 34550840 DOI: 10.1080/14760584.2021.1984889] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION The public health burden caused by pathogenic Gram-negative bacteria is increasingly prominent due to antimicrobial resistance. The surface carbohydrates are potential antigens for vaccines against Gram-negative bacteria. The enhanced immunogenicity of the O-specific polysaccharide (O-SP) moiety of LPS when coupled to a carrier protein may protect against bacterial pathogens. However, because of the toxic lipid A moiety and relatively high costs of O-SP isolation, LPS has not been a popular vaccine antigen until recently. AREAS COVERED In this review, we discuss the rationales for developing LPS-based glycoconjugate vaccines, principles of glycoconjugate-induced immunity, and highlight the recent developments and challenges faced by LPS-based glycoconjugate vaccines. EXPERT OPINION Advances in LPS harvesting, LPS chemical synthesis, and newer carrier proteins in the past decade have propelled LPS-based glycoconjugate vaccines toward further development, through to clinical evaluation. The development of LPS-based glycoconjugates offers a new horizon for vaccine prevention of Gram-negative bacterial infection.
Collapse
Affiliation(s)
- Henderson Zhu
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the National Institute for Health Research (Nihr) Oxford Biomedical Research Centre, Oxford, UK
| | - Christine S Rollier
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the National Institute for Health Research (Nihr) Oxford Biomedical Research Centre, Oxford, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the National Institute for Health Research (Nihr) Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
13
|
Georas SN. Inhaled Adjuvants and Eosinophilic Airway Inflammation in Asthma: Is a Little Bit of Lipopolysaccharide the Key to Allergen Sensitization? THE JOURNAL OF IMMUNOLOGY 2021; 207:1699-1701. [PMID: 34544811 DOI: 10.4049/jimmunol.2100542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Steve N Georas
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
14
|
Hong MH, Kashif A, Kim G, Park BS, Lee NR, Yang EJ, Mun JY, Choi H, Kim SH, Kim HJ, Lee SJ, Lee JS, Hong Y, Kim IS. Der p 38 Is a Bidirectional Regulator of Eosinophils and Neutrophils in Allergy. THE JOURNAL OF IMMUNOLOGY 2021; 207:1735-1746. [PMID: 34462314 DOI: 10.4049/jimmunol.2001144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 06/17/2021] [Indexed: 11/19/2022]
Abstract
The house dust mite is the most common cause of allergic diseases, and TLR4 acts as an overarching receptor for allergic responses. This study aimed to identify novel allergen binding to TLR4 in house dust mites and unveil its unique role in allergic responses. Der p 38 was purified and characterized by liquid chromatography tandem mass spectrometry-based peptide mapping. Biolayer interferometry and structure modeling unveiled TLR4-binding activity and the structure of recombinant Der p 38. The allergenicity of Der p 38 was confirmed by a skin prick test, and basophil activation and dot blot assays. The skin prick test identified 24 out of 45 allergic subjects (53.3%) as Der p 38+ subjects. Der p 38-augmented CD203c expression was noted in the basophils of Der p 38+ allergic subjects. In animal experiments with wild-type and TLR4 knockout BALB/c mice, Der p 38 administration induced the infiltration of neutrophils as well as eosinophils and exhibited clinical features similar to asthma via TLR4 activation. Persistent Der p 38 administration induced severe neutrophil inflammation. Der p 38 directly suppressed the apoptosis of allergic neutrophils and eosinophils, and enhanced cytokine production in human bronchial epithelial cells, inhibiting neutrophil apoptosis. The mechanisms involved TLR4, LYN, PI3K, AKT, ERK, and NF-κB. These findings may contribute to a deep understanding of Der p 38 as a bridge allergen between eosinophilic and neutrophilic inflammation in the pathogenic mechanisms of allergy.
Collapse
Affiliation(s)
- Min Hwa Hong
- Department of Senior Healthcare, Eulji University, Uijeongbu, Republic of Korea
| | - Ayesha Kashif
- Department of Senior Healthcare, Eulji University, Uijeongbu, Republic of Korea
| | - Geunyeong Kim
- Department of Senior Healthcare, Eulji University, Uijeongbu, Republic of Korea
| | - Beom Seok Park
- Department of Senior Healthcare, Eulji University, Uijeongbu, Republic of Korea.,Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Seongnam, Republic of Korea
| | - Na Rae Lee
- Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Uijeongbu, Republic of Korea
| | - Eun Ju Yang
- Department of Clinical Laboratory Science, Daegu Haany University, Gyeongsan, Republic of Korea
| | - Ji Young Mun
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Hyosun Choi
- Department of Senior Healthcare, Eulji University, Uijeongbu, Republic of Korea.,Neural Circuit Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Sang-Hoon Kim
- Department of Internal Medicine, School of Medicine, Eulji University, Daejeon, Republic of Korea
| | - Hyun Jik Kim
- Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soo Jin Lee
- Department of Pediatrics, School of Medicine, Eulji University, Daejeon, Republic of Korea; and
| | - Ji-Sook Lee
- Department of Clinical Laboratory Science, Wonkwang Health Science University, Iksan, Republic of Korea
| | - Yujin Hong
- Department of Senior Healthcare, Eulji University, Uijeongbu, Republic of Korea.,Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Uijeongbu, Republic of Korea
| | - In Sik Kim
- Department of Senior Healthcare, Eulji University, Uijeongbu, Republic of Korea; .,Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Uijeongbu, Republic of Korea
| |
Collapse
|
15
|
Ma Q, Qian Y, Jiang J, Wu J, Song M, Li X, Chen Z, Wang Z, Zhu R, Sun Z, Huang M, Ji N, Zhang M. IL-33/ST2 axis deficiency exacerbates neutrophil-dominant allergic airway inflammation. Clin Transl Immunology 2021; 10:e1300. [PMID: 34178329 PMCID: PMC8207976 DOI: 10.1002/cti2.1300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 04/30/2021] [Accepted: 05/27/2021] [Indexed: 02/01/2023] Open
Abstract
Objective The IL‐33/ST2 axis has been extensively investigated in type 2 eosinophilic inflammation. Here, we aimed to investigate the role of the IL‐33/ST2 axis in neutrophil‐dominant allergic airway inflammation. Methods House‐dust mite (HDM) extract and lipopolysaccharide (LPS) were administered to establish a murine model of neutrophil‐dominant allergic airway inflammation. The formation of neutrophilic extracellular traps (NETs) in the lung tissues was demonstrated by immunofluorescence imaging. Mature IL‐33 in bronchoalveolar lavage fluid (BALF) was detected by Western blotting. The neutrophilic chemokine KC produced by bone marrow‐derived macrophages (BMDMs) or primary alveolar epithelial cells was measured with a commercial ELISA kit. Results In the present study, we observed neutrophilic inflammation and tight junction damage in the lungs of mice sensitised with HDM and LPS. Furthermore, sensitisation with HDM and LPS resulted in the formation of NETs, accompanied by increased levels of mature IL‐33 in the BALF. Moreover, LPS damaged the epithelial tight junction protein occludin directly or indirectly by inducing NET formation. Surprisingly, IL‐33 deficiency augmented neutrophilia and epithelial barrier injury in the lungs of mice after sensitisation with HDM and LPS. Similarly, the absence of ST2 exacerbated the neutrophilic inflammatory response, decreased the expression of occludin and exacerbated the severity of neutrophil‐dominant allergic airway inflammation in an HDM/LPS‐induced mouse model. Mechanistically, BMDMs and alveolar epithelial cells from IL‐33‐ or ST2‐deficient mice tended to produce higher levels of the neutrophilic chemokine KC. Conclusions These results demonstrated that the IL‐33/ST2 axis may play a protective role in neutrophil‐dominant allergic airway inflammation.
Collapse
Affiliation(s)
- Qiyun Ma
- Department of Respiratory and Critical Care Medicine The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Yan Qian
- Department of Respiratory and Critical Care Medicine The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Jingxian Jiang
- Department of Respiratory and Critical Care Medicine The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Jingjing Wu
- Department of Respiratory and Critical Care Medicine The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Meijuan Song
- Department of Respiratory and Critical Care Medicine The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Xinyu Li
- NHC Key Laboratory of Antibody Technique Jiangsu Key Laboratory of Pathogen Biology Department of Immunology Nanjing Medical University Nanjing China
| | - Zhongqi Chen
- Department of Respiratory and Critical Care Medicine The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Zhengxia Wang
- Department of Respiratory and Critical Care Medicine The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Ranran Zhu
- Department of Respiratory and Critical Care Medicine The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Zhixiao Sun
- Department of Respiratory and Critical Care Medicine The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Mao Huang
- Department of Respiratory and Critical Care Medicine The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Ningfei Ji
- Department of Respiratory and Critical Care Medicine The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Mingshun Zhang
- NHC Key Laboratory of Antibody Technique Jiangsu Key Laboratory of Pathogen Biology Department of Immunology Nanjing Medical University Nanjing China
| |
Collapse
|
16
|
Reece SW, Varikuti S, Kilburg-Basnyat B, Dunigan-Russell K, Hodge MX, Luo B, Madenspacher JH, Thomas SY, Tokarz DA, Tighe RM, Cook DN, Fessler MB, Gowdy KM. Scavenger Receptor BI Attenuates IL-17A-Dependent Neutrophilic Inflammation in Asthma. Am J Respir Cell Mol Biol 2021; 64:698-708. [PMID: 33647226 PMCID: PMC8456883 DOI: 10.1165/rcmb.2020-0007oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/26/2021] [Indexed: 12/20/2022] Open
Abstract
Asthma is a common respiratory disease currently affecting more than 300 million worldwide and is characterized by airway inflammation, hyperreactivity, and remodeling. It is a heterogeneous disease consisting of corticosteroid-sensitive T-helper cell type 2-driven eosinophilic and corticosteroid-resistant, T-helper cell type 17-driven neutrophilic phenotypes. One pathway recently described to regulate asthma pathogenesis is cholesterol trafficking. Scavenger receptors, in particular SR-BI (scavenger receptor class B type I), are known to direct cellular cholesterol uptake and efflux. We recently defined SR-BI functions in pulmonary host defense; however, the function of SR-BI in asthma pathogenesis is unknown. To elucidate the role of SR-BI in allergic asthma, SR-BI-sufficient (SR-BI+/+) and SR-BI-deficient (SR-BI-/-) mice were sensitized (Days 0 and 7) and then challenged (Days 14, 15, and 16) with a house dust mite (HDM) preparation administered through oropharyngeal aspiration. Airway inflammation and cytokine production were quantified on Day 17. When compared with SR-BI+/+ mice, the HDM-challenged SR-BI-/- mice had increased neutrophils and pulmonary IL-17A production in BAL fluid. This augmented IL-17A production in SR-BI-/- mice originated from a non-T-cell source that included neutrophils and alveolar macrophages. Given that SR-BI regulates adrenal steroid hormone production, we tested whether the changes in SR-BI-/- mice were glucocorticoid dependent. Indeed, SR-BI-/- mice were adrenally insufficient during the HDM challenge, and corticosterone replacement decreased pulmonary neutrophilia and IL-17A production in SR-BI-/- mice. Taken together, these data indicate that SR-BI dampens pulmonary neutrophilic inflammation and IL-17A production in allergic asthma at least in part by maintaining adrenal function.
Collapse
Affiliation(s)
- Sky W. Reece
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Sanjay Varikuti
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Brita Kilburg-Basnyat
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Katelyn Dunigan-Russell
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Myles X. Hodge
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Bin Luo
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Jennifer H. Madenspacher
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Seddon Y. Thomas
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Debra A. Tokarz
- Center for Human Health and the Environment, Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina; and
| | - Robert M. Tighe
- Department of Medicine, Duke University, Durham, North Carolina
| | - Donald N. Cook
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Michael B. Fessler
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Kymberly M. Gowdy
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
17
|
Leukotriene B 4 Receptors Are Necessary for the Stimulation of NLRP3 Inflammasome and IL-1β Synthesis in Neutrophil-Dominant Asthmatic Airway Inflammation. Biomedicines 2021; 9:biomedicines9050535. [PMID: 34064821 PMCID: PMC8151312 DOI: 10.3390/biomedicines9050535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 11/17/2022] Open
Abstract
The stimulation of the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome and IL-1β synthesis are associated with chronic respiratory diseases such as neutrophil-dominant severe asthma. Leukotriene B4 (LTB4) is a principal chemoattractant molecule for neutrophil recruitment, and its receptors BLT1 and BLT2 have been suggested to contribute to neutrophil-dominant asthmatic airway inflammation. However, the relationship between BLT1/2 and NLRP3 in neutrophil-dominant asthmatic airway inflammation has not been previously studied. In the present study, we investigated whether BLT1/2 play any roles in stimulating the NLRP3 inflammasome and IL-1βsynthesis. The blockade of BLT1 or BLT2 clearly suppressed the stimulation of the NLRP3 inflammasome and IL-1β synthesis in house dust mite (HDM)/lipopolysaccharide (LPS)-induced neutrophilic airway inflammation. The enzymes 5-lipoxygenase and 12-lipoxygenase, which catalyze the synthesis of BLT1/2 ligands [LTB4, 12(S)-hydroxyeicosatetraenoic acid (12(S)-HETE), and 12-hydroxyheptadecatreinoic acid (12-HHT)], were also critically associated with the stimulation of NLRP3 and IL-1β synthesis. Together, our results suggest that the 5-/12-LOX-BLT1/2-linked cascade are necessary for the simulation of the NLRP3 inflammasome and IL-1β synthesis, thus contributing to HDM/LPS-induced neutrophil-dominant airway inflammation.
Collapse
|
18
|
Miao Y, Zheng Y, Geng Y, Yang L, Cao N, Dai Y, Wei Z. The role of GLS1-mediated glutaminolysis/2-HG/H3K4me3 and GSH/ROS signals in Th17 responses counteracted by PPARγ agonists. Theranostics 2021; 11:4531-4548. [PMID: 33754076 PMCID: PMC7977454 DOI: 10.7150/thno.54803] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
Background: Peroxisome proliferator-activated receptor gamma (PPARγ) has the ability to counter Th17 responses, but the full mechanisms remain elusive. Herein, we aimed to elucidate this process in view of cellular metabolism, especially glutaminolysis. Methods: MTT, CCK-8, Annexin V-FITC/PI staining or trypan blue exclusion assays were used to analyze cytotoxicity. Flow cytometry and Q-PCR assays were applied to determine Th17 responses. The detection of metabolite levels using commercial kits and rate-limiting enzyme expression using western blotting assays was performed to illustrate the metabolic activity. ChIP assays were used to examine H3K4me3 modifications. Mouse models of dextran sulfate sodium (DSS)-induced colitis and house dust mite (HDM)/lipopolysaccharide (LPS)-induced asthma were established to confirm the mechanisms studied in vitro. Results: The PPARγ agonists rosiglitazone and pioglitazone blocked glutaminolysis but not glycolysis under Th17-skewing conditions, as indicated by the detection of intracellular lactate and α-KG and the fluorescence ratios of BCECF-AM. The PPARγ agonists prevented the utilization of glutamine and thus directly limited Th17 responses even when Foxp3 was deficient. The mechanisms were ascribed to restricted conversion of glutamine to glutamate by reducing the expression of the rate-limiting enzyme GLS1, which was confirmed by GLS1 overexpression. Replenishment of α-KG and 2-HG but not succinate weakened the effects of PPARγ agonists, and α-KG-promoted Th17 responses were dampened by siIDH1/2. Inhibition of KDM5 but not KDM4/6 restrained the inhibitory effect of PPARγ agonists on IL-17A expression, and the H3K4me3 level in the promoter and CNS2 region of the il-17 gene locus down-regulated by PPARγ agonists was rescued by 2-HG and GLS1 overexpression. However, the limitation of PPARγ agonists on the mRNA expression of RORγt was unable to be stopped by 2-HG but was attributed to GSH/ROS signals subsequent to GLS1. The exact role of PPARγ was proved by GW9662 or PPARγ knockout, and the mechanisms for PPARγ-inhibited Th17 responses were further confirmed by GLS1 overexpression in vivo. Conclusion: PPARγ agonists repressed Th17 responses by counteracting GLS1-mediated glutaminolysis/2-HG/H3K4me3 and GSH/ROS signals, which is beneficial for Th17 cell-related immune dysregulation.
Collapse
|
19
|
Ramirez-Moral I, Blok DC, Bernink JH, Garcia-Laorden MI, Florquin S, Boon L, Van't Veer C, Mack M, Saluzzo S, Knapp S, Spits H, de Vos AF, van der Poll T. Interleukin-33 improves local immunity during Gram-negative pneumonia by a combined effect on neutrophils and inflammatory monocytes. J Pathol 2021; 253:374-383. [PMID: 33305354 PMCID: PMC7986604 DOI: 10.1002/path.5601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 10/30/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
Pneumonia represents a major health care burden and Gram‐negative bacteria provide an increasing therapeutic challenge at least in part through the emergence of multidrug‐resistant strains. IL‐33 is a multifunctional cytokine belonging to the IL‐1 family that can affect many different cell types. We sought here to determine the effect of recombinant IL‐33 on the host response during murine pneumonia caused by the common Gram‐negative pathogen Klebsiella pneumoniae. IL‐33 pretreatment prolonged survival for more than 1 day during lethal airway infection and decreased bacterial loads at the primary site of infection and distant organs. Postponed treatment with IL‐33 (3 h) also reduced bacterial growth and dissemination. IL‐33‐mediated protection was not observed in mice deficient for the IL‐33 receptor component IL‐1 receptor‐like 1. IL‐33 induced a brisk type 2 response, characterized by recruitment of type 2 innate lymphoid cells to the lungs and enhanced release of IL‐5 and IL‐13. However, neither absence of innate lymphoid cells or IL‐13, nor blocking of IL‐5 impacted on IL‐33 effects in mice infected with Klebsiella. Likewise, IL‐33 remained effective in reducing bacterial loads in mice lacking B, T, and natural killer T cells. Experiments using antibody‐mediated cell depletion indicated that neutrophils and inflammatory monocytes were of importance for antibacterial defense. The capacity of IL‐33 to restrict bacterial growth in the lungs was strongly reduced in mice depleted of both neutrophils and inflammatory monocytes, but not in mice selectively depleted of either one of these cell types. These results suggest that IL‐33 boosts host defense during bacterial pneumonia by a combined effect on neutrophils and inflammatory monocytes. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Ivan Ramirez-Moral
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Dana C Blok
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jochem H Bernink
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - M Isabel Garcia-Laorden
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Sandrine Florquin
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Cornelis Van't Veer
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Matthias Mack
- Department of Internal Medicine II - Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Simona Saluzzo
- Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Medicine I, Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria
| | - Sylvia Knapp
- Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Medicine I, Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria
| | - Hergen Spits
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Alex F de Vos
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Tom van der Poll
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Division of Infectious Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Wang L, Netto KG, Zhou L, Liu X, Wang M, Zhang G, Foster PS, Li F, Yang M. Single-cell transcriptomic analysis reveals the immune landscape of lung in steroid-resistant asthma exacerbation. Proc Natl Acad Sci U S A 2021; 118:e2005590118. [PMID: 33397719 PMCID: PMC7812791 DOI: 10.1073/pnas.2005590118] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Exaggerated airway hyperresponsiveness and inflammation are hallmarks of asthma, and lipopolysaccharide (LPS) exposure is linked to the severity of the disease and steroid resistance. To investigate the mechanisms underlying asthma exacerbation, we established a mouse model of LPS-induced steroid-resistant exacerbation on the background of house dust mite (HDM)-induced asthma to profile the immune cells in lung by using single-cell RNA deep sequencing. Twenty immune subsets were identified by their molecular and functional properties. Specific cell clusters of basophils, type 2 innate lymphoid cells (ILC2), and CD8+ memory T cells were the predominant sources of interleukin (IL)-4 and IL-13 transcripts whose expressions were dexamethasone resistant. Production of IL-13 by these cells was validated by IL-13-reporter mice. Neutralization of IL-13 abolished HDM/LPS-induced airway hyperresponsiveness, airway inflammation, and decreased mucus hypersecretion. Furthermore, using Ingenuity Pathway Analysis systems, we identified canonical pathways and upstream regulators that regulate the activation of basophils, ILC2, and CD8+ memory T cells. Our study provides mechanistic insights and an important reference resource for further understanding of the immune landscape during asthma exacerbation.
Collapse
Affiliation(s)
- Lingli Wang
- Academy of Medical Sciences, Zhengzhou University, 450052 Zhengzhou, Henan, China
- Department of Immunology, College of Basic Medical Sciences, Zhengzhou University, 450052 Zhengzhou, Henan, China
| | - Keilah G Netto
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences & Pharmacy, Faculty of Health and Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2300, Australia
| | - Lujia Zhou
- Academy of Medical Sciences, Zhengzhou University, 450052 Zhengzhou, Henan, China
- Department of Immunology, College of Basic Medical Sciences, Zhengzhou University, 450052 Zhengzhou, Henan, China
| | - Xiaojie Liu
- Academy of Medical Sciences, Zhengzhou University, 450052 Zhengzhou, Henan, China
- Department of Immunology, College of Basic Medical Sciences, Zhengzhou University, 450052 Zhengzhou, Henan, China
| | - Ming Wang
- Medical Research Centre, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, 450052 Zhengzhou, Henan, China
| | - Guojun Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, 450052 Zhengzhou, Henan, China
| | - Paul S Foster
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences & Pharmacy, Faculty of Health and Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2300, Australia
| | - Fuguang Li
- Academy of Medical Sciences, Zhengzhou University, 450052 Zhengzhou, Henan, China;
- Department of Immunology, College of Basic Medical Sciences, Zhengzhou University, 450052 Zhengzhou, Henan, China
| | - Ming Yang
- Academy of Medical Sciences, Zhengzhou University, 450052 Zhengzhou, Henan, China;
- Department of Immunology, College of Basic Medical Sciences, Zhengzhou University, 450052 Zhengzhou, Henan, China
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences & Pharmacy, Faculty of Health and Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2300, Australia
| |
Collapse
|
21
|
Munford RS, Weiss JP, Lu M. Biochemical transformation of bacterial lipopolysaccharides by acyloxyacyl hydrolase reduces host injury and promotes recovery. J Biol Chem 2020; 295:17842-17851. [PMID: 33454018 DOI: 10.1074/jbc.rev120.015254] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/22/2020] [Indexed: 12/26/2022] Open
Abstract
Animals can sense the presence of microbes in their tissues and mobilize their own defenses by recognizing and responding to conserved microbial structures (often called microbe-associated molecular patterns (MAMPs)). Successful host defenses may kill the invaders, yet the host animal may fail to restore homeostasis if the stimulatory microbial structures are not silenced. Although mice have many mechanisms for limiting their responses to lipopolysaccharide (LPS), a major Gram-negative bacterial MAMP, a highly conserved host lipase is required to extinguish LPS sensing in tissues and restore homeostasis. We review recent progress in understanding how this enzyme, acyloxyacyl hydrolase (AOAH), transforms LPS from stimulus to inhibitor, reduces tissue injury and death from infection, prevents prolonged post-infection immunosuppression, and keeps stimulatory LPS from entering the bloodstream. We also discuss how AOAH may increase sensitivity to pulmonary allergens. Better appreciation of how host enzymes modify LPS and other MAMPs may help prevent tissue injury and hasten recovery from infection.
Collapse
Affiliation(s)
- Robert S Munford
- Laboratory of Clinical Immunology and Microbiology, NIAID, National Institutes of Health, Bethesda, Maryland, USA.
| | - Jerrold P Weiss
- Inflammation Program, University of Iowa, Iowa City, Iowa, USA
| | - Mingfang Lu
- Department of Immunology and Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
22
|
Pascoe CD, Jha A, Basu S, Mahood T, Lee A, Hinshaw S, Falsafi R, Hancock REW, Mookherjee N, Halayko AJ. The importance of reporting house dust mite endotoxin abundance: impact on the lung transcriptome. Am J Physiol Lung Cell Mol Physiol 2020; 318:L1229-L1236. [PMID: 32320279 DOI: 10.1152/ajplung.00103.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The abundance of lipopolysaccharide (LPS) in house dust mite (HDM) preparations is broad and mirrors the variability seen in the homes of people with asthma. LPS in commercially available stocks ranges from 31 to 5,2000 endotoxin units. The influence of vastly different LPS loads on the mechanisms that define the immune and inflammatory phenotype of HDM-challenged mice has not been defined. This aim of the study was to understand the lung phenotype of mice challenged with HDM extract containing high or low levels of LPS. Female BALB/c mice were sensitized for 2 wk with commercial HDM extract containing either high (36,000 endotoxin units; HHDM) or low (615 endotoxin units; LHDM) levels of LPS. Lung phenotype was characterized by measuring lung function, total and differential cell counts, cytokine abundance, and the lung transcriptome by RNA-sequencing. LPS levels in HDM stocks used for preclinical asthma research in mice remain poorly reported. In 2019, only 14% of papers specified LPS concentration in HDM lots. Specific differences existed in airway responsiveness between mice challenged with HHDM or LHDM. HHDM- and LHDM-induced cytokine profiles of bronchial lavage were significantly different and the lung transcriptome was differentially enriched for genes involved in DNA damage repair or cilium movement, following HHDM or LHDM challenge, respectively. The abundance of LPS in commercially available HDM influences the phenotype of allergic airways inflammation in mice. Failure to report the level of LPS in HDM extracts used in animal models of airway disease will lead to inconsistency in reproducibility and reliability of published data.
Collapse
Affiliation(s)
- Christopher D Pascoe
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.,Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Aruni Jha
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.,Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Sujata Basu
- Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Thomas Mahood
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.,Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Amy Lee
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sam Hinshaw
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Reza Falsafi
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Neeloffer Mookherjee
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, Winnipeg, Manitoba, Canada.,Department of Immunology University of Manitoba, Winnipeg, Manitoba, Canada
| | - Andrew J Halayko
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.,Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
23
|
Bachus H, Kaur K, Papillion AM, Marquez-Lago TT, Yu Z, Ballesteros-Tato A, Matalon S, León B. Impaired Tumor-Necrosis-Factor-α-driven Dendritic Cell Activation Limits Lipopolysaccharide-Induced Protection from Allergic Inflammation in Infants. Immunity 2019; 50:225-240.e4. [PMID: 30635238 DOI: 10.1016/j.immuni.2018.11.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 08/16/2018] [Accepted: 11/05/2018] [Indexed: 12/15/2022]
Abstract
Infants have a higher risk of developing allergic asthma than adults. However, the underlying mechanism remains unknown. We show here that sensitization of mice with house-dust mites (HDMs) in the presence of low-dose lipopolysaccharide (LPS) prevented T helper 2 (Th2) cell allergic responses in adult, but not infant, mice. Mechanistically, adult CD11b+ migratory dendritic cells (mDCs) upregulated the transcription factor T-bet in response to tumor necrosis factor-α (TNF-α), which was rapidly induced after HDM + LPS sensitization. Consequently, adult CD11b+ mDCs produced interleukin-12 (IL-12), which prevented Th2 cell development by promoting T-bet upregulation in responding T cells. Conversely, infants failed to induce TNF-α after HDM + LPS sensitization. Therefore, CD11b+ mDCs failed to upregulate T-bet and did not secrete IL-12 and Th2 cell responses normally developed in infant mice. Thus, the availability of TNF-α dictates the ability of CD11b+ mDCs to suppress allergic Th2-cell responses upon dose-dependent endotoxin sensitization and is a key mediator governing susceptibility to allergic airway inflammation in infant mice.
Collapse
Affiliation(s)
- Holly Bachus
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kamaljeet Kaur
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amber M Papillion
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Zhihong Yu
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - André Ballesteros-Tato
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sadis Matalon
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Beatriz León
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
24
|
Momtazi G, Lambrecht BN, Naranjo JR, Schock BC. Regulators of A20 (TNFAIP3): new drug-able targets in inflammation. Am J Physiol Lung Cell Mol Physiol 2018; 316:L456-L469. [PMID: 30543305 DOI: 10.1152/ajplung.00335.2018] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Persistent activation of the transcription factor Nuclear factor-κB (NF-κB) is central to the pathogenesis of many inflammatory disorders, including those of the lung such as cystic fibrosis (CF), asthma, and chronic obstructive pulmonary disease (COPD). Despite recent advances in treatment, management of the inflammatory component of these diseases still remains suboptimal. A20 is an endogenous negative regulator of NF-κB signaling, which has been widely described in several autoimmune and inflammatory disorders and more recently in terms of chronic lung disorders. However, the underlying mechanism for the apparent lack of A20 in CF, COPD, and asthma has not been investigated. Transcriptional regulation of A20 is complex and requires coordination of different transcription factors. In this review we examine the existing body of research evidence on the regulation of A20, concentrating on pulmonary inflammation. Special focus is given to the repressor downstream regulatory element antagonist modulator (DREAM) and its nuclear and cytosolic action to regulate inflammation. We provide evidence that would suggest the A20-DREAM axis to be an important player in (airway) inflammatory responses and point to DREAM as a potential future therapeutic target for the modification of phenotypic changes in airway inflammatory disorders. A schematic summary describing the role of DREAM in inflammation with a focus on chronic lung diseases as well as the possible consequences of altered DREAM expression on immune responses is provided.
Collapse
Affiliation(s)
- G Momtazi
- Centre for Experimental Medicine, Queen's University of Belfast , Belfast , United Kingdom
| | - B N Lambrecht
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - J R Naranjo
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas), Instituto de Salud Carlos III, Madrid, Spain.,National Biotechnology Center, Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| | - B C Schock
- Centre for Experimental Medicine, Queen's University of Belfast , Belfast , United Kingdom
| |
Collapse
|
25
|
Xu L, Sun WJ, Jia AJ, Qiu LL, Xiao B, Mu L, Li JM, Zhang XF, Wei Y, Peng C, Zhang DS, Xiang XD. MBD2 regulates differentiation and function of Th17 cells in neutrophils- dominant asthma via HIF-1α. JOURNAL OF INFLAMMATION-LONDON 2018; 15:15. [PMID: 30150897 PMCID: PMC6102869 DOI: 10.1186/s12950-018-0191-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/07/2018] [Indexed: 01/18/2023]
Abstract
Background T helper 17 (Th17) cells have proven to be crucial in the pathogenesis of neutrophils-dominant asthma. Hypoxia inducible factor-1α (HIF-1α) is involved in allergic responses in asthma. Our previous studies indicated that Methtyl-CpG binding domain protein 2 (MBD2) expression was increased in asthma patients. The aim of the present study is to understand how MBD2 interacts with HIF-1α to regulate Th17 cell differentiation and IL-17 expression in neutrophils-dominant asthma. Methods A neutrophils-dominant asthma mouse model was established using female C57BL/6 mice to investigate Th17 cell differentiation and MBD2 and HIF-1α expression regulation using flow cytometry, western blot or qRT-PCR. MBD2 and HIF-1α genes were silenced or overexpressed through lentiviral transduction to explore the roles of MBD2 in Th17 cell differentiation and IL-17 release in neutrophils-dominant asthma. Results A neutrophilic inflammatory asthma phenotype model was established successfully. This was characterized by airway hyperresponsiveness (AHR), increased BALF neutrophil granulocytes, activated Th17 cell differentiation, and high IL-17 levels. MBD2 and HIF-1α expression were significantly increased in the lung and spleen cells of mice with neutrophils-dominant asthma. Through overexpression or silencing of MBD2 and HIF-1α genes, we have concluded that MBD2 and HIF-1α regulate Th17 cell differentiation and IL-17 secretion. Moreover, MBD2 was also found to regulate HIF-1α expression. Conclusions Our findings have uncovered new roles for MBD2 and HIF-1α, and provide novel insights into the epigenetic regulation of neutrophils-dominant asthma. Electronic supplementary material The online version of this article (10.1186/s12950-018-0191-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Li Xu
- 1Department of the Second Thoracic Medicine, The Affiliated Cancer Hospital of Xiangya School of Medicine and Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, Changsha, 410006 Hunan China
| | - Wen J Sun
- 2Department of Respiratory Medicine, Hunan Centre for Evidence-based Medicine, Research Unit of Respiratory Diseases, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011 Hunan China
| | - Ai J Jia
- 2Department of Respiratory Medicine, Hunan Centre for Evidence-based Medicine, Research Unit of Respiratory Diseases, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011 Hunan China
| | - Lu L Qiu
- 2Department of Respiratory Medicine, Hunan Centre for Evidence-based Medicine, Research Unit of Respiratory Diseases, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011 Hunan China
| | - Bing Xiao
- 3Department of Emergency, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011 People's Republic of China
| | - Lin Mu
- 2Department of Respiratory Medicine, Hunan Centre for Evidence-based Medicine, Research Unit of Respiratory Diseases, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011 Hunan China.,4Department of Respiratory Medicine, Peace Hospital, Changzhi Medical College, Changzhi, 046000 Shanxi China
| | - Jian M Li
- 2Department of Respiratory Medicine, Hunan Centre for Evidence-based Medicine, Research Unit of Respiratory Diseases, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011 Hunan China.,5Department of Respiratory Medicine, Hunan Provincial People's Hospital, 61 West Jiefang Road, Changsha, 410005 Hunan China
| | - Xiu F Zhang
- 2Department of Respiratory Medicine, Hunan Centre for Evidence-based Medicine, Research Unit of Respiratory Diseases, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011 Hunan China.,6Department of Respiratory Medicine, The Second Hospital, University of South China, 30 Jiefang Road, Hengyang, 421001 Hunan China
| | - Yan Wei
- Department of Respiratory, The First Hospital of Guangyuan City, 490 Juguo Road, Guangyuan, 628000 Sichuan China
| | - Cong Peng
- 8Dermatology and Venereology Department, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan China
| | - Dong S Zhang
- 3Department of Emergency, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011 People's Republic of China
| | - Xu D Xiang
- 3Department of Emergency, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011 People's Republic of China
| |
Collapse
|
26
|
Qian G, Jiang W, Zou B, Feng J, Cheng X, Gu J, Chu T, Niu C, He R, Chu Y, Lu M. LPS inactivation by a host lipase allows lung epithelial cell sensitization for allergic asthma. J Exp Med 2018; 215:2397-2412. [PMID: 30021797 PMCID: PMC6122967 DOI: 10.1084/jem.20172225] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 05/16/2018] [Accepted: 07/06/2018] [Indexed: 01/17/2023] Open
Abstract
This study provides strong evidence that intestinal commensal LPS desensitizes lung epithelial cells and therefore diminishes allergic responses to inhaled allergens. A host lipase, acyloxyacyl hydrolase (AOAH), prevents the desensitization by inactivating commensal LPS. Allergic asthma is a chronic inflammatory disease primarily mediated by Th2 immune mechanisms. Numerous studies have suggested that early life exposure to lipopolysaccharide (LPS) is negatively associated with allergic asthma. One proposed mechanism invokes desensitization of lung epithelial cells by LPS. We report here that acyloxyacyl hydrolase (AOAH), a host lipase that degrades and inactivates LPS, renders mice more susceptible to house dust mite (HDM)–induced allergic asthma. Lung epithelial cells from Aoah−/− mice are refractory to HDM stimulation, decreasing dendritic cell activation and Th2 responses. Antibiotic treatment that diminished commensal LPS-producing bacteria normalized Aoah−/− responses to HDM, while giving LPS intrarectally ameliorated asthma. Aoah−/− mouse feces, plasma, and lungs contained more bioactive LPS than did those of Aoah+/+ mice. By inactivating commensal LPS, AOAH thus prevents desensitization of lung epithelial cells. An enzyme that prevents severe lung inflammation/injury in Gram-negative bacterial pneumonia has the seemingly paradoxical effect of predisposing to a Th2-mediated airway disease.
Collapse
Affiliation(s)
- Guojun Qian
- Department of Immunology, MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wei Jiang
- Department of Immunology, MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Benkun Zou
- Department of Immunology, MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jintao Feng
- Department of Immunology, MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaofang Cheng
- Department of Immunology, MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jie Gu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tianqing Chu
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chen Niu
- Department of Immunology, MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Rui He
- Department of Immunology, MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yiwei Chu
- Department of Immunology, MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Mingfang Lu
- Department of Immunology, MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
27
|
Ishii T, Niikura Y, Kurata K, Muroi M, Tanamoto K, Nagase T, Sakaguchi M, Yamashita N. Time-dependent distinct roles of Toll-like receptor 4 in a house dust mite-induced asthma mouse model. Scand J Immunol 2018; 87. [PMID: 29337391 DOI: 10.1111/sji.12641] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/09/2018] [Indexed: 12/28/2022]
Abstract
House dust mites (HDMs) are a common source of allergens that trigger both allergen-specific and innate immune responses in humans. Here, we examined the effect of allergen concentration and the involvement of Toll-like receptor 4 (TLR4) in the process of sensitization to house dust mite allergens in an HDM extract-induced asthma mouse model. Intranasal administration of HDM extract induced an immunoglobulin E response and eosinophilic inflammation in a dose-dependent manner from 2.5 to 30 μg/dose. In TLR4-knockout mice, the infiltration of eosinophils and neutrophils into the lung was decreased compared with that in wild-type mice in the early phase of inflammation (total of three doses). However, in the late phase of inflammation (total of seven doses), eosinophil infiltration was significantly greater in TLR4-knockout mice than in wild-type mice. This suggests that the roles of TLR4 signaling are different between the early phase and the later phase of HDM allergen-induced inflammation. Thus, innate immune response through TLR4 regulated the response to HDM allergens, and the regulation was altered during the phase of inflammation.
Collapse
Affiliation(s)
- T Ishii
- Department of Pharmacotherapy, Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo, Japan.,Department of Pulmonary Medicine, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Y Niikura
- Department of Pharmacotherapy, Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo, Japan
| | - K Kurata
- ITEA Inc., Institute of Tokyo Environmental Allergy, Tokyo, Japan
| | - M Muroi
- Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo, Japan
| | - K Tanamoto
- Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo, Japan
| | - T Nagase
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - M Sakaguchi
- Department of Veterinary Microbiology, School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | - N Yamashita
- Department of Pharmacotherapy, Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo, Japan
| |
Collapse
|
28
|
Skevaki C, Hudemann C, Matrosovich M, Möbs C, Paul S, Wachtendorf A, Alashkar Alhamwe B, Potaczek DP, Hagner S, Gemsa D, Garn H, Sette A, Renz H. Influenza-derived peptides cross-react with allergens and provide asthma protection. J Allergy Clin Immunol 2017; 142:804-814. [PMID: 29132960 DOI: 10.1016/j.jaci.2017.07.056] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 07/04/2017] [Accepted: 07/19/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND The hygiene hypothesis is the leading concept to explain the current asthma epidemic, which is built on the observation that a lack of bacterial contact early in life induces allergic TH2 immune responses. OBJECTIVE Because little is known about the contribution of respiratory tract viruses in this context, we evaluated the effect of prior influenza infection on the development of allergic asthma. METHODS Mice were infected with influenza and, once recovered, subjected to an ovalbumin- or house dust mite-induced experimental asthma protocol. Influenza-polarized effector memory T (Tem) cells were transferred adoptively to allergen-sensitized animals before allergen challenge. A comprehensive in silico analysis assessed homologies between virus- and allergen-derived proteins. Influenza-polarized Tem cells were stimulated ex vivo with candidate peptides. Mice were immunized with a pool of virus-derived T-cell epitopes. RESULTS In 2 murine models we found a long-lasting preventive effect against experimental asthma features. Protection could be attributed about equally to CD4+ and CD8+ Tem cells from influenza-infected mice. An in silico bioinformatic analysis identified 4 influenza- and 3 allergen-derived MHC class I and MHC class II candidate T-cell epitopes with potential antigen-specific cross-reactivity between influenza and allergens. Lymphocytes from influenza-infected mice produced IFN-γ and IL-2 but not IL-5 on stimulation with the aforementioned peptides. Immunization with a mixture of the influenza peptides conferred asthma protection, and peptide-immunized mice transferred protection through CD4+ and CD8+ Tem cells. CONCLUSION For the first time, our results illustrate heterologous immunity of virus-infected animals toward allergens. This finding extends the original hygiene hypothesis.
Collapse
Affiliation(s)
- Chrysanthi Skevaki
- Institute of Laboratory Medicine and Pathobiochemistry, Member of the German Center for Lung Research (DZL), Philipps University Marburg, Marburg, Germany
| | - Christoph Hudemann
- Institute of Laboratory Medicine and Pathobiochemistry, Member of the German Center for Lung Research (DZL), Philipps University Marburg, Marburg, Germany
| | | | - Christian Möbs
- Department of Dermatology and Allergology, Philipps University Marburg, Marburg, Germany
| | - Sinu Paul
- La Jolla Institute for Allergy and Immunology, La Jolla, Calif
| | - Andreas Wachtendorf
- Institute of Laboratory Medicine and Pathobiochemistry, Member of the German Center for Lung Research (DZL), Philipps University Marburg, Marburg, Germany
| | - Bilal Alashkar Alhamwe
- Institute of Laboratory Medicine and Pathobiochemistry, Member of the German Center for Lung Research (DZL), Philipps University Marburg, Marburg, Germany
| | - Daniel P Potaczek
- Institute of Laboratory Medicine and Pathobiochemistry, Member of the German Center for Lung Research (DZL), Philipps University Marburg, Marburg, Germany; John Paul II Hospital, Krakow, Poland
| | - Stefanie Hagner
- Institute of Laboratory Medicine and Pathobiochemistry, Member of the German Center for Lung Research (DZL), Philipps University Marburg, Marburg, Germany
| | - Diethard Gemsa
- Institute of Laboratory Medicine and Pathobiochemistry, Member of the German Center for Lung Research (DZL), Philipps University Marburg, Marburg, Germany
| | - Holger Garn
- Institute of Laboratory Medicine and Pathobiochemistry, Member of the German Center for Lung Research (DZL), Philipps University Marburg, Marburg, Germany
| | | | - Harald Renz
- Institute of Laboratory Medicine and Pathobiochemistry, Member of the German Center for Lung Research (DZL), Philipps University Marburg, Marburg, Germany.
| |
Collapse
|
29
|
Stroo I, Yang J, Anas AA, de Boer JD, van Mierlo G, Roem D, Wouters D, Engel R, Roelofs JJTH, van 't Veer C, van der Poll T, Zeerleder S. Human plasma-derived C1 esterase inhibitor concentrate has limited effect on house dust mite-induced allergic lung inflammation in mice. PLoS One 2017; 12:e0186652. [PMID: 29036225 PMCID: PMC5643136 DOI: 10.1371/journal.pone.0186652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/08/2017] [Indexed: 11/18/2022] Open
Abstract
C1 esterase inhibitor (C1-INH) can inhibit multiple pathways (complement, contact-kinin, coagulation, and fibrinolysis) that are all implicated in the pathophysiology of asthma. We explored the effect of human plasma-derived C1-INH on allergic lung inflammation in a house dust mite (HDM) induced asthma mouse model by daily administration of C1-INH (15 U) during the challenge phase. NaCl and HDM exposed mice had comparable plasma C1-INH levels, while bronchoalveolar lavage fluid (BALF) levels were increased in HDM exposed mice coinciding with slightly reduced activation of complement (C5a). C1-INH treatment reduced Th2 response and enhanced HDM-specific IgG1. Influx of eosinophils in BALF or lung, pulmonary damage, mucus production, procoagulant response or plasma leakage in BALF was similar in both groups. In conclusion, C1-INH dampens Th2 responses during HDM induced allergic lung inflammation.
Collapse
Affiliation(s)
- Ingrid Stroo
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands.,Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Jack Yang
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Adam A Anas
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - J Daan de Boer
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Gerard van Mierlo
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands
| | - Dorina Roem
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands
| | - Diana Wouters
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands
| | - Ruchira Engel
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands
| | - Joris J T H Roelofs
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Cornelis van 't Veer
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Division of Infectious Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Sacha Zeerleder
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands.,Department of Hematology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
30
|
Dolatabadi HRD, Zarrindast MR, Reisi P, Nasehi M. The Effects of Pentoxifylline on Serum Levels of Interleukin 10 and Interferon Gamma and Memory Function in Lipopolysaccharide-induced Inflammation in Rats. Adv Biomed Res 2017; 6:110. [PMID: 28904938 PMCID: PMC5590393 DOI: 10.4103/abr.abr_49_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Studies have shown that pentoxifylline (PTX) in addition to protective effects on blood vessels probably has positive influence against the brain inflammation. Therefore, the aim of this study was to evaluate the effects of PTX on serum levels of interleukin 10 (IL-10) and interferon gamma (IFN-γ) and passive avoidance learning in lipopolysaccharide (LPS)-induced inflammation in rats. MATERIALS AND METHODS Inflammation was induced by intraperitoneal (i.p.) injection of LPS (0.5 and 5 mg/kg) in male Wistar rats. After a week, PTX (25 mg/kg; i.p.) was injected for 14 days. Passive avoidance learning test was used for evaluation of learning and memory. Serum levels of cytokines were measured by enzyme-linked immunosorbent assay. RESULTS The behavioral results did not show any significant effect of LPS and PTX on learning and memory. Both doses of LPS (0.5 and 5 mg/kg) decreased IL-10 significantly (P < 0.05). PTX prevented this reduction just in the LPS 0.5 mg/kg + PTX 25 mg/kg group. Serum level of IFN-γ was increased only in the LPS 0.5 mg/kg + PTX 25 mg/kg group comparing to the LPS 0.5 mg/kg group (P < 0.05). CONCLUSIONS The results showed that LPS-induced inflammation decreased the serum levels of IL-10. PTX could prevent these decreases only in mild inflammation. Both PTX and LPS-induced inflammation had no significant effects on learning and memory; therefore, their effects on CNS require further study.
Collapse
Affiliation(s)
| | - Mohammad Reza Zarrindast
- Institute for Cognitive Science Studies, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parham Reisi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
31
|
MBD2 Regulates Th17 Cell Differentiation and Experimental Severe Asthma by Affecting IRF4 Expression. Mediators Inflamm 2017; 2017:6249685. [PMID: 28808358 PMCID: PMC5541825 DOI: 10.1155/2017/6249685] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 05/31/2017] [Indexed: 11/17/2022] Open
Abstract
Th17 cells and IL-17 participate in airway neutrophil infiltration characteristics in the pathogenesis of severe asthma. Methyl-CpG binding domain protein 2 (MBD2) expression increased in CD4+ T cells in peripheral blood samples of asthma patients. However, little is known about that epigenetic regulation of MBD2 in both immunological pathogenesis of experimental severe asthma and CD4+ T cell differentiation. Here, we established a neutrophil-predominant severe asthma model, which was characterized by airway hyperresponsiveness (AHR), BALF neutrophil granulocyte (NEU) increase, higher NEU and IL-17 protein levels, and more Th17 cell differentiation. In the model, MBD2 and IRF4 protein expression increased in the lung and spleen cells. Under overexpression or silencing of the MBD2 and IRF4 gene, the differentiation of Th17 cells and IL-17 secretion showed positive changes. IRF4 protein expression showed a positive change with overexpression or silencing of the MBD2 gene, whereas there was no significant difference in the expression of MBD2 under overexpression or silencing of the IRF4 gene. These data provide novel insights into epigenetic regulation of severe asthma.
Collapse
|
32
|
Jones JT, Tassew DD, Herrera LK, Walton-Filipczak SR, Montera MA, Chand HS, Delgado M, Mebratu YA, Tesfaigzi Y. Extent of allergic inflammation depends on intermittent versus continuous sensitization to house dust mite. Inhal Toxicol 2017; 29:106-112. [PMID: 28413916 DOI: 10.1080/08958378.2017.1311389] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE House dust mite (HDM) exposure is used to model experimental asthma in mice. However, a direct comparison of inflammatory responses following continuous versus intermittent HDM exposure has not been reported. Therefore, we investigated whether the HDM dose at sensitization or challenge affects extent of inflammation in mice that were either continuously or intermittently sensitized with HDM. MATERIALS AND METHODS C57BL/6 mice received either 10 continuous exposures with 10 μg HDM per exposure or two intermittent HDM exposures over a period of two weeks and were subsequently challenged by three instillations with HDM during the third week. For the intermittent model, mice were sensitized with 1 or 10 μg HDM and challenged on three consecutive days with 1 or 10 μg HDM. Inflammatory cells in the bronchoalveolar lavage fluid and epithelial cell hyperplasia and mucous cell metaplasia were quantified. RESULTS Significantly higher levels of inflammation and mucous cell metaplasia were observed when mice were sensitized intermittently compared with continuously. Intermittent sensitization and challenge with 10 μg HDM caused maximum inflammation, mucous cell metaplasia, and epithelial cell hyperplasia. However, sensitization with 1 μg HDM only also showed increased inflammation when challenged with 10 μg HDM. DISCUSSION These findings suggest major differences in adaptive immunity, depending on the sensitization protocol. CONCLUSIONS Because of significant differences, the HDM sensitization protocol should be carefully considered when designing studies to investigate the underlying mechanisms of immunity in mouse models of asthma.
Collapse
Affiliation(s)
- Jane Tully Jones
- a COPD Program, Lovelace Respiratory Research Institute , Albuquerque , NM , USA
| | - Dereje D Tassew
- a COPD Program, Lovelace Respiratory Research Institute , Albuquerque , NM , USA
| | - Lois K Herrera
- a COPD Program, Lovelace Respiratory Research Institute , Albuquerque , NM , USA
| | | | - Marena A Montera
- a COPD Program, Lovelace Respiratory Research Institute , Albuquerque , NM , USA
| | - Hitendra S Chand
- a COPD Program, Lovelace Respiratory Research Institute , Albuquerque , NM , USA
| | - Monica Delgado
- a COPD Program, Lovelace Respiratory Research Institute , Albuquerque , NM , USA
| | - Yohannes A Mebratu
- a COPD Program, Lovelace Respiratory Research Institute , Albuquerque , NM , USA
| | - Yohannes Tesfaigzi
- a COPD Program, Lovelace Respiratory Research Institute , Albuquerque , NM , USA
| |
Collapse
|
33
|
Furuhashi K, Chua YL, Wong KHS, Zhou Q, Lee DCP, Liong KH, Teo GH, Hutchinson PE, Kemeny DM. Priming with high and low respiratory allergen dose induces differential CD4 + T helper type 2 cells and IgE/IgG1 antibody responses in mice. Immunology 2017; 151:227-238. [PMID: 28190273 DOI: 10.1111/imm.12726] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 02/03/2017] [Accepted: 02/05/2017] [Indexed: 12/20/2022] Open
Abstract
Sensitization of allergic patients normally takes place over several years and is the result of repeated exposure to low levels of allergen. Most mouse asthma models use a high dose of allergen administered over a short period. We have investigated the role of dose in the immune response to an inhaled respiratory allergen (Blomia tropicalis). We observed the effect of priming dose on the allergic response in mice intranasally immunized with low (0·5 μg) and high (50 μg) doses of B. tropicalis extract and killed 1 day after the last challenge. For both doses of allergen, T helper type 2 (Th2) cells and Th2 cytokines were evident as well as eosinophilic inflammation accompanied by mucus hyper-secretion. By contrast, IgE and IgG1 antibody responses were normally only detected at high-dose priming. To investigate the mechanism for these effects, we found group 2 innate lymphoid cells (ILC2s) were increased 48 hr after challenge in the low-dose-treated but not the high-dose-treated mice. Furthermore, we determined whether repeated low-dose exposure with different priming protocols could induce an antibody response. Repeated low-dose exposure to 0·5 μg three times weekly for 4 weeks (cumulative 6 μg) had the same effect as a shorter high-dose exposure (cumulative 80 μg) and increasing cumulative dose induced antibody responses. These data indicate that low doses of allergen are sufficient to prime Th2 cells and ILC2s, but insufficient to induce antibody responses. Cumulative exposure to small amounts of allergen induces both Th2 and antibody responses and may better reflect natural sensitization.
Collapse
Affiliation(s)
- Kazuki Furuhashi
- Department of Microbiology, Immunology Programme, National University of Singapore, Singapore city, Singapore
| | - Yen L Chua
- Department of Microbiology, Immunology Programme, National University of Singapore, Singapore city, Singapore
| | - Kenneth H S Wong
- Department of Microbiology, Immunology Programme, National University of Singapore, Singapore city, Singapore
| | - Qian Zhou
- Department of Microbiology, Immunology Programme, National University of Singapore, Singapore city, Singapore
| | - Debbie C P Lee
- Department of Microbiology, Immunology Programme, National University of Singapore, Singapore city, Singapore
| | - Ka H Liong
- Department of Microbiology, Immunology Programme, National University of Singapore, Singapore city, Singapore
| | - Guo H Teo
- Department of Microbiology, Immunology Programme, National University of Singapore, Singapore city, Singapore
| | - Paul E Hutchinson
- Department of Microbiology, Immunology Programme, National University of Singapore, Singapore city, Singapore
| | - David M Kemeny
- Department of Microbiology, Immunology Programme, National University of Singapore, Singapore city, Singapore
| |
Collapse
|
34
|
Stroo I, Yang J, de Boer JD, Roelofs JJTH, van 't Veer C, Castellino FJ, Zeerleder S, van der Poll T. Factor XI deficiency enhances the pulmonary allergic response to house dust mite in mice independent of factor XII. Am J Physiol Lung Cell Mol Physiol 2016; 312:L163-L171. [PMID: 27913422 DOI: 10.1152/ajplung.00320.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/07/2016] [Accepted: 12/01/2016] [Indexed: 12/14/2022] Open
Abstract
Asthma is associated with activation of coagulation in the airways. The coagulation system can be initiated via the extrinsic tissue factor-dependent pathway or via the intrinsic pathway, in which the central player factor XI (FXI) can be either activated via active factor XII (FXIIa) or via thrombin. We aimed to determine the role of the intrinsic coagulation system and its possible route of activation in allergic lung inflammation induced by the clinically relevant human allergen house dust mite (HDM). Wild-type (WT), FXI knockout (KO), and FXII KO mice were subjected to repeated exposure to HDM via the airways, and inflammatory responses were compared. FXI KO mice showed increased influx of eosinophils into lung tissue, accompanied by elevated local levels of the main eosinophil chemoattractant eotaxin. Although gross lung pathology and airway mucus production did not differ between groups, FXI KO mice displayed an impaired endothelial/epithelial barrier function, as reflected by elevated levels of total protein and IgM in bronchoalveolar lavage fluid. FXI KO mice had a stronger systemic IgE response with an almost completely absent HDM-specific IgG1 response. The phenotype of FXII KO mice was, except for a higher HDM-specific IgG1 response, similar to that of WT mice. In conclusion, FXI attenuates part of the allergic response to repeated administration of HDM in the airways by a mechanism that is independent of activation via FXII.
Collapse
Affiliation(s)
- Ingrid Stroo
- Center for Experimental and Molecular Medicine, University of Amsterdam, Amsterdam, the Netherlands; .,Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; and
| | - Jack Yang
- Center for Experimental and Molecular Medicine, University of Amsterdam, Amsterdam, the Netherlands
| | - J Daan de Boer
- Center for Experimental and Molecular Medicine, University of Amsterdam, Amsterdam, the Netherlands
| | - Joris J T H Roelofs
- Department of Pathology, University of Amsterdam, Amsterdam, the Netherlands
| | - Cornelis van 't Veer
- Center for Experimental and Molecular Medicine, University of Amsterdam, Amsterdam, the Netherlands
| | - Francis J Castellino
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana
| | - Sacha Zeerleder
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; and.,Department of Hematology, University of Amsterdam, Amsterdam, the Netherlands; and
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine, University of Amsterdam, Amsterdam, the Netherlands.,Division of Infectious Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
35
|
Anas AA, Yang J, Daan de Boer J, Roelofs JJTH, Hou B, de Vos AF, van der Poll T. General, but not myeloid or type II lung epithelial cell, myeloid differentiation factor 88 deficiency abrogates house dust mite induced allergic lung inflammation. Clin Exp Immunol 2016; 187:204-212. [PMID: 27625307 DOI: 10.1111/cei.12867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2016] [Indexed: 12/27/2022] Open
Abstract
Asthma is a highly prevalent chronic allergic inflammatory disease of the airways affecting people worldwide. House dust mite (HDM) is the most common allergen implicated in human allergic asthma. HDM-induced allergic responses are thought to depend upon activation of pathways involving Toll-like receptors and their adaptor protein myeloid differentiation factor 88 (MyD88). We sought here to determine the role of MyD88 in myeloid and type II lung epithelial cells in the development of asthma-like allergic disease using a mouse model. Repeated exposure to HDM caused allergic responses in control mice characterized by influx of eosinophils into the bronchoalveolar space and lung tissue, lung pathology and mucus production and protein leak into bronchoalveolar lavage fluid. All these responses were abrogated in mice with a general deficiency of MyD88 but unaltered in mice with MyD88 deficiency, specifically in myeloid or type II lung epithelial cells. We conclude that cells other than myeloid or type II lung epithelial cells are responsible for MyD88-dependent HDM-induced allergic airway inflammation.
Collapse
Affiliation(s)
- A A Anas
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - J Yang
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - J Daan de Boer
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - J J T H Roelofs
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - B Hou
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chaoyang District, Beijing, China
| | - A F de Vos
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - T van der Poll
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Division of Infectious Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
36
|
Bazett M, Biala A, Huff RD, Bosiljcic M, Gunn H, Kalyan S, Hirota JA. A novel microbe-based treatment that attenuates the inflammatory profile in a mouse model of allergic airway disease. Sci Rep 2016; 6:35338. [PMID: 27734946 PMCID: PMC5062168 DOI: 10.1038/srep35338] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/28/2016] [Indexed: 11/09/2022] Open
Abstract
There is an unmet need for effective new and innovative treatments for asthma. It is becoming increasingly evident that bacterial stimulation can have beneficial effects at attenuating allergic airway disease through immune modulation. Our aim was to test the ability of a novel inactivated microbe-derived therapeutic based on Klebsiella (KB) in a model of allergic airway disease in mice. BALB/c mice were exposed intranasally to house dust mite (HDM) for two weeks. Mice were treated prophylactically via subcutaneous route with either KB or placebo for one week prior to HDM exposure and throughout the two week exposure period. 24 hours after the last exposure, lungs were analysed for inflammatory cell infiltrate, gene expression, cytokine levels, goblet cell metaplasia, and serum was analysed for allergen-specific serum IgE levels. HDM exposed mice developed goblet cell hyperplasia, elevated allergen-specific serum IgE, airway eosinophilia, and a concomitant increase in TH2 cytokines including IL-4, IL-13 and IL-5. Treatment with KB attenuated HDM-mediated airway eosinophilia, total bronchoalveolar lavage (BAL) cell numbers, BAL TH2 cytokine production, and goblet cell metaplasia. Our prophylactic intervention study illustrates the potential of subcutaneous treatment with bacterial derived biologics as a promising approach for allergic airway disease treatment.
Collapse
Affiliation(s)
- Mark Bazett
- Qu Biologics Inc., Vancouver, BC, V5T 4T5, Canada
| | - Agnieszka Biala
- University of British Columbia, Department of Medicine, Division of Respiratory Medicine, Vancouver, BC, V6H 3Z6, Canada
| | - Ryan D Huff
- University of British Columbia, Department of Medicine, Division of Respiratory Medicine, Vancouver, BC, V6H 3Z6, Canada
| | | | - Hal Gunn
- Qu Biologics Inc., Vancouver, BC, V5T 4T5, Canada
| | - Shirin Kalyan
- Qu Biologics Inc., Vancouver, BC, V5T 4T5, Canada.,University of British Columbia, Department of Medicine, Division of Endocrinology, CeMCOR, Vancouver, BC, V5Z 1M9
| | - Jeremy A Hirota
- University of British Columbia, Department of Medicine, Division of Respiratory Medicine, Vancouver, BC, V6H 3Z6, Canada
| |
Collapse
|
37
|
Zhao S, Jiang Y, Yang X, Guo D, Wang Y, Wang J, Wang R, Wang C. Lipopolysaccharides promote a shift from Th2-derived airway eosinophilic inflammation to Th17-derived neutrophilic inflammation in an ovalbumin-sensitized murine asthma model. J Asthma 2016; 54:447-455. [PMID: 27589490 DOI: 10.1080/02770903.2016.1223687] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
INTRODUCTION The currently available treatments for severe asthma are insufficient. Infiltration of neutrophils rather than eosinophils into the airways is an important inflammatory characteristic of severe asthma. However, the mechanism of the phenotypic change from eosinophilic to neutrophilic inflammation has not yet been fully elucidated. METHODS In the current study, we examined the effect of lipopolysaccharides (LPS) on eosinophilic asthmatic mice sensitized with ovalbumin (OVA), as well as the roles of interleukin (IL)-17A/T helper (Th) 17 cells on the change in the airway inflammatory phenotype from eosinophilic to neutrophilic inflammation in asthmatic lungs of IL-17A-deficient mice. RESULTS Following exposure of OVA-induced asthmatic mice to LPS, neutrophil-predominant airway inflammation rather than eosinophil-predominant inflammation was observed, with increases in airway hyperresponsiveness (AHR), the IL-17A level in bronchoalveolar lavage fluid (BALF) and Th17 cells in the spleen and in the pulmonary hilar lymph nodes. Moreover, the neutrophilic asthmatic mice showed decreased mucus production and Th2 cytokine levels (IL-4 and IL-5). In contrast, IL-17A knockout (KO) mice exhibited eosinophil-predominant lung inflammation, decreased AHR, mucus overproduction and increased Th2 cytokine levels and Th2 cells. CONCLUSION These findings suggest that the eosinophilic inflammatory phenotype of asthmatic lungs switches to the neutrophilic phenotype following exposure to LPS. The change in the inflammatory phenotype is strongly correlated with the increases in IL-17A and Th17 cells.
Collapse
Affiliation(s)
- Shengtao Zhao
- a Institute of Respiratory Disease, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Yunqiu Jiang
- a Institute of Respiratory Disease, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Xu Yang
- a Institute of Respiratory Disease, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Donglin Guo
- a Institute of Respiratory Disease, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Yijie Wang
- a Institute of Respiratory Disease, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Jun Wang
- a Institute of Respiratory Disease, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Ran Wang
- a Institute of Respiratory Disease, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Changzheng Wang
- a Institute of Respiratory Disease, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| |
Collapse
|
38
|
Lee JE, Kim YH, Rhee CS, Kim DY. Synergistic Effect of Dermatophagoides farinae and Lipopolysaccharides in Human Middle ear Epithelial Cells. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2016; 8:445-56. [PMID: 27334783 PMCID: PMC4921699 DOI: 10.4168/aair.2016.8.5.445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/03/2016] [Accepted: 01/06/2016] [Indexed: 01/30/2023]
Abstract
Purpose Although the concept of "one airway, one disease," which includes the middle ear space as part of the united airway is well recognized, the role of allergens in otitis media with effusion (OME) is not clearly understood. We aimed to investigate the effect of the interaction between Dermatophagoides farinae (Der f) and lipopolysaccharide (LPS) on the induction of epithelial inflammatory response in vitro. Methods Primary human middle ear epithelial cells were exposed to Der f, LPS, or both in different sequences, and the magnitude of the immunologic responses was compared. The mRNA expressiona of mucin (MUC) 4, 5AC, 5B, 8, GM-CSF, TNF-α, TLR4, and MD-2 were evaluated using real-time PCR. MUC levels before and after siRNA-mediated knockout of TLR4 and MD-2 were assessed. Lastly, the involved cell signaling pathway was evaluated. Results The expressiona of cytokines, and the MUC 4, 5AC, 5B, and 8 genes were augmented by pretreatment with Der f followed by LPS; however, reverse treatment or combined treatment did not induce the same magnitude of response. Increased MUC expression was decreased by TLR4 knockdown, but not by MD-2 knockdown. The signal intensity of MUC 8 was higher in MD-2 over-expressed cells than in those exposed to LPS only. The translocation of nuclear factor-κB was observed in cells pretreated with Der f followed by LPS. Conclusions When Der f treatment preceded LPS exposure, Der f and LPS acted synergistically in the induction of pro-inflammatory cytokines and the MUC gene, suggesting an important role in the development of OME in patients with concealed allergy airway sensitization.
Collapse
Affiliation(s)
- Ji Eun Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Chosun University College of Medicine, Gwangju, Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Graduate school of Medicine, Seoul National University, Seoul, Korea
| | - Yeon Hoo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Chosun University College of Medicine, Gwangju, Korea
| | - Chae Seo Rhee
- Sensory Organ Research Center, Seoul National University Biomedical Research Institute, Seoul, Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Biomedical Research Institute, Seoul, Korea.,Graduate School of Immunology, Seoul National University, Seoul, Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Dong Young Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
39
|
Cahn A, Boyce M, Mistry S, Musani N, Rambaran C, Storey J, Ventresca P, Michel O. Randomized trial of allergen-induced asthmatic response in smokers and non-smokers: effects of inhaled corticosteroids. Clin Exp Allergy 2016; 45:1531-41. [PMID: 26251958 DOI: 10.1111/cea.12610] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 07/15/2015] [Accepted: 07/19/2015] [Indexed: 01/24/2023]
Abstract
BACKGROUND It is thought that asthmatics who smoke cigarettes respond less well to inhaled corticosteroid (ICS) therapy than asthmatics who do not smoke. OBJECTIVE To evaluate the effects of smoking on allergen-induced airway responses in asthmatics treated with ICS. METHODS Randomized, double-blind, crossover study evaluating twice daily fluticasone propionate (FP) 100 μg, FP 500 μg and placebo, for 7 days, on allergen-induced asthmatic responses in 18 non-smoking and 17 smoking atopic asthmatics (NCT01400906). At 1 h post-morning dose on Day 6, forced expiratory volume in 1 sec (FEV1 ) was measured up to 10 h post-challenge. Exhaled nitric oxide (eNO), induced sputum cell counts, and responsiveness to methacholine were assessed the following day. RESULTS The late asthmatic response (LAR) was suppressed by FP in smokers and non-smokers; with placebo, the LAR was also attenuated in smokers versus non-smokers (adjusted mean minimum change in FEV1 (L) over 4-10 h [95% CI] in non-smokers: placebo -1.01 [1.31, 0.70], FP 100 μg -0.38 [0.54, 0.22], FP 500 μg -0.35 [0.54-0.22]; and in smokers: placebo -0.63 [0.84, 0.43]; FP 100 μg -0.44 [0.65, 0.23]; FP 500 μg -0.46 [0.59-0.32]). The Early AR was suppressed by FP treatment in non-smokers, but was not impacted in smokers. The reduction in methacholine hyperresponsiveness after FP was greater in non-smokers (1.5- and twofold doubling dose difference from placebo after FP 100 μg and FP 500 μg) than smokers (1.0 and 1.3 difference, respectively). Allergen-induced increases in eNO and sputum eosinophils were lower in smokers than non-smokers and were suppressed in both groups by FP. CONCLUSION AND CLINICAL RELEVANCE Allergen-induced LARs were of a similar amplitude in both smoking and non-smoking atopic asthmatics at the end of ICS treatment, but attenuation of the LAR in smokers was only partly associated with ICS treatment. The marked attenuation of the LAR observed in smokers in the absence of ICS treatment is a novel observation.
Collapse
Affiliation(s)
- A Cahn
- GlaxoSmithKline, Stevenage, UK
| | - M Boyce
- Hammersmith Medicines Research Ltd, London, UK
| | - S Mistry
- GlaxoSmithKline, Stockley Park, UK
| | - N Musani
- GlaxoSmithKline, Stockley Park, UK
| | | | | | | | - O Michel
- Clinic of Immuno-allergology, CHU Brugmann (ULB Université Libre de Bruxelles), Brussels, Belgium
| |
Collapse
|
40
|
A Fusion Protein Consisting of the Vaccine Adjuvant Monophosphoryl Lipid A and the Allergen Ovalbumin Boosts Allergen-Specific Th1, Th2, and Th17 Responses In Vitro. J Immunol Res 2016; 2016:4156456. [PMID: 27340679 PMCID: PMC4908266 DOI: 10.1155/2016/4156456] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/25/2016] [Accepted: 05/17/2016] [Indexed: 01/04/2023] Open
Abstract
Background. The detoxified TLR4-ligand Monophosphoryl Lipid A (MPLA) is the first approved TLR-agonist used as adjuvant in licensed vaccines but has not yet been explored as part of conjugated vaccines. Objective. To investigate the immune-modulating properties of a fusion protein consisting of MPLA and Ovalbumin (MPLA : Ova). Results. MPLA and Ova were chemically coupled by stable carbamate linkage. MPLA : Ova was highly pure without detectable product-related impurities by either noncoupled MPLA or Ova. Light scattering analysis revealed MPLA : Ova to be aggregated. Stimulation of mDC and mDC : DO11.10 CD4+ TC cocultures showed a stronger activation of both mDC and Ova-specific DO11.10 CD4+ TC by MPLA : Ova compared to the mixture of both components. MPLA : Ova induced both strong proinflammatory (IL-1β, IL-6, and TNF-α) and anti-inflammatory (IL-10) cytokine responses from mDCs while also boosting allergen-specific Th1, Th2, and Th17 cytokine secretion. Conclusion. Conjugation of MPLA and antigen enhanced the immune response compared to the mixture of both components. Due to the nonbiased boost of Ova-specific Th2 and Th17 responses while also inducing Th1 responses, this fusion protein may not be a suitable vaccine candidate for allergy treatment but may hold potential for the treatment of other diseases that require a strong stimulation of the host's immune system (e.g., cancer).
Collapse
|
41
|
Di Liddo R, Valente S, Taurone S, Zwergel C, Marrocco B, Turchetta R, Conconi MT, Scarpa C, Bertalot T, Schrenk S, Mai A, Artico M. Histone deacetylase inhibitors restore IL-10 expression in lipopolysaccharide-induced cell inflammation and reduce IL-1β and IL-6 production in breast silicone implant in C57BL/6J wild-type murine model. Autoimmunity 2016; 49:155-165. [PMID: 26789595 DOI: 10.3109/08916934.2015.1134510] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/16/2015] [Indexed: 12/29/2022]
Abstract
Among epigenetic enzymes, histone deacetylases (HDACs) are responsible for regulating the expression of an extensive array of genes by reversible deacetylation of nuclear histones as well as a large number of non-histone proteins. Initially proposed for cancer therapy, recently the interest for HDAC inhibitors (HDACi) as orally active, safe, and anti-inflammatory agents is rising due to their ability in reducing the severity of inflammatory and autoimmune diseases. In particular, selective HDAC3, HDAC6, and HDAC8 inhibitors have been described to downregulate the expression of pro-inflammatory cytokines (TNF-α, TGF-β, IL-1β, and IL-6). Herein, using KB31, C2C12, and 3T3-J2 cell lines, we demonstrated that, under lipopolysaccharide-induced in vitro inflammation, HDAC3/6/8 inhibitor MC2625 and HDAC6-selective inhibitor MC2780 were effective at a concentration of 30 ng/mL to downregulate mRNA expression of pro-inflammatory cytokines (IL-1β and IL-6) and to promote the transcription of IL-10 gene, without affecting the cell viability. Afterwards, we investigated by immunohistochemistry the activity of MC2625 and MC2780 at a concentration of 60 ng/kg animal weight to regulate silicone-triggered immune response in C57BL/6J female mice. Our findings evidenced the ability of such inhibitors to reduce host inflammation in silicone implants promoting a thickness reduction of peri-implant fibrous capsule, upregulating IL-10 expression, and reducing the production of both IL-1β and IL-6. These results underline the potential application of MC2625 and MC2780 in inflammation-related diseases.
Collapse
Affiliation(s)
- Rosa Di Liddo
- Dipartimento Scienze del Farmaco, Università di Padova, Padova, Italy
| | - Sergio Valente
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Roma, Italy
| | - Samanta Taurone
- Dipartimento Organi di Senso, Sapienza Università di Roma, Roma, Italy
| | - Clemens Zwergel
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Roma, Italy
| | - Biagina Marrocco
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Roma, Italy
| | - Rosaria Turchetta
- Dipartimento Organi di Senso, Sapienza Università di Roma, Roma, Italy
| | | | - Carlotta Scarpa
- Dipartimento di Neuroscienze, Clinica di Chirurgia Plastica, Università di Padova, Padova, Italy, and
| | - Thomas Bertalot
- Dipartimento Scienze del Farmaco, Università di Padova, Padova, Italy
| | - Sandra Schrenk
- Dipartimento Scienze del Farmaco, Università di Padova, Padova, Italy
| | - Antonello Mai
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Roma, Italy
- Istituto Pasteur - Fondazione Cenci Bolognetti, Sapienza Università di Roma, Roma, Italy
| | - Marco Artico
- Dipartimento Organi di Senso, Sapienza Università di Roma, Roma, Italy
| |
Collapse
|
42
|
Kurakula K, Vos M, Logiantara A, Roelofs JJTH, Nieuwenhuis MA, Koppelman GH, Postma DS, Brandsma CA, Sin DD, Bossé Y, Nickle DC, van Rijt LS, de Vries CJM. Deficiency of FHL2 attenuates airway inflammation in mice and genetic variation associates with human bronchial hyper-responsiveness. Allergy 2015. [PMID: 26222912 DOI: 10.1111/all.12709] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Asthma is an inflammatory disease that involves airway hyper-responsiveness and mucus hypersecretion. The LIM-only protein FHL2 is a crucial modulator of multiple signal transduction pathways and functions as a scaffold in specific protein-protein interactions. OBJECTIVE We sought to investigate the role of FHL2 in airway inflammation. METHODS Allergic airway inflammation was induced in WT and FHL2-knock out (FHL2-KO) mice with ovalbumin (OVA). Lung tissue, bronchoalveolar lavage fluid (BALF) and draining lymph node cells were analysed for inflammation. FHL2 loss and gain of function studies were performed in lung epithelial cells. RESULTS FHL2-deficient mice challenged with OVA show significantly reduced airway inflammation as evidenced by reduced infiltration of inflammatory cells including eosinophils, dendritic cells, B cells and T cells. Furthermore, mucus production was decreased in FHL2-KO mice. In BALF, the levels of IL-5, IL-13, eotaxin-1 and eotaxin-2 were significantly lower in FHL2-KO mice. In addition, draining lymph node cells from FHL2-KO mice show reduced levels of IL-5 and IL-13. Consistent with this, OVA-specific serum IgG and IgE levels were reduced in FHL2-KO mice. We also found that phosphorylation of ERK1/2 is markedly attenuated in FHL2-KO lung. Knock-down of FHL2 in human lung epithelial cells resulted in a striking decrease in ERK1/2 phosphorylation and mRNA levels of inflammatory cytokines and MUC5AC, whereas FHL2 overexpression exhibited opposite effects. Finally, the SNP rs4851765 shows an association with the severity of bronchial hyper-responsiveness. CONCLUSION These results highlight functional involvement of FHL2 in airway inflammation and identify FHL2 as a novel gene associated with asthma severity in human.
Collapse
Affiliation(s)
- K. Kurakula
- Deartment of Medical Biochemistry; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - M. Vos
- Deartment of Medical Biochemistry; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - A. Logiantara
- Department of Experimental Immunology; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - J. J. T. H. Roelofs
- Department of Pathology; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - M. A. Nieuwenhuis
- University of Groningen; University Medical Center Groningen; Department of Pulmonology; GRIAC Research Institute; Groningen The Netherlands
| | - G. H. Koppelman
- University of Groningen; University Medical Center Groningen; Department of Pediatric Pulmonology; Beatrix Children's Hospital; GRIAC Research Institute; Groningen The Netherlands
| | - D. S. Postma
- University of Groningen; University Medical Center Groningen; Department of Pulmonology; GRIAC Research Institute; Groningen The Netherlands
| | - C. A. Brandsma
- University of Groningen; University Medical Center Groningen; Department of Pathology and Medical Biology; GRIAC Research Institute; Groningen The Netherlands
| | - D. D. Sin
- The University of British Columbia James Hogg Research Laboratory; St Paul's Hospital; Vancouver Canada
- Respiratory Division; Department of Medicine; University of British Columbia; Vancouver Canada
| | - Y. Bossé
- Department of Molecular Medicine; Laval University; Quebec City Canada
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec; Laval University; Quebec City Canada
| | - D. C. Nickle
- Genetics; Rosetta Inpharmatics; Merck Seattle WA USA
- Merck Research Laboratories; Boston MA USA
| | - L. S. van Rijt
- Department of Experimental Immunology; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - C. J. M. de Vries
- Deartment of Medical Biochemistry; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| |
Collapse
|
43
|
Dendritic cell and epithelial cell interactions at the origin of murine asthma. Ann Am Thorac Soc 2015; 11 Suppl 5:S236-43. [PMID: 25525726 DOI: 10.1513/annalsats.201405-218aw] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Dendritic cells (DCs) are ideally placed in the airways and lungs to capture inhaled allergens. Different subsets of DCs perform different tasks. Migratory conventional DCs (cDCs) expressing CD11b mediate Th2 priming to respiratory allergens, whereas cDCs expressing CD103 mediate tolerance to them. Monocyte-derived DCs are poorly migratory antigen-presenting cells that mainly produce proinflammatory chemokines and are necessary for maintaining allergic airway inflammation once initiated. The function of the airway DC network is closely controlled by cytokines released from airway epithelial cells. Airway epithelial cells react to pathogen-associated molecular patterns and damage-associated molecular patterns released on allergen inhalation by producing pro-Th2 polarizing cytokines and chemokines that attract and activate DCs. This conceptual framework of epithelial and DC collaboration is very helpful in explaining the process of allergic sensitization and how this is influenced by genetics and environment.
Collapse
|
44
|
de Boer JD, Berger M, Majoor CJ, Kager LM, Meijers JCM, Terpstra S, Nieuwland R, Boing AN, Lutter R, Wouters D, van Mierlo GJ, Zeerleder SS, Bel EH, van't Veer C, de Vos AF, van der Zee JS, van der Poll T. Activated protein C inhibits neutrophil migration in allergic asthma: a randomised trial. Eur Respir J 2015; 46:1636-44. [PMID: 26381519 DOI: 10.1183/13993003.00459-2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 06/28/2015] [Indexed: 11/05/2022]
Abstract
Asthma patients show evidence of a procoagulant state in their airways, accompanied by an impaired function of the anticoagulant protein C system. We aimed to study the effect of recombinant human activated protein C (rhAPC) in allergic asthma patients.We conducted a randomised, double-blind, placebo-controlled, proof-of-concept study in house dust mite (HDM) allergic asthma patients. Patients were randomised to receive intravenous rhAPC (24 µg·kg(-1)·h(-1); n=12) or placebo (n=12) for 11 h. 4 h after the start of infusion, a first bronchoscopy was performed to challenge one lung segment with saline (control) and a contralateral segment with a combination of HDM extract and lipopolysaccharide (HDM+LPS), thereby mimicking environmental house dust exposure. A second bronchoscopy was conducted 8 h after intrabronchial challenge to obtain bronchoalveolar lavage fluid (BALF).rhAPC did not influence HDM+LPS induced procoagulant changes in the lung. In contrast, rhAPC reduced BALF leukocyte counts by 43% relative to placebo, caused by an inhibitory effect on neutrophil influx (64% reduction), while leaving eosinophil influx unaltered. rhAPC also reduced neutrophil degranulation products in the airways.Intravenous rhAPC attenuates HDM+LPS-induced neutrophil migration and protein release in allergic asthma patients by an effect that does not rely on coagulation inhibition.
Collapse
Affiliation(s)
- J Daan de Boer
- Center of Infection and Immunity Amsterdam, and Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Marieke Berger
- Dept of Respiratory Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands These authors contributed equally to this work
| | - Christof J Majoor
- Dept of Respiratory Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands These authors contributed equally to this work
| | - Liesbeth M Kager
- Center of Infection and Immunity Amsterdam, and Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Joost C M Meijers
- Dept of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands Dept of Plasma Proteins, Sanquin, Amsterdam, the Netherlands
| | - Sanne Terpstra
- Center of Infection and Immunity Amsterdam, and Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Rienk Nieuwland
- Dept of Clinical Chemistry, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Anita N Boing
- Dept of Clinical Chemistry, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - René Lutter
- Dept of Respiratory Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands Dept of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Diana Wouters
- Dept of Immunopathology, Sanquin, Amsterdam, the Netherlands
| | | | - Sacha S Zeerleder
- Dept of Immunopathology, Sanquin, Amsterdam, the Netherlands Dept of Hematology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Elisabeth H Bel
- Dept of Respiratory Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Cornelis van't Veer
- Center of Infection and Immunity Amsterdam, and Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Alex F de Vos
- Center of Infection and Immunity Amsterdam, and Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Tom van der Poll
- Center of Infection and Immunity Amsterdam, and Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands Division of Infectious Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
45
|
de Boer JD, Berkhout LC, de Stoppelaar SF, Yang J, Ottenhoff R, Meijers JCM, Roelofs JJTH, van't Veer C, van der Poll T. Effect of the oral thrombin inhibitor dabigatran on allergic lung inflammation induced by repeated house dust mite administration in mice. Am J Physiol Lung Cell Mol Physiol 2015; 309:L768-75. [PMID: 26320153 DOI: 10.1152/ajplung.00102.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 08/18/2015] [Indexed: 01/08/2023] Open
Abstract
Asthma is a chronic disease of the airways; asthma patients are hampered by recurrent symptoms of dyspnoea and wheezing caused by bronchial obstruction. Most asthma patients suffer from chronic allergic lung inflammation triggered by allergens such as house dust mite (HDM). Coagulation activation in the pulmonary compartment is currently recognized as a feature of allergic lung inflammation, and data suggest that coagulation proteases further drive inflammatory mechanisms. Here, we tested whether treatment with the oral thrombin inhibitor dabigatran attenuates allergic lung inflammation in a recently developed HDM-based murine asthma model. Mice were fed dabigatran (10 mg/g) or placebo chow during a 3-wk HDM airway exposure model. Dabigatran treatment caused systemic thrombin inhibitory activity corresponding with dabigatran levels reported in human trials. Surprisingly, dabigatran did not lead to inhibition of HDM-evoked coagulation activation in the lung as measured by levels of thrombin-antithrombin complexes and D-dimer. Repeated HDM administration caused an influx of eosinophils and neutrophils into the lungs, mucus production in the airways, and a T helper 2 response, as reflected by a rise in bronchoalveolar IL-4 and IL-5 levels and a systemic rise in IgE and HDM-IgG1. Dabigatran modestly improved HDM-induced lung pathology (P < 0.05) and decreased IL-4 levels (P < 0.01), without influencing other HDM-induced responses. Considering the limited effects of dabigatran in spite of adequate plasma levels, these results argue against clinical evaluation of dabigatran in patients with asthma.
Collapse
Affiliation(s)
- Johannes D de Boer
- Academic Medical Center, University of Amsterdam, Center of Infection and Immunity Amsterdam & Center for Experimental and Molecular Medicine, the Netherlands.
| | - Lea C Berkhout
- Academic Medical Center, University of Amsterdam, Center of Infection and Immunity Amsterdam & Center for Experimental and Molecular Medicine, the Netherlands
| | - Sacha F de Stoppelaar
- Academic Medical Center, University of Amsterdam, Center of Infection and Immunity Amsterdam & Center for Experimental and Molecular Medicine, the Netherlands
| | - Jack Yang
- Academic Medical Center, University of Amsterdam, Center of Infection and Immunity Amsterdam & Center for Experimental and Molecular Medicine, the Netherlands
| | - Roelof Ottenhoff
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Joost C M Meijers
- Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands Department of Plasma Proteins, Sanquin Research, Amsterdam, the Netherlands
| | - Joris J T H Roelofs
- Department of Pathology, Academic Medical Center, University of Amsterdam, the Netherlands
| | - Cornelis van't Veer
- Academic Medical Center, University of Amsterdam, Center of Infection and Immunity Amsterdam & Center for Experimental and Molecular Medicine, the Netherlands
| | - Tom van der Poll
- Academic Medical Center, University of Amsterdam, Center of Infection and Immunity Amsterdam & Center for Experimental and Molecular Medicine, the Netherlands. Division of Infectious Diseases, Academic Medical Center, University of Amsterdam, the Netherlands
| |
Collapse
|
46
|
Lei Y, Boinapally V, Zoltowska A, Adner M, Hellman L, Nilsson G. Vaccination against IL-33 Inhibits Airway Hyperresponsiveness and Inflammation in a House Dust Mite Model of Asthma. PLoS One 2015. [PMID: 26214807 PMCID: PMC4516261 DOI: 10.1371/journal.pone.0133774] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In several clinical and experimental studies IL-33 and its receptor have been found to play important roles in the development of asthma and allergic airway inflammation. We evaluated the effects of vaccination against IL-33 in a mouse model of airway inflammation induced by house dust mite (HDM) allergen. Balb/c mice received the IL-33 vaccine subcutaneously, followed by intranasal administration of HDM for up to six weeks. Vaccination against IL-33 induced high titers of specific anti-IL-33 IgG antibodies that inhibited HDM-induced airway hyperresponsiveness (AHR) in the conducting airways and tissue damping. The vaccination also attenuated the HDM-induced elevation in the numbers of eosinophils in bronchoalveolar lavage fluid (BALF) and suppressed the accumulation of inflammatory cells in the airways. Furthermore, the levels of IL-17A, IL-25, IL-33 and TSLP in lung tissue homogenates were reduced by vaccination against IL-33. These observations demonstrate that vaccination against IL-33 inhibits HDM-induced development of AHR, airway inflammation and production of inflammatory cytokines. The results also indicate an important role of IL-33 in the regulation of AHR of the distal lung compartments. Thus, administration of such a vaccine is potentially an effective therapeutic tool for treating allergic asthma.
Collapse
Affiliation(s)
- Ying Lei
- Department of Medicine, Clinical Immunology and Allergy Unit, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Department of Pharmacy, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Vamsi Boinapally
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Anna Zoltowska
- Department of Medicine, Clinical Immunology and Allergy Unit, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Mikael Adner
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Center for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | - Lars Hellman
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
- * E-mail: (GN); (LH)
| | - Gunnar Nilsson
- Department of Medicine, Clinical Immunology and Allergy Unit, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Center for Allergy Research, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (GN); (LH)
| |
Collapse
|
47
|
Kurakula K, Vos M, Logiantara A, Roelofs JJ, Nieuwenhuis MA, Koppelman GH, Postma DS, van Rijt LS, de Vries CJM. Nuclear Receptor Nur77 Attenuates Airway Inflammation in Mice by Suppressing NF-κB Activity in Lung Epithelial Cells. THE JOURNAL OF IMMUNOLOGY 2015; 195:1388-98. [PMID: 26170382 DOI: 10.4049/jimmunol.1401714] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 06/17/2015] [Indexed: 12/13/2022]
Abstract
Allergic asthma is characterized by persistent chronic airway inflammation, which leads to mucus hypersecretion and airway hyperresponsiveness. Nuclear receptor Nur77 plays a pivotal role in distinct immune and inflammatory cells and is expressed in eosinophils and lung epithelium. However, the role of Nur77 in allergic airway inflammation has not been studied so far. In the present study, we determined the role of Nur77 in airway inflammation using a murine model of OVA-induced allergic airway inflammation. We found that OVA-challenged Nur77 knockout (KO) mice show significantly enhanced infiltration of inflammatory cells, including eosinophils and lymphocytes, and aggravated mucus production. The infiltration of macrophages is limited in this model and was similar in wild-type and Nur77 KO mice. Higher levels of Th2 cytokines were found in bronchoalveolar lavage fluid and draining lymph node cells of Nur77-KO mice, as well as increased serum IgG1 and IgG2a levels. Knockdown of Nur77 in human lung epithelial cells resulted in a marked increase in IκBα phosphorylation, corresponding with elevated NF-κB activity, whereas Nur77 overexpression decreased NF-κB activity. Consistently, Nur77 significantly decreased mRNA levels of inflammatory cytokines and Muc5ac expression and also attenuated mucus production in lung epithelial cells. To further corroborate these findings, we searched for association of single nucleotide polymorphisms in Nur77 gene with asthma and with the severity of bronchial hyperresponsiveness. We identified three Nur77 single nucleotide polymorphisms showing association with severity of bronchial hyperresponsiveness in asthma patients. Collectively, these findings support a protective role of Nur77 in OVA-induced airway inflammation and identify Nur77 as a novel therapeutic target for airway inflammation.
Collapse
Affiliation(s)
- Kondababu Kurakula
- Department of Medical Biochemistry, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Mariska Vos
- Department of Medical Biochemistry, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Adrian Logiantara
- Department of Experimental Immunology, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Joris J Roelofs
- Department of Pathology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Maartje A Nieuwenhuis
- Department of Pulmonology, University Medical Center Groningen, University of Groningen, and Groningen Research Institute for Asthma and COPD, 9700 RB Groningen, the Netherlands; and
| | - Gerard H Koppelman
- Department of Pediatric Pulmonology, University Medical Center Groningen, University of Groningen, and Beatrix Children's Hospital, Groningen Research Institute for Asthma and COPD, 9700 RB Groningen, the Netherlands
| | - Dirkje S Postma
- Department of Pulmonology, University Medical Center Groningen, University of Groningen, and Groningen Research Institute for Asthma and COPD, 9700 RB Groningen, the Netherlands; and
| | - Leonie S van Rijt
- Department of Experimental Immunology, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Carlie J M de Vries
- Department of Medical Biochemistry, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands;
| |
Collapse
|
48
|
Lowe APP, Thomas RS, Nials AT, Kidd EJ, Broadley KJ, Ford WR. LPS exacerbates functional and inflammatory responses to ovalbumin and decreases sensitivity to inhaled fluticasone propionate in a guinea pig model of asthma. Br J Pharmacol 2015; 172:2588-603. [PMID: 25586266 PMCID: PMC4409909 DOI: 10.1111/bph.13080] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/03/2014] [Accepted: 01/06/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Asthma exacerbations contribute to corticosteroid insensitivity. LPS is ubiquitous in the environment. It causes bronchoconstriction and airway inflammation and may therefore exacerbate allergen responses. This study examined whether LPS and ovalbumin co-administration could exacerbate the airway inflammatory and functional responses to ovalbumin in conscious guinea pigs and whether these exacerbated responses were insensitive to inhaled corticosteroid treatment with fluticasone propionate (FP). EXPERIMENTAL APPROACH Guinea pigs were sensitized and challenged with ovalbumin and airway function recorded as specific airway conductance by whole body plethysmography. Airway inflammation was measured from lung histology and bronchoalveolar lavage. Airway hyper-reactivity (AHR) to inhaled histamine was examined 24 h after ovalbumin. LPS was inhaled alone or 24 or 48 h before ovalbumin and combined with ovalbumin. FP (0.05-1 mg·mL(-1) ) or vehicle was nebulized for 15 min twice daily for 6 days before ovalbumin or LPS exposure. KEY RESULTS Ovalbumin inhalation caused early (EAR) and late asthmatic response (LAR), airway hyper-reactivity to histamine and influx of inflammatory cells into the lungs. LPS 48 h before and co-administered with ovalbumin exacerbated the response with increased length of the EAR, prolonged response to histamine and elevated inflammatory cells. FP 0.5 and 1 mg·mL(-1) reduced the LAR, AHR and cell influx with ovalbumin alone, but was ineffective when guinea pigs were exposed to LPS before and with ovalbumin. CONCLUSIONS AND IMPLICATIONS LPS exposure exacerbates airway inflammatory and functional responses to allergen inhalation and decreases corticosteroid sensitivity. Its widespread presence in the environment could contribute to asthma exacerbations and corticosteroid insensitivity in humans.
Collapse
Affiliation(s)
- A P P Lowe
- Cardiff School of Pharmacy, Cardiff University, Cardiff, UK
| | | | | | | | | | | |
Collapse
|
49
|
Berger M, de Boer JD, Bresser P, van der Poll T, Lutter R, Sterk PJ, van der Zee JS. Lipopolysaccharide amplifies eosinophilic inflammation after segmental challenge with house dust mite in asthmatics. Allergy 2015; 70:257-64. [PMID: 25381858 DOI: 10.1111/all.12544] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND House dust contains mite allergens as well as bacterial products such as lipopolysaccharide (LPS). Asthma exacerbations are associated with the level of exposure to allergens and LPS. LPS can potentiate allergen effects in steroid-naïve patients. Long-acting β2-agonists (LABA) were shown to inhibit LPS-induced bronchial inflammation in healthy volunteers. The aim of this study was to assess the effect of LPS on the allergen-induced eosinophilic inflammation [primary endpoints: eosinophil counts and eosinophil cationic protein (ECP)] induced by bronchial instillation of house dust mite (HDM) in patients with asthma on maintenance treatment with inhaled corticosteroids (ICS). METHODS Thirty-two nonsmoking asthmatics with HDM allergy were treated with run-in medication (fluticasone propionate 100 μg bid) during 2 weeks before the study day. All patients underwent bronchial challenge with HDM, and half of them were randomized to receive additional LPS. Both groups were randomized to receive pretreatment with a single inhalation of 100 μg salmeterol 30 min before bronchial segmental challenge. Six hours later, bronchoalveolar lavage (BAL) was collected for leukocyte cell count, differentials, and cellular activation markers. RESULTS Challenge with HDM/LPS induced a significant increase in eosinophil cationic protein (P = 0.036) and a trend toward an increase in BALF eosinophils as compared to HDM challenge. CONCLUSION Lipopolysaccharide promotes eosinophilic airway inflammation in patients with asthma despite being on maintenance treatment with ICS.
Collapse
Affiliation(s)
- M Berger
- Department of Respiratory Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands; Department of Respiratory Medicine, Spaarne Hospital, Hoofddorp, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
50
|
Saini Y, Dang H, Livraghi-Butrico A, Kelly EJ, Jones LC, O'Neal WK, Boucher RC. Gene expression in whole lung and pulmonary macrophages reflects the dynamic pathology associated with airway surface dehydration. BMC Genomics 2014; 15:726. [PMID: 25204199 PMCID: PMC4247008 DOI: 10.1186/1471-2164-15-726] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 08/15/2014] [Indexed: 12/28/2022] Open
Abstract
Background Defects in airway mucosal defense, including decreased mucus clearance, contribute to the pathogenesis of human chronic obstructive pulmonary diseases. Scnn1b-Tg mice, which exhibit chronic airway surface dehydration from birth, can be used as a model to study the pathogenesis of muco-obstructive lung disease across developmental stages. To identify molecular signatures associated with obstructive lung disease in this model, gene expression analyses were performed on whole lung and purified lung macrophages collected from Scnn1b-Tg and wild-type (WT) littermates at four pathologically relevant time points. Macrophage gene expression at 6 weeks was evaluated in mice from a germ-free environment to understand the contribution of microbes to disease development. Results Development- and disease-specific shifts in gene expression related to Scnn1b over-expression were revealed in longitudinal analyses. While the total number of transgene-related differentially expressed genes producing robust signals was relatively small in whole lung (n = 84), Gene Set Enrichment Analysis (GSEA) revealed significantly perturbed biological pathways and interactions between normal lung development and disease initiation/progression. Purified lung macrophages from Scnn1b-Tg mice exhibited numerous robust and dynamic gene expression changes. The expression levels of Classically-activated (M1) macrophage signatures were significantly altered at post-natal day (PND) 3 when Scnn1b-Tg mice lung exhibit spontaneous bacterial infections, while alternatively-activated (M2) macrophage signatures were more prominent by PND 42, producing a mixed M1-M2 activation profile. While differentially-regulated, inflammation-related genes were consistently identified in both tissues in Scnn1b-Tg mice, there was little overlap between tissues or across time, highlighting time- and tissue-specific responses. Macrophages purified from adult germ-free Scnn1b-Tg mice exhibited signatures remarkably similar to non-germ-free counterparts, indicating that the late-phase macrophage activation profile was not microbe-dependent. Conclusions Whole lung and pulmonary macrophages respond independently and dynamically to local stresses associated with airway mucus stasis. Disease-specific responses interact with normal developmental processes, influencing the final state of disease in this model. The robust signatures observed in Scnn1b-Tg lung macrophages highlight their critical role in disease pathogenesis. These studies emphasize the importance of region-, cell-type-, and time-dependent analyses to fully dissect the natural history of disease and the consequences of disease on normal lung development. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-726) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yogesh Saini
- Marsico Lung Institute/University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, 7011 Thurston Bowles Building, Chapel Hill, NC 27599-7248, USA.
| | | | | | | | | | | | | |
Collapse
|