1
|
Yan B, Ren Y, Liu C, Shu L, Wang C, Zhang L. Cystatin SN in type 2 inflammatory airway diseases. J Allergy Clin Immunol 2023; 151:1191-1203.e3. [PMID: 36958985 DOI: 10.1016/j.jaci.2023.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 03/25/2023]
Abstract
Cystatin SN, encoded by CST1, belongs to the type 2 (T2) cystatin protein superfamily. In the past decade, several publications have highlighted the association between cystatin SN and inflammatory airway diseases including chronic rhinosinusitis, rhinitis, asthma, chronic obstructive pulmonary disease, and chronic hypersensitivity pneumonitis. It is, therefore, crucial to understand the role of cystatin SN in the wider context of T2 inflammatory diseases. Here, we review the expression of cystatin SN in airway-related diseases with different endotypes. We also emphasize the physiological and pathological roles of cystatin SN. Physiologically, cystatin SN protects host tissues from destructive proteolysis by cysteine proteases present in the external environment or produced via internal dysregulated expression. Pathologically, the secretion of cystatin SN from airway epithelial cells initiates and amplifies T2 immunity and subsequently leads to disease. We further discuss the development of cystatin SN as a T2 immunity marker that can be monitored noninvasively and assist in airway disease management. The discovery, biology, and inhibition capability are also introduced to better understand the role of cystatin SN in airway diseases.
Collapse
Affiliation(s)
- Bing Yan
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Nasal Diseases, Beijing Laboratory of Allergic Diseases, Beijing Institute of Otolaryngology, Beijing, China; Key Laboratory of Otolaryngology Head and Neck Surgery (Ministry of Education of China), Beijing Institute of Otolaryngology, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Yimin Ren
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Nasal Diseases, Beijing Laboratory of Allergic Diseases, Beijing Institute of Otolaryngology, Beijing, China; Key Laboratory of Otolaryngology Head and Neck Surgery (Ministry of Education of China), Beijing Institute of Otolaryngology, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Chang Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Nasal Diseases, Beijing Laboratory of Allergic Diseases, Beijing Institute of Otolaryngology, Beijing, China; Key Laboratory of Otolaryngology Head and Neck Surgery (Ministry of Education of China), Beijing Institute of Otolaryngology, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Linping Shu
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Nasal Diseases, Beijing Laboratory of Allergic Diseases, Beijing Institute of Otolaryngology, Beijing, China; Key Laboratory of Otolaryngology Head and Neck Surgery (Ministry of Education of China), Beijing Institute of Otolaryngology, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Chengshuo Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Nasal Diseases, Beijing Laboratory of Allergic Diseases, Beijing Institute of Otolaryngology, Beijing, China; Key Laboratory of Otolaryngology Head and Neck Surgery (Ministry of Education of China), Beijing Institute of Otolaryngology, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China.
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Nasal Diseases, Beijing Laboratory of Allergic Diseases, Beijing Institute of Otolaryngology, Beijing, China; Key Laboratory of Otolaryngology Head and Neck Surgery (Ministry of Education of China), Beijing Institute of Otolaryngology, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China; Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Strub MD, Ramachandran S, Boudko DY, Meleshkevitch E, Pezzulo AA, Subramanian A, Liberzon A, Bridges RJ, McCray PB. Translating in vitro CFTR rescue into small molecule correctors for cystic fibrosis using the Library of Integrated Network-based Cellular Signatures drug discovery platform. CPT Pharmacometrics Syst Pharmacol 2022; 11:240-251. [PMID: 34877817 PMCID: PMC8846631 DOI: 10.1002/psp4.12751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/19/2021] [Accepted: 11/28/2021] [Indexed: 12/13/2022] Open
Abstract
Cystic fibrosis (CF) is a lethal autosomal recessive disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The common ΔF508-CFTR mutation results in protein misfolding and proteasomal degradation. If ΔF508-CFTR trafficks to the cell surface, its anion channel function may be partially restored. Several in vitro strategies can partially correct ΔF508-CFTR trafficking and function, including low-temperature, small molecules, overexpression of miR-138, or knockdown of SIN3A. The challenge remains to translate such interventions into therapies and to understand their mechanisms. One approach for connecting such interventions to small molecule therapies that has previously succeeded for CF and other diseases is via mRNA expression profiling and iterative searches of small molecules with similar expression signatures. Here, we query the Library of Integrated Network-based Cellular Signatures using transcriptomic signatures from previously generated CF expression data, including RNAi- and low temperature-based rescue signatures. This LINCS in silico screen prioritized 135 small molecules that mimicked our rescue interventions based on their genomewide transcriptional perturbations. Functional screens of these small molecules identified eight compounds that partially restored ΔF508-CFTR function, as assessed by cAMP-activated chloride conductance. Of these, XL147 rescued ΔF508-CFTR function in primary CF airway epithelia, while also showing cooperativity when administered with C18. Improved CF corrector therapies are needed and this integrative drug prioritization approach offers a novel method to both identify small molecules that may rescue ΔF508-CFTR function and identify gene networks underlying such rescue.
Collapse
Affiliation(s)
- Matthew D. Strub
- Department of PediatricsUniversity of IowaIowa CityIowaUSA
- Interdisciplinary Graduate Program in GeneticsUniversity of IowaIowa CityIowaUSA
| | - Shyam Ramachandran
- Department of PediatricsUniversity of IowaIowa CityIowaUSA
- Present address:
SanofiWalthamMassachusettsUSA
| | - Dmitri Y. Boudko
- Department of Physiology and BiophysicsRosalind Franklin UniversityNorth ChicagoIllinoisUSA
- Present address:
ReCode TherapeuticsDallasTexasUSA
| | - Ella A. Meleshkevitch
- Department of Physiology and BiophysicsRosalind Franklin UniversityNorth ChicagoIllinoisUSA
- Present address:
ReCode TherapeuticsDallasTexasUSA
| | | | | | - Arthur Liberzon
- Broad Institute of MIT and HarvardCambridgeMassachusettsUSA
- Present address:
AlkermesWalthamMassachusettsUSA
| | - Robert J. Bridges
- Department of Physiology and BiophysicsRosalind Franklin UniversityNorth ChicagoIllinoisUSA
| | - Paul B. McCray
- Department of PediatricsUniversity of IowaIowa CityIowaUSA
- Interdisciplinary Graduate Program in GeneticsUniversity of IowaIowa CityIowaUSA
| |
Collapse
|
3
|
Farinha CM, Gentzsch M. Revisiting CFTR Interactions: Old Partners and New Players. Int J Mol Sci 2021; 22:13196. [PMID: 34947992 PMCID: PMC8703571 DOI: 10.3390/ijms222413196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 01/07/2023] Open
Abstract
Remarkable progress in CFTR research has led to the therapeutic development of modulators that rescue the basic defect in cystic fibrosis. There is continuous interest in studying CFTR molecular disease mechanisms as not all cystic fibrosis patients have a therapeutic option available. Addressing the basis of the problem by comprehensively understanding the critical molecular associations of CFTR interactions remains key. With the availability of CFTR modulators, there is interest in comprehending which interactions are critical to rescue CFTR and which are altered by modulators or CFTR mutations. Here, the current knowledge on interactions that govern CFTR folding, processing, and stability is summarized. Furthermore, we describe protein complexes and signal pathways that modulate the CFTR function. Primary epithelial cells display a spatial control of the CFTR interactions and have become a common system for preclinical and personalized medicine studies. Strikingly, the novel roles of CFTR in development and differentiation have been recently uncovered and it has been revealed that specific CFTR gene interactions also play an important role in transcriptional regulation. For a comprehensive understanding of the molecular environment of CFTR, it is important to consider CFTR mutation-dependent interactions as well as factors affecting the CFTR interactome on the cell type, tissue-specific, and transcriptional levels.
Collapse
Affiliation(s)
- Carlos M. Farinha
- BioISI—Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal
| | - Martina Gentzsch
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Pediatrics, Division of Pediatric Pulmonology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
4
|
Hodos RA, Strub MD, Ramachandran S, Meleshkevitch EA, Boudko DY, Bridges RJ, Dudley JT, McCray PB. Integrative chemogenomic analysis identifies small molecules that partially rescue ΔF508-CFTR for cystic fibrosis. CPT Pharmacometrics Syst Pharmacol 2021; 10:500-510. [PMID: 33934548 PMCID: PMC8129714 DOI: 10.1002/psp4.12626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022] Open
Abstract
Rare diseases affect 10% of the first-world population, yet over 95% lack even a single pharmaceutical treatment. In the present age of information, we need ways to leverage our vast data and knowledge to streamline therapeutic development and lessen this gap. Here, we develop and implement an innovative informatic approach to identify therapeutic molecules, using the Connectivity Map and LINCS L1000 databases and disease-associated transcriptional signatures and pathways. We apply this to cystic fibrosis (CF), the most common genetic disease in people of northern European ancestry leading to chronic lung disease and reduced lifespan. We selected and tested 120 small molecules in a CF cell line, finding 8 with activity, and confirmed 3 in primary CF airway epithelia. Although chemically diverse, the transcriptional profiles of the hits suggest a common mechanism associated with the unfolded protein response and/or TNFα signaling. This study highlights the power of informatics to help identify new therapies and reveal mechanistic insights while moving beyond target-centric drug discovery.
Collapse
Affiliation(s)
- Rachel A. Hodos
- Institute for Next Generation HealthcareMount Sinai School of MedicineNew YorkNYUSA
- Courant Institute for Mathematical SciencesNew York UniversityNew YorkNYUSA
- Present address:
BenevolentAINew YorkNYUSA
| | - Matthew D. Strub
- Department of PediatricsUniversity of IowaCarver College of MedicineIowa CityIAUSA
- Interdisciplinary Graduate Program in GeneticsUniversity of IowaIowa CityIAUSA
| | | | - Ella A. Meleshkevitch
- Department of Physiology and BiophysicsRosalind Franklin UniversityNorth ChicagoILUSA
| | - Dmitri Y. Boudko
- Department of Physiology and BiophysicsRosalind Franklin UniversityNorth ChicagoILUSA
| | - Robert J. Bridges
- Department of Physiology and BiophysicsRosalind Franklin UniversityNorth ChicagoILUSA
| | - Joel T. Dudley
- Institute for Next Generation HealthcareMount Sinai School of MedicineNew YorkNYUSA
| | - Paul B. McCray
- Department of PediatricsUniversity of IowaCarver College of MedicineIowa CityIAUSA
- Interdisciplinary Graduate Program in GeneticsUniversity of IowaIowa CityIAUSA
| |
Collapse
|
5
|
Strub MD, McCray, Jr. PB. Transcriptomic and Proteostasis Networks of CFTR and the Development of Small Molecule Modulators for the Treatment of Cystic Fibrosis Lung Disease. Genes (Basel) 2020; 11:genes11050546. [PMID: 32414011 PMCID: PMC7288469 DOI: 10.3390/genes11050546] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/18/2022] Open
Abstract
Cystic fibrosis (CF) is a lethal autosomal recessive disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. The diversity of mutations and the multiple ways by which the protein is affected present challenges for therapeutic development. The observation that the Phe508del-CFTR mutant protein is temperature sensitive provided proof of principle that mutant CFTR could escape proteosomal degradation and retain partial function. Several specific protein interactors and quality control checkpoints encountered by CFTR during its proteostasis have been investigated for therapeutic purposes, but remain incompletely understood. Furthermore, pharmacological manipulation of many CFTR interactors has not been thoroughly investigated for the rescue of Phe508del-CFTR. However, high-throughput screening technologies helped identify several small molecule modulators that rescue CFTR from proteosomal degradation and restore partial function to the protein. Here, we discuss the current state of CFTR transcriptomic and biogenesis research and small molecule therapy development. We also review recent progress in CFTR proteostasis modulators and discuss how such treatments could complement current FDA-approved small molecules.
Collapse
Affiliation(s)
- Matthew D. Strub
- Interdisciplinary Graduate Program in Genetics, The University of Iowa, Iowa City, IA 52242, USA;
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA
| | - Paul B. McCray, Jr.
- Interdisciplinary Graduate Program in Genetics, The University of Iowa, Iowa City, IA 52242, USA;
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA
- Correspondence: ; Tel.: +1-(319)-335-6844
| |
Collapse
|
6
|
Levy H, Jia S, Pan A, Zhang X, Kaldunski M, Nugent ML, Reske M, Feliciano RA, Quintero D, Renda MM, Woods KJ, Murkowski K, Johnson K, Verbsky J, Dasu T, Ideozu JE, McColley S, Quasney MW, Dahmer MK, Avner E, Farrell PM, Cannon CL, Jacob H, Simpson PM, Hessner MJ. Identification of molecular signatures of cystic fibrosis disease status with plasma-based functional genomics. Physiol Genomics 2018; 51:27-41. [PMID: 30540547 DOI: 10.1152/physiolgenomics.00109.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Although cystic fibrosis (CF) is attributed to dysfunction of a single gene, the relationships between the abnormal gene product and the development of inflammation and progression of lung disease are not fully understood, which limits our ability to predict an individual patient's clinical course and treatment response. To better understand CF progression, we characterized the molecular signatures of CF disease status with plasma-based functional genomics. Peripheral blood mononuclear cells (PBMCs) from healthy donors were cultured with plasma samples from CF patients ( n = 103) and unrelated, healthy controls ( n = 31). Gene expression levels were measured with an Affymetrix microarray (GeneChip Human Genome U133 Plus 2.0). Peripheral blood samples from a subset of the CF patients ( n = 40) were immunophenotyped by flow cytometry, and the data were compared with historical data for age-matched healthy controls ( n = 351). Plasma samples from another subset of CF patients ( n = 56) and healthy controls ( n = 16) were analyzed by multiplex enzyme-linked immunosorbent assay (ELISA) for numerous cytokines and chemokines. Principal component analysis and hierarchical clustering of induced transcriptional data revealed disease-specific plasma-induced PBMC profiles. Among 1,094 differentially expressed probe sets, 51 genes were associated with pancreatic sufficient status, and 224 genes were associated with infection with Pseudomonas aeruginosa. The flow cytometry and ELISA data confirmed that various immune modulators are relevant contributors to the CF molecular signature. This study provides strong evidence for distinct molecular signatures among CF patients. An understanding of these molecular signatures may lead to unique molecular markers that will enable more personalized prognoses, individualized treatment plans, and rapid monitoring of treatment response.
Collapse
Affiliation(s)
- Hara Levy
- Human Molecular Genetics Program, Stanley Manne Children's Research Institute of Chicago , Chicago, Illinois.,Division of Pulmonary Medicine, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago , Chicago, Illinois.,Northwestern University Feinberg School of Medicine , Chicago, Illinois
| | - Shuang Jia
- Division of Endocrinology, Department of Pediatrics, Medical College of Wisconsin , Milwaukee, Wisconsin.,Max McGee National Research Center for Juvenile Diabetes, Department of Pediatrics, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Amy Pan
- Children's Research Institute of the Children's Hospital of Wisconsin , Milwaukee, Wisconsin.,Division of Quantitative Health Sciences, Department of Pediatrics, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Xi Zhang
- Human Molecular Genetics Program, Stanley Manne Children's Research Institute of Chicago , Chicago, Illinois.,Division of Pulmonary Medicine, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago , Chicago, Illinois.,Northwestern University Feinberg School of Medicine , Chicago, Illinois
| | - Mary Kaldunski
- Division of Endocrinology, Department of Pediatrics, Medical College of Wisconsin , Milwaukee, Wisconsin.,Max McGee National Research Center for Juvenile Diabetes, Department of Pediatrics, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Melodee L Nugent
- Children's Research Institute of the Children's Hospital of Wisconsin , Milwaukee, Wisconsin.,Division of Quantitative Health Sciences, Department of Pediatrics, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Melissa Reske
- Children's Research Institute of the Children's Hospital of Wisconsin , Milwaukee, Wisconsin
| | - Rachel A Feliciano
- Children's Research Institute of the Children's Hospital of Wisconsin , Milwaukee, Wisconsin
| | - Diana Quintero
- Division of Pulmonology, Department of Pediatrics, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Michael M Renda
- Children's Research Institute of the Children's Hospital of Wisconsin , Milwaukee, Wisconsin
| | - Katherine J Woods
- Division of Pediatric Critical Care Medicine, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Kathy Murkowski
- Division of Pediatric Critical Care Medicine, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Keven Johnson
- Human Molecular Genetics Program, Stanley Manne Children's Research Institute of Chicago , Chicago, Illinois
| | - James Verbsky
- Division of Rheumatology, Department of Pediatrics, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Trivikram Dasu
- Division of Rheumatology, Department of Pediatrics, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Justin Eze Ideozu
- Human Molecular Genetics Program, Stanley Manne Children's Research Institute of Chicago , Chicago, Illinois.,Division of Pulmonary Medicine, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago , Chicago, Illinois.,Northwestern University Feinberg School of Medicine , Chicago, Illinois
| | - Susanna McColley
- Division of Pulmonary Medicine, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago , Chicago, Illinois.,Northwestern University Feinberg School of Medicine , Chicago, Illinois
| | - Michael W Quasney
- Division of Pediatric Critical Care Medicine, University of Michigan Medical School , Ann Arbor, Michigan
| | - Mary K Dahmer
- Division of Pediatric Critical Care Medicine, University of Michigan Medical School , Ann Arbor, Michigan
| | - Ellis Avner
- Children's Research Institute of the Children's Hospital of Wisconsin , Milwaukee, Wisconsin.,Division of Nephrology, Department of Pediatrics, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Philip M Farrell
- Department of Pediatrics and Population Health Sciences, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin
| | - Carolyn L Cannon
- Division of Pulmonary Medicine, Department of Pediatrics, Baylor College of Medicine , Houston, Texas
| | - Howard Jacob
- Genomic Medicine, Institute for Biotechnology, Hudson Alpha, Huntsville, Alabama
| | - Pippa M Simpson
- Children's Research Institute of the Children's Hospital of Wisconsin , Milwaukee, Wisconsin.,Division of Quantitative Health Sciences, Department of Pediatrics, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Martin J Hessner
- Division of Endocrinology, Department of Pediatrics, Medical College of Wisconsin , Milwaukee, Wisconsin.,Max McGee National Research Center for Juvenile Diabetes, Department of Pediatrics, Medical College of Wisconsin , Milwaukee, Wisconsin.,Children's Research Institute of the Children's Hospital of Wisconsin , Milwaukee, Wisconsin
| |
Collapse
|
7
|
Hodos RA, Kidd BA, Khader S, Readhead BP, Dudley JT. In silico methods for drug repurposing and pharmacology. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2016; 8:186-210. [PMID: 27080087 PMCID: PMC4845762 DOI: 10.1002/wsbm.1337] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/08/2016] [Accepted: 02/11/2016] [Indexed: 12/18/2022]
Abstract
Data in the biological, chemical, and clinical domains are accumulating at ever-increasing rates and have the potential to accelerate and inform drug development in new ways. Challenges and opportunities now lie in developing analytic tools to transform these often complex and heterogeneous data into testable hypotheses and actionable insights. This is the aim of computational pharmacology, which uses in silico techniques to better understand and predict how drugs affect biological systems, which can in turn improve clinical use, avoid unwanted side effects, and guide selection and development of better treatments. One exciting application of computational pharmacology is drug repurposing-finding new uses for existing drugs. Already yielding many promising candidates, this strategy has the potential to improve the efficiency of the drug development process and reach patient populations with previously unmet needs such as those with rare diseases. While current techniques in computational pharmacology and drug repurposing often focus on just a single data modality such as gene expression or drug-target interactions, we argue that methods such as matrix factorization that can integrate data within and across diverse data types have the potential to improve predictive performance and provide a fuller picture of a drug's pharmacological action. WIREs Syst Biol Med 2016, 8:186-210. doi: 10.1002/wsbm.1337 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Rachel A Hodos
- New York University and Icahn School of Medicine at Mt. Sinai, New York, NY
| | - Brian A Kidd
- Icahn School of Medicine at Mt. Sinai, New York, NY
| | | | | | | |
Collapse
|
8
|
Meyerholz DK. Lessons learned from the cystic fibrosis pig. Theriogenology 2016; 86:427-32. [PMID: 27142487 DOI: 10.1016/j.theriogenology.2016.04.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/14/2015] [Accepted: 03/14/2016] [Indexed: 12/01/2022]
Abstract
Deficient function in the anion channel cystic fibrosis (CF) transmembrane conductance regulator is the fundamental cause for CF. This is a monogenic condition that causes lesions in several organs including the respiratory tract, pancreas, liver, intestines, and reproductive tract. Lung disease is most notable, given it is the leading cause of morbidity and mortality in people with CF. Shortly after the identification of CF transmembrane conductance regulator, CF mouse models were developed that did not show spontaneous lung disease as seen in humans, and this spurred development of additional CF animal models. Pig models were considered a leading choice for several reasons including their similarity to humans in respiratory anatomy, physiology, and in size for translational imaging. The first CF pig models were reported in 2008 and have been extremely valuable to help clarify persistent questions in the field and advance understanding of disease pathogenesis. Because CF pigs are susceptible to lung disease like humans, they have direct utility in translational research. In addition, CF pig models are useful to compare and contrast with current CF mouse models, human clinical studies, and even newer CF animal models being characterized. This "triangulation" strategy could help identify genetic differences that underlie phenotypic variations, so as to focus and accelerate translational research.
Collapse
Affiliation(s)
- David K Meyerholz
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.
| |
Collapse
|
9
|
Farinha CM, Matos P. Repairing the basic defect in cystic fibrosis - one approach is not enough. FEBS J 2015; 283:246-64. [PMID: 26416076 DOI: 10.1111/febs.13531] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 12/16/2022]
Abstract
Cystic fibrosis has attracted much attention in recent years due to significant advances in the pharmacological targeting of the basic defect underlying this recessive disorder: the deficient functional expression of mutant cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels at the apical membrane of epithelial cells. However, increasing evidence points to the reduced efficacy of single treatments, thus reinforcing the need to combine several therapeutic strategies to effectively target the multiple basic defect(s). Protein-repair therapies that use potentiators (activating membrane-located CFTR) or correctors (promoting the relocation of intracellular-retained trafficking mutants of CFTR) in frequent mutations such as F508del and G551D have been put forward and made their way to the clinic with moderate to good efficiency. However, alternative (or additional) approaches targeting the membrane stability of mutant proteins, or correcting the cellular phenotype through a direct effect upon other ion channels (affecting the overall electrolyte transport or simply promoting alternative chloride transport) or targeting less frequent mutations (splicing variants, for example), have been proposed and tested in the field of cystic fibrosis (CF). Here, we cover the different strategies that rely on novel findings concerning the CFTR interactome and signalosome through which it might be possible to further influence the cellular trafficking and post-translational modification machinery (to increase rescued CFTR abundance and membrane stability). We also highlight the new data on strategies aiming at the regulation of sodium absorption or to increase chloride transport through alternative channels. The development and implementation of these complementary approaches will pave the way to combinatorial therapeutic strategies with increased benefit to CF patients.
Collapse
Affiliation(s)
- Carlos M Farinha
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Portugal
| | - Paulo Matos
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Portugal.,Department of Human Genetics, National Health Institute 'Dr. Ricardo Jorge', Lisboa, Portugal
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW The field of cystic fibrosis (CF) continues to evolve at a fast pace thanks to novel observations that have enabled deeper understanding of the disease pathophysiology. Parallel groundbreaking developments in innovative therapies permit, for the first time, distinct disease modification. RECENT FINDINGS This review highlights important discoveries in fluid homeostasis and mucus secretion in CF that further informs the pathophysiology of the airway disease that characterizes CF. In addition, current concepts and novel paradigms, such as 'theratypes' and 'CF transmembrane conductance regulator chaperome', which will be important for the continued development of disease modifying therapies, are reviewed. SUMMARY The rate of progress in the field continues to accelerate with new knowledge informing the development of innovative therapies. This has already led to tangible substantial and unprecedented clinical benefit for selected subsets of the CF patient population. In the years ahead, further knowledge acquisition may motivate the extension of these benefits to the larger population of people with CF.
Collapse
|
11
|
Xiao YY, Fan PJ, Lei SR, Qi M, Yang XH. MiR-138/peroxisome proliferator-activated receptor β signaling regulates human hypertrophic scar fibroblast proliferation and movement in vitro. J Dermatol 2015; 42:485-95. [PMID: 25752881 DOI: 10.1111/1346-8138.12792] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 12/16/2014] [Indexed: 01/20/2023]
Abstract
Excessive scars affect a patient's quality of life, both physically and psychologically, by causing pruritus, pain and contractures. Because there is a poor understanding of the complex mechanisms underlying the processes of hypertrophic scar formation, most therapeutic approaches remain clinically unsatisfactory. In this study, we found that miR-138 was downregulated and peroxisome proliferator-activated receptor (PPARβ) was inversely upregulated in hypertrophic scar tissues compared to in paired normal skin tissues. Using a dual-luciferase assay, we validated that miR138 directly targets PPARβ and regulates its expression at the transcriptional and translational levels. In gain-and-loss experiments, we found that miR-138/PPARβ signaling regulated human hypertrophic scar fibroblast proliferation and movement, and affected scarring-related protein expression, which suggests that miR-138/PPARβ signaling is important for hypertrophic scarring. Thus, our study provides evidence to help determine whether miR-138/PPARβ signaling may be a potential target for hypertrophic scarring management.
Collapse
Affiliation(s)
- Ying-ying Xiao
- Department of Plastic and Cosmetic Surgery, XiangYa Hospital, Central South University, Changsha, China
| | | | | | | | | |
Collapse
|