1
|
Pearce C, Crapnell A, Bedawi EO, Rahman NM, Corcoran JP. Pleural Infection: Diagnosis, Management, and Future Directions. J Clin Med 2025; 14:1685. [PMID: 40095674 PMCID: PMC11899816 DOI: 10.3390/jcm14051685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/03/2025] [Accepted: 02/27/2025] [Indexed: 03/19/2025] Open
Abstract
Pleural infection represents a significant and ongoing challenge for patients, clinicians, and healthcare providers given the morbidity and mortality associated with this condition. Whilst our understanding of how pleural infection develops and how it should be treated has improved considerably over the past couple of decades, this has yet to translate into a meaningful positive impact on key outcomes. Making the diagnosis of pleural infection is not always straightforward, and the long-standing belief that it always occurs as a complication of lung parenchymal infection is being increasingly recognised as incorrect. Identifying the causative organism(s) is equally uncertain, with almost half of cases of pleural infection proving to be culture negative using traditional methods. Whilst we are now able to determine which patients are more likely to have a poor outcome from their pleural infection at the time of diagnosis, how this should affect their treatment pathway-including the role of more invasive strategies such as surgery or intrapleural enzyme therapy-is not yet known. This review article aims to summarise the existing evidence base and best clinical practice for the non-specialist, whilst highlighting recent research which has or will change the way we manage pleural infection, as well as those areas where further studies are still needed.
Collapse
Affiliation(s)
- Catharine Pearce
- Interventional Pulmonology Service, Department of Respiratory Medicine, University Hospitals Plymouth NHS Trust, Plymouth PL6 8DH, UK (A.C.)
| | - Adele Crapnell
- Interventional Pulmonology Service, Department of Respiratory Medicine, University Hospitals Plymouth NHS Trust, Plymouth PL6 8DH, UK (A.C.)
| | - Eihab O. Bedawi
- Department of Respiratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield S10 2JF, UK;
| | - Najib M. Rahman
- University of Oxford Respiratory Trials Unit, Churchill Hospital, Oxford OX3 7LE, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 7JX, UK
| | - John P. Corcoran
- Academic Department of Respiratory Medicine, Royal Devon and Exeter Hospital, Exeter EX2 5DW, UK
| |
Collapse
|
2
|
Barrett CD, Moore PK, Yaffe MB. Response. Chest 2025; 167:e64-e65. [PMID: 39939066 DOI: 10.1016/j.chest.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 02/14/2025] Open
Affiliation(s)
- Christopher D Barrett
- Division of Acute Care Surgery, Departments of Surgery and Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE.
| | - Peter K Moore
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Michael B Yaffe
- Division of Acute Care Surgery, Trauma and Surgical Critical Care, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Koch Institute for Integrative Cancer Research, Center for Precision Cancer Medicine, Departments of Biological Engineering and Biology, Massachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
3
|
De Vera CJ, Jacob J, Sarva K, Christudas S, Emerine RL, Florence JM, Akiode O, Gorthy TV, Tucker TA, Singh KP, Azghani AO, Komissarov AA, Florova G, Idell S. Intrapleural Fibrinolytic Interventions for Retained Hemothoraces in Rabbits. Int J Mol Sci 2024; 25:8778. [PMID: 39201465 PMCID: PMC11354762 DOI: 10.3390/ijms25168778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Bleeding within the pleural space may result in persistent clot formation called retained hemothorax (RH). RH is prone to organization, which compromises effective drainage, leading to lung restriction and dyspnea. Intrapleural fibrinolytic therapy is used to clear the persistent organizing clot in lieu of surgery, but fibrinolysin selection, delivery strategies, and dosing have yet to be identified. We used a recently established rabbit model of RH to test whether intrapleural delivery of single-chain urokinase (scuPA) can most effectively clear RH. scuPA, or single-chain tissue plasminogen activator (sctPA), was delivered via thoracostomy tube on day 7 as either one or two doses 8 h apart. Pleural clot dissolution was assessed using transthoracic ultrasonography, chest computed tomography, two-dimensional and clot displacement measurements, and gross analysis. Two doses of scuPA (1 mg/kg) were more effective than a bolus dose of 2 mg/kg in resolving RH and facilitating drainage of pleural fluids (PF). Red blood cell counts in the PF of scuPA, or sctPA-treated rabbits were comparable, and no gross intrapleural hemorrhage was observed. Both fibrinolysins were equally effective in clearing clots and promoting pleural drainage. Biomarkers of inflammation and organization were likewise comparable in PF from both groups. The findings suggest that single-agent therapy may be effective in clearing RH; however, the clinical advantage of intrapleural scuPA remains to be established by future clinical trials.
Collapse
Affiliation(s)
- Christian J. De Vera
- Department of Cellular and Molecular Biology, School of Medicine, The University of Texas Health Science Center at Tyler, 11937 US HWY 271, Tyler, TX 75708, USA; (C.J.D.V.); (J.J.); (K.S.); (S.C.); (R.L.E.); (J.M.F.); (O.A.); (T.V.G.); (T.A.T.); (A.A.K.); (G.F.)
| | - Jincy Jacob
- Department of Cellular and Molecular Biology, School of Medicine, The University of Texas Health Science Center at Tyler, 11937 US HWY 271, Tyler, TX 75708, USA; (C.J.D.V.); (J.J.); (K.S.); (S.C.); (R.L.E.); (J.M.F.); (O.A.); (T.V.G.); (T.A.T.); (A.A.K.); (G.F.)
| | - Krishna Sarva
- Department of Cellular and Molecular Biology, School of Medicine, The University of Texas Health Science Center at Tyler, 11937 US HWY 271, Tyler, TX 75708, USA; (C.J.D.V.); (J.J.); (K.S.); (S.C.); (R.L.E.); (J.M.F.); (O.A.); (T.V.G.); (T.A.T.); (A.A.K.); (G.F.)
| | - Sunil Christudas
- Department of Cellular and Molecular Biology, School of Medicine, The University of Texas Health Science Center at Tyler, 11937 US HWY 271, Tyler, TX 75708, USA; (C.J.D.V.); (J.J.); (K.S.); (S.C.); (R.L.E.); (J.M.F.); (O.A.); (T.V.G.); (T.A.T.); (A.A.K.); (G.F.)
| | - Rebekah L. Emerine
- Department of Cellular and Molecular Biology, School of Medicine, The University of Texas Health Science Center at Tyler, 11937 US HWY 271, Tyler, TX 75708, USA; (C.J.D.V.); (J.J.); (K.S.); (S.C.); (R.L.E.); (J.M.F.); (O.A.); (T.V.G.); (T.A.T.); (A.A.K.); (G.F.)
| | - Jon M. Florence
- Department of Cellular and Molecular Biology, School of Medicine, The University of Texas Health Science Center at Tyler, 11937 US HWY 271, Tyler, TX 75708, USA; (C.J.D.V.); (J.J.); (K.S.); (S.C.); (R.L.E.); (J.M.F.); (O.A.); (T.V.G.); (T.A.T.); (A.A.K.); (G.F.)
| | - Oluwaseyi Akiode
- Department of Cellular and Molecular Biology, School of Medicine, The University of Texas Health Science Center at Tyler, 11937 US HWY 271, Tyler, TX 75708, USA; (C.J.D.V.); (J.J.); (K.S.); (S.C.); (R.L.E.); (J.M.F.); (O.A.); (T.V.G.); (T.A.T.); (A.A.K.); (G.F.)
| | - Tanvi V. Gorthy
- Department of Cellular and Molecular Biology, School of Medicine, The University of Texas Health Science Center at Tyler, 11937 US HWY 271, Tyler, TX 75708, USA; (C.J.D.V.); (J.J.); (K.S.); (S.C.); (R.L.E.); (J.M.F.); (O.A.); (T.V.G.); (T.A.T.); (A.A.K.); (G.F.)
| | - Torry A. Tucker
- Department of Cellular and Molecular Biology, School of Medicine, The University of Texas Health Science Center at Tyler, 11937 US HWY 271, Tyler, TX 75708, USA; (C.J.D.V.); (J.J.); (K.S.); (S.C.); (R.L.E.); (J.M.F.); (O.A.); (T.V.G.); (T.A.T.); (A.A.K.); (G.F.)
| | - Karan P. Singh
- Department of Epidemiology and Biostatistics, School of Medicine, The University of Texas Health Science Center at Tyler, 11937 US HWY 271, Tyler, TX 75708, USA;
| | - Ali O. Azghani
- Department of Biology, The University of Texas at Tyler, 3900 University Boulevard, Tyler, TX 75799, USA;
| | - Andrey A. Komissarov
- Department of Cellular and Molecular Biology, School of Medicine, The University of Texas Health Science Center at Tyler, 11937 US HWY 271, Tyler, TX 75708, USA; (C.J.D.V.); (J.J.); (K.S.); (S.C.); (R.L.E.); (J.M.F.); (O.A.); (T.V.G.); (T.A.T.); (A.A.K.); (G.F.)
| | - Galina Florova
- Department of Cellular and Molecular Biology, School of Medicine, The University of Texas Health Science Center at Tyler, 11937 US HWY 271, Tyler, TX 75708, USA; (C.J.D.V.); (J.J.); (K.S.); (S.C.); (R.L.E.); (J.M.F.); (O.A.); (T.V.G.); (T.A.T.); (A.A.K.); (G.F.)
| | - Steven Idell
- Department of Cellular and Molecular Biology, School of Medicine, The University of Texas Health Science Center at Tyler, 11937 US HWY 271, Tyler, TX 75708, USA; (C.J.D.V.); (J.J.); (K.S.); (S.C.); (R.L.E.); (J.M.F.); (O.A.); (T.V.G.); (T.A.T.); (A.A.K.); (G.F.)
| |
Collapse
|
4
|
Florova G, De Vera CJ, Emerine RL, Girard RA, Azghani AO, Sarva K, Jacob J, Morris DE, Chamiso M, Idell S, Komissarov AA. Targeting the PAI-1 Mechanism with a Small Peptide Increases the Efficacy of Alteplase in a Rabbit Model of Chronic Empyema. Pharmaceutics 2023; 15:1498. [PMID: 37242740 PMCID: PMC10220965 DOI: 10.3390/pharmaceutics15051498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/07/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The incidence of empyema is increasing and associated with a mortality rate of 20% in patients older than 65 years. Since 30% of patients with advanced empyema have contraindications to surgical treatment, novel, low-dose, pharmacological treatments are needed. A Streptococcus pneumoniae-induced rabbit model of chronic empyema recapitulates the progression, loculation, fibrotic repair, and pleural thickening of human disease. Treatment with single chain (sc) urokinase (scuPA) or tissue type (sctPA) plasminogen activators in doses 1.0-4.0 mg/kg were only partially effective in this model. Docking Site Peptide (DSP; 8.0 mg/kg), which decreased the dose of sctPA for successful fibrinolytic therapy in acute empyema model did not improve efficacy in combination with 2.0 mg/kg scuPA or sctPA. However, a two-fold increase in either sctPA or DSP (4.0 and 8.0 mg/kg or 2.0 and 16.0 mg/kg sctPA and DSP, respectively) resulted in 100% effective outcome. Thus, DSP-based Plasminogen Activator Inhibitor 1-Targeted Fibrinolytic Therapy (PAI-1-TFT) of chronic infectious pleural injury in rabbits increases the efficacy of alteplase rendering ineffective doses of sctPA effective. PAI-1-TFT represents a novel, well-tolerated treatment of empyema that is amenable to clinical introduction. The chronic empyema model recapitulates increased resistance of advanced human empyema to fibrinolytic therapy, thus allowing for studies of muti-injection treatments.
Collapse
Affiliation(s)
- Galina Florova
- The Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler (UTHSCT), Tyler, TX 75708, USA; (G.F.); (C.J.D.V.); (R.L.E.); (R.A.G.); (K.S.); (J.J.); (D.E.M.); (M.C.); (S.I.)
| | - Christian J. De Vera
- The Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler (UTHSCT), Tyler, TX 75708, USA; (G.F.); (C.J.D.V.); (R.L.E.); (R.A.G.); (K.S.); (J.J.); (D.E.M.); (M.C.); (S.I.)
| | - Rebekah L. Emerine
- The Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler (UTHSCT), Tyler, TX 75708, USA; (G.F.); (C.J.D.V.); (R.L.E.); (R.A.G.); (K.S.); (J.J.); (D.E.M.); (M.C.); (S.I.)
| | - René A. Girard
- The Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler (UTHSCT), Tyler, TX 75708, USA; (G.F.); (C.J.D.V.); (R.L.E.); (R.A.G.); (K.S.); (J.J.); (D.E.M.); (M.C.); (S.I.)
| | - Ali O. Azghani
- The Department of Biology, University of Texas at Tyler, Tyler, TX 75799, USA;
| | - Krishna Sarva
- The Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler (UTHSCT), Tyler, TX 75708, USA; (G.F.); (C.J.D.V.); (R.L.E.); (R.A.G.); (K.S.); (J.J.); (D.E.M.); (M.C.); (S.I.)
| | - Jincy Jacob
- The Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler (UTHSCT), Tyler, TX 75708, USA; (G.F.); (C.J.D.V.); (R.L.E.); (R.A.G.); (K.S.); (J.J.); (D.E.M.); (M.C.); (S.I.)
| | - Danna E. Morris
- The Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler (UTHSCT), Tyler, TX 75708, USA; (G.F.); (C.J.D.V.); (R.L.E.); (R.A.G.); (K.S.); (J.J.); (D.E.M.); (M.C.); (S.I.)
| | - Mignote Chamiso
- The Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler (UTHSCT), Tyler, TX 75708, USA; (G.F.); (C.J.D.V.); (R.L.E.); (R.A.G.); (K.S.); (J.J.); (D.E.M.); (M.C.); (S.I.)
| | - Steven Idell
- The Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler (UTHSCT), Tyler, TX 75708, USA; (G.F.); (C.J.D.V.); (R.L.E.); (R.A.G.); (K.S.); (J.J.); (D.E.M.); (M.C.); (S.I.)
| | - Andrey A. Komissarov
- The Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler (UTHSCT), Tyler, TX 75708, USA; (G.F.); (C.J.D.V.); (R.L.E.); (R.A.G.); (K.S.); (J.J.); (D.E.M.); (M.C.); (S.I.)
| |
Collapse
|
5
|
Komissarov AA, Idell S. PAI-1 Drives Septation and Clinical Outcomes in Pleural Infection. Am J Respir Crit Care Med 2023; 207:653-655. [PMID: 36269762 PMCID: PMC10037477 DOI: 10.1164/rccm.202210-1925ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Andrey A Komissarov
- School of Medicine University of Texas Health Science Center at Tyler Tyler, Texas
| | - Steven Idell
- School of Medicine University of Texas Health Science Center at Tyler Tyler, Texas
| |
Collapse
|
6
|
Sultan S, Gupta E, Benzaquen S. Management of complicated parapneumonic effusions. Curr Opin Pulm Med 2023; 29:54-59. [PMID: 36384805 DOI: 10.1097/mcp.0000000000000934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE OF REVIEW Approximately 36-57% of cases of pneumonia are associated with a parapneumonic effusion (PPE). It begins as sterile effusion, which can quickly evolve to a fibrinopurulent stage with evidence of infection called complicated parapneumonic effusions (CPPE). Marked fibrinous organization then follows. This study focuses on literature synthesis on management of CPPE. RECENT FINDINGS Ultrasound has become an indispensable tool in the identification and treatment of CPPE. Prompt antibiotic administration remains the universal standard of care. Decision to drain the fluid is based on fluid staging, characterization and assessment of risk of poor outcomes vs. risk of complications. There is growing evidence to support use of intrapleural fibrinolytic therapy (IPFT) in case of loculated effusions. Newer areas of research include antibodies against plasminogen activator inhibitors and stratification scores that can identify patients at an increased risk. Lastly, timing of surgical referral is an important area under study. SUMMARY Evolution of medical therapy over recent years has increased treatment success rates. Use of IPFT in conjunction to thoracostomy is now the standard of care for loculated effusions. Understanding available therapeutic options, both medical and interventional, can ensure evidence-based practice and improve patient-centred outcomes.
Collapse
Affiliation(s)
- Sahar Sultan
- Department of Pulmonary and Critical Care Medicine, Einstein Medical Center Philadelphia, Philadelphia, Pennsylvania
| | - Ena Gupta
- Department of Pulmonary Medicine, University of Vermont, Burlington, Vermont
| | - Sadia Benzaquen
- Department of Pulmonary, Critical Care and Sleep Medicine, Einstein Medical Center Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Karandashova S, Florova G, Idell S, Komissarov AA. From Bedside to the Bench—A Call for Novel Approaches to Prognostic Evaluation and Treatment of Empyema. Front Pharmacol 2022; 12:806393. [PMID: 35126140 PMCID: PMC8811368 DOI: 10.3389/fphar.2021.806393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/31/2021] [Indexed: 11/13/2022] Open
Abstract
Empyema, a severe complication of pneumonia, trauma, and surgery is characterized by fibrinopurulent effusions and loculations that can result in lung restriction and resistance to drainage. For decades, efforts have been focused on finding a universal treatment that could be applied to all patients with practice recommendations varying between intrapleural fibrinolytic therapy (IPFT) and surgical drainage. However, despite medical advances, the incidence of empyema has increased, suggesting a gap in our understanding of the pathophysiology of this disease and insufficient crosstalk between clinical practice and preclinical research, which slows the development of innovative, personalized therapies. The recent trend towards less invasive treatments in advanced stage empyema opens new opportunities for pharmacological interventions. Its remarkable efficacy in pediatric empyema makes IPFT the first line treatment. Unfortunately, treatment approaches used in pediatrics cannot be extrapolated to empyema in adults, where there is a high level of failure in IPFT when treating advanced stage disease. The risk of bleeding complications and lack of effective low dose IPFT for patients with contraindications to surgery (up to 30%) promote a debate regarding the choice of fibrinolysin, its dosage and schedule. These challenges, which together with a lack of point of care diagnostics to personalize treatment of empyema, contribute to high (up to 20%) mortality in empyema in adults and should be addressed preclinically using validated animal models. Modern preclinical studies are delivering innovative solutions for evaluation and treatment of empyema in clinical practice: low dose, targeted treatments, novel biomarkers to predict IPFT success or failure, novel delivery methods such as encapsulating fibrinolysin in echogenic liposomal carriers to increase the half-life of plasminogen activator. Translational research focused on understanding the pathophysiological mechanisms that control 1) the transition from acute to advanced-stage, chronic empyema, and 2) differences in outcomes of IPFT between pediatric and adult patients, will identify new molecular targets in empyema. We believe that seamless bidirectional communication between those working at the bedside and the bench would result in novel personalized approaches to improve pharmacological treatment outcomes, thus widening the window for use of IPFT in adult patients with advanced stage empyema.
Collapse
Affiliation(s)
- Sophia Karandashova
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, United States
| | - Galina Florova
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Steven Idell
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Andrey A. Komissarov
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
- *Correspondence: Andrey A. Komissarov,
| |
Collapse
|
8
|
Intrapleural Fibrinolytic Therapy versus Early Medical Thoracoscopy for Treatment of Pleural Infection. Randomized Controlled Clinical Trial. Ann Am Thorac Soc 2021; 17:958-964. [PMID: 32421353 DOI: 10.1513/annalsats.202001-076oc] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rationale: Pleural infection is frequently encountered in clinical practice and is associated with high morbidity and mortality. Limited evidence exists regarding the optimal treatment. Although both early medical thoracoscopy (MT) and tube thoracostomy with intrapleural instillation of tissue plasminogen activator and human recombinant deoxyribonuclease are acceptable treatments for patients with complicated pleural infection, there is a lack of comparative data for these modes of management.Objectives: The aim of this study was to compare the safety and efficacy of early MT versus intrapleural fibrinolytic therapy (IPFT) in selected patients with multiloculated pleural infection and empyema.Methods: This was a prospective multicenter, randomized controlled trial involving patients who underwent MT or IPFT for pleural infection. The primary outcome was the length of hospital stay after either intervention. Secondary outcomes included the total length of hospital stay, treatment failure, 30-day mortality, and adverse events.Results: Thirty-two patients with pleural infection were included in the study. The median length of stay after an intervention was 4 days in the IPFT arm and 2 days in the MT arm (P = 0.026). The total length of hospital stay was 6 days in the IPFT arm and 3.5 days in MT arm (P = 0.12). There was no difference in treatment failure, mortality, or adverse events between the treatment groups, and no serious complications related to either intervention were recorded.Conclusions: When used early in the course of a complicated parapneumonic effusion or empyema, MT is safe and might shorten hospital stays for selected patients as compared with IPFT therapy. A multicenter trial with a larger sample size is needed to confirm these findings.Clinical trial registered with ClinicalTrials.gov (NCT02973139).
Collapse
|
9
|
Florova G, Girard RA, Azghani AO, Sarva K, Buchanan A, Karandashova S, DeVera CJ, Morris D, Chamiso M, Koenig K, Cines DB, Idell S, Komissarov AA. Precision targeting of the plasminogen activator inhibitor-1 mechanism increases efficacy of fibrinolytic therapy in empyema. Physiol Rep 2021; 9:e14861. [PMID: 33991465 PMCID: PMC8123555 DOI: 10.14814/phy2.14861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 01/10/2023] Open
Abstract
Plasminogen activator inhibitor‐1 (PAI‐1) is an endogenous irreversible inhibitor of tissue‐type (tPA) and urokinase (uPA) plasminogen activators. PAI‐1‐targeted fibrinolytic therapy (PAI‐1‐TFT) is designed to decrease the therapeutic dose of tPA and uPA, attenuating the risk of bleeding and other complications. Docking site peptide (DSP) mimics the part of the PAI‐1 reactive center loop that interacts with plasminogen activators, thereby affecting the PAI‐1 mechanism. We used DSP for PAI‐1‐TFT in two rabbit models: chemically induced pleural injury and Streptococcus pneumoniae induced empyema. These models feature different levels of inflammation and PAI‐1 expression. PAI‐1‐TFT with DSP (2.0 mg/kg) converted ineffective doses of single chain (sc) tPA (72.5 µg/kg) and scuPA (62.5 µg/kg) into effective ones in chemically induced pleural injury. DSP (2.0 mg/kg) was ineffective in S. pneumoniae empyema, where the level of PAI‐1 is an order of magnitude higher. DSP dose escalation to 8.0 mg/kg resulted in effective PAI‐1‐TFT with 0.25 mg/kg sctPA (1/8th of the effective dose of sctPA alone) in empyema. There was no increase in the efficacy of scuPA. PAI‐1‐TFT with DSP increases the efficacy of fibrinolytic therapy up to 8‐fold in chemically induced (sctPA and scuPA) and infectious (sctPA) pleural injury in rabbits. PAI‐1 is a valid molecular target in our model of S. pneumoniae empyema in rabbits, which closely recapitulates key characteristics of empyema in humans. Low‐dose PAI‐1‐TFT is a novel interventional strategy that offers the potential to improve fibrinolytic therapy for empyema in clinical practice.
Collapse
Affiliation(s)
- Galina Florova
- The Department of Cellular and Molecular Biology of the University of Texas Health Science Center at Tyler (UTHSCT), Tyler, TX, USA
| | - René A Girard
- The Department of Cellular and Molecular Biology of the University of Texas Health Science Center at Tyler (UTHSCT), Tyler, TX, USA
| | | | - Krishna Sarva
- The Department of Cellular and Molecular Biology of the University of Texas Health Science Center at Tyler (UTHSCT), Tyler, TX, USA
| | | | - Sophia Karandashova
- The Department of Cellular and Molecular Biology of the University of Texas Health Science Center at Tyler (UTHSCT), Tyler, TX, USA
| | - Christian J DeVera
- The Department of Cellular and Molecular Biology of the University of Texas Health Science Center at Tyler (UTHSCT), Tyler, TX, USA
| | - Danna Morris
- The Department of Cellular and Molecular Biology of the University of Texas Health Science Center at Tyler (UTHSCT), Tyler, TX, USA
| | - Mignote Chamiso
- The Department of Cellular and Molecular Biology of the University of Texas Health Science Center at Tyler (UTHSCT), Tyler, TX, USA
| | - Kathleen Koenig
- The Department of Cellular and Molecular Biology of the University of Texas Health Science Center at Tyler (UTHSCT), Tyler, TX, USA
| | - Douglas B Cines
- Department of Pathology and Laboratory Medicine, Perelman-University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Steven Idell
- The Department of Cellular and Molecular Biology of the University of Texas Health Science Center at Tyler (UTHSCT), Tyler, TX, USA
| | - Andrey A Komissarov
- The Department of Cellular and Molecular Biology of the University of Texas Health Science Center at Tyler (UTHSCT), Tyler, TX, USA
| |
Collapse
|
10
|
Tucker TA, Idell S. The Contribution of the Urokinase Plasminogen Activator and the Urokinase Receptor to Pleural and Parenchymal Lung Injury and Repair: A Narrative Review. Int J Mol Sci 2021; 22:ijms22031437. [PMID: 33535429 PMCID: PMC7867090 DOI: 10.3390/ijms22031437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 12/28/2022] Open
Abstract
Pleural and parenchymal lung injury have long been characterized by acute inflammation and pathologic tissue reorganization, when severe. Although transitional matrix deposition is a normal part of the injury response, unresolved fibrin deposition can lead to pleural loculation and scarification of affected areas. Within this review, we present a brief discussion of the fibrinolytic pathway, its components, and their contribution to injury progression. We review how local derangements of fibrinolysis, resulting from increased coagulation and reduced plasminogen activator activity, promote extravascular fibrin deposition. Further, we describe how pleural mesothelial cells contribute to lung scarring via the acquisition of a profibrotic phenotype. We also discuss soluble uPAR, a recently identified biomarker of pleural injury, and its diagnostic value in the grading of pleural effusions. Finally, we provide an in-depth discussion on the clinical importance of single-chain urokinase plasminogen activator (uPA) for the treatment of loculated pleural collections.
Collapse
Affiliation(s)
| | - Steven Idell
- Correspondence: ; Tel.: +1-903-877-7556; Fax: +1-903-877-7316
| |
Collapse
|
11
|
Corcoran JP, Psallidas I, Gerry S, Piccolo F, Koegelenberg CF, Saba T, Daneshvar C, Fairbairn I, Heinink R, West A, Stanton AE, Holme J, Kastelik JA, Steer H, Downer NJ, Haris M, Baker EH, Everett CF, Pepperell J, Bewick T, Yarmus L, Maldonado F, Khan B, Hart-Thomas A, Hands G, Warwick G, De Fonseka D, Hassan M, Munavvar M, Guhan A, Shahidi M, Pogson Z, Dowson L, Popowicz ND, Saba J, Ward NR, Hallifax RJ, Dobson M, Shaw R, Hedley EL, Sabia A, Robinson B, Collins GS, Davies HE, Yu LM, Miller RF, Maskell NA, Rahman NM. Prospective validation of the RAPID clinical risk prediction score in adult patients with pleural infection: the PILOT study. Eur Respir J 2020; 56:2000130. [PMID: 32675200 DOI: 10.1183/13993003.00130-2020] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/06/2020] [Indexed: 11/05/2022]
Abstract
BACKGROUND Over 30% of adult patients with pleural infection either die and/or require surgery. There is no robust means of predicting at baseline presentation which patients will suffer a poor clinical outcome. A validated risk prediction score would allow early identification of high-risk patients, potentially directing more aggressive treatment thereafter. OBJECTIVES To prospectively assess a previously described risk score (the RAPID (Renal (urea), Age, fluid Purulence, Infection source, Dietary (albumin)) score) in adults with pleural infection. METHODS Prospective observational cohort study that recruited patients undergoing treatment for pleural infection. RAPID score and risk category were calculated at baseline presentation. The primary outcome was mortality at 3 months; secondary outcomes were mortality at 12 months, length of hospital stay, need for thoracic surgery, failure of medical treatment and lung function at 3 months. RESULTS Mortality data were available in 542 out of 546 patients recruited (99.3%). Overall mortality was 10% at 3 months (54 out of 542) and 19% at 12 months (102 out of 542). The RAPID risk category predicted mortality at 3 months. Low-risk mortality (RAPID score 0-2): five out of 222 (2.3%, 95% CI 0.9 to 5.7%); medium-risk mortality (RAPID score 3-4): 21 out of 228 (9.2%, 95% CI 6.0 to 13.7%); and high-risk mortality (RAPID score 5-7): 27 out of 92 (29.3%, 95% CI 21.0 to 39.2%). C-statistics for the scores at 3 months and 12 months were 0.78 (95% CI 0.71-0.83) and 0.77 (95% CI 0.72-0.82), respectively. CONCLUSIONS The RAPID score stratifies adults with pleural infection according to increasing risk of mortality and should inform future research directed at improving outcomes in this patient population.
Collapse
Affiliation(s)
- John P Corcoran
- Oxford Centre for Respiratory Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Oxford Respiratory Trials Unit, University of Oxford, Oxford, UK
- Joint first authors, with equal contribution to study recruitment and manuscript writing
| | - Ioannis Psallidas
- Oxford Centre for Respiratory Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Oxford Respiratory Trials Unit, University of Oxford, Oxford, UK
- Joint first authors, with equal contribution to study recruitment and manuscript writing
| | - Stephen Gerry
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Francesco Piccolo
- Dept of Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, Australia
| | | | - Tarek Saba
- Blackpool Teaching Hospitals NHS Foundation Trust, Blackpool, UK
| | | | | | | | - Alex West
- Guy's and St Thomas' NHS Foundation Trust, London, UK
| | | | - Jayne Holme
- University Hospital of South Manchester NHS Foundation Trust, Manchester, UK
| | | | - Henry Steer
- Gloucestershire Hospitals NHS Foundation Trust, Cheltenham, UK
| | - Nicola J Downer
- Sherwood Forest Hospitals NHS Foundation Trust, Mansfield, UK
| | - Mohammed Haris
- University Hospitals of North Midlands NHS Trust, Stoke-on-Trent, UK
| | - Emma H Baker
- Institute of Infection and Immunity, St George's, University of London, London, UK
| | | | | | - Thomas Bewick
- Derby Teaching Hospitals NHS Foundation Trust, Derby, UK
| | - Lonny Yarmus
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Fabien Maldonado
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Burhan Khan
- Dartford and Gravesham NHS Trust, Dartford, UK
| | - Alan Hart-Thomas
- Calderdale and Huddersfield NHS Foundation Trust, Huddersfield, UK
| | | | | | | | - Maged Hassan
- Oxford Centre for Respiratory Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Oxford Respiratory Trials Unit, University of Oxford, Oxford, UK
- Chest Diseases Dept, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | | | - Anur Guhan
- University Hospital Ayr, NHS Ayrshire and Arran, Ayr, UK
| | | | - Zara Pogson
- United Lincolnshire Hospitals NHS Trust, Lincoln, UK
| | - Lee Dowson
- Royal Wolverhampton Hospital NHS Trust, Wolverhampton, UK
| | - Natalia D Popowicz
- Dept of Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, Australia
| | - Judith Saba
- Blackpool Teaching Hospitals NHS Foundation Trust, Blackpool, UK
| | - Neil R Ward
- University Hospitals Plymouth NHS Trust, Plymouth, UK
| | - Rob J Hallifax
- Oxford Centre for Respiratory Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Oxford Respiratory Trials Unit, University of Oxford, Oxford, UK
| | - Melissa Dobson
- Oxford Respiratory Trials Unit, University of Oxford, Oxford, UK
| | - Rachel Shaw
- Oxford Respiratory Trials Unit, University of Oxford, Oxford, UK
| | - Emma L Hedley
- Oxford Respiratory Trials Unit, University of Oxford, Oxford, UK
| | - Assunta Sabia
- Oxford Respiratory Trials Unit, University of Oxford, Oxford, UK
| | - Barbara Robinson
- Oxford Respiratory Trials Unit, University of Oxford, Oxford, UK
| | - Gary S Collins
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | | | - Ly-Mee Yu
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Robert F Miller
- Institute for Global Health, University College London, London, UK
| | - Nick A Maskell
- Academic Respiratory Unit, University of Bristol, Bristol, UK
| | - Najib M Rahman
- Oxford Centre for Respiratory Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Oxford Respiratory Trials Unit, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford, UK
| |
Collapse
|
12
|
Sillen M, Weeks SD, Strelkov SV, Declerck PJ. Structural Insights into the Mechanism of a Nanobody That Stabilizes PAI-1 and Modulates Its Activity. Int J Mol Sci 2020; 21:ijms21165859. [PMID: 32824134 PMCID: PMC7461574 DOI: 10.3390/ijms21165859] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 11/16/2022] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is the main physiological inhibitor of tissue-type (tPA) and urokinase-type (uPA) plasminogen activators (PAs). Apart from being critically involved in fibrinolysis and wound healing, emerging evidence indicates that PAI-1 plays an important role in many diseases, including cardiovascular disease, tissue fibrosis, and cancer. Targeting PAI-1 is therefore a promising therapeutic strategy in PAI-1 related pathologies. Despite ongoing efforts no PAI-1 inhibitors were approved to date for therapeutic use in humans. A better understanding of the molecular mechanisms of PAI-1 inhibition is therefore necessary to guide the rational design of PAI-1 modulators. Here, we present a 1.9 Å crystal structure of PAI-1 in complex with an inhibitory nanobody VHH-s-a93 (Nb93). Structural analysis in combination with biochemical characterization reveals that Nb93 directly interferes with PAI-1/PA complex formation and stabilizes the active conformation of the PAI-1 molecule.
Collapse
Affiliation(s)
- Machteld Sillen
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, B-3000 Leuven, Belgium;
| | - Stephen D. Weeks
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, B-3000 Leuven, Belgium; (S.D.W); (S.V.S.)
| | - Sergei V. Strelkov
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, B-3000 Leuven, Belgium; (S.D.W); (S.V.S.)
| | - Paul J. Declerck
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, B-3000 Leuven, Belgium;
- Correspondence:
| |
Collapse
|
13
|
Sillen M, Weeks SD, Zhou X, Komissarov AA, Florova G, Idell S, Strelkov SV, Declerck PJ. Molecular mechanism of two nanobodies that inhibit PAI-1 activity reveals a modulation at distinct stages of the PAI-1/plasminogen activator interaction. J Thromb Haemost 2020; 18:681-692. [PMID: 31858714 PMCID: PMC8855783 DOI: 10.1111/jth.14716] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND Plasminogen activator inhibitor-1 (PAI-1), a key inhibitor of plasminogen activators (PAs) tissue-type PA (tPA) and urokinase-type PA (uPA) plays a crucial role in many (patho)physiological processes (e.g., cardiovascular disease, tissue fibrosis) as well as in many age-related pathologies. Therefore, much effort has been put into the development of small molecule or antibody-based PAI-1 inhibitors. OBJECTIVE To elucidate the molecular mechanism of nanobody-induced PAI-1 inhibition. METHODS AND RESULTS Here we present the first crystal structures of PAI-1 in complex with two neutralizing nanobodies (Nbs). These structures, together with biochemical and biophysical characterization, reveal that Nb VHH-2g-42 (Nb42) interferes with the initial PAI-1/PA complex formation, whereas VHH-2w-64 (Nb64) redirects the PAI-1/PA interaction to PAI-1 deactivation and regeneration of active PA. Furthermore, whereas vitronectin does not have an impact on the inhibitory effect of Nb42, it strongly potentiates the inhibitory effect of Nb64, which may contribute to a strong inhibitory potential of Nb64 in vivo. CONCLUSIONS These findings illuminate the molecular mechanisms of PAI-1 inhibition. Nb42 and Nb64 can be used as starting points to engineer further improved antibody-based PAI-1 inhibitors or guide the rational design of small molecule inhibitors to treat a wide range of PAI-1-related pathophysiological conditions.
Collapse
Affiliation(s)
- Machteld Sillen
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Stephen D. Weeks
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Xiaohua Zhou
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Andrey A. Komissarov
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center, Tyler, TX, USA
| | - Galina Florova
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center, Tyler, TX, USA
| | - Steven Idell
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center, Tyler, TX, USA
| | - Sergei V. Strelkov
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Paul J. Declerck
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Abstract
Acute lung injury (ALI) is characterized by acute inflammation and tissue injury results in dysfunction of the alveolar epithelial membrane. If the epithelial injury is severe, a fibroproliferative phase of ALI can develop. During this phase, the activated fibroblast and myofibroblasts synthesize excessive collagenous extracellular matrix that leads to a condition called pulmonary fibrosis. Lung injury can be caused by several ways; however, the present review focus on bleomycin (BLM)-mediated changes in the pathology of lungs. BLM is a chemotherapeutic agent and has toxic effects on lungs, which leads to oxidative damage and elaboration of inflammatory cytokines. In response to the injury, the inflammatory cytokines will be activated to defend the system from injury. These cytokines along with growth factors stimulate the proliferation of myofibroblasts and secretion of pathologic extracellular matrix. During BLM injury, the pro-inflammatory cytokine such as IL-17A will be up-regulated and mediates the inflammation in the alveolar epithelial cell and also brings about recruitment of certain inflammatory cells in the alveolar surface. These cytokines probably help in up-regulating the expression of p53 and fibrinolytic system molecules during the alveolar epithelial cells apoptosis. Here, our key concern is to provide the adequate knowledge about IL-17A-mediated p53 fibrinolytic system and their pathogenic progression to pulmonary fibrosis. The present review focuses mainly on IL-17A-mediated p53-fibrinolytic aspects and how curcumin is involved in the regulation of pathogenic progression of ALI and pulmonary fibrosis.
Collapse
|
15
|
Beckert L, Brockway B, Simpson G, Southcott AM, Lee YG, Rahman N, Light RW, Shoemaker S, Gillies J, Komissarov AA, Florova G, Ochran T, Bradley W, Ndetan H, Singh KP, Sarva K, Idell S. Phase 1 trial of intrapleural LTI-01; single chain urokinase in complicated parapneumonic effusions or empyema. JCI Insight 2019; 5:127470. [PMID: 30998508 PMCID: PMC6542611 DOI: 10.1172/jci.insight.127470] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 04/12/2019] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Current dosing of intrapleural fibrinolytic therapy (IPFT) in adults with complicated parapneumonic effusion (CPE) / empyema is empiric, as dose-escalation trials have not previously been conducted. We hypothesized that LTI-01 (scuPA), which is relatively resistant to PA inhibitor-1 (PAI-1), would be well-tolerated. METHODS This was an open-label, dose-escalation trial of LTI-01 IPFT at 50,000-800,000 IU daily for up to 3 days in adults with loculated CPE/empyema and failed pleural drainage. The primary objective was to evaluate safety and tolerability, and secondary objectives included assessments of processing and bioactivity of scuPA in blood and pleural fluid (PF), and early efficacy. RESULTS LTI-01 was well tolerated with no bleeding, treatment-emergent adverse events or surgical referrals (n=14 subjects). uPA antigen increased in PFs at 3 hours after LTI-01 (p<0.01) but not in plasma. PF saturated active PAI-1, generated PAI-1-resistant bioactive complexes, increased PA and fibrinolytic activities and D-dimers. There was no systemic fibrinogenolysis, nor increments in plasma D-dimer. Decreased pleural opacities occurred in all but one subject. Both subjects receiving 800,000 IU required two doses to relieve pleural sepsis, with two other subjects similarly responding at lower doses. CONCLUSION LTI-01 IPFT was well-tolerated at these doses with no safety concerns. Bioactivity of LTI-01 IPFT was confirmed, limited to PFs where its processing simulated that previously reported in preclinical studies. Preliminary efficacy signals including reduction of pleural opacity were observed.
Collapse
Affiliation(s)
| | - Ben Brockway
- University of Otago Dunedin School of Medicine, Dunedin, New Zealand
| | | | | | - Y.C. Gary Lee
- Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Najib Rahman
- Nuffield Department of Medicine, University of Oxford, and Oxford NIHR Biomedical Research Centre, Oxford, United Kingdom
| | - Richard W. Light
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - John Gillies
- Clinical Network Services (CNS), Auckland, New Zealand
| | | | | | | | | | - Harrison Ndetan
- Department of Epidemiology and Biostatistics, School of Community and Rural Health, The University of Texas Health Science Center at Tyler (UTHSCT), Tyler, Texas, USA
| | - Karan P. Singh
- Department of Epidemiology and Biostatistics, School of Community and Rural Health, The University of Texas Health Science Center at Tyler (UTHSCT), Tyler, Texas, USA
| | | | | |
Collapse
|
16
|
Bedawi EO, Hassan M, McCracken D, Rahman NM. Pleural infection: a closer look at the etiopathogenesis, microbiology and role of antibiotics. Expert Rev Respir Med 2019; 13:337-347. [PMID: 30707629 DOI: 10.1080/17476348.2019.1578212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Pleural infection is a condition that continues to pose a significant challenge to respiratory physicians. We hypothesize that the main barriers to progress include limited understanding of the etiopathogenesis, microbiology,and role of antibiotics in the pleural space. Areas covered: PubMed was searched for articles related to adult pleural infection using the terms 'pleural infection', 'empyema' and 'parapneumonic'. The search focused on relevant literature within the last 10 years, with any older citations used only to display context or lack of progress. Tuberculous pleural infection was excluded. We chose to give specific attention to the etiopathogenesis of pleural infection, including recent advances in diagnostics and biomarkers. We discuss our understanding of the pleural microbiome and rationalize the current use of antibiotics in treating this condition. Expert commentary: Understanding of key events in the development of this condition remains limited. The microbiology is unique compared to the lung, and highly variable. Higher culture yields from pleural biopsy may add new insights into the etiopathogenesis. There is little evidence into achievable effective antibiotic concentration within the pleura. Research into issues including the relevance of biofilm formation and significance of pleural thickening is necessary for treatment progress.
Collapse
Affiliation(s)
- Eihab O Bedawi
- a Oxford Pleural Unit , Oxford University Hospitals , Oxford , UK.,b Oxford Respiratory Trials Unit , University of Oxford , Oxford , UK
| | - Maged Hassan
- a Oxford Pleural Unit , Oxford University Hospitals , Oxford , UK.,b Oxford Respiratory Trials Unit , University of Oxford , Oxford , UK.,c Chest Diseases Department, Faculty of Medicine , Alexandria University , Alexandria , Egypt
| | - David McCracken
- a Oxford Pleural Unit , Oxford University Hospitals , Oxford , UK.,b Oxford Respiratory Trials Unit , University of Oxford , Oxford , UK
| | - Najib M Rahman
- a Oxford Pleural Unit , Oxford University Hospitals , Oxford , UK.,b Oxford Respiratory Trials Unit , University of Oxford , Oxford , UK.,d Oxford NIHR Biomedical Research Centre , Oxford , UK
| |
Collapse
|
17
|
Bedawi EO, Hassan M, Rahman NM. Recent developments in the management of pleural infection: A comprehensive review. CLINICAL RESPIRATORY JOURNAL 2018; 12:2309-2320. [PMID: 30005142 DOI: 10.1111/crj.12941] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Pleural infection is a condition commonly encountered by the respiratory physician. This review aims to provide the reader with an update on the most recent data regarding the epidemiology, microbiology, and the management of pleural infection. DATA SOURCE Medline was searched for articles related to pleural infection using the terms "pleural infection," "empyema," and "parapneumonic." The search was limited to the years 1997-2017. Only human studies and reports in English were included. RESULTS A rise in the incidence of pleural infection is seen worldwide. Despite the improvement in healthcare practices, the mortality from pleural infection remains high. The role of oral microflora in the etiology of pleural infection is firmly established. A concise review of the recent insights on the pathogenesis of pleural infections is presented. A particular focus is made on the role of tPA, DNAse and similar substances and their interaction with inflammatory cells and how this affects the pathogenesis and treatment of pleural infection. CONCLUSION Pleural infection is a common disease with significant morbidity and mortality, as well as a considerable economic burden. The role of medical management is expanding thanks to the widespread use of newer treatments.
Collapse
Affiliation(s)
- Eihab O Bedawi
- Oxford Centre for Respiratory Medicine, Oxford University Hospitals, Oxford, United Kingdom.,Oxford Respiratory Trials Unit, University of Oxford, Oxford, United Kingdom
| | - Maged Hassan
- Oxford Centre for Respiratory Medicine, Oxford University Hospitals, Oxford, United Kingdom.,Oxford Respiratory Trials Unit, University of Oxford, Oxford, United Kingdom.,Chest Diseases Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Najib M Rahman
- Oxford Centre for Respiratory Medicine, Oxford University Hospitals, Oxford, United Kingdom.,Oxford Respiratory Trials Unit, University of Oxford, Oxford, United Kingdom.,NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
18
|
Fukuda S, Enkhbaatar P, Nelson C, Cox RA, Wolfson MR, Shaffer TH, Williams RO, Surasarang SH, Sawittree S, Florova G, Komissarov AA, Koenig K, Sarva K, Ndetan HT, Singh KP, Idell S. Lack of durable protection against cotton smoke-induced acute lung injury in sheep by nebulized single chain urokinase plasminogen activator or tissue plasminogen activator. Clin Transl Med 2018; 7:17. [PMID: 29916009 PMCID: PMC6006005 DOI: 10.1186/s40169-018-0196-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/10/2018] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Airway fibrin casts are clinically important complications of severe inhalational smoke-induced acute lung injury (ISIALI) for which reliable evidence-based therapy is lacking. Nebulized anticoagulants or a tissue plasminogen activator; tPA, has been advocated, but airway bleeding is a known and lethal potential complication. We posited that nebulized delivery of single chain urokinase plasminogen activator, scuPA, is well-tolerated and improves physiologic outcomes in ISIALI. To test this hypothesis, we nebulized scuPA or tPA and delivered these agents every 4 h to sheep with cotton smoke induced ISIALI that were ventilated by either adaptive pressure ventilation/controlled mandatory ventilation (APVcmv; Group 1, n = 14) or synchronized controlled mandatory ventilation (SCMV)/limited suctioning; Group 2, n = 32). Physiologic readouts of acute lung injury included arterial blood gas analyses, PaO2/FiO2 ratios, peak and plateau airway pressures, lung resistance and static lung compliance. Lung injury was further assessed by histologic scoring. Biochemical analyses included determination of antigenic and enzymographic uPA and tPA levels, plasminogen activator and plasminogen activator inhibitor-1 activities and D-dimer in bronchoalveolar lavage (BAL). Plasma levels of uPA, tPA antigens, D-dimers and α-macroglobulin-uPA complex levels were also assessed. RESULTS In Group 1, tPA at the 2 mg dose was ineffective, but at 4 mg tPA or scuPA, the PaO2/FiO2 ratios, peak/plateau pressures improved during evolving injury (p < 0.01) without significant differences at 48 h. To improve delivery of the interventions, the experiments were repeated in Group 2 with limited suctioning/SCMV, which generally increased PAs in (BAL). In Group 2, tPA was ineffective, but scuPA (4 or 8 mg) improved physiologic outcomes (p < 0.01) and plateau pressures remained lower at 48 h. Airway bleeding occurred at 8 mg tPA. BAL plasminogen activator (PA) levels positively correlated with physiologic outcomes at 48 h. CONCLUSIONS Physiologic outcomes improved in sheep in which better delivery of the PAs occurred. The benefits of nebulized scuPA were achieved without airway bleeding associated with tPA, but were transient and largely abrogated at 48 h, in part attributable to the progression and severity of ISIALI.
Collapse
Affiliation(s)
- Satoshi Fukuda
- Translational Intensive Care Unit, Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Perenlei Enkhbaatar
- Translational Intensive Care Unit, Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Christina Nelson
- Translational Intensive Care Unit, Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Robert A Cox
- Translational Intensive Care Unit, Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Marla R Wolfson
- Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
- Center for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
- CENTRe: Collaborative for Environmental and Neonatal Therapeutics Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
- Temple Lung Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Thomas H Shaffer
- Center for Pediatric Lung Research, Alfred I. DuPont Hospital for Children, Wilmington, DE, USA
| | - Robert O Williams
- Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, TX, USA
| | | | - Sahakijpijarn Sawittree
- Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, TX, USA
| | - Galina Florova
- The Department of Cellular and Molecular Biology and the Texas Lung Institute, The University of Texas Health Science Center at Tyler, 11927 US HWY 271, Tyler, TX, 75708, USA
| | - Andrey A Komissarov
- The Department of Cellular and Molecular Biology and the Texas Lung Institute, The University of Texas Health Science Center at Tyler, 11927 US HWY 271, Tyler, TX, 75708, USA
| | - Kathleen Koenig
- The Department of Cellular and Molecular Biology and the Texas Lung Institute, The University of Texas Health Science Center at Tyler, 11927 US HWY 271, Tyler, TX, 75708, USA
| | - Krishna Sarva
- The Department of Cellular and Molecular Biology and the Texas Lung Institute, The University of Texas Health Science Center at Tyler, 11927 US HWY 271, Tyler, TX, 75708, USA
| | - Harrison T Ndetan
- The Department of Epidemiology and Biostatistics, The University of Texas Health Science Center at Tyler, 11927 US HWY 271, Tyler, TX, 75708, USA
| | - Karan P Singh
- The Department of Epidemiology and Biostatistics, The University of Texas Health Science Center at Tyler, 11927 US HWY 271, Tyler, TX, 75708, USA
| | - Steven Idell
- The Department of Cellular and Molecular Biology and the Texas Lung Institute, The University of Texas Health Science Center at Tyler, 11927 US HWY 271, Tyler, TX, 75708, USA.
| |
Collapse
|
19
|
Komissarov AA, Rahman N, Lee YCG, Florova G, Shetty S, Idell R, Ikebe M, Das K, Tucker TA, Idell S. Fibrin turnover and pleural organization: bench to bedside. Am J Physiol Lung Cell Mol Physiol 2018; 314:L757-L768. [PMID: 29345198 DOI: 10.1152/ajplung.00501.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Recent studies have shed new light on the role of the fibrinolytic system in the pathogenesis of pleural organization, including the mechanisms by which the system regulates mesenchymal transition of mesothelial cells and how that process affects outcomes of pleural injury. The key contribution of plasminogen activator inhibitor-1 to the outcomes of pleural injury is now better understood as is its role in the regulation of intrapleural fibrinolytic therapy. In addition, the mechanisms by which fibrinolysins are processed after intrapleural administration have now been elucidated, informing new candidate diagnostics and therapeutics for pleural loculation and failed drainage. The emergence of new potential interventional targets offers the potential for the development of new and more effective therapeutic candidates.
Collapse
Affiliation(s)
- Andrey A Komissarov
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Najib Rahman
- Oxford Pleural Unit and Oxford Respiratory Trials Unit, University of Oxford, Churchill Hospital; and National Institute of Health Research Biomedical Research Centre , Oxford , United Kingdom
| | - Y C Gary Lee
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital; Pleural Medicine Unit, Institute for Respiratory Health , Perth ; School of Medicine and Pharmacology, University of Western Australia , Perth , Australia
| | - Galina Florova
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Sreerama Shetty
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Richard Idell
- Department of Behavioral Health, Child and Adolescent Psychiatry, The University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Mitsuo Ikebe
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Kumuda Das
- Department of Translational and Vascular Biology, The University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Torry A Tucker
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Steven Idell
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler , Tyler, Texas
| |
Collapse
|
20
|
Popowicz N, Idell S, Lee YG. Pathogenesis of pleural infection: A complex warfare. Respirology 2017; 23:8-9. [DOI: 10.1111/resp.13171] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 08/22/2017] [Indexed: 11/27/2022]
Affiliation(s)
- Natalia Popowicz
- Department of Respiratory Medicine; Sir Charles Gairdner Hospital; Perth WA Australia
- Pleural Medicine Unit; Institute for Respiratory Health; Perth WA Australia
- School of Medicine and Pharmacology; University of Western Australia; Perth WA Australia
| | - Steven Idell
- Department of Cellular and Molecular Biology and Texas Lung Injury Institute; The University of Texas Health Science Center at Tyler; Tyler TX USA
| | - Y.C. Gary Lee
- Department of Respiratory Medicine; Sir Charles Gairdner Hospital; Perth WA Australia
- Pleural Medicine Unit; Institute for Respiratory Health; Perth WA Australia
- School of Medicine and Pharmacology; University of Western Australia; Perth WA Australia
| |
Collapse
|
21
|
Florova G, Azghani AO, Karandashova S, Schaefer C, Yarovoi SV, Declerck PJ, Cines DB, Idell S, Komissarov AA. Targeting plasminogen activator inhibitor-1 in tetracycline-induced pleural injury in rabbits. Am J Physiol Lung Cell Mol Physiol 2017; 314:L54-L68. [PMID: 28860148 DOI: 10.1152/ajplung.00579.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Elevated active plasminogen activator inhibitor-1 (PAI-1) has an adverse effect on the outcomes of intrapleural fibrinolytic therapy (IPFT) in tetracycline-induced pleural injury in rabbits. To enhance IPFT with prourokinase (scuPA), two mechanistically distinct approaches to targeting PAI-1 were tested: slowing its reaction with urokinase (uPA) and monoclonal antibody (mAb)-mediated PAI-1 inactivation. Removing positively charged residues at the "PAI-1 docking site" (179RHRGGS184→179AAAAAA184) of uPA results in a 60-fold decrease in the rate of inhibition by PAI-1. Mutant prourokinase (0.0625-0.5 mg/kg; n = 12) showed efficacy comparable to wild-type scuPA and did not change IPFT outcomes ( P > 0.05). Notably, the rate of PAI-1-independent intrapleural inactivation of mutant uPA was 2 times higher ( P < 0.05) than that of the wild-type enzyme. Trapping PAI-1 in a "molecular sandwich"-type complex with catalytically inactive two-chain urokinase with Ser195Ala substitution (S195A-tcuPA; 0.1 and 0.5 mg/kg) did not improve the efficacy of IPFT with scuPA (0.0625-0.5 mg/kg; n = 11). IPFT failed in the presence of MA-56A7C10 (0.5 mg/kg; n = 2), which forms a stable intrapleural molecular sandwich complex, allowing active PAI-1 to accumulate by blocking its transition to a latent form. In contrast, inactivation of PAI-1 by accelerating the active-to-latent transition mediated by mAb MA-33B8 (0.5 mg/kg; n = 2) improved the efficacy of IPFT with scuPA (0.25 mg/kg). Thus, under conditions of slow (4-8 h) fibrinolysis in tetracycline-induced pleural injury in rabbits, only the inactivation of PAI-1, but not a decrease in the rate of its reaction with uPA, enhances IPFT. Therefore the rate of fibrinolysis, which varies in different pathologic states, could affect the selection of PAI-1 inhibitors to enhance fibrinolytic therapy.
Collapse
Affiliation(s)
- Galina Florova
- Texas Lung Injury Institute, The University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Ali O Azghani
- Department of Biology, The University of Texas at Tyler, Tyler, Texas
| | - Sophia Karandashova
- Texas Lung Injury Institute, The University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Chris Schaefer
- Texas Lung Injury Institute, The University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Serge V Yarovoi
- Department of Pathology and Laboratory Medicine, Perelman-University of Pennsylvania School of Medicine , Philadelphia, Pennsylvania
| | - Paul J Declerck
- Laboratory for Therapeutic and Diagnostic Antibodies, Faculty of Pharmaceutical Sciences, Katholieke Universiteit Leuven, Leuven , Belgium
| | - Douglas B Cines
- Department of Pathology and Laboratory Medicine, Perelman-University of Pennsylvania School of Medicine , Philadelphia, Pennsylvania
| | - Steven Idell
- Texas Lung Injury Institute, The University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Andrey A Komissarov
- Texas Lung Injury Institute, The University of Texas Health Science Center at Tyler , Tyler, Texas
| |
Collapse
|
22
|
Precision-guided, Personalized Intrapleural Fibrinolytic Therapy for Empyema and Complicated Parapneumonic Pleural Effusions: The Case for the Fibrinolytic Potential. ACTA ACUST UNITED AC 2017; 24:163-169. [PMID: 29081644 DOI: 10.1097/cpm.0000000000000216] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Complicated pleural effusions and empyema with loculation and failed drainage are common clinical problems. In adults, intrapleural fibrinolytic therapy is commonly used with variable results and therapy remains empiric. Despite the intrapleural use of various plasminogen activators; fibrinolysins, for about sixty years, there is no clear consensus about which agent is most effective. Emerging evidence demonstrates that intrapleural administration of plasminogen activators is subject to rapid inhibition by plasminogen activator inhibitor-1 and that processing of fibrinolysins is importantly influenced by other factors including the levels and quality of pleural fluid DNA. Current therapy for loculation that accompanies pleural infections also includes surgery, which is invasive and for which patient selection can be problematic. Most of the clinical literature published to date has used flat dosing of intrapleural fibrinolytic therapy in all subjects but little is known about how that strategy influences the processing of the administered fibrinolysin or how this influences outcomes. We developed a new test of pleural fluids ex vivo, which is called the Fibrinolytic Potential or FP, in which a dose of a fibrinolysin is added to pleural fluids ex vivo after which the fibrinolytic activity is measured and normalized to baseline levels. Testing in preclinical and clinical empyema fluids reveals a wide range of responses, indicating that individual patients will likely respond differently to flat dosing of fibrinolysins. The test remains under development but is envisioned as a guide for dosing of these agents, representing a novel candidate approach to personalization of intrapleural fibrinolytic therapy.
Collapse
|
23
|
Lee YCG, Idell S, Stathopoulos GT. Translational Research in Pleural Infection and Beyond. Chest 2016; 150:1361-1370. [DOI: 10.1016/j.chest.2016.07.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/10/2016] [Accepted: 07/30/2016] [Indexed: 12/17/2022] Open
|
24
|
Komissarov AA, Florova G, Azghani AO, Buchanan A, Boren J, Allen T, Rahman NM, Koenig K, Chamiso M, Karandashova S, Henry J, Idell S. Dose dependency of outcomes of intrapleural fibrinolytic therapy in new rabbit empyema models. Am J Physiol Lung Cell Mol Physiol 2016; 311:L389-99. [PMID: 27343192 DOI: 10.1152/ajplung.00171.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/18/2016] [Indexed: 01/22/2023] Open
Abstract
The incidence of empyema (EMP) is increasing worldwide; EMP generally occurs with pleural loculation and impaired drainage is often treated with intrapleural fibrinolytic therapy (IPFT) or surgery. A number of IPFT options are used clinically with empiric dosing and variable outcomes in adults. To evaluate mechanisms governing intrapleural fibrinolysis and disease outcomes, models of Pasteurella multocida and Streptococcus pneumoniae were generated in rabbits and the animals were treated with either human tissue (tPA) plasminogen activator or prourokinase (scuPA). Rabbit EMP was characterized by the development of pleural adhesions detectable by chest ultrasonography and fibrinous coating of the pleura. Similar to human EMP, rabbits with EMP accumulated sizable, 20- to 40-ml fibrinopurulent pleural effusions associated with extensive intrapleural organization, significantly increased pleural thickness, suppression of fibrinolytic and plasminogen-activating activities, and accumulation of high levels of plasminogen activator inhibitor 1, plasminogen, and extracellular DNA. IPFT with tPA (0.145 mg/kg) or scuPA (0.5 mg/kg) was ineffective in rabbit EMP (n = 9 and 3 for P. multocida and S. pneumoniae, respectively); 2 mg/kg tPA or scuPA IPFT (n = 5) effectively cleared S. pneumoniae-induced EMP collections in 24 h with no bleeding observed. Although intrapleural fibrinolytic activity for up to 40 min after IPFT was similar for effective and ineffective doses of fibrinolysin, it was lower for tPA than for scuPA treatments. These results demonstrate similarities between rabbit and human EMP, the importance of pleural fluid PAI-1 activity, and levels of plasminogen in the regulation of intrapleural fibrinolysis and illustrate the dose dependency of IPFT outcomes in EMP.
Collapse
Affiliation(s)
- Andrey A Komissarov
- Department of Cellular and Molecular Biology of the University of Texas Health Science Center at Tyler, Tyler, Texas;
| | - Galina Florova
- Department of Cellular and Molecular Biology of the University of Texas Health Science Center at Tyler, Tyler, Texas
| | | | - Ann Buchanan
- Department of Cellular and Molecular Biology of the University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Jake Boren
- Department of Cellular and Molecular Biology of the University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Timothy Allen
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas; and
| | - Najib M Rahman
- Oxford Centre for Respiratory Medicine, Oxford University Hospitals, National Health Service Trust, Oxford, UK
| | - Kathleen Koenig
- Department of Cellular and Molecular Biology of the University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Mignote Chamiso
- Department of Cellular and Molecular Biology of the University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Sophia Karandashova
- Department of Cellular and Molecular Biology of the University of Texas Health Science Center at Tyler, Tyler, Texas
| | - James Henry
- Department of Cellular and Molecular Biology of the University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Steven Idell
- Department of Cellular and Molecular Biology of the University of Texas Health Science Center at Tyler, Tyler, Texas
| |
Collapse
|
25
|
Corcoran JP, Wrightson JM, Belcher E, DeCamp MM, Feller-Kopman D, Rahman NM. Pleural infection: past, present, and future directions. THE LANCET RESPIRATORY MEDICINE 2016; 3:563-77. [PMID: 26170076 DOI: 10.1016/s2213-2600(15)00185-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/13/2015] [Accepted: 05/05/2015] [Indexed: 02/09/2023]
Abstract
Pleural space infections are increasing in incidence and continue to have high associated morbidity, mortality, and need for invasive treatments such as thoracic surgery. The mechanisms of progression from a non-infected, pneumonia-related effusion to a confirmed pleural infection have been well described in the scientific literature, but the route by which pathogenic organisms access the pleural space is poorly understood. Data suggests that not all pleural infections can be related to lung parenchymal infection. Studies examining the microbiological profile of pleural infection inform antibiotic choice and can help to delineate the source and pathogenesis of infection. The development of radiological methods and use of clinical indices to predict which patients with pleural infection will have a poor outcome, as well as inform patient selection for more invasive treatments, is particularly important. Randomised clinical trial and case series data have shown that the combination of an intrapleural tissue plasminogen activator and deoxyribonuclease therapy can potentially improve outcomes, but the use of this treatment as compared with surgical options has not been precisely defined, particularly in terms of when and in which patients it should be used.
Collapse
Affiliation(s)
- John P Corcoran
- Oxford Centre for Respiratory Medicine, Oxford University Hospitals NHS Trust, Oxford, UK; University of Oxford Respiratory Trials Unit, Churchill Hospital, Oxford, UK
| | - John M Wrightson
- Oxford Centre for Respiratory Medicine, Oxford University Hospitals NHS Trust, Oxford, UK; University of Oxford Respiratory Trials Unit, Churchill Hospital, Oxford, UK; NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Elizabeth Belcher
- Department of Cardiothoracic Surgery, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Malcolm M DeCamp
- Division of Thoracic Surgery, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - David Feller-Kopman
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Najib M Rahman
- Oxford Centre for Respiratory Medicine, Oxford University Hospitals NHS Trust, Oxford, UK; University of Oxford Respiratory Trials Unit, Churchill Hospital, Oxford, UK; NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK.
| |
Collapse
|
26
|
In vivo evidence for an endothelium-dependent mechanism in radiation-induced normal tissue injury. Sci Rep 2015; 5:15738. [PMID: 26510580 PMCID: PMC4625166 DOI: 10.1038/srep15738] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 09/29/2015] [Indexed: 11/30/2022] Open
Abstract
The pathophysiological mechanism involved in side effects of radiation therapy, and especially the role of the endothelium remains unclear. Previous results showed that plasminogen activator inhibitor-type 1 (PAI-1) contributes to radiation-induced intestinal injury and suggested that this role could be driven by an endothelium-dependent mechanism. We investigated whether endothelial-specific PAI-1 deletion could affect radiation-induced intestinal injury. We created a mouse model with a specific deletion of PAI-1 in the endothelium (PAI-1KOendo) by a Cre-LoxP system. In a model of radiation enteropathy, survival and intestinal radiation injury were followed as well as intestinal gene transcriptional profile and inflammatory cells intestinal infiltration. Irradiated PAI-1KOendo mice exhibited increased survival, reduced acute enteritis severity and attenuated late fibrosis compared with irradiated PAI-1flx/flx mice. Double E-cadherin/TUNEL labeling confirmed a reduced epithelial cell apoptosis in irradiated PAI-1KOendo. High-throughput gene expression combined with bioinformatic analyses revealed a putative involvement of macrophages. We observed a decrease in CD68+cells in irradiated intestinal tissues from PAI-1KOendo mice as well as modifications associated with M1/M2 polarization. This work shows that PAI-1 plays a role in radiation-induced intestinal injury by an endothelium-dependent mechanism and demonstrates in vivo that the endothelium is directly involved in the progression of radiation-induced enteritis.
Collapse
|
27
|
Komissarov AA, Florova G, Azghani AO, Buchanan A, Bradley WM, Schaefer C, Koenig K, Idell S. The time course of resolution of adhesions during fibrinolytic therapy in tetracycline-induced pleural injury in rabbits. Am J Physiol Lung Cell Mol Physiol 2015; 309:L562-72. [PMID: 26163512 DOI: 10.1152/ajplung.00136.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/02/2015] [Indexed: 11/22/2022] Open
Abstract
The time required for the effective clearance of pleural adhesions/organization after intrapleural fibrinolytic therapy (IPFT) is unknown. Chest ultrasonography and computed tomography (CT) were used to assess the efficacy of IPFT in a rabbit model of tetracycline-induced pleural injury, treated with single-chain (sc) urokinase plasminogen activators (scuPAs) or tissue PAs (sctPA). IPFT with sctPA (0.145 mg/kg; n = 10) and scuPA (0.5 mg/kg; n = 12) was monitored by serial ultrasonography alone (n = 12) or alongside CT scanning (n = 10). IPFT efficacy was assessed with gross lung injury scores (GLIS) and ultrasonography scores (USS). Pleural fluids withdrawn at 0-240 min and 24 h after IPFT were assayed for PA and fibrinolytic activities, α-macroglobulin/fibrinolysin complexes, and active PA inhibitor 1 (PAI-1). scuPA and sctPA generated comparable steady-state fibrinolytic activities by 20 min. PA activity in the scuPA group decreased slower than the sctPA group (kobs = 0.016 and 0.042 min(-1)). Significant amounts of bioactive uPA/α-macroglobulin (but not tPA; P < 0.05) complexes accumulated at 0-40 min after IPFT. Despite the differences in intrapleural processing, IPFT with either fibrinolysin was effective (GLIS ≤ 10) in animals imaged with ultrasonography only. USS correlated well with postmortem GLIS (r(2) = 0.85) and confirmed relatively slow intrapleural fibrinolysis after IPFT, which coincided with effective clearance of adhesions/organization at 4-8 h. CT scanning was associated with less effective (GLIS > 10) IPFT and higher levels of active PAI-1 at 24 h following therapy. We concluded that intrapleural fibrinolysis in tetracycline-induced pleural injury in rabbits is relatively slow (4-8 h). In CT-scanned animals, elevated PAI-1 activity (possibly radiation induced) reduced the efficacy of IPFT, buttressing the major impact of active PAI-1 on IPFT outcomes.
Collapse
Affiliation(s)
- Andrey A Komissarov
- The Department of Cellular and Molecular Biology and the Texas Lung Injury Institute, The University of Texas Health Science Center at Tyler (UTHSCT), Tyler, Texas;
| | - Galina Florova
- The Department of Cellular and Molecular Biology and the Texas Lung Injury Institute, The University of Texas Health Science Center at Tyler (UTHSCT), Tyler, Texas
| | - Ali O Azghani
- The Department of Biology at the University of Texas at Tyler, Tyler, Texas
| | - Ann Buchanan
- UTHSCT Vivarium, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - William M Bradley
- The Department of Radiation Oncology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Chris Schaefer
- The Department of Cellular and Molecular Biology and the Texas Lung Injury Institute, The University of Texas Health Science Center at Tyler (UTHSCT), Tyler, Texas
| | - Kathleen Koenig
- The Department of Cellular and Molecular Biology and the Texas Lung Injury Institute, The University of Texas Health Science Center at Tyler (UTHSCT), Tyler, Texas
| | - Steven Idell
- The Department of Cellular and Molecular Biology and the Texas Lung Injury Institute, The University of Texas Health Science Center at Tyler (UTHSCT), Tyler, Texas
| |
Collapse
|