1
|
Sudhadevi T, Ackerman SJ, Jafri A, Basa P, Ha AW, Natarajan V, Harijith A. Sphingosine kinase 1-specific inhibitor PF543 reduces goblet cell metaplasia of bronchial epithelium in an acute asthma model. Am J Physiol Lung Cell Mol Physiol 2024; 326:L377-L392. [PMID: 38290992 PMCID: PMC11281799 DOI: 10.1152/ajplung.00269.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/16/2024] [Accepted: 01/21/2024] [Indexed: 02/01/2024] Open
Abstract
Sphingosine kinase 1 (SPHK1) has been shown to play a key role in the pathogenesis of asthma where SPHK1-generated sphingosine-1-phosphate (S1P) is known to mediate innate and adaptive immunity while promoting mast cell degranulation. Goblet cell metaplasia (GCM) contributes to airway obstruction in asthma and has been demonstrated in animal models. We investigated the role of PF543, a SPHK1-specific inhibitor, in preventing the pathogenesis of GCM using a murine (C57BL/6) model of allergen-induced acute asthma. Treatment with PF543 before triple allergen exposure (DRA: House dust mite, Ragweed pollen, and Aspergillus) reduced inflammation, eosinophilic response, and GCM followed by reduced airway hyperreactivity to intravenous methacholine. Furthermore, DRA exposure was associated with increased expression of SPHK1 in the airway epithelium which was reduced by PF543. DRA-induced reduction of acetylated α-tubulin in airway epithelium was associated with an increased expression of NOTCH2 and SPDEF which was prevented by PF543. In vitro studies using human primary airway epithelial cells showed that inhibition of SPHK1 using PF543 prevented an allergen-induced increase of both NOTCH2 and SPDEF. siRNA silencing of SPHK1 prevented the allergen-induced increase of both NOTCH2 and SPDEF. NOTCH2 silencing was associated with a reduction of SPDEF but not that of SPHK1 upon allergen exposure. Our studies demonstrate that inhibition of SPHK1 protected allergen-challenged airways by preventing GCM and airway hyperreactivity, associated with downregulation of the NOTCH2-SPDEF signaling pathway. This suggests a potential novel link between SPHK1, GCM, and airway remodeling in asthma.NEW & NOTEWORTHY The role of SPHK1-specific inhibitor, PF543, in preventing goblet cell metaplasia (GCM) and airway hyperreactivity (AHR) is established in an allergen-induced mouse model. This protection was associated with the downregulation of NOTCH2-SPDEF signaling pathway, suggesting a novel link between SPHK1, GCM, and AHR.
Collapse
Affiliation(s)
- Tara Sudhadevi
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States
| | - Steven J Ackerman
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Anjum Jafri
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States
| | - Prathima Basa
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States
| | - Alison W Ha
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Viswanathan Natarajan
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Anantha Harijith
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States
| |
Collapse
|
2
|
Colarusso C, Terlizzi M, Falanga A, Stathopoulos G, De Lucia L, Hansbro PM, Pinto A, Sorrentino R. Absent in melanoma 2 (AIM2) positive profile identifies a poor prognosis of lung adenocarcinoma patients. Int Immunopharmacol 2023; 124:110990. [PMID: 37857119 DOI: 10.1016/j.intimp.2023.110990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/04/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023]
Abstract
The absent in melanoma 2 (AIM2) inflammasome has been demonstrated as involved in tumor growth. In this study we used human samples of lung adenocarcinoma (LUAD) patients, taking advantage of a mouse model of smoking cessation. Human samples were stratified according to the smoking status, high-risk factor for this type of tumor. Both public transcriptomic and human samples obtained by a clinical trial proved that AIM2 was upregulated either in terms of mRNA or protein, respectively, in the tumor mass according to the TNM stage, but it did not relate to the smoking status, age and sex. The upregulation of AIM2 was correlated to an immunosuppressive environment according to resting/non-active dendritic cells (DCs) and T regulatory cells, as demonstrated in both human samples and by means of an experimental model of smoking mice. Computational analysis showed that AIM2 upregulation was correlated to both an inflammasome profile, responsible for the poor prognosis of non-smoker and smoker LUAD patients, and to a non-inflammasome profile for former smoker. In conclusion, our study demonstrated that AIM2 is involved in lung carcinogenesis either in a canonical and non-canonical manner due to an immunosuppressive microenvironment associated to a dismal prognosis of LUAD patients.
Collapse
Affiliation(s)
| | | | - Anna Falanga
- Department of Pharmacy, University of Salerno, Italy
| | - Georgious Stathopoulos
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Patras, Greece
| | | | - Phillip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney (UTS), School of Life Sciences, Faculty of Science, Sydney, NSW 2007, Australia
| | - Aldo Pinto
- Department of Pharmacy, University of Salerno, Italy
| | | |
Collapse
|
3
|
Afrin F, Mateen S, Oman J, Lai JCK, Barrott JJ, Pashikanti S. Natural Products and Small Molecules Targeting Cellular Ceramide Metabolism to Enhance Apoptosis in Cancer Cells. Cancers (Basel) 2023; 15:4645. [PMID: 37760612 PMCID: PMC10527029 DOI: 10.3390/cancers15184645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Molecular targeting strategies have been used for years in order to control cancer progression and are often based on targeting various enzymes involved in metabolic pathways. Keeping this in mind, it is essential to determine the role of each enzyme in a particular metabolic pathway. In this review, we provide in-depth information on various enzymes such as ceramidase, sphingosine kinase, sphingomyelin synthase, dihydroceramide desaturase, and ceramide synthase which are associated with various types of cancers. We also discuss the physicochemical properties of well-studied inhibitors with natural product origins and their related structures in terms of these enzymes. Targeting ceramide metabolism exhibited promising mono- and combination therapies at preclinical stages in preventing cancer progression and cemented the significance of sphingolipid metabolism in cancer treatments. Targeting ceramide-metabolizing enzymes will help medicinal chemists design potent and selective small molecules for treating cancer progression at various levels.
Collapse
Affiliation(s)
- Farjana Afrin
- Biomedical and Pharmaceutical Sciences, Kasiska Division of Health Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (F.A.); (S.M.); (J.O.); (J.C.K.L.)
| | - Sameena Mateen
- Biomedical and Pharmaceutical Sciences, Kasiska Division of Health Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (F.A.); (S.M.); (J.O.); (J.C.K.L.)
| | - Jordan Oman
- Biomedical and Pharmaceutical Sciences, Kasiska Division of Health Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (F.A.); (S.M.); (J.O.); (J.C.K.L.)
| | - James C. K. Lai
- Biomedical and Pharmaceutical Sciences, Kasiska Division of Health Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (F.A.); (S.M.); (J.O.); (J.C.K.L.)
| | - Jared J. Barrott
- Cell Biology and Physiology, College of Life Sciences, Brigham Young University, Provo, UT 84602, USA;
| | - Srinath Pashikanti
- Biomedical and Pharmaceutical Sciences, Kasiska Division of Health Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (F.A.); (S.M.); (J.O.); (J.C.K.L.)
| |
Collapse
|
4
|
Terlizzi M, Colarusso C, Ferraro G, Falanga A, Monti MC, Somma P, De Rosa I, Panico L, Pinto A, Sorrentino R. Sex Differences in Sphingosine-1-Phosphate Levels Are Dependent on Ceramide Synthase 1 and Ceramidase in Lung Physiology and Tumor Conditions. Int J Mol Sci 2023; 24:10841. [PMID: 37446018 DOI: 10.3390/ijms241310841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Sex is a biological variable that can reflect clinical outcomes in terms of quality of life, therapy effectiveness, responsiveness and/or toxicity. Sphingosine-1-phosphate (S1P) is a lipidic mediator whose activity can be influenced by sex. To evaluate whether the S1P axis underlies sex 'instructions' in the lung during physiological and oncological lung conditions, sphingosine and S1P were quantified in the blood of healthy (H) volunteers, lung adenocarcinoma (ADK) and squamous cell carcinoma (SCC) patients of both sexes. S1P receptors and their metabolic enzymes were evaluated in the tissues. Circulating levels of S1P were similar among H female and male subjects and female SCC patients. Instead, male and female ADK patients had lower circulating S1P levels. S1P receptor 3 (S1PR3) was physiologically expressed in the lung, but it was overexpressed in male SCC, and female and male ADK, but not in female SCC patients, who showed a significantly reduced ceramide synthase 1 (CERS1) mRNA and an overexpression of the ceramidase (ASAH1) precursor in lung tumor tissues, compared to male SCC and both male and female ADK patients. These findings highlighted sex differences in S1P rheostat in pathological conditions, but not in physiological conditions, identifying S1P as a prognostic mediator depending on lung cancer histotype.
Collapse
Affiliation(s)
- Michela Terlizzi
- Department of Pharmacy (DIFARMA), University of Salerno, 84084 Fisciano, Italy
| | - Chiara Colarusso
- Department of Pharmacy (DIFARMA), University of Salerno, 84084 Fisciano, Italy
| | - Giusy Ferraro
- Department of Pharmacy (DIFARMA), University of Salerno, 84084 Fisciano, Italy
| | - Anna Falanga
- Department of Pharmacy (DIFARMA), University of Salerno, 84084 Fisciano, Italy
| | - Maria Chiara Monti
- Department of Pharmacy (DIFARMA), University of Salerno, 84084 Fisciano, Italy
| | - Pasquale Somma
- Anatomy and Pathology Unit, Ospedale dei Colli, Azienda Ospedaliera di Rilievo Nazionale (AORN), "Monaldi", 84131 Naples, Italy
| | - Ilaria De Rosa
- Anatomy and Pathology Unit, Ospedale dei Colli, Azienda Ospedaliera di Rilievo Nazionale (AORN), "Monaldi", 84131 Naples, Italy
| | - Luigi Panico
- Anatomy and Pathology Unit, Ospedale dei Colli, Azienda Ospedaliera di Rilievo Nazionale (AORN), "Monaldi", 84131 Naples, Italy
| | - Aldo Pinto
- Department of Pharmacy (DIFARMA), University of Salerno, 84084 Fisciano, Italy
| | | |
Collapse
|
5
|
Pashikanti S, Foster DJ, Kharel Y, Brown AM, Bevan DR, Lynch KR, Santos WL. Sphingosine Kinase 2 Inhibitors: Rigid Aliphatic Tail Derivatives Deliver Potent and Selective Analogues. ACS BIO & MED CHEM AU 2022; 2:469-489. [PMID: 36281302 PMCID: PMC9585524 DOI: 10.1021/acsbiomedchemau.2c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Sphingosine 1-phosphate
(S1P) is a pleiotropic signaling molecule
that interacts with five native G-protein coupled receptors (S1P1–5)
to regulate cell growth, survival, and proliferation. S1P has been
implicated in a variety of pathologies including cancer, kidney fibrosis,
and multiple sclerosis. As key mediators in the synthesis of S1P,
sphingosine kinase (SphK) isoforms 1 and 2 have attracted attention
as viable targets for pharmacologic intervention. In this report,
we describe the design, synthesis, and biological evaluation of sphingosine
kinase 2 (SphK2) inhibitors with a focus on systematically introducing
rigid structures in the aliphatic lipid tail present in existing SphK2
inhibitors. Experimental as well as molecular modeling studies suggest
that conformationally restricted “lipophilic tail” analogues
bearing a bulky terminal moiety or an internal phenyl ring are useful
to complement the “J”-shaped sphingosine binding pocket
of SphK2. We identified 14c (SLP9101555) as a potent
SphK2 inhibitor (Ki = 90 nM) with 200-fold
selectivity over SphK1. Molecular docking studies indicated key interactions:
the cyclohexyl ring binding in the cleft deep in the pocket, a trifluoromethyl
group fitting in a small side cavity, and a hydrogen bond between
the guanidino group and Asp308 (amino acid numbering refers to human
SphK2 (isoform c) orthologue). In vitro studies using
U937 human histiocytic lymphoma cells showed marked decreases in extracellular
S1P levels in response to our SphK2 inhibitors. Administration of 14c (dose: 5 mg/kg) to mice resulted in a sustained increase
of circulating S1P levels, suggesting target engagement.
Collapse
Affiliation(s)
- Srinath Pashikanti
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
- Department of Biomedical and Pharmaceutical Sciences, Idaho State University, Pocatello, Idaho 83209, United States
| | - Daniel J. Foster
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Yugesh Kharel
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Anne M. Brown
- Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24060, United States
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - David R. Bevan
- Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24060, United States
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Kevin R. Lynch
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Webster L. Santos
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
- Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24060, United States
| |
Collapse
|
6
|
Riemma MA, Cerqua I, Romano B, Irollo E, Bertolino A, Camerlingo R, Granato E, Rea G, Scala S, Terlizzi M, Spaziano G, Sorrentino R, D'Agostino B, Roviezzo F, Cirino G. Sphingosine-1-phosphate/TGF-β axis drives epithelial mesenchymal transition in asthma-like disease. Br J Pharmacol 2022; 179:1753-1768. [PMID: 34825370 PMCID: PMC9306821 DOI: 10.1111/bph.15754] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Airway remodelling is a critical feature of chronic lung diseases. Epithelial-mesenchymal transition (EMT) represents an important source of myofibroblasts, contributing to airway remodelling. Here, we investigated the sphingosine-1-phosphate (S1P) role in EMT and its involvement in asthma-related airway dysfunction. EXPERIMENTAL APPROACH A549 cells were used to assess the S1P effect on EMT and its interaction with TGF-β signalling. To assess the S1P role in vivo and its impact on lung function, two experimental models of asthma were used by exposing BALB/c mice to subcutaneous administration of either S1P or ovalbumin (OVA). KEY RESULTS Following incubation with TGF-β or S1P, A549 acquire a fibroblast-like morphology associated with an increase of mesenchymal markers and down-regulation of the epithelial. These effects are reversed by treatment with the TGF-β receptor antagonist LY2109761. Systemic administration of S1P to BALB/c mice induces asthma-like disease characterized by mucous cell metaplasia and increased levels of TGF-β, IL-33 and FGF-2 within the lung. The bronchi harvested from S1P-treated mice display bronchial hyperresponsiveness associated with overexpression of the mesenchymal and fibrosis markers and reduction of the epithelial.The S1P-induced switch from the epithelial toward the mesenchymal pattern correlates to a significant increase of lung resistance and fibroblast activation. TGF-β blockade, in S1P-treated mice, abrogates these effects. Finally, inhibition of sphingosine kinases by SK1-II in OVA-sensitized mice, abrogates EMT, pulmonary TGF-β up-regulation, fibroblasts recruitment and airway hyperresponsiveness. CONCLUSION AND IMPLICATIONS Targeting S1P/TGF-β axis may hold promise as a feasible therapeutic target to control airway dysfunction in asthma.
Collapse
Affiliation(s)
- Maria A. Riemma
- Department of Pharmacy, School of Medicine and SurgeryUniversity of Naples Federico IINaplesItaly
| | - Ida Cerqua
- Department of Pharmacy, School of Medicine and SurgeryUniversity of Naples Federico IINaplesItaly
| | - Barbara Romano
- Department of Pharmacy, School of Medicine and SurgeryUniversity of Naples Federico IINaplesItaly
| | - Elena Irollo
- Department of Pharmacology and PhysiologyDrexel University College of MedicinePhiladelphiaPennsylvaniaUSA
| | - Antonio Bertolino
- Department of Pharmacy, School of Medicine and SurgeryUniversity of Naples Federico IINaplesItaly
| | - Rosa Camerlingo
- RCCS INT Cellular Biology and Bioterapy‐ Research DepartmentNational Cancer Institute G. Pascale FoundationNaplesItaly
| | - Elisabetta Granato
- Department of Pharmacy, School of Medicine and SurgeryUniversity of Naples Federico IINaplesItaly
| | - Giuseppina Rea
- IRCCS INT Microenvironment Molecular TargetsNational Cancer Institute G. Pascale FoundationNaplesItaly
| | - Stefania Scala
- IRCCS INT Microenvironment Molecular TargetsNational Cancer Institute G. Pascale FoundationNaplesItaly
| | - Michela Terlizzi
- Department of Pharmacy (DIFARMA)University of SalernoSalernoItaly
| | - Giuseppe Spaziano
- Department of Experimental Medicine L. Donatelli, Section of Pharmacology, School of MedicineUniversity of Campania Luigi VanvitelliNaplesItaly
| | | | - Bruno D'Agostino
- Department of Experimental Medicine L. Donatelli, Section of Pharmacology, School of MedicineUniversity of Campania Luigi VanvitelliNaplesItaly
| | - Fiorentina Roviezzo
- Department of Pharmacy, School of Medicine and SurgeryUniversity of Naples Federico IINaplesItaly
| | - Giuseppe Cirino
- Department of Pharmacy, School of Medicine and SurgeryUniversity of Naples Federico IINaplesItaly
| |
Collapse
|
7
|
Dai P, Tang Z, Qi M, Liu D, Bajinka O, Tan Y. Dispersion and utilization of lipid droplets mediates respiratory syncytial virus-induced airway hyperresponsiveness. Pediatr Allergy Immunol 2022; 33:e13651. [PMID: 34383332 DOI: 10.1111/pai.13651] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Respiratory viral infections (RSV) can induce acute asthma attacks, thereby destroying lung function and accelerating the progression of the disease. However, medications in the stable phase of asthma are often not effective for acute attacks induced by viral infections. We aimed to clarify the possible mechanism of viral infection-induced asthma through fatty acid metabolism. METHODS AND RESULTS The airway resistances, inflammatory injuries, and oxidative stress in the RSV-induced animal models were significantly higher than those in the control group at acute phase (7 days) and chronic phase (28 days). Moreover, the concentrations of the medium- and long-chain fatty acids in lung tissue at (28 days) were significantly increased, including 14:0 (myristic acid), 16:0 (palmitic acid, PA), 18:1 (oleic acid, OA), and 18:2 (linoleic acid, LA) using non-targeted metabonomics. Airway epithelial cells treated with RSV showed the reduced expression of FSP27, RAB8A, and PLIN5, which caused the fusion and growth of lipid droplet (LD), and increased expression of the LD dispersion gene perilipin 2. There was also a decrease in PPARγ expression and an increase in the fatty acid catabolism gene PPARα, causing lipid oxidation, free fatty acid releases, and an upsurge in IL-1, IL-2, IL-4, and IL-6 expression, which could be abrogated by GPR40 inhibitor. Treated mice or epithelial cells with C18 fatty acid exhibited inhibition of epithelial proliferation, increases of inflammation, and oxidative damage. CONCLUSIONS RSV promoted lipid dispersion and utilization, causing enlarged oxidative injuries and an upsurge in the pro-inflammatory cytokines, leading to the progression of airway hyperresponsiveness (AHR).
Collapse
Affiliation(s)
- Pei Dai
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, China.,China-Africa Research Centre of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Zhongxiang Tang
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Mingming Qi
- Department of Obstetrics, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Hunan, China
| | - Dan Liu
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Ousman Bajinka
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, China.,China-Africa Research Centre of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yurong Tan
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, China.,China-Africa Research Centre of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
8
|
Caspase-11 and AIM2 inflammasome are involved in smoking-induced COPD and lung adenocarcinoma. Oncotarget 2021; 12:1057-1071. [PMID: 34084280 PMCID: PMC8169065 DOI: 10.18632/oncotarget.27964] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/03/2021] [Indexed: 12/25/2022] Open
Abstract
Cigarette smoking is the leading risk factor for COPD and lung cancer establishment. Epidemiologically, COPD patients are 6.35 times more likely to develop lung cancer. To mimic COPD, we exposed mice to nose-only cigarette smoke and used human samples of lung adenocarcinoma patients according to the smoking and COPD status. Smoking C57Bl/6N mice had higher enlargement of alveoli, deposition of collagen and mucus production, associated to the release of IL-1-like cytokines, such as IL-1α and IL-1β at early time points and IL-18 at later time points. AIM2 expression was higher in lung recruited dendritic cells and macrophages in smoking mice, associated to the activation of caspase-11, rather than caspase-1. In support,129Sv mice, which are dysfunctional for caspase-11, had lower collagen deposition and mucus production, associated to lower release of IL-1-like and fibrotic TGFβ. Interestingly, higher expression of AIM2 in non-cancerous tissue of smoking COPD adenocarcinoma patients was correlated to a higher hazard ratio of poor survival rate than in patients who presented lower levels of AIM2. We found that AIM2 inflammasome is at the crossroad between COPD and lung cancer in that its higher presence is correlated to lower survival rate of smoking COPD adenocarcinoma patients.
Collapse
|
9
|
Cerqua I, Terlizzi M, Bilancia R, Riemma MA, Citi V, Martelli A, Pace S, Spaziano G, D'Agostino B, Werz O, Ialenti A, Sorrentino R, Cirino G, Rossi A, Roviezzo F. 5α-dihydrotestosterone abrogates sex bias in asthma like features in the mouse. Pharmacol Res 2020; 158:104905. [PMID: 32416213 DOI: 10.1016/j.phrs.2020.104905] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022]
Abstract
Androgen levels inversely correlate with the incidence, susceptibility and severity of asthma. However, whether male sex hormones such as 5α-dihydrotestosterone (DHT) have beneficial effects on asthma symptoms and/or could affect asthma susceptibility have not been investigated. DHT administration to female mice, during the sensitization phase, abrogates the sex bias in bronchial hyperreactivity. This effect correlates with inhibition of leukotriene biosynthesis in the lung. DHT significantly inhibits also other asthma-like features such as airway hyperplasia and mucus production in sensitized female mice. Conversely, DHT does not affect plasma IgE levels as well as CD3+CD4+ IL-4+ cell and IgE+c-Kit+ cell infiltration within the lung but prevents pulmonary mast cell activation. The in vitro study on RBL-2H3 cells confirms that DHT inhibits mast cell degranulation. In conclusion, our data demonstrate that immunomodulatory effects of DHT on mast cell activation prevent the translation of allergen sensitization into clinical manifestation of asthma.
Collapse
Affiliation(s)
- Ida Cerqua
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy.
| | - Michela Terlizzi
- Department of Pharmacy (DIFARMA), University of Salerno, Via Giovanni Paolo II 132 Fisciano, I-84084 Salerno, Italy.
| | - Rossella Bilancia
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy.
| | - Maria A Riemma
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy.
| | - Valentina Citi
- Department of Pharmacy, University of Pisa, via Bonanno, 6, Pisa, I-56100, Italy.
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, via Bonanno, 6, Pisa, I-56100, Italy.
| | - Simona Pace
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Philosophenweg 14, D-07743 Jena, Germany.
| | - Giuseppe Spaziano
- Department of Experimental Medicine L. Donatelli, Section of Pharmacology, School of Medicine, University of Campania Luigi Vanvitelli, Via Costantinopoli 16, I-80131 Naples, Italy.
| | - Bruno D'Agostino
- Department of Experimental Medicine L. Donatelli, Section of Pharmacology, School of Medicine, University of Campania Luigi Vanvitelli, Via Costantinopoli 16, I-80131 Naples, Italy.
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Philosophenweg 14, D-07743 Jena, Germany.
| | - Armando Ialenti
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy.
| | - Rosalinda Sorrentino
- Department of Pharmacy (DIFARMA), University of Salerno, Via Giovanni Paolo II 132 Fisciano, I-84084 Salerno, Italy.
| | - Giuseppe Cirino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy.
| | - Antonietta Rossi
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy.
| | - Fiorentina Roviezzo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy.
| |
Collapse
|
10
|
Colarusso C, De Falco G, Terlizzi M, Roviezzo F, Cerqua I, Sirignano M, Cirino G, Aquino RP, Pinto A, D'Anna A, Sorrentino R. The Inhibition of Caspase-1- Does Not Revert Particulate Matter (PM)-Induced Lung Immunesuppression in Mice. Front Immunol 2019; 10:1329. [PMID: 31293566 PMCID: PMC6598547 DOI: 10.3389/fimmu.2019.01329] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/24/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Air pollution is becoming a threatening issue for human health. Many epidemiological studies relate air pollution index to adverse effects in terms of disease incidence and/or disease exacerbation. In our previous studies, we found air pollutants can induce the release of pro-inflammatory cytokines from human peripheral blood cells. To better understand, the effects of air pollution in the lung, we took advantage of an animal model. Experimental Approach: Mice were intratracheally and daily exposed to urban collected particulate matter (PM, PM10, and PM1) and to the sub-micrometric carbonaceous component, Soot. Results: We found that PM10, PM1, and Soot promoted lung inflammation associated to higher bronchial responsiveness and lower dilation together with an immunosuppressive lung environment, characterized by tolerogenic dendritic cells (DCs), macrophages and myeloid -derived suppressor cells (MDSCs), the latter two Arginase I positive. In support, higher recruitment of Treg associated to higher levels of IL-10 were detected in the lung of PM10, PM1, and Soot treated mice. This effect was not abolished by the administration of a caspase-1 inhibitor, Ac-Y-VAD, implying that the canonical inflammasome complex was not associated to PMx-induced lung immunosuppression in mice. Conclusion: Our study proves that PM exposure leads to an immunosuppressive lung environment in a caspase-1-independent manner, paving the way to understand the molecular and cellular mechanism/s underlying the establishment of some respiratory disorders according to the exposure to air pollution.
Collapse
Affiliation(s)
- Chiara Colarusso
- Department of Pharmacy (DIFARMA), University of Salerno, Fisciano, Italy.,PhD Program in Drug Discovery and Development, Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Gianluigi De Falco
- Department of Chemical, Material and Industrial Engineering, University of Naples "Federico II", Naples, Italy
| | - Michela Terlizzi
- Department of Pharmacy (DIFARMA), University of Salerno, Fisciano, Italy
| | | | - Ida Cerqua
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Mariano Sirignano
- Department of Chemical, Material and Industrial Engineering, University of Naples "Federico II", Naples, Italy
| | - Giuseppe Cirino
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Rita P Aquino
- Department of Pharmacy (DIFARMA), University of Salerno, Fisciano, Italy
| | - Aldo Pinto
- Department of Pharmacy (DIFARMA), University of Salerno, Fisciano, Italy
| | - Andrea D'Anna
- Department of Chemical, Material and Industrial Engineering, University of Naples "Federico II", Naples, Italy
| | | |
Collapse
|
11
|
Rossi A, Roviezzo F, Sorrentino R, Riemma MA, Cerqua I, Bilancia R, Spaziano G, Troisi F, Pace S, Pinto A, D'Agostino B, Werz O, Cirino G. Leukotriene-mediated sex dimorphism in murine asthma-like features during allergen sensitization. Pharmacol Res 2018; 139:182-190. [PMID: 30468889 DOI: 10.1016/j.phrs.2018.11.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 12/26/2022]
Abstract
The incidence and severity of asthma preponderate in women versus men. Leukotrienes (LTs) are lipid mediators involved in asthma pathogenesis, and sex disparities in LT biosynthesis and anti-LT pharmacology in inflammation have recently emerged. Here, we report on sex dimorphism in LT production during allergen sensitization and its correlation to lung function. While high plasma levels of IgE, as sensitization index, were elevated in both sexes, LT levels increased only in lungs of female ovalbumin-sensitized BALB/c mice. Sex-dependent elevated LT levels strictly correlated to an enhanced airway hyperreactivity, pulmonary inflammation and mast cell infiltration/activation in female mice. Importantly, this sex bias was coupled to superior therapeutic efficacy of different types of clinically used LT modifiers like zileuton, MK886 and montelukast in female animals. Our findings reveal sex-dependent LT production as a basic mechanism of sex dimorphism in allergic asthma, and suggest that women might benefit more from anti-LT asthma therapy.
Collapse
Affiliation(s)
- Antonietta Rossi
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy.
| | - Fiorentina Roviezzo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy.
| | - Rosalinda Sorrentino
- Department of Pharmacy (DIFARMA), University of Salerno, Via Giovanni Paolo II 132 Fisciano, I-84084 Salerno, Italy.
| | - Maria A Riemma
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy.
| | - Ida Cerqua
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy.
| | - Rossella Bilancia
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy.
| | - Giuseppe Spaziano
- Department of Experimental Medicine L. Donatelli, Section of Pharmacology, School of Medicine, University of Campania Luigi Vanvitelli, Via Costantinopoli 16, I-80131 Naples, Italy.
| | - Fabiana Troisi
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Philosophenweg 14, D-07743 Jena, Germany.
| | - Simona Pace
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Philosophenweg 14, D-07743 Jena, Germany.
| | - Aldo Pinto
- Department of Pharmacy (DIFARMA), University of Salerno, Via Giovanni Paolo II 132 Fisciano, I-84084 Salerno, Italy.
| | - Bruno D'Agostino
- Department of Experimental Medicine L. Donatelli, Section of Pharmacology, School of Medicine, University of Campania Luigi Vanvitelli, Via Costantinopoli 16, I-80131 Naples, Italy.
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Philosophenweg 14, D-07743 Jena, Germany.
| | - Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy.
| |
Collapse
|
12
|
Jin J, Lu Z, Li Y, Ru JH, Lopes-Virella MF, Huang Y. LPS and palmitate synergistically stimulate sphingosine kinase 1 and increase sphingosine 1 phosphate in RAW264.7 macrophages. J Leukoc Biol 2018; 104:843-853. [PMID: 29882996 PMCID: PMC6162112 DOI: 10.1002/jlb.3a0517-188rrr] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 01/28/2023] Open
Abstract
It has been well established that patients with diabetes or metabolic syndrome (MetS) have increased prevalence and severity of periodontitis, an oral infection initiated by bacteria and characterized by tissue inflammation and destruction. To understand the underlying mechanisms, we have shown that saturated fatty acid (SFA), which is increased in patients with type 2 diabetes or MetS, and LPS, an important pathogenic factor for periodontitis, synergistically stimulate expression of proinflammatory cytokines in macrophages by increasing ceramide production. However, the mechanisms by which increased ceramide enhances proinflammatory cytokine expression have not been well understood. Since sphingosine 1 phosphate (S1P) is a metabolite of ceramide and a bioactive lipid, we tested our hypothesis that stimulation of ceramide production by LPS and SFA facilitates S1P production, which contributes to proinflammatory cytokine expression. Results showed that LPS and palmitate, a major SFA, synergistically increased not only ceramide, but also S1P, and stimulated sphingosine kinase (SK) expression and membrane translocation in RAW264.7 macrophages. Results also showed that SK inhibition attenuated the stimulatory effect of LPS and palmitate on IL-6 secretion. Moreover, results showed that S1P enhanced the stimulatory effect of LPS and palmitate on IL-6 secretion. Finally, results showed that targeting S1P receptors using either S1P receptor antagonists or small interfering RNA attenuated IL-6 upregulation by LPS and palmitate. Taken together, this study demonstrated that LPS and palmitate synergistically stimulated S1P production and S1P in turn contributed to the upregulation of proinflammatory cytokine expression in macrophages by LPS and palmitate.
Collapse
Affiliation(s)
- Junfei Jin
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Zhongyang Lu
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, USA
| | - Yanchun Li
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ji Hyun Ru
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Maria F Lopes-Virella
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, USA
| | - Yan Huang
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, USA
| |
Collapse
|
13
|
Don-Doncow N, Zhang Y, Matuskova H, Meissner A. The emerging alliance of sphingosine-1-phosphate signalling and immune cells: from basic mechanisms to implications in hypertension. Br J Pharmacol 2018; 176:1989-2001. [PMID: 29856066 DOI: 10.1111/bph.14381] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/24/2018] [Accepted: 05/28/2018] [Indexed: 01/19/2023] Open
Abstract
The immune system plays a considerable role in hypertension. In particular, T-lymphocytes are recognized as important players in its pathogenesis. Despite substantial experimental efforts, the molecular mechanisms underlying the nature of T-cell activation contributing to an onset of hypertension or disease perpetuation are still elusive. Amongst other cell types, lymphocytes express distinct profiles of GPCRs for sphingosine-1-phosphate (S1P) - a bioactive phospholipid that is involved in many critical cell processes and most importantly majorly regulates T-cell development, lymphocyte recirculation, tissue-homing patterns and chemotactic responses. Recent findings have revealed a key role for S1P chemotaxis and T-cell mobilization for the onset of experimental hypertension, and elevated circulating S1P levels have been linked to several inflammation-associated diseases including hypertension in patients. In this article, we review the recent progress towards understanding how S1P and its receptors regulate immune cell trafficking and function and its potential relevance for the pathophysiology of hypertension. LINKED ARTICLES: This article is part of a themed section on Immune Targets in Hypertension. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.12/issuetoc.
Collapse
Affiliation(s)
| | - Yun Zhang
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Hana Matuskova
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden.,Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Anja Meissner
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
14
|
Osato N. Characteristics of functional enrichment and gene expression level of human putative transcriptional target genes. BMC Genomics 2018; 19:957. [PMID: 29363429 PMCID: PMC5780744 DOI: 10.1186/s12864-017-4339-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Transcriptional target genes show functional enrichment of genes. However, how many and how significantly transcriptional target genes include functional enrichments are still unclear. To address these issues, I predicted human transcriptional target genes using open chromatin regions, ChIP-seq data and DNA binding sequences of transcription factors in databases, and examined functional enrichment and gene expression level of putative transcriptional target genes. RESULTS Gene Ontology annotations showed four times larger numbers of functional enrichments in putative transcriptional target genes than gene expression information alone, independent of transcriptional target genes. To compare the number of functional enrichments of putative transcriptional target genes between cells or search conditions, I normalized the number of functional enrichment by calculating its ratios in the total number of transcriptional target genes. With this analysis, native putative transcriptional target genes showed the largest normalized number of functional enrichments, compared with target genes including 5-60% of randomly selected genes. The normalized number of functional enrichments was changed according to the criteria of enhancer-promoter interactions such as distance from transcriptional start sites and orientation of CTCF-binding sites. Forward-reverse orientation of CTCF-binding sites showed significantly higher normalized number of functional enrichments than the other orientations. Journal papers showed that the top five frequent functional enrichments were related to the cellular functions in the three cell types. The median expression level of transcriptional target genes changed according to the criteria of enhancer-promoter assignments (i.e. interactions) and was correlated with the changes of the normalized number of functional enrichments of transcriptional target genes. CONCLUSIONS Human putative transcriptional target genes showed significant functional enrichments. Functional enrichments were related to the cellular functions. The normalized number of functional enrichments of human putative transcriptional target genes changed according to the criteria of enhancer-promoter assignments and correlated with the median expression level of the target genes. These analyses and characters of human putative transcriptional target genes would be useful to examine the criteria of enhancer-promoter assignments and to predict the novel mechanisms and factors such as DNA binding proteins and DNA sequences of enhancer-promoter interactions.
Collapse
Affiliation(s)
- Naoki Osato
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Osaka, 565-0871, Japan.
| |
Collapse
|
15
|
Liu F, Lu X, Dai W, Lu Y, Li C, Du S, Chen Y, Weng D, Chen J. IL-10-Producing B Cells Regulate T Helper Cell Immune Responses during 1,3-β-Glucan-Induced Lung Inflammation. Front Immunol 2017; 8:414. [PMID: 28428789 PMCID: PMC5382153 DOI: 10.3389/fimmu.2017.00414] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/23/2017] [Indexed: 12/16/2022] Open
Abstract
With the rapid development of industry and farm, fungi contamination widely exists in occupational environment. Inhalation of fungi-contaminated organic dust results in hypersensitivity pneumonitis. 1,3-β-Glucan is a major cell wall component of fungus and is considered as a biomarker of fungi exposure. Current studies showed that 1,3-β-glucan exposure induced lung inflammation, which involved uncontrolled T helper (Th) cell immune responses, such as Th1, Th2, Th17, and regulatory T cell (Treg). A recently identified IL-10-producing B cells (B10) was reported in regulating immune homeostasis. However, its regulatory role in hypersensitivity pneumonitis is still subject to debate. In our study, we comprehensively investigated the role of B10 and the relationship between B10 and Treg in 1,3-β-glucan-induced lung inflammation. Mice with insufficient B10 exhibited more inflammatory cells accumulation and severer pathological inflammatory changes. Insufficient B10 led to increasing Th1, Th2, and Th17 responses and restricted Treg function. Depletion of Treg before the onset of inflammation could suppress B10. Whereas, Treg depletion only at the late stage of inflammation failed to affect B10. Our study demonstrated that insufficient B10 aggravated the lung inflammation mediated by dynamic shifts in Th immune responses after 1,3-β-glucan exposure. The regulatory function of B10 on Th immune responses might be associated with Treg and IL-10. Treg could only interact with B10 at an early stage.
Collapse
Affiliation(s)
- Fangwei Liu
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China
| | - Xiaowei Lu
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China
| | - Wujing Dai
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China
| | - Yiping Lu
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China
| | - Chao Li
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China
| | - Sitong Du
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China
| | - Ying Chen
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China
| | - Dong Weng
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China.,Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Chen
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China
| |
Collapse
|
16
|
Mohammed S, Harikumar KB. Sphingosine 1-Phosphate: A Novel Target for Lung Disorders. Front Immunol 2017; 8:296. [PMID: 28352271 PMCID: PMC5348531 DOI: 10.3389/fimmu.2017.00296] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/01/2017] [Indexed: 01/11/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) is involved in a wide range of cellular processes, which include proliferation, apoptosis, lymphocyte egress, endothelial barrier function, angiogenesis, and inflammation. S1P is produced by two isoenzymes, namely, sphingosine kinase 1 and 2 (SphK1 and 2) and once produced, S1P can act both in an autocrine and paracrine manner. S1P can be dephosphorylated back to sphingosine by two phosphatases (SGPP 1 and 2) or can be irreversibly cleaved by S1P lyase. S1P has a diverse range of functions, which is mediated in a receptor dependent, through G-protein coupled receptors (S1PR1-5) or receptor independent manner, through intracellular targets such as HDACs and TRAF2. The involvement of S1P signaling has been confirmed in various disease conditions including lung diseases. The SphK inhibitors and S1PR modulators are currently under clinical trials for different pathophysiological conditions. There is a significant effort in targeting various components of S1P signaling for several diseases. This review focuses on the ways in which S1P signaling can be therapeutically targeted in lung disorders.
Collapse
Affiliation(s)
- Sabira Mohammed
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology , Thiruvananthapuram , India
| | - K B Harikumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology , Thiruvananthapuram , India
| |
Collapse
|
17
|
Mrad M, Imbert C, Garcia V, Rambow F, Therville N, Carpentier S, Ségui B, Levade T, Azar R, Marine JC, Diab-Assaf M, Colacios C, Andrieu-Abadie N. Downregulation of sphingosine kinase-1 induces protective tumor immunity by promoting M1 macrophage response in melanoma. Oncotarget 2016; 7:71873-71886. [PMID: 27708249 PMCID: PMC5342129 DOI: 10.18632/oncotarget.12380] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 09/24/2016] [Indexed: 01/29/2023] Open
Abstract
The infiltration of melanoma tumors by macrophages is often correlated with poor prognosis. However, the molecular signals that regulate the dialogue between malignant cells and the inflammatory microenvironment remain poorly understood. We previously reported an increased expression of sphingosine kinase-1 (SK1), which produces the bioactive lipid sphingosine 1-phosphate (S1P), in melanoma. The present study aimed at defining the role of tumor SK1 in the recruitment and differentiation of macrophages in melanoma. Herein, we show that downregulation of SK1 in melanoma cells causes a reduction in the percentage of CD206highMHCIIlow M2 macrophages in favor of an increased proportion of CD206lowMHCIIhigh M1 macrophages into the tumor. This macrophage differentiation orchestrates T lymphocyte recruitment as well as tumor rejection through the expression of Th1 cytokines and chemokines. In vitro experiments indicated that macrophage migration is triggered by the binding of tumor S1P to S1PR1 receptors present on macrophages whereas macrophage differentiation is stimulated by SK1-induced secretion of TGF-β1. Finally, RNA-seq analysis of human melanoma tumors revealed a positive correlation between SK1 and TGF-β1 expression. Altogether, our findings demonstrate that melanoma SK1 plays a key role in the recruitment and phenotypic shift of the tumor macrophages that promote melanoma growth.
Collapse
Affiliation(s)
- Marguerite Mrad
- Université de Toulouse, Equipe Labellisée Ligue Contre le Cancer 2013, Toulouse, France
- Inserm 1037, Centre de Recherches en Cancérologie de Toulouse, Equipe Labellisée Ligue Contre le Cancer 2013, Toulouse, France
- Molecular Tumorigenesis and Anticancer Pharmacology, EDST, Lebanese University, Hadath, Lebanon
| | - Caroline Imbert
- Université de Toulouse, Equipe Labellisée Ligue Contre le Cancer 2013, Toulouse, France
- Inserm 1037, Centre de Recherches en Cancérologie de Toulouse, Equipe Labellisée Ligue Contre le Cancer 2013, Toulouse, France
| | - Virginie Garcia
- Université de Toulouse, Equipe Labellisée Ligue Contre le Cancer 2013, Toulouse, France
- Inserm 1037, Centre de Recherches en Cancérologie de Toulouse, Equipe Labellisée Ligue Contre le Cancer 2013, Toulouse, France
| | | | - Nicole Therville
- Université de Toulouse, Equipe Labellisée Ligue Contre le Cancer 2013, Toulouse, France
- Inserm 1037, Centre de Recherches en Cancérologie de Toulouse, Equipe Labellisée Ligue Contre le Cancer 2013, Toulouse, France
| | - Stéphane Carpentier
- Université de Toulouse, Equipe Labellisée Ligue Contre le Cancer 2013, Toulouse, France
- Inserm 1037, Centre de Recherches en Cancérologie de Toulouse, Equipe Labellisée Ligue Contre le Cancer 2013, Toulouse, France
| | - Bruno Ségui
- Université de Toulouse, Equipe Labellisée Ligue Contre le Cancer 2013, Toulouse, France
- Inserm 1037, Centre de Recherches en Cancérologie de Toulouse, Equipe Labellisée Ligue Contre le Cancer 2013, Toulouse, France
| | - Thierry Levade
- Université de Toulouse, Equipe Labellisée Ligue Contre le Cancer 2013, Toulouse, France
- Inserm 1037, Centre de Recherches en Cancérologie de Toulouse, Equipe Labellisée Ligue Contre le Cancer 2013, Toulouse, France
- Laboratoire de Biochimie Métabolique, Centre Hospitalier Universitaire Toulouse, Toulouse, France
| | - Rania Azar
- Molecular Tumorigenesis and Anticancer Pharmacology, EDST, Lebanese University, Hadath, Lebanon
| | | | - Mona Diab-Assaf
- Molecular Tumorigenesis and Anticancer Pharmacology, EDST, Lebanese University, Hadath, Lebanon
| | - Céline Colacios
- Université de Toulouse, Equipe Labellisée Ligue Contre le Cancer 2013, Toulouse, France
- Inserm 1037, Centre de Recherches en Cancérologie de Toulouse, Equipe Labellisée Ligue Contre le Cancer 2013, Toulouse, France
| | - Nathalie Andrieu-Abadie
- Université de Toulouse, Equipe Labellisée Ligue Contre le Cancer 2013, Toulouse, France
- Inserm 1037, Centre de Recherches en Cancérologie de Toulouse, Equipe Labellisée Ligue Contre le Cancer 2013, Toulouse, France
| |
Collapse
|
18
|
Roviezzo F, Sorrentino R, Iacono VM, Brancaleone V, Terlizzi M, Riemma MA, Bertolino A, Rossi A, Matteis M, Spaziano G, Pinto A, D'Agostino B, Cirino G. Disodium cromoglycate inhibits asthma-like features induced by sphingosine-1-phosphate. Pharmacol Res 2016; 113:626-635. [PMID: 27713021 DOI: 10.1016/j.phrs.2016.09.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/28/2016] [Accepted: 09/14/2016] [Indexed: 11/17/2022]
Abstract
Compelling evidence suggests the involvement of sphingosine-1-phosphate (S1P) in the pathogenesis of asthma. The systemic administration of S1P causes asthma like features in the mouse involving mast cells. In this study we investigated whether disodium cromoglycate (DSCG), administered as a preventative treatment as in human therapy, could affect S1P effects on airways. BALB/c mice, treated with DSCG, received subcutaneous administration of S1P. Bronchi and pulmonary tissues were collected and functional, molecular and cellular studies were performed. DSCG inhibited S1P-induced airway hyper-reactivity as well as pulmonary inflammation. DSCG decreased the recruitment of solely mast cells and B cells in the lung. IgE serum levels, prostaglandin D2, mucus production and IL-13 were also reduced when mice were pretreated with DSCG. S1P induced pulmonary expression of CD23 on T and B cells, that was reversed by DSCG. Conversely, S1P failed to upregulate CD23 in mast cell-deficient Kit W-sh/W-sh mice. In conclusion we have shown that DSCG inhibits S1P-induced asthma like features in the mouse. This beneficial effect is due to a regulatory action on mast cell activity, and in turn to an inhibition of IgE-dependent T and B cells responses.
Collapse
Affiliation(s)
| | | | | | | | - Michela Terlizzi
- Department of Pharmacy (DIFARMA), University of Salerno, Salerno, Italy
| | | | - Antonio Bertolino
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Antonietta Rossi
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Maria Matteis
- Department of Experimental Medicine L. Donatelli, Second University of Naples, Naples, Italy
| | - Giuseppe Spaziano
- Department of Experimental Medicine L. Donatelli, Second University of Naples, Naples, Italy
| | - Aldo Pinto
- Department of Pharmacy (DIFARMA), University of Salerno, Salerno, Italy
| | - Bruno D'Agostino
- Department of Experimental Medicine L. Donatelli, Second University of Naples, Naples, Italy.
| | - Giuseppe Cirino
- Department of Pharmacy, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
19
|
Abstract
In vivo depletion of T lymphocytes is a means of studying the role of specific T cell populations during defined phases of in vivo immune responses. In this unit, a protocol is provided for injecting monoclonal antibodies (mAbs) into wild-type adult mice. Depletion of the appropriate subset of cells is verified by flow cytometry analysis of lymph node and spleen cell suspensions in pilot experiments. Once conditions have been established, depleted mice can be used to study the impact of T cell subsets on a variety of in vivo immune responses. The depleted condition may be maintained by repeated injections of the monoclonal antibody, or reversed by normal thymopoiesis following discontinuation of antibody administration.
Collapse
Affiliation(s)
- Karen Laky
- National Institutes of Health, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | | |
Collapse
|