1
|
Qian R, Xu Y, Zhang L, Wang L, Chen X, Wang M, Bao Q, Yao Y, Xie L. Haizao Yuhu decoction ameliorates silica-induced lung injury by inhibiting transforming growth factor-beta1/Smad pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 346:119669. [PMID: 40122314 DOI: 10.1016/j.jep.2025.119669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Haizao Yuhu Decoction (HYD) is a traditional Chinese herbal formula known for regulating Qi and dispersing stasis. AIM OF THE STUDY This study investigates the effects of HYD on silica-induced lung injury and the underlying mechanisms. MATERIALS AND METHODS The main constituents of HYD were identified using ultra-performance liquid chromatography Q-Exactive mass spectrometry (UPLC-QE-MS). Network pharmacology was employed to predict the targets and pathways through which HYD ameliorates silicosis, which were validated in a silica-induced lung injury mouse model and a TGF-β1-induced alveolar epithelial cell model. Pathological evaluation was conducted using hematoxylin-eosin (H&E) and Masson staining, while inflammatory cytokines and fibrosis were assessed via enzyme-linked immunosorbent assay (ELISA) and hydroxyproline quantification. Western blotting (WB) was performed to analyse protein expression levels of targeted markers. Proliferation and migration capabilities of MLE12 cells treated with HYD and its bioactive constituents (glycitein, diosmetin, and limonin) were assessed using cell counting kit-8 (CCK-8) and wound healing assays. RESULTS HYD significantly alleviated silica-induced lung injury, reducing inflammatory response and collagen deposition. A total of 176 constituents were identified in HYD, with 111 being pharmacologically active and linked to 1397 potential therapeutic targets, 107 associated with silicosis. Enrichment analyses highlighted the TGF-β1/Smad pathway and epithelial-mesenchymal transition (EMT) in HYD's anti-silicosis effects, which was validated by the restoration of TGF-β1, p-Smad2/Smad2, p-Smad3/Smad3, E-cadherin, and Vimentin following HYD treatment. Additionally, glycitein, diosmetin, and limonin inhibited the proliferation and migration of TGF-β1-induced MLE12 cells and suppressed the activation of TGF-β1/Smad pathway and EMT. CONCLUSIONS HYD effectively alleviates silica-induced lung injury by specifically inhibiting the TGF-β1/Smad pathway and EMT process.
Collapse
Affiliation(s)
- Rui Qian
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education Office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
| | - Yunyi Xu
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education Office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
| | - Luoning Zhang
- Department of Occupational Health and Environmental Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
| | - Liqun Wang
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education Office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
| | - Xuxi Chen
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education Office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
| | - Mengzhu Wang
- Department of Occupational Health and Environmental Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
| | - Qixue Bao
- Department of Occupational Health and Environmental Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
| | - Yuqin Yao
- State Key Laboratory of Biotherapy, West China School of Clinical Medicine (West China Hospital) Sichuan University, Chengdu, China; Department of Occupational Health and Environmental Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
| | - Linshen Xie
- Department of Occupational Health and Environmental Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Wen Y, Zheng Y, Hua S, Li T, Bi X, Lu Q, Li M, Sun S. Mechanisms of Bone Morphogenetic Protein 2 in Respiratory Diseases. Curr Allergy Asthma Rep 2024; 25:1. [PMID: 39466470 DOI: 10.1007/s11882-024-01181-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2024] [Indexed: 10/30/2024]
Abstract
PURPOSE OF REVIEW Bone morphogenetic protein 2 (BMP2) belongs to the transforming growth factor-β (TGF-β) superfamily and plays an important role in regulating embryonic development, angiogenesis, osteogenic differentiation, tissue homeostasis, and cancer invasion. Increasing studies suggest BMP2 is involved in several respiratory diseases. This study aimed to review the role and mechanisms of BMP2 in respiratory diseases. RECENT FINDINGS BMP2 signaling pathway includes the canonical and non-canonical signaling pathway. The canonical signaling pathway is the BMP2-SMAD pathway, and the non-canonical signaling pathway includes mitogen-activated protein kinase (MAPK) pathway and phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway. The BMP2 is related to pulmonary hypertension (PH), lung cancer, pulmonary fibrosis (PF), asthma, and chronic obstructive pulmonary disease (COPD). BMP2 inhibits the proliferation of pulmonary artery smooth muscle cells (PASMCs), promotes the apoptosis of PASMCs to reduce pulmonary vascular remodeling in PH, which is closely related to the canonical and non-canonical pathway. In addition, BMP2 stimulates the proliferation and migration of cells to promote the occurrence, colonization, and metastasis of lung cancer through the canonical and the non-canonical pathway. Meanwhile, BMP2 exert anti-fibrotic function in PF through canonical signaling pathway. Moreover, BMP2 inhibits airway inflammation to maintain airway homeostasis in asthma. However, the signaling pathways involved in asthma are poorly understood. BMP2 inhibits the expression of ciliary protein and promotes squamous metaplasia of airway epithelial cells to accelerate the development of COPD. In conclusion, BMP2 may be a therapeutic target for several respiratory diseases.
Collapse
Affiliation(s)
- Yiqiong Wen
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, China
| | - Yuanyuan Zheng
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, China
| | - Shu Hua
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, China
| | - Tongfen Li
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, China
| | - Xiaoqing Bi
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, China
| | - Qiongfen Lu
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, China
| | - Min Li
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, China
| | - Shibo Sun
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, China.
| |
Collapse
|
3
|
Tyagi SC, Pushpakumar S, Sen U, Akinterinwa OE, Zheng Y, Mokshagundam SPL, Kalra DK, Singh M. Role of circadian clock system in the mitochondrial trans-sulfuration pathway and tissue remodeling. Can J Physiol Pharmacol 2024; 102:105-115. [PMID: 37979203 DOI: 10.1139/cjpp-2023-0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
Previous studies from our laboratory revealed that the gaseous molecule hydrogen sulfide (H2S), a metabolic product of epigenetics, involves trans-sulfuration pathway for ensuring metabolism and clearance of homocysteine (Hcy) from body, thereby mitigating the skeletal muscle's pathological remodeling. Although the master circadian clock regulator that is known as brain and muscle aryl hydrocarbon receptor nuclear translocator like protein 1 (i.e., BMAL 1) is associated with S-adenosylhomocysteine hydrolase (SAHH) and Hcy metabolism but how trans-sulfuration pathway is influenced by the circadian clock remains unexplored. We hypothesize that alterations in the functioning of circadian clock during sleep and wake cycle affect skeletal muscle's biology. To test this hypothesis, we measured serum matrix metalloproteinase (MMP) activities using gelatin gels for analyzing the MMP-2 and MMP-9. Further, employing casein gels, we also studied MMP-13 that is known to be influenced by the growth arrest and DNA damage-45 (GADD45) protein during sleep and wake cycle. The wild type and cystathionine β synthase-deficient (CBS-/+) mice strains were treated with H2S and subjected to measurement of trans-sulfuration factors from skeletal muscle tissues. The results suggested highly robust activation of MMPs in the wake mice versus sleep mice, which appears somewhat akin to the "1-carbon metabolic dysregulation", which takes place during remodeling of extracellular matrix during muscular dystrophy. Interestingly, the levels of trans-sulfuration factors such as CBS, cystathionine γ lyase (CSE), methyl tetrahydrofolate reductase (MTHFR), phosphatidylethanolamine N-methyltransferase (PEMT), and Hcy-protein bound paraoxonase 1 (PON1) were attenuated in CBS-/+ mice. However, treatment with H2S mitigated the attenuation of the trans-sulfuration pathway. In addition, levels of mitochondrial peroxisome proliferator-activated receptor-gamma coactivator 1-α (PGC 1-α) and mitofusin-2 (MFN-2) were significantly improved by H2S intervention. Our findings suggest participation of the circadian clock in trans-sulfuration pathway that affects skeletal muscle remodeling and mitochondrial regeneration.
Collapse
Affiliation(s)
- Suresh C Tyagi
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Sathnur Pushpakumar
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Utpal Sen
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Oluwaseun E Akinterinwa
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Yuting Zheng
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Sri Prakash L Mokshagundam
- Division of Endocrinology, Metabolism and Diabetes and Robley Rex VA Medical Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Dinesh K Kalra
- Division of Cardiovascular Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Mahavir Singh
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
4
|
Ngo D, Pratte KA, Flexeder C, Petersen H, Dang H, Ma Y, Keyes MJ, Gao Y, Deng S, Peterson BD, Farrell LA, Bhambhani VM, Palacios C, Quadir J, Gillenwater L, Xu H, Emson C, Gieger C, Suhre K, Graumann J, Jain D, Conomos MP, Tracy RP, Guo X, Liu Y, Johnson WC, Cornell E, Durda P, Taylor KD, Papanicolaou GJ, Rich SS, Rotter JI, Rennard SI, Curtis JL, Woodruff PG, Comellas AP, Silverman EK, Crapo JD, Larson MG, Vasan RS, Wang TJ, Correa A, Sims M, Wilson JG, Gerszten RE, O’Connor GT, Barr RG, Couper D, Dupuis J, Manichaikul A, O’Neal WK, Tesfaigzi Y, Schulz H, Bowler RP. Systemic Markers of Lung Function and Forced Expiratory Volume in 1 Second Decline across Diverse Cohorts. Ann Am Thorac Soc 2023; 20:1124-1135. [PMID: 37351609 PMCID: PMC10405603 DOI: 10.1513/annalsats.202210-857oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 06/13/2023] [Indexed: 06/24/2023] Open
Abstract
Rationale: Chronic obstructive pulmonary disease (COPD) is a complex disease characterized by airway obstruction and accelerated lung function decline. Our understanding of systemic protein biomarkers associated with COPD remains incomplete. Objectives: To determine what proteins and pathways are associated with impaired pulmonary function in a diverse population. Methods: We studied 6,722 participants across six cohort studies with both aptamer-based proteomic and spirometry data (4,566 predominantly White participants in a discovery analysis and 2,156 African American cohort participants in a validation). In linear regression models, we examined protein associations with baseline forced expiratory volume in 1 second (FEV1) and FEV1/forced vital capacity (FVC). In linear mixed effects models, we investigated the associations of baseline protein levels with rate of FEV1 decline (ml/yr) in 2,777 participants with up to 7 years of follow-up spirometry. Results: We identified 254 proteins associated with FEV1 in our discovery analyses, with 80 proteins validated in the Jackson Heart Study. Novel validated protein associations include kallistatin serine protease inhibitor, growth differentiation factor 2, and tumor necrosis factor-like weak inducer of apoptosis (discovery β = 0.0561, Q = 4.05 × 10-10; β = 0.0421, Q = 1.12 × 10-3; and β = 0.0358, Q = 1.67 × 10-3, respectively). In longitudinal analyses within cohorts with follow-up spirometry, we identified 15 proteins associated with FEV1 decline (Q < 0.05), including elafin leukocyte elastase inhibitor and mucin-associated TFF2 (trefoil factor 2; β = -4.3 ml/yr, Q = 0.049; β = -6.1 ml/yr, Q = 0.032, respectively). Pathways and processes highlighted by our study include aberrant extracellular matrix remodeling, enhanced innate immune response, dysregulation of angiogenesis, and coagulation. Conclusions: In this study, we identify and validate novel biomarkers and pathways associated with lung function traits in a racially diverse population. In addition, we identify novel protein markers associated with FEV1 decline. Several protein findings are supported by previously reported genetic signals, highlighting the plausibility of certain biologic pathways. These novel proteins might represent markers for risk stratification, as well as novel molecular targets for treatment of COPD.
Collapse
Affiliation(s)
- Debby Ngo
- Cardiovascular Research Institute
- Division of Pulmonary, Critical Care, and Sleep Medicine, and
| | | | - Claudia Flexeder
- Institute of Epidemiology and
- Comprehensive Pneumology Center Munich (CPC-M) as member of the German Center for Lung Research (DZL), Munich, Germany
- Institute and Clinic for Occupational, Social, and Environmental Medicine, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Hans Petersen
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Hong Dang
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Yanlin Ma
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | | | - Yan Gao
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi; and
- Institute and Clinic for Occupational, Social, and Environmental Medicine, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | | | | | | | | | - Hanfei Xu
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Claire Emson
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland
| | - Christian Gieger
- Institute of Epidemiology and
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City, Doha, Qatar
| | | | - Deepti Jain
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Matthew P. Conomos
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Russell P. Tracy
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA (University of California, Los Angeles) Medical Center, Torrance, California
| | - Yongmei Liu
- Division of Cardiology, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, North Carolina
| | - W. Craig Johnson
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Elaine Cornell
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Peter Durda
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Kent D. Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA (University of California, Los Angeles) Medical Center, Torrance, California
| | - George J. Papanicolaou
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA (University of California, Los Angeles) Medical Center, Torrance, California
| | - Steven I. Rennard
- Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California
| | | | - Prescott G. Woodruff
- Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California
| | | | | | | | - Martin G. Larson
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
- The National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts
| | - Ramachandran S. Vasan
- The National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts
- Division of Preventive Medicine and
- Division of Cardiology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Thomas J. Wang
- Department of Medicine, UT (University of Texas) Southwestern Medical Center, Dallas, Texas
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Adolfo Correa
- Jackson Heart Study, Department of Medicine, and
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Mario Sims
- Jackson Heart Study, Department of Medicine, and
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - James G. Wilson
- Cardiovascular Research Institute
- Jackson Heart Study, Department of Medicine, and
| | - Robert E. Gerszten
- Cardiovascular Research Institute
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - George T. O’Connor
- The National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts
- Pulmonary Center, Department of Medicine, Boston University, Boston, Massachusetts
| | - R. Graham Barr
- Department of Medicine and
- Department of Epidemiology, Columbia University, New York, New York
| | - David Couper
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Wanda K. O’Neal
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Yohannes Tesfaigzi
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Holger Schulz
- Institute of Epidemiology and
- Comprehensive Pneumology Center Munich (CPC-M) as member of the German Center for Lung Research (DZL), Munich, Germany
| | | |
Collapse
|
5
|
Golovina E, Fadason T, Jaros RK, Kumar H, John J, Burrowes K, Tawhai M, O'Sullivan JM. De novo discovery of traits co-occurring with chronic obstructive pulmonary disease. Life Sci Alliance 2023; 6:6/3/e202201609. [PMID: 36574990 PMCID: PMC9795035 DOI: 10.26508/lsa.202201609] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/28/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a heterogeneous group of chronic lung conditions. Genome-wide association studies have identified single-nucleotide polymorphisms (SNPs) associated with COPD and the co-occurring conditions, suggesting common biological mechanisms underlying COPD and these co-occurring conditions. To identify them, we have integrated information across different biological levels (i.e., genetic variants, lung-specific 3D genome structure, gene expression and protein-protein interactions) to build lung-specific gene regulatory and protein-protein interaction networks. We have queried these networks using disease-associated SNPs for COPD, unipolar depression and coronary artery disease. COPD-associated SNPs can control genes involved in the regulation of lung or pulmonary function, asthma, brain region volumes, cortical surface area, depressed affect, neuroticism, Parkinson's disease, white matter microstructure and smoking behaviour. We describe the regulatory connections, genes and biochemical pathways that underlay these co-occurring trait-SNP-gene associations. Collectively, our findings provide new avenues for the investigation of the underlying biology and diverse clinical presentations of COPD. In so doing, we identify a collection of genetic variants and genes that may aid COPD patient stratification and treatment.
Collapse
Affiliation(s)
| | - Tayaza Fadason
- Liggins Institute, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand
| | - Rachel K Jaros
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Haribalan Kumar
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Joyce John
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Kelly Burrowes
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Merryn Tawhai
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Justin M O'Sullivan
- Liggins Institute, University of Auckland, Auckland, New Zealand .,Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand.,MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK.,Garvan Institute of Medical Research, Sydney, Australia.,Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
6
|
Uthaya Kumar DB, Motakis E, Yurieva M, Kohar V, Martinek J, Wu TC, Khoury J, Grassmann J, Lu M, Palucka K, Kaminski N, Koff JL, Williams A. Bronchial epithelium epithelial-mesenchymal plasticity forms aberrant basaloid-like cells in vitro. Am J Physiol Lung Cell Mol Physiol 2022; 322:L822-L841. [PMID: 35438006 PMCID: PMC9142163 DOI: 10.1152/ajplung.00254.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 04/03/2022] [Accepted: 04/13/2022] [Indexed: 11/22/2022] Open
Abstract
Although epithelial-mesenchymal transition (EMT) is a common feature of fibrotic lung disease, its role in fibrogenesis is controversial. Recently, aberrant basaloid cells were identified in fibrotic lung tissue as a novel epithelial cell type displaying a partial EMT phenotype. The developmental origin of these cells remains unknown. To elucidate the role of EMT in the development of aberrant basaloid cells from the bronchial epithelium, we mapped EMT-induced transcriptional changes at the population and single-cell levels. Human bronchial epithelial cells grown as submerged or air-liquid interface (ALI) cultures with or without EMT induction were analyzed by bulk and single-cell RNA-Sequencing. Comparison of submerged and ALI cultures revealed differential expression of 8,247 protein coding (PC) and 1,621 long noncoding RNA (lncRNA) genes and revealed epithelial cell-type-specific lncRNAs. Similarly, EMT induction in ALI cultures resulted in robust transcriptional reprogramming of 6,020 PC and 907 lncRNA genes. Although there was no evidence for fibroblast/myofibroblast conversion following EMT induction, cells displayed a partial EMT gene signature and an aberrant basaloid-like cell phenotype. The substantial transcriptional differences between submerged and ALI cultures highlight that care must be taken when interpreting data from submerged cultures. This work supports that lung epithelial EMT does not generate fibroblasts/myofibroblasts and confirms ALI cultures provide a physiologically relevant system to study aberrant basaloid-like cells and mechanisms of EMT. We provide a catalog of PC and lncRNA genes and an interactive browser (https://bronc-epi-in-vitro.cells.ucsc.edu/) of single-cell RNA-Seq data for further exploration of potential roles in the lung epithelium in health and lung disease.
Collapse
Affiliation(s)
- Dinesh Babu Uthaya Kumar
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, Connecticut
| | - Efthymios Motakis
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Marina Yurieva
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | | | - Jan Martinek
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Te-Chia Wu
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Johad Khoury
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Jessica Grassmann
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Mingyang Lu
- Department of Bioengineering, Northeastern University, Boston, Massachusetts
- Center for Theoretical Biological Physics, Northeastern University, Boston, Massachusetts
| | - Karolina Palucka
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, Connecticut
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Jonathan L Koff
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Adam Williams
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, Connecticut
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
7
|
Tiwari A, Hobbs BD, Li J, Kho AT, Amr S, Celedón JC, Weiss ST, Hersh CP, Tantisira KG, McGeachie MJ. Blood miRNAs Are Linked to Frequent Asthma Exacerbations in Childhood Asthma and Adult COPD. Noncoding RNA 2022; 8:ncrna8020027. [PMID: 35447890 PMCID: PMC9030787 DOI: 10.3390/ncrna8020027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/23/2022] [Accepted: 03/30/2022] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs have been independently associated with asthma and COPD; however, it is unclear if microRNA associations will overlap when evaluating retrospective acute exacerbations. Objective: We hypothesized that peripheral blood microRNAs would be associated with retrospective acute asthma exacerbations in a pediatric asthma cohort and that such associations may also be relevant to acute COPD exacerbations. Methods: We conducted small-RNA sequencing on 374 whole-blood samples from children with asthma ages 6-14 years who participated in the Genetics of Asthma in Costa Rica Study (GACRS) and 450 current and former adult smokers with and without COPD who participated in the COPDGene study. Measurements and Main Results: After QC, we had 351 samples and 649 microRNAs for Differential Expression (DE) analysis between the frequent (n = 183) and no or infrequent exacerbation (n = 168) groups in GACRS. Fifteen upregulated miRs had odds ratios (OR) between 1.22 and 1.59 for a doubling of miR counts, while five downregulated miRs had ORs between 0.57 and 0.8. These were assessed for generalization in COPDGene, where three of the upregulated miRs (miR-532-3p, miR-296-5p, and miR-766-3p) and two of the downregulated miRs (miR-7-5p and miR-451b) replicated. Pathway enrichment analysis showed MAPK and PI3K-Akt signaling pathways were strongly enriched for target genes of DE miRNAs and miRNAs generalizing to COPD exacerbations, as well as infection response pathways to various pathogens. Conclusion: miRs (451b; 7-5p; 532-3p; 296-5p and 766-3p) associated with both childhood asthma and adult COPD exacerbations may play a vital role in airflow obstruction and exacerbations and point to shared genomic regulatory machinery underlying exacerbations in both diseases.
Collapse
Affiliation(s)
- Anshul Tiwari
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (A.T.); (B.D.H.); (J.L.); (A.T.K.); (S.T.W.); (C.P.H.)
| | - Brian D. Hobbs
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (A.T.); (B.D.H.); (J.L.); (A.T.K.); (S.T.W.); (C.P.H.)
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jiang Li
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (A.T.); (B.D.H.); (J.L.); (A.T.K.); (S.T.W.); (C.P.H.)
| | - Alvin T. Kho
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (A.T.); (B.D.H.); (J.L.); (A.T.K.); (S.T.W.); (C.P.H.)
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Samir Amr
- Translational Genomics Core, Mass General Brigham Personalized Medicine, Cambridge, MA 02139, USA;
| | - Juan C. Celedón
- Division of Pediatric Pulmonary Medicine, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224, USA;
| | - Scott T. Weiss
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (A.T.); (B.D.H.); (J.L.); (A.T.K.); (S.T.W.); (C.P.H.)
| | - Craig P. Hersh
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (A.T.); (B.D.H.); (J.L.); (A.T.K.); (S.T.W.); (C.P.H.)
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Kelan G. Tantisira
- Division of Pediatric Respiratory Medicine, Rady Children’s Hospital, University of California, San Diego, CA 92123, USA;
| | - Michael J. McGeachie
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (A.T.); (B.D.H.); (J.L.); (A.T.K.); (S.T.W.); (C.P.H.)
- Correspondence: ; Tel.: +617-525-2272; Fax: 617-731-1541
| |
Collapse
|
8
|
Liu SR, Ren D, Wu HT, Yao SQ, Song ZH, Geng LD, Wang PC. Reparative effects of chronic intermittent hypobaric hypoxia pre‑treatment on intervertebral disc degeneration in rats. Mol Med Rep 2022; 25:173. [PMID: 35315494 PMCID: PMC8971903 DOI: 10.3892/mmr.2022.12689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/25/2022] [Indexed: 11/24/2022] Open
Abstract
Previous studies have indicated that chronic intermittent hypobaric hypoxia (CIHH) preconditioning can inhibit TNF-α and other related inflammatory cytokines and exerts protective effect on intervertebral disc degeneration disease (IDD) in rats; however, the mechanism is still unclear. The present study aimed to explore the repair mechanisms of CIHH on IDD in rats. In the experiment, 48 adult Sprague-Dawley rats were selected and randomly divided into an experimental group (CIHH-IDD), a degenerative group (IDD) and a control group (CON). The CIHH-IDD group of rats (n=16) were treated with CIHH (simulated 3000 m altitude, 5 h per day, 28 days; PO2=108.8 mmHg) before disc degeneration surgery. The IDD group of rats (n=16) underwent tail-vertebral intervertebral disc surgery to establish a model of intervertebral disc degeneration. The CON group of rats (n=16) did not receive any treatments. After surgery, the disc height index was calculated using X-ray analysis of rat tail vertebrae, the degeneration process was observed and repair was evaluated by chemically staining degenerative intervertebral disc tissue slices. The expression levels of basic fibroblast growth factor (bFGF), TGFβ1, Collagen I and Collagen II were measured in the intervertebral disc tissue using western blotting; while the expression levels of bFGF, TGFβ1 and hypoxia-inducible factor 1-α (HIF-1α) were measured in rat serum using ELISA. The results demonstrated that: i) The degree of intervertebral disc height degeneration in CIHH-IDD rats was significantly lower compared with that in IDD rats (P<0.05); ii) the expression levels of bFGF, TGFβ1 and HIF-1α were higher in CIHH-IDD rat serum compared with those in IDD rat serum (P<0.05); iii) optical microscopy revealed that the degree of disc degeneration was relatively mild in CIHH-IDD rats; and iv) the protein expression levels of bFGF, TGFβ1 and collagen II were increased in CIHH-IDD rat intervertebral disc tissues compared with those of IDD rats, while the overexpression of collagen I protein was inhibited. Overall, after CIHH pre-treatment, the expression levels of bFGF and TGFβ1 were up-regulated, which play notable roles in repairing degenerative intervertebral discs in rats.
Collapse
Affiliation(s)
- Shu-Ren Liu
- Major Laboratory of Orthopaedic Biomechanics in Hebei Province, Department of Orthopaedic Trauma Service Centre, The Third Hospital of Hebei Medical University, Hebei, Shijiazhuang 050051, P.R. China
| | - Dong Ren
- Major Laboratory of Orthopaedic Biomechanics in Hebei Province, Department of Orthopaedic Trauma Service Centre, The Third Hospital of Hebei Medical University, Hebei, Shijiazhuang 050051, P.R. China
| | - Hao-Tan Wu
- Major Laboratory of Orthopaedic Biomechanics in Hebei Province, Department of Orthopaedic Trauma Service Centre, The Third Hospital of Hebei Medical University, Hebei, Shijiazhuang 050051, P.R. China
| | - Shuang-Quan Yao
- Major Laboratory of Orthopaedic Biomechanics in Hebei Province, Department of Orthopaedic Trauma Service Centre, The Third Hospital of Hebei Medical University, Hebei, Shijiazhuang 050051, P.R. China
| | - Zhao-Hui Song
- Major Laboratory of Orthopaedic Biomechanics in Hebei Province, Department of Orthopaedic Trauma Service Centre, The Third Hospital of Hebei Medical University, Hebei, Shijiazhuang 050051, P.R. China
| | - Lin-Dan Geng
- Major Laboratory of Orthopaedic Biomechanics in Hebei Province, Department of Orthopaedic Trauma Service Centre, The Third Hospital of Hebei Medical University, Hebei, Shijiazhuang 050051, P.R. China
| | - Peng-Cheng Wang
- Major Laboratory of Orthopaedic Biomechanics in Hebei Province, Department of Orthopaedic Trauma Service Centre, The Third Hospital of Hebei Medical University, Hebei, Shijiazhuang 050051, P.R. China
| |
Collapse
|
9
|
Lippi G, Brandon M, Henry. Prognostic value of growth differentiation factor 15 in COVID-19. Scandinavian Journal of Clinical and Laboratory Investigation 2022; 82:170-172. [PMID: 35133939 DOI: 10.1080/00365513.2022.2034938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Giuseppe Lippi
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
| | | | - Henry
- Clinical Laboratory, Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Disease Intervention and Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| |
Collapse
|
10
|
Moll M, Boueiz A, Ghosh AJ, Saferali A, Lee S, Xu Z, Yun JH, Hobbs BD, Hersh CP, Sin DD, Tal-Singer R, Silverman EK, Cho MH, Castaldi PJ. Development of a Blood-based Transcriptional Risk Score for Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2022; 205:161-170. [PMID: 34739356 PMCID: PMC8787248 DOI: 10.1164/rccm.202107-1584oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/03/2021] [Indexed: 01/17/2023] Open
Abstract
Rationale: The ability of peripheral blood biomarkers to assess chronic obstructive pulmonary disease (COPD) risk and progression is unknown. Genetics and gene expression may capture important aspects of COPD-related biology that predict disease activity. Objectives: Develop a transcriptional risk score (TRS) for COPD and assess the contribution of the TRS and a polygenic risk score (PRS) for disease susceptibility and progression. Methods: We randomly split 2,569 COPDGene (Genetic Epidemiology of COPD) participants with whole-blood RNA sequencing into training (n = 1,945) and testing (n = 624) samples and used 468 ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points) COPD cases with microarray data for replication. We developed a TRS using penalized regression (least absolute shrinkage and selection operator) to model FEV1/FVC and studied the predictive value of TRS for COPD (Global Initiative for Chronic Obstructive Lung Disease 2-4), prospective FEV1 change (ml/yr), and additional COPD-related traits. We adjusted for potential confounders, including age and smoking. We evaluated the predictive performance of the TRS in the context of a previously derived PRS and clinical factors. Measurements and Main Results: The TRS included 147 transcripts and was associated with COPD (odds ratio, 3.3; 95% confidence interval [CI], 2.4-4.5; P < 0.001), FEV1 change (β, -17 ml/yr; 95% CI, -28 to -6.6; P = 0.002), and other COPD-related traits. In ECLIPSE cases, we replicated the association with FEV1 change (β, -8.2; 95% CI, -15 to -1; P = 0.025) and the majority of other COPD-related traits. Models including PRS, TRS, and clinical factors were more predictive of COPD (area under the receiver operator characteristic curve, 0.84) and annualized FEV1 change compared with models with one risk score or clinical factors alone. Conclusions: Blood transcriptomics can improve prediction of COPD and lung function decline when added to a PRS and clinical risk factors.
Collapse
Affiliation(s)
- Matthew Moll
- Channing Division of Network Medicine
- Division of Pulmonary and Critical Care Medicine, and
| | - Adel Boueiz
- Channing Division of Network Medicine
- Division of Pulmonary and Critical Care Medicine, and
| | - Auyon J. Ghosh
- Channing Division of Network Medicine
- Division of Pulmonary and Critical Care Medicine, and
| | | | - Sool Lee
- Channing Division of Network Medicine
- Department of Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, North Carolina
| | | | - Jeong H. Yun
- Channing Division of Network Medicine
- Division of Pulmonary and Critical Care Medicine, and
| | - Brian D. Hobbs
- Channing Division of Network Medicine
- Division of Pulmonary and Critical Care Medicine, and
| | - Craig P. Hersh
- Channing Division of Network Medicine
- Division of Pulmonary and Critical Care Medicine, and
| | - Don D. Sin
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, British Columbia, Canada
- Respiratory Division, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; and
| | | | - Edwin K. Silverman
- Channing Division of Network Medicine
- Division of Pulmonary and Critical Care Medicine, and
| | - Michael H. Cho
- Channing Division of Network Medicine
- Division of Pulmonary and Critical Care Medicine, and
| | - Peter J. Castaldi
- Channing Division of Network Medicine
- Division of General Internal Medicine and Primary Care, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| |
Collapse
|
11
|
Chen Q, Heijink IH, de Vries M. Connecting GWAS Susceptibility Genes in COPD: Do We Need to Consider TGF-β2? Am J Respir Cell Mol Biol 2021; 65:468-470. [PMID: 34411507 PMCID: PMC8641857 DOI: 10.1165/rcmb.2021-0265ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Affiliation(s)
- Qing Chen
- Department of Pathology and Medical Biology.,Groningen Research Institute for Asthma and COPD University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Irene H Heijink
- Groningen Research Institute for Asthma and COPD University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Pathology and Medical Biology Department of Pulmonology
| | - Maaike de Vries
- Groningen Research Institute for Asthma and COPD University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Epidemiology
| |
Collapse
|
12
|
Ochayon DE, Waggoner SN. The Effect of Unconventional Cytokine Combinations on NK-Cell Responses to Viral Infection. Front Immunol 2021; 12:645850. [PMID: 33815404 PMCID: PMC8017335 DOI: 10.3389/fimmu.2021.645850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/01/2021] [Indexed: 12/30/2022] Open
Abstract
Cytokines are soluble and membrane-bound factors that dictate immune responses. Dogmatically, cytokines are divided into families that promote type 1 cell-mediated immune responses (e.g., IL-12) or type 2 humoral responses (e.g., IL-4), each capable of antagonizing the opposing family of cytokines. The discovery of additional families of cytokines (e.g., IL-17) has added complexity to this model, but it was the realization that immune responses frequently comprise mixtures of different types of cytokines that dismantled this black-and-white paradigm. In some cases, one type of response may dominate these mixed milieus in disease pathogenesis and thereby present a clear therapeutic target. Alternatively, synergistic or blended cytokine responses may obfuscate the origins of disease and perplex clinical decision making. Most immune cells express receptors for many types of cytokines and can mediate a myriad of functions important for tolerance, immunity, tissue damage, and repair. In this review, we will describe the unconventional effects of a variety of cytokines on the activity of a prototypical type 1 effector, the natural killer (NK) cell, and discuss how this may impact the contributions of these cells to health and disease.
Collapse
Affiliation(s)
- David E. Ochayon
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Stephen N. Waggoner
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
13
|
Checa J, Aran JM. Airway Redox Homeostasis and Inflammation Gone Awry: From Molecular Pathogenesis to Emerging Therapeutics in Respiratory Pathology. Int J Mol Sci 2020; 21:E9317. [PMID: 33297418 PMCID: PMC7731288 DOI: 10.3390/ijms21239317] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/05/2020] [Indexed: 02/06/2023] Open
Abstract
As aerobic organisms, we are continuously and throughout our lifetime subjected to an oxidizing atmosphere and, most often, to environmental threats. The lung is the internal organ most highly exposed to this milieu. Therefore, it has evolved to confront both oxidative stress induced by reactive oxygen species (ROS) and a variety of pollutants, pathogens, and allergens that promote inflammation and can harm the airways to different degrees. Indeed, an excess of ROS, generated intrinsically or from external sources, can imprint direct damage to key structural cell components (nucleic acids, sugars, lipids, and proteins) and indirectly perturb ROS-mediated signaling in lung epithelia, impairing its homeostasis. These early events complemented with efficient recognition of pathogen- or damage-associated recognition patterns by the airway resident cells alert the immune system, which mounts an inflammatory response to remove the hazards, including collateral dead cells and cellular debris, in an attempt to return to homeostatic conditions. Thus, any major or chronic dysregulation of the redox balance, the air-liquid interface, or defects in epithelial proteins impairing mucociliary clearance or other defense systems may lead to airway damage. Here, we review our understanding of the key role of oxidative stress and inflammation in respiratory pathology, and extensively report current and future trends in antioxidant and anti-inflammatory treatments focusing on the following major acute and chronic lung diseases: acute lung injury/respiratory distress syndrome, asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, and cystic fibrosis.
Collapse
Affiliation(s)
| | - Josep M. Aran
- Immune-Inflammatory Processes and Gene Therapeutics Group, IDIBELL, L’Hospitalet de Llobregat, 08908 Barcelona, Spain;
| |
Collapse
|
14
|
Conlon TM, John-Schuster G, Heide D, Pfister D, Lehmann M, Hu Y, Ertüz Z, Lopez MA, Ansari M, Strunz M, Mayr C, Angelidis I, Ciminieri C, Costa R, Kohlhepp MS, Guillot A, Günes G, Jeridi A, Funk MC, Beroshvili G, Prokosch S, Hetzer J, Verleden SE, Alsafadi H, Lindner M, Burgstaller G, Becker L, Irmler M, Dudek M, Janzen J, Goffin E, Gosens R, Knolle P, Pirotte B, Stoeger T, Beckers J, Wagner D, Singh I, Theis FJ, de Angelis MH, O'Connor T, Tacke F, Boutros M, Dejardin E, Eickelberg O, Schiller HB, Königshoff M, Heikenwalder M, Yildirim AÖ. Inhibition of LTβR signalling activates WNT-induced regeneration in lung. Nature 2020; 588:151-156. [PMID: 33149305 PMCID: PMC7718297 DOI: 10.1038/s41586-020-2882-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 08/19/2020] [Indexed: 01/11/2023]
Abstract
Lymphotoxin β-receptor (LTβR) signalling promotes lymphoid neogenesis and the development of tertiary lymphoid structures1,2, which are associated with severe chronic inflammatory diseases that span several organ systems3-6. How LTβR signalling drives chronic tissue damage particularly in the lung, the mechanism(s) that regulate this process, and whether LTβR blockade might be of therapeutic value have remained unclear. Here we demonstrate increased expression of LTβR ligands in adaptive and innate immune cells, enhanced non-canonical NF-κB signalling, and enriched LTβR target gene expression in lung epithelial cells from patients with smoking-associated chronic obstructive pulmonary disease (COPD) and from mice chronically exposed to cigarette smoke. Therapeutic inhibition of LTβR signalling in young and aged mice disrupted smoking-related inducible bronchus-associated lymphoid tissue, induced regeneration of lung tissue, and reverted airway fibrosis and systemic muscle wasting. Mechanistically, blockade of LTβR signalling dampened epithelial non-canonical activation of NF-κB, reduced TGFβ signalling in airways, and induced regeneration by preventing epithelial cell death and activating WNT/β-catenin signalling in alveolar epithelial progenitor cells. These findings suggest that inhibition of LTβR signalling represents a viable therapeutic option that combines prevention of tertiary lymphoid structures1 and inhibition of apoptosis with tissue-regenerative strategies.
Collapse
Affiliation(s)
- Thomas M Conlon
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
| | - Gerrit John-Schuster
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
| | - Danijela Heide
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Heidelberg, Germany
| | - Dominik Pfister
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Heidelberg, Germany
| | - Mareike Lehmann
- Comprehensive Pneumology Center (CPC), Lung Repair and Regeneration Research Unit, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Yan Hu
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Denver, CO, USA
| | - Zeynep Ertüz
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
| | - Martin A Lopez
- Laboratory of Molecular Immunology and Signal Transduction, GIGA-Institute, University of Liège, Liège, Belgium
| | - Meshal Ansari
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
- Institute of Computional Biology (ICB), Helmholtz Zentrum München, Neuherberg, Germany
| | - Maximilian Strunz
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
| | - Christoph Mayr
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
| | - Ilias Angelidis
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
| | - Chiara Ciminieri
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Denver, CO, USA
- Department of Molecular Pharmacology, Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands
| | - Rita Costa
- Comprehensive Pneumology Center (CPC), Lung Repair and Regeneration Research Unit, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Marlene Sophia Kohlhepp
- Department of Hepatology & Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Adrien Guillot
- Department of Hepatology & Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Gizem Günes
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
| | - Aicha Jeridi
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
| | - Maja C Funk
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics, Heidelberg, Germany
| | - Giorgi Beroshvili
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
| | - Sandra Prokosch
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Heidelberg, Germany
| | - Jenny Hetzer
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Heidelberg, Germany
| | | | - Hani Alsafadi
- Comprehensive Pneumology Center (CPC), Lung Repair and Regeneration Research Unit, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- Lung Bioengineering and Regeneration, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Michael Lindner
- Asklepios Fachkliniken Munich-Gauting, Member of the German Center for Lung Research (DZL), Munich, Germany
- Translational Lung Research and CPC-M bioArchive, Comprehensive Pneumology Center, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Gerald Burgstaller
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
| | - Lore Becker
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany
| | - Martin Irmler
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany
| | - Michael Dudek
- Institute of Molecular Immunology & Experimental Oncology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jakob Janzen
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Heidelberg, Germany
- Emmy Noether Research Group Epigenetic Machineries and Cancer, Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eric Goffin
- Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Liège, Belgium
| | - Reinoud Gosens
- Department of Molecular Pharmacology, Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands
| | - Percy Knolle
- Institute of Molecular Immunology & Experimental Oncology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Bernard Pirotte
- Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Liège, Belgium
| | - Tobias Stoeger
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
| | - Johannes Beckers
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany
- Experimental Genetics, Technische Universität München, Freising, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Darcy Wagner
- Comprehensive Pneumology Center (CPC), Lung Repair and Regeneration Research Unit, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- Lung Bioengineering and Regeneration, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Indrabahadur Singh
- Emmy Noether Research Group Epigenetic Machineries and Cancer, Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Fabian J Theis
- Institute of Computional Biology (ICB), Helmholtz Zentrum München, Neuherberg, Germany
| | - Martin Hrabé de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany
- Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Liège, Belgium
- Experimental Genetics, Technische Universität München, Freising, Germany
| | - Tracy O'Connor
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Heidelberg, Germany
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics, Heidelberg, Germany
- Medical Faculty Mannheim & BioQuant, Heidelberg University, Heidelberg, Germany
| | - Emmanuel Dejardin
- Laboratory of Molecular Immunology and Signal Transduction, GIGA-Institute, University of Liège, Liège, Belgium
| | - Oliver Eickelberg
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Denver, CO, USA
| | - Herbert B Schiller
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
| | - Melanie Königshoff
- Comprehensive Pneumology Center (CPC), Lung Repair and Regeneration Research Unit, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Denver, CO, USA
| | - Mathias Heikenwalder
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Heidelberg, Germany.
| | - Ali Önder Yildirim
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany.
| |
Collapse
|
15
|
Milne S, Li X, Hernandez Cordero AI, Yang CX, Cho MH, Beaty TH, Ruczinski I, Hansel NN, Bossé Y, Brandsma CA, Sin DD, Obeidat M. Protective effect of club cell secretory protein (CC-16) on COPD risk and progression: a Mendelian randomisation study. Thorax 2020; 75:934-943. [PMID: 32839289 DOI: 10.1136/thoraxjnl-2019-214487] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 06/25/2020] [Accepted: 07/10/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND The anti-inflammatory pneumoprotein club cell secretory protein-16 (CC-16) is associated with the clinical expression of chronic obstructive pulmonary disease (COPD). We aimed to determine if there is a causal effect of serum CC-16 level on the risk of having COPD and/or its progression using Mendelian randomisation (MR) analysis. METHODS We performed a genome-wide association meta-analysis for serum CC-16 in two COPD cohorts (Lung Health Study (LHS), n=3850 and ECLIPSE, n=1702). We then used the CC-16-associated single-nucleotide polymorphisms (SNPs) as instrumental variables in MR analysis to identify a causal effect of serum CC-16 on 'COPD risk' (ie, case status in the International COPD Genetics Consortium/UK-Biobank dataset; n=35 735 COPD cases, n=222 076 controls) and 'COPD progression' (ie, annual change in forced expiratory volume in 1 s in LHS and ECLIPSE). We also determined the associations between SNPs associated with CC-16 and gene expression using n=1111 lung tissue samples from the Lung Expression Quantitative Trait Locus Study. RESULTS We identified seven SNPs independently associated (p<5×10-8) with serum CC-16 levels; six of these were novel. MR analysis suggested a protective causal effect of increased serum CC-16 on COPD risk (MR estimate (SE) -0.11 (0.04), p=0.008) and progression (LHS only, MR estimate (SE) 7.40 (3.28), p=0.02). Five of the SNPs were also associated with gene expression in lung tissue (at false discovery rate <0.1) of several genes, including the CC-16-encoding gene SCGB1A1. CONCLUSION We have identified several novel genetic variants associated with serum CC-16 level in COPD cohorts. These genetic associations suggest a potential causal effect of serum CC-16 on the risk of having COPD and its progression, the biological basis of which warrants further investigation.
Collapse
Affiliation(s)
- Stephen Milne
- Centre for Heart Lung Innovation, St Paul's Hospital, The University of British Columbia, Vancouver, British Columbia, Canada .,Division of Respiratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Xuan Li
- Centre for Heart Lung Innovation, St Paul's Hospital, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Ana I Hernandez Cordero
- Centre for Heart Lung Innovation, St Paul's Hospital, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Chen Xi Yang
- Centre for Heart Lung Innovation, St Paul's Hospital, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael H Cho
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Terri H Beaty
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ingo Ruczinski
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nadia N Hansel
- Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec, Department of Molecular Medicine, Laval University, Québec City, Québec, Canada
| | - Corry-Anke Brandsma
- University of Groningen Department of Pathology and Medical Biology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Don D Sin
- Centre for Heart Lung Innovation, St Paul's Hospital, The University of British Columbia, Vancouver, British Columbia, Canada.,Division of Respiratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Maen Obeidat
- Centre for Heart Lung Innovation, St Paul's Hospital, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
16
|
Verhamme FM, Freeman CM, Brusselle GG, Bracke KR, Curtis JL. GDF-15 in Pulmonary and Critical Care Medicine. Am J Respir Cell Mol Biol 2020; 60:621-628. [PMID: 30633545 DOI: 10.1165/rcmb.2018-0379tr] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
GDF-15 (growth differentiation factor 15) acts both as a stress-induced cytokine with diverse actions at different body sites and as a cell-autonomous regulator linked to cellular senescence and apoptosis. For multiple reasons, this divergent transforming growth factor-β molecular superfamily member should be better known to pulmonary researchers and clinicians. In ambulatory individuals, GDF-15 concentrations in peripheral blood are an established predictive biomarker of all-cause mortality and of adverse cardiovascular events. Concentrations upon admission of critically ill patients (without or with sepsis) correlate with organ dysfunction and independently predict short- and long-term mortality risk. GDF-15 is a major downstream mediator of p53 activation, but it can also be induced independently of p53, notably by nonsteroidal antiinflammatory agents. GDF-15 blood concentrations are markedly elevated in adults and children with pulmonary hypertension. Concentrations are also increased in chronic obstructive pulmonary disease, in which they contribute to mucus hypersecretion, airway epithelial cell senescence, and impaired antiviral defenses, which together with murine data support a role for GDF-15 in chronic obstructive pulmonary disease pathogenesis and progression. This review summarizes biological and clinical data on GDF-15 relevant to pulmonary and critical care medicine. We highlight the recent discovery of a central nervous system receptor for GDF-15, GFRAL (glial cell line-derived neurotrophic factor family receptor-α-like), an important advance with potential for novel treatments for obesity and cachexia. We also describe limitations and controversies in the existing literature, and we delineate research questions that must be addressed to determine whether GDF-15 can be therapeutically manipulated in other clinical settings.
Collapse
Affiliation(s)
- Fien M Verhamme
- 1 Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| | - Christine M Freeman
- 2 Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and.,3 Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, Michigan.,4 VA Ann Arbor Healthcare System, Ann Arbor, Michigan; and
| | - Guy G Brusselle
- 1 Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium.,5 Department of Epidemiology and.,6 Department of Respiratory Medicine, Erasmus Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Ken R Bracke
- 1 Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| | - Jeffrey L Curtis
- 2 Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and.,3 Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, Michigan.,4 VA Ann Arbor Healthcare System, Ann Arbor, Michigan; and
| |
Collapse
|
17
|
Wang W, Zha G, Zou JJ, Wang X, Li CN, Wu XJ. Berberine Attenuates Cigarette Smoke Extract-induced Airway Inflammation in Mice: Involvement of TGF-β1/Smads Signaling Pathway. Curr Med Sci 2019; 39:748-753. [PMID: 31612392 DOI: 10.1007/s11596-019-2101-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 09/02/2019] [Indexed: 02/06/2023]
Abstract
Although several studies confirmed that berberine may attenuate airway inflammation in mice with chronic obstructive pulmonary disease (COPD), its underlying mechanisms were not clear until now. We aimed to establish an experiment mouse model for COPD and to investigate the effects of berberine on airway inflammation and its possible mechanism in COPD model mice induced by cigarette smoke extract (CSE). Twenty SPF C57BL/6 mice were randomly divided into PBS control group, COPD model group, low-dose berberine group and high-dose berberine group, 5 mice in each group. The neutrophils and macrophages were examined by Wright's staining. The levels of inflammatory cytokines TNF-α and IL-6 in bronchoalveolar lavage fluid (BALF) were determined by enzyme-linked immunosorbent assay. The expression levels of TGF-β1, Smad2 and Smad3 mRNA and proteins in lung tissues were respectively detected by quantitative real-time polymerase chain reaction and Western blotting. It was found that CSE increased the number of inflammation cells in BALF, elevated lung inflammation scores, and enhanced the TGF-β1/Smads signaling activity in mice. High-dose berberine restrained the alterations in the COPD mice induced by CSE. It was concluded that high-dose berberine ameliorated CSE-induced airway inflammation in COPD mice. TGF-β1/Smads signaling pathway might be involved in the mechanism. These findings suggested a therapeutic potential of high-dose berberine on the CSE-induced airway inflammation.
Collapse
Affiliation(s)
- Wen Wang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Gan Zha
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jin-Jing Zou
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xun Wang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Chun-Nian Li
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiao-Jun Wu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
18
|
Seys LJM, Widagdo W, Verhamme FM, Kleinjan A, Janssens W, Joos GF, Bracke KR, Haagmans BL, Brusselle GG. DPP4, the Middle East Respiratory Syndrome Coronavirus Receptor, is Upregulated in Lungs of Smokers and Chronic Obstructive Pulmonary Disease Patients. Clin Infect Dis 2019; 66:45-53. [PMID: 29020176 PMCID: PMC7108100 DOI: 10.1093/cid/cix741] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/12/2017] [Indexed: 12/18/2022] Open
Abstract
Background Middle East respiratory syndrome coronavirus (MERS-CoV) causes pneumonia with a relatively high case fatality rate in humans. Smokers and chronic obstructive pulmonary disease (COPD) patients have been reported to be more susceptible to MERS-CoV infection. Here, we determined the expression of MERS-CoV receptor, dipeptidyl peptidase IV (DPP4), in lung tissues of smokers without airflow limitation and COPD patients in comparison to nonsmoking individuals (never-smokers). Methods DPP4 expression was measured in lung tissue of lung resection specimens of never-smokers, smokers without airflow limitation, COPD GOLD stage II patients and in lung explants of end-stage COPD patients. Both control subjects and COPD patients were well phenotyped and age-matched. The mRNA expression was determined using qRT-PCR and protein expression was quantified using immunohistochemistry. Results In smokers and subjects with COPD, both DPP4 mRNA and protein expression were significantly higher compared to never-smokers. Additionally, we found that both DPP4 mRNA and protein expression were inversely correlated with lung function and diffusing capacity parameters. Conclusions We provide evidence that DPP4 is upregulated in the lungs of smokers and COPD patients, which could partially explain why these individuals are more susceptible to MERS-CoV infection. These data also highlight a possible role of DPP4 in COPD pathogenesis.
Collapse
Affiliation(s)
- Leen J M Seys
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University HospitalGhent, Belgium.,Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - W Widagdo
- Departments of Viroscience, Rotterdam, The Netherlands
| | - Fien M Verhamme
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University HospitalGhent, Belgium
| | - Alex Kleinjan
- Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Wim Janssens
- University Hospital Leuven, Respiratory Division and Rehabilitation, Leuven, Belgium
| | - Guy F Joos
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University HospitalGhent, Belgium
| | - Ken R Bracke
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University HospitalGhent, Belgium
| | | | - Guy G Brusselle
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University HospitalGhent, Belgium
| |
Collapse
|
19
|
Tanner L, Single AB. Animal Models Reflecting Chronic Obstructive Pulmonary Disease and Related Respiratory Disorders: Translating Pre-Clinical Data into Clinical Relevance. J Innate Immun 2019; 12:203-225. [PMID: 31527372 PMCID: PMC7265725 DOI: 10.1159/000502489] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 12/17/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) affects the lives of an ever-growing number of people worldwide. The lack of understanding surrounding the pathophysiology of the disease and its progression has led to COPD becoming the third leading cause of death worldwide. COPD is incurable, with current treatments only addressing associated symptoms and sometimes slowing its progression, thus highlighting the need to develop novel treatments. However, this has been limited by the lack of experimental standardization within the respiratory disease research area. A lack of coherent animal models that accurately represent all aspects of COPD clinical presentation makes the translation of promising in vitrodata to human clinical trials exceptionally challenging. Here, we review current knowledge within the COPD research field, with a focus on current COPD animal models. Moreover, we include a set of advantages and disadvantages for the selection of pre-clinical models for the identification of novel COPD treatments.
Collapse
Affiliation(s)
- Lloyd Tanner
- Respiratory Medicine and Allergology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden,
| | - Andrew Bruce Single
- Respiratory Medicine and Allergology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
20
|
Martinez FJ, Han MK, Allinson JP, Barr RG, Boucher RC, Calverley PMA, Celli BR, Christenson SA, Crystal RG, Fagerås M, Freeman CM, Groenke L, Hoffman EA, Kesimer M, Kostikas K, Paine R, Rafii S, Rennard SI, Segal LN, Shaykhiev R, Stevenson C, Tal-Singer R, Vestbo J, Woodruff PG, Curtis JL, Wedzicha JA. At the Root: Defining and Halting Progression of Early Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2019; 197:1540-1551. [PMID: 29406779 DOI: 10.1164/rccm.201710-2028pp] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Fernando J Martinez
- 1 Weill Cornell Medical College, New York, New York.,2 University of Michigan School of Medicine, Ann Arbor, Michigan
| | - MeiLan K Han
- 2 University of Michigan School of Medicine, Ann Arbor, Michigan
| | | | | | | | | | | | | | | | | | - Christine M Freeman
- 2 University of Michigan School of Medicine, Ann Arbor, Michigan.,10 Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan
| | | | - Eric A Hoffman
- 12 University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Mehmet Kesimer
- 5 University of North Carolina, Chapel Hill, North Carolina
| | | | - Robert Paine
- 14 University of Utah, Salt Lake City, Utah.,15 Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah
| | - Shahin Rafii
- 1 Weill Cornell Medical College, New York, New York
| | | | | | | | | | | | | | | | - Jeffrey L Curtis
- 2 University of Michigan School of Medicine, Ann Arbor, Michigan.,10 Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan
| | | |
Collapse
|
21
|
Parker MM, Hao Y, Guo F, Pham B, Chase R, Platig J, Cho MH, Hersh CP, Thannickal VJ, Crapo J, Washko G, Randell SH, Silverman EK, San José Estépar R, Zhou X, Castaldi PJ. Identification of an emphysema-associated genetic variant near TGFB2 with regulatory effects in lung fibroblasts. eLife 2019; 8:e42720. [PMID: 31343404 PMCID: PMC6693893 DOI: 10.7554/elife.42720] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 07/25/2019] [Indexed: 02/06/2023] Open
Abstract
Murine studies have linked TGF-β signaling to emphysema, and human genome-wide association studies (GWAS) studies of lung function and COPD have identified associated regions near genes in the TGF-β superfamily. However, the functional regulatory mechanisms at these loci have not been identified. We performed the largest GWAS of emphysema patterns to date, identifying 10 GWAS loci including an association peak spanning a 200 kb region downstream from TGFB2. Integrative analysis of publicly available eQTL, DNaseI, and chromatin conformation data identified a putative functional variant, rs1690789, that may regulate TGFB2 expression in human fibroblasts. Using chromatin conformation capture, we confirmed that the region containing rs1690789 contacts the TGFB2 promoter in fibroblasts, and CRISPR/Cas-9 targeted deletion of a ~ 100 bp region containing rs1690789 resulted in decreased TGFB2 expression in primary human lung fibroblasts. These data provide novel mechanistic evidence linking genetic variation affecting the TGF-β pathway to emphysema in humans.
Collapse
Affiliation(s)
- Margaret M Parker
- Channing Division of Network MedicineBrigham and Women’s HospitalBostonUnited States
| | - Yuan Hao
- Channing Division of Network MedicineBrigham and Women’s HospitalBostonUnited States
| | - Feng Guo
- Channing Division of Network MedicineBrigham and Women’s HospitalBostonUnited States
| | - Betty Pham
- Channing Division of Network MedicineBrigham and Women’s HospitalBostonUnited States
| | - Robert Chase
- Channing Division of Network MedicineBrigham and Women’s HospitalBostonUnited States
| | - John Platig
- Channing Division of Network MedicineBrigham and Women’s HospitalBostonUnited States
| | - Michael H Cho
- Channing Division of Network MedicineBrigham and Women’s HospitalBostonUnited States
- Division of Pulmonary and Critical Care MedicineBrigham and Women’s HospitalBostonUnited States
| | - Craig P Hersh
- Channing Division of Network MedicineBrigham and Women’s HospitalBostonUnited States
- Division of Pulmonary and Critical Care MedicineBrigham and Women’s HospitalBostonUnited States
| | - Victor J Thannickal
- Division of Pulmonary, Allergy and Critical Care, Department of MedicineSchool of Medicine, University of Alabama at BirminghamBirminghamUnited States
| | - James Crapo
- Division of Pulmonary, Critical Care and Sleep MedicineNational Jewish HealthDenverUnited States
| | - George Washko
- Division of Pulmonary and Critical Care MedicineBrigham and Women’s HospitalBostonUnited States
| | - Scott H Randell
- Marsico Lung InstituteThe University of North Carolina at Chapel HillChapel HillUnited States
| | - Edwin K Silverman
- Channing Division of Network MedicineBrigham and Women’s HospitalBostonUnited States
- Division of Pulmonary and Critical Care MedicineBrigham and Women’s HospitalBostonUnited States
| | | | - Xiaobo Zhou
- Channing Division of Network MedicineBrigham and Women’s HospitalBostonUnited States
| | - Peter J Castaldi
- Channing Division of Network MedicineBrigham and Women’s HospitalBostonUnited States
- Division of General Internal Medicine and Primary CareBrigham and Women’s HospitalBostonUnited States
| |
Collapse
|
22
|
Eapen MS, Sharma P, Gaikwad AV, Lu W, Myers S, Hansbro PM, Sohal SS. Epithelial-mesenchymal transition is driven by transcriptional and post transcriptional modulations in COPD: implications for disease progression and new therapeutics. Int J Chron Obstruct Pulmon Dis 2019; 14:1603-1610. [PMID: 31409985 PMCID: PMC6645357 DOI: 10.2147/copd.s208428] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/22/2019] [Indexed: 12/13/2022] Open
Abstract
COPD is a common and highly destructive disease with huge impacts on people and health services throughout the world. It is mainly caused by cigarette smoking though environmental pollution is also significant. There are no current treatments that affect the overall course of COPD; current drugs focus on symptomatic relief and to some extent reducing exacerbation rates. There is an urgent need for in-depth studies of the fundamental pathogenic mechanisms that underpin COPD. This is vital, given the fact that nearly 40%-60% of the small airway and alveolar damage occurs in COPD well before the first measurable changes in lung function are detected. These individuals are also at a high risk of lung cancer. Current COPD research is mostly centered around late disease and/or innate immune activation within the airway lumen, but the actual damage to the airway wall has early onset. COPD is the end result of complex mechanisms, possibly triggered through initial epithelial activation. To change the disease trajectory, it is crucial to understand the mechanisms in the epithelium that are switched on early in smokers. One such mechanism we believe is the process of epithelial to mesenchymal transition. This article highlights the importance of this profound epithelial cell plasticity in COPD and also its regulation. We consider that understanding early changes in COPD will open new windows for therapy.
Collapse
Affiliation(s)
- Mathew Suji Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, College of Health and Medicine, University of Tasmania, Launceston, TAS 7248, Australia
| | - Pawan Sharma
- Respiratory Translational Research Group, Department of Laboratory Medicine, College of Health and Medicine, University of Tasmania, Launceston, TAS 7248, Australia.,Medical Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia.,Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW 2037, Australia
| | - Archana Vijay Gaikwad
- Respiratory Translational Research Group, Department of Laboratory Medicine, College of Health and Medicine, University of Tasmania, Launceston, TAS 7248, Australia
| | - Wenying Lu
- Respiratory Translational Research Group, Department of Laboratory Medicine, College of Health and Medicine, University of Tasmania, Launceston, TAS 7248, Australia
| | - Stephen Myers
- Respiratory Translational Research Group, Department of Laboratory Medicine, College of Health and Medicine, University of Tasmania, Launceston, TAS 7248, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW 2308, Australia.,Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, College of Health and Medicine, University of Tasmania, Launceston, TAS 7248, Australia
| |
Collapse
|
23
|
Arabipour I, Amani J, Mirhosseini SA, Salimian J. The study of genes and signal transduction pathways involved in mustard lung injury: A gene therapy approach. Gene 2019; 714:143968. [PMID: 31323308 DOI: 10.1016/j.gene.2019.143968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 07/06/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023]
Abstract
Sulfur mustard (SM) is a destructive and harmful chemical agent for the eyes, skin and lungs that causes short-term and long-term lesions and was widely used in Iraq war against Iran (1980-1988). SM causes DNA damages, oxidative stress, and Inflammation. Considering the similarities between SM and COPD (Chronic Obstructive Pulmonary Disease) pathogens and limited available treatments, a novel therapeutic approach is not developed. Gene therapy is a novel therapeutic approach that uses genetic engineering science in treatment of most diseases including chronic obstructive pulmonary disease. In this review, attempts to presenting a comprehensive study of mustard lung and introducing the genes therapy involved in chronic obstructive pulmonary disease and emphasizing the pathways and genes involved in the pathology and pathogenesis of sulfur Mustard. It seems that, given the high potential of gene therapy and the fact that this experimental technique is a candidate for the treatment of pulmonary diseases, further study of genes, vectors and gene transfer systems can draw a very positive perspective of gene therapy in near future.
Collapse
Affiliation(s)
- Iman Arabipour
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Seyed Ali Mirhosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Salimian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Sun Z, Shen Y, Chen X, Zhou X, Cheng R, Bao Z, Yang Y. Expression and potential regulation of miRNA‑431 during lung development of Sprague‑Dawley rats. Mol Med Rep 2019; 19:4980-4988. [PMID: 31059017 DOI: 10.3892/mmr.2019.10154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 03/27/2019] [Indexed: 11/06/2022] Open
Affiliation(s)
- Zhong‑Yi Sun
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yan‑Qing Shen
- Department of Neonates, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Xiao‑Qing Chen
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xiao‑Yu Zhou
- Department of Neonates, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Rui Cheng
- Department of Neonates, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Zhi‑Dan Bao
- Department of Neonates, Jiangyin People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 210008, P.R. China
| | - Yang Yang
- Department of Neonates, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
25
|
Xia X, Peng Y, Lei D, Chen W. Hypercapnia downregulates hypoxia‐induced lysyl oxidase expression in pulmonary artery smooth muscle cells via inhibiting transforming growth factor β1signalling. Cell Biochem Funct 2019; 37:193-202. [PMID: 30917408 DOI: 10.1002/cbf.3390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 02/17/2019] [Accepted: 03/01/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Xiao‐dong Xia
- Department of Respiratory MedicineThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou China
| | - Yan‐ping Peng
- Department of Respiratory MedicineThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou China
| | - Dan Lei
- Department of Respiratory MedicineThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou China
| | - Wei‐qian Chen
- Department of Respiratory MedicineThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou China
| |
Collapse
|
26
|
Venado A, McCulloch C, Greenland JR, Katz P, Soong A, Shrestha P, Hays S, Golden J, Shah R, Leard LE, Kleinhenz ME, Kukreja J, Zablotska L, Allen IE, Covinsky K, Blanc P, Singer JP. Frailty trajectories in adult lung transplantation: A cohort study. J Heart Lung Transplant 2019; 38:699-707. [PMID: 31005571 DOI: 10.1016/j.healun.2019.03.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/31/2019] [Accepted: 03/13/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Frailty is common in adults with advanced lung disease and is associated with death before and after lung transplantation. We aimed to determine whether frailty changes from before to after the lung transplant. METHODS In a single-center, prospective cohort study among adults undergoing lung transplantation from 2010 to 2017, we assessed frailty by the Short Physical Performance Battery (SPPB; higher scores reflect less frailty) and Fried Frailty Phenotype (FFP; higher scores reflect greater frailty) before and repeatedly up to 36 months after transplant. We tested for changes in frailty scores over time using segmented mixed effects models, adjusting for age, sex, and diagnosis. We quantified the proportion of subjects transitioning between frailty states (frail vs not frail) from before to after the transplant. RESULTS In 246 subjects, changes in frailty occurred within the first 6 post-operative months and remained stable thereafter. The overall change in frailty was attributable to improvements among those subjects who were frail before transplant. They experienced a 5.1-point improvement in SPPB (95% confidence interval [CI] 4.6-5.7) and a 1.8-point improvement in FFP (95% CI -2.1 to -1.6) during the early period. Frailty by SPPB and FFP did not change in those who were not frail before transplant. Approximately 84% of survivors who were frail before transplant became not frail after transplant. CONCLUSIONS Pre-operative frailty resolves in many patients after lung transplantation. Because a large proportion of frailty may be attributable to advanced lung disease, frailty alone should not be an absolute contraindication to transplantation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Jasleen Kukreja
- Departments of Surgery, University of California, San Francisco, San Francisco, California, USA
| | | | | | | | | | | |
Collapse
|
27
|
Amatngalim GD, Vieira RP, Meiners S, Bartel S. Novel insights into the effects of cigarette smoke on the airway epithelial surface-lessons learned at the European Respiratory Society International Congress 2018 in Paris. J Thorac Dis 2018; 10:S2977-S2982. [PMID: 30310684 PMCID: PMC6174130 DOI: 10.21037/jtd.2018.08.17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Gimano D. Amatngalim
- Department of Pediatric Pulmonology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rodolfo Paula Vieira
- Post-graduation Program in Bioengineering, Universidade Brasil, Sao Paulo, Brazil
- Post-graduation Program in Sciences of Human Movement and Rehabilitation, Federal University of Sao Paulo, Santos, Brazil
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology, Sao Jose dos Campos, Brazil
| | - Silke Meiners
- Comprehensive Pneumology Center, Institute for Lung Biology and Disease (ILBD), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Sabine Bartel
- Early Life Origins of Chronic Lung Disease, Leibniz Lung Center Borstel, Member of the German Center for Lung Research (DZL), Borstel, Germany
| |
Collapse
|
28
|
MicroRNAs: Important Regulators of Induced Pluripotent Stem Cell Generation and Differentiation. Stem Cell Rev Rep 2017; 14:71-81. [DOI: 10.1007/s12015-017-9785-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
29
|
Surate Solaligue DE, Rodríguez-Castillo JA, Ahlbrecht K, Morty RE. Recent advances in our understanding of the mechanisms of late lung development and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2017; 313:L1101-L1153. [PMID: 28971976 DOI: 10.1152/ajplung.00343.2017] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/21/2017] [Accepted: 09/23/2017] [Indexed: 02/08/2023] Open
Abstract
The objective of lung development is to generate an organ of gas exchange that provides both a thin gas diffusion barrier and a large gas diffusion surface area, which concomitantly generates a steep gas diffusion concentration gradient. As such, the lung is perfectly structured to undertake the function of gas exchange: a large number of small alveoli provide extensive surface area within the limited volume of the lung, and a delicate alveolo-capillary barrier brings circulating blood into close proximity to the inspired air. Efficient movement of inspired air and circulating blood through the conducting airways and conducting vessels, respectively, generates steep oxygen and carbon dioxide concentration gradients across the alveolo-capillary barrier, providing ideal conditions for effective diffusion of both gases during breathing. The development of the gas exchange apparatus of the lung occurs during the second phase of lung development-namely, late lung development-which includes the canalicular, saccular, and alveolar stages of lung development. It is during these stages of lung development that preterm-born infants are delivered, when the lung is not yet competent for effective gas exchange. These infants may develop bronchopulmonary dysplasia (BPD), a syndrome complicated by disturbances to the development of the alveoli and the pulmonary vasculature. It is the objective of this review to update the reader about recent developments that further our understanding of the mechanisms of lung alveolarization and vascularization and the pathogenesis of BPD and other neonatal lung diseases that feature lung hypoplasia.
Collapse
Affiliation(s)
- David E Surate Solaligue
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - José Alberto Rodríguez-Castillo
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Katrin Ahlbrecht
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and .,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| |
Collapse
|
30
|
N-glycans of growth factor receptors: their role in receptor function and disease implications. Clin Sci (Lond) 2017; 130:1781-92. [PMID: 27612953 DOI: 10.1042/cs20160273] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/08/2016] [Indexed: 11/17/2022]
Abstract
Numerous signal-transduction-related molecules are secreted proteins or membrane proteins, and the mechanism by which these molecules are regulated by glycan chains is a very important issue for developing an understanding of the cellular events that transpire. This review covers the functional regulation of epidermal growth factor receptor (EGFR), ErbB3 and the transforming growth factor β (TGF-β) receptor by N-glycans. This review shows that the N-glycans play important roles in regulating protein conformation and interactions with carbohydrate recognition molecules. These results point to the possibility of a novel strategy for controlling cell signalling and developing novel glycan-based therapeutics.
Collapse
|
31
|
Spella M, Lilis I, Stathopoulos GT. Shared epithelial pathways to lung repair and disease. Eur Respir Rev 2017; 26:26/144/170048. [PMID: 28659498 DOI: 10.1183/16000617.0048-2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/19/2017] [Indexed: 01/04/2023] Open
Abstract
Chronic lung diseases present tremendous health burdens and share a common pathobiology of dysfunctional epithelial repair. Lung adenocarcinoma, the leading cancer killer worldwide, is caused mainly by chemical carcinogens of tobacco smoke that induce mutations in pulmonary epithelial cells leading to uncontrolled epithelial proliferation. Lung epithelial cells that possess the capacity for self-renewal and regeneration of other lung cell types are believed to underlie the pathobiology of chronic obstructive, fibrotic and neoplastic lung disorders. However, the understanding of lung epithelial progenitor cell hierarchy and turnover is incomplete and a comprehensive model of the cellular and transcriptional events that underlie lung regeneration and carcinogenesis is missing. The mapping of these processes is extremely important, since their modulation would potentially allow effective cure and/or prevention of chronic lung diseases. In this review we describe current knowledge on cellular and molecular pathways at play during lung repair and carcinogenesis and summarise the critical lung cell populations with regenerative and cancerous potential.
Collapse
Affiliation(s)
- Magda Spella
- Laboratory for Molecular Respiratory Carcinogenesis, Dept of Physiology, Faculty of Medicine, University of Patras, Rio, Greece
| | - Ioannis Lilis
- Laboratory for Molecular Respiratory Carcinogenesis, Dept of Physiology, Faculty of Medicine, University of Patras, Rio, Greece
| | - Georgios T Stathopoulos
- Laboratory for Molecular Respiratory Carcinogenesis, Dept of Physiology, Faculty of Medicine, University of Patras, Rio, Greece .,Comprehensive Pneumology Center and Institute for Lung Biology and Disease, University Hospital, Ludwig-Maximilians University and Helmholtz Center Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
32
|
Tanaka KI, Niino T, Ishihara T, Takafuji A, Takayama T, Kanda Y, Sugizaki T, Tamura F, Kurotsu S, Kawahara M, Mizushima T. Protective and therapeutic effect of felodipine against bleomycin-induced pulmonary fibrosis in mice. Sci Rep 2017; 7:3439. [PMID: 28611390 PMCID: PMC5469778 DOI: 10.1038/s41598-017-03676-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 05/03/2017] [Indexed: 12/21/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) involves alveolar epithelial injury and abnormal collagen production caused by activated fibroblasts; transforming growth factor (TGF)-β1 is implicated in this activation. In this study, we screened for chemicals capable of inhibiting TGF-β1-induced collagen production in cultured fibroblasts from medicines already in clinical use. We selected felodipine based on its extent of collagen production inhibition, clinical safety profile, and other pharmacological activity. Felodipine is a dihydropyridine Ca2+ channel blocker that has been used clinically to treat patients with high blood pressure. Felodipine suppressed collagen production within LL29 cells in the presence of TGF-β1, but not in its absence. Intratracheal administration of felodipine prevented bleomycin-induced pulmonary fibrosis, alteration of lung mechanics and respiratory dysfunction. Felodipine also improved pulmonary fibrosis, as well as lung and respiratory function when administered after fibrosis development. Furthermore, administration of felodipine suppressed a bleomycin-induced increase in activated fibroblasts in the lung. We also found other dihydropyridine Ca2+ channel blockers (nifedipine and benidipine) inhibited collagen production in vitro and partially prevented bleomycin-induced pulmonary fibrosis, alteration of lung mechanics and respiratory dysfunction in vivo. We propose that these Ca2+ channel blockers may be therapeutically beneficial for IPF patients.
Collapse
Affiliation(s)
- Ken-Ichiro Tanaka
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo, Japan. .,Division of Drug Discovery and Development, Faculty of Pharmacy, Keio University, Tokyo, Japan.
| | - Tomomi Niino
- Division of Drug Discovery and Development, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Tomoaki Ishihara
- Division of Drug Discovery and Development, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Ayaka Takafuji
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo, Japan
| | - Takahiro Takayama
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo, Japan
| | - Yuki Kanda
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo, Japan
| | - Toshifumi Sugizaki
- Division of Drug Discovery and Development, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Fumiya Tamura
- Division of Drug Discovery and Development, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Shota Kurotsu
- Division of Drug Discovery and Development, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Masahiro Kawahara
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo, Japan
| | | |
Collapse
|
33
|
Affiliation(s)
- Claude A. Piantadosi
- Departments of Medicine, Pathology, and Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710;
| | - Hagir B. Suliman
- Departments of Anesthesiology and Pathology, Duke University School of Medicine, Durham, North Carolina 27710;
| |
Collapse
|
34
|
Papaporfyriou A, Bakakos P, Kostikas K, Papatheodorou G, Hillas G, Trigidou R, Katafigiotis P, Koulouris NG, Papiris SA, Loukides S. Activin A and follistatin in patients with asthma. Does severity make the difference? Respirology 2016; 22:473-479. [PMID: 27807906 DOI: 10.1111/resp.12937] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/27/2016] [Accepted: 08/23/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVE Activin A is a pleiotropic cytokine holding a fundamental role in inflammation and tissue remodelling. Follistatin can modulate the bioactivity of activin. We aimed to measure activin A and follistatin in sputum supernatants and bronchoalveolar lavage (BAL) of asthmatic patients and to determine the possible associations with severity as well as with inflammatory and remodelling indices. METHODS A total of 58 asthmatic patients (33 with severe refractory asthma (SRA)) and 10 healthy controls underwent sputum induction for % cells, activin A, follistatin, eosinophilic cationic protein (ECP), transforming growth factor beta 1 (TGF-β1), IL-13 and IL-8 measurements. In 22 asthmatic patients, BAL and bronchial biopsies were also performed for the assessment of the above-mentioned variables, measurement of remodelling indices and immunostaining for different activin A receptors. RESULTS Sputum activin A (pg/mL) was higher in patients with SRA (median (interquartile ranges): 76 (33-185)) compared to mild-to-moderate asthma (44 (18-84); P = 0.005), whereas follistatin did not differ between the two groups. BAL activin A (pg/mL) was higher in patients with SRA compared to those with mild-to-moderate disease. A significant association was observed between activin A and TGF-β1, eosinophils in sputum and/or in BAL, while reticular basement membrane (RBM) thickness was significantly associated with BAL activin levels only. No difference in immunostaining for activin receptor type IB was observed between patients with SRA and those with mild-to-moderate asthma. CONCLUSION Sputum and BAL levels of activin A are higher in SRA. The association of activin A with TGF-β1, eosinophils and RBM thickness may indicate a role of this cytokine in the inflammatory and remodelling process in SRA.
Collapse
Affiliation(s)
- Anastasia Papaporfyriou
- 1st Department of Respiratory Medicine, Medical School of National and Kapodistrian University of Athens, "Sotiria" Hospital of Chest Diseases, Athens, Greece
| | - Petros Bakakos
- 1st Department of Respiratory Medicine, Medical School of National and Kapodistrian University of Athens, "Sotiria" Hospital of Chest Diseases, Athens, Greece
| | - Konstantinos Kostikas
- 2nd Department of Respiratory Medicine, Medical School of National and Kapodistrian University of Athens, "Attikon" Hospital, Athens, Greece
| | | | - Georgios Hillas
- 1st Department of Respiratory Medicine, Medical School of National and Kapodistrian University of Athens, "Sotiria" Hospital of Chest Diseases, Athens, Greece
| | - Rodoula Trigidou
- Pathology Department, "Sotiria" Hospital of Chest Diseases, Athens, Greece
| | | | - Nikolaos G Koulouris
- 1st Department of Respiratory Medicine, Medical School of National and Kapodistrian University of Athens, "Sotiria" Hospital of Chest Diseases, Athens, Greece
| | - Spyros A Papiris
- 2nd Department of Respiratory Medicine, Medical School of National and Kapodistrian University of Athens, "Attikon" Hospital, Athens, Greece
| | - Stelios Loukides
- 2nd Department of Respiratory Medicine, Medical School of National and Kapodistrian University of Athens, "Attikon" Hospital, Athens, Greece
| |
Collapse
|
35
|
Soltani A, Walters EH, Reid DW, Shukla SD, Nowrin K, Ward C, Muller HK, Sohal SS. Inhaled corticosteroid normalizes some but not all airway vascular remodeling in COPD. Int J Chron Obstruct Pulmon Dis 2016; 11:2359-2367. [PMID: 27703346 PMCID: PMC5038570 DOI: 10.2147/copd.s113176] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND This study assessed the effects of inhaled corticosteroid (ICS) on airway vascular remodeling in chronic obstructive pulmonary disease (COPD). METHODS Thirty-four subjects with mild-to-moderate COPD were randomly allocated 2:1 to ICS or placebo treatment in a double-blinded clinical trial over 6 months. Available tissue was compared before and after treatment for vessel density, and expression of VEGF, TGF-β1, and TGF-β1-related phosphorylated transcription factors p-SMAD 2/3. This clinical trial has been registered and allocated with the Australian New Zealand Clinical Trials Registry (ANZCTR) on 17/10/2012 with reference number ACTRN12612001111864. RESULTS There were no significant baseline differences between treatment groups. With ICS, vessels and angiogenic factors did not change in hypervascular reticular basement membrane, but in the hypovascular lamina propria (LP), vessels increased and this had a proportionate effect on lung air trapping. There was modest evidence for a reduction in LP vessels staining for VEGF with ICS treatment, but a marked and significant reduction in p-SMAD 2/3 expression. CONCLUSION Six-month high-dose ICS treatment had little effect on hypervascularity or angiogenic growth factors in the reticular basement membrane in COPD, but normalized hypovascularity in the LP, and this was physiologically relevant, though accompanied by a paradoxical reduction in growth factor expression.
Collapse
Affiliation(s)
- Amir Soltani
- NHMRC Center of Research Excellence for Chronic Respiratory Disease, School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Eugene Haydn Walters
- NHMRC Center of Research Excellence for Chronic Respiratory Disease, School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - David W Reid
- NHMRC Center of Research Excellence for Chronic Respiratory Disease, School of Medicine, University of Tasmania, Hobart, TAS, Australia
- Iron Metabolism Laboratory, Queensland Institute of Medical Research, Brisbane, QLD, Australia
| | - Shakti Dhar Shukla
- NHMRC Center of Research Excellence for Chronic Respiratory Disease, School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Kaosia Nowrin
- NHMRC Center of Research Excellence for Chronic Respiratory Disease, School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Chris Ward
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| | - H Konrad Muller
- NHMRC Center of Research Excellence for Chronic Respiratory Disease, School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Sukhwinder Singh Sohal
- NHMRC Center of Research Excellence for Chronic Respiratory Disease, School of Medicine, University of Tasmania, Hobart, TAS, Australia
- School of Health Sciences, University of Tasmania, Launceston, TAS, Australia
| |
Collapse
|
36
|
The Expression of NOX4 in Smooth Muscles of Small Airway Correlates with the Disease Severity of COPD. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2891810. [PMID: 27656649 PMCID: PMC5021463 DOI: 10.1155/2016/2891810] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/23/2016] [Accepted: 07/18/2016] [Indexed: 12/23/2022]
Abstract
Airway smooth muscle (ASM) remodeling is a hallmark in chronic obstructive pulmonary disease (COPD), and nicotinamide-adenine dinucleotide phosphate (NADPH) oxidases (NOXs) produced reactive oxygen species (ROS) play a crucial role in COPD pathogenesis. In the present study, the expression of NOX4 and its correlation with the ASM hypertrophy/hyperplasia, clinical pulmonary functions, and the expression of transforming growth factor β (TGF-β) in the ASM of COPD small airways were investigated by semiquantitative morphological and/or immunohistochemistry staining methods. The results showed that an elevated expression of NOX4 and TGF-β, along with an increased volume of ASM mass, was found in the ASM of small airways in COPD patients. The abundance of NOX4 protein in the ASM was increased with disease severity and inversely correlated with the pulmonary functions in COPD patients. In addition, the expression of NOX4 and ASM marker α-SMA was colocalized, and the increased NOX4 expression was found to accompany an upregulated expression of TGF-β in the ASM of small airways of COPD lung. These results indicate that NOX4 may be a key regulator in ASM remodeling of small airway, in part through a mechanism interacting with TGF-β signaling in the pathogenesis of COPD, which warrants further investigation.
Collapse
|
37
|
Matera MG, Page C, Rogliani P, Calzetta L, Cazzola M. Therapeutic Monoclonal Antibodies for the Treatment of Chronic Obstructive Pulmonary Disease. Drugs 2016; 76:1257-1270. [DOI: 10.1007/s40265-016-0625-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
38
|
Takahashi M, Kizuka Y, Ohtsubo K, Gu J, Taniguchi N. Disease-associated glycans on cell surface proteins. Mol Aspects Med 2016; 51:56-70. [PMID: 27131428 DOI: 10.1016/j.mam.2016.04.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 04/23/2016] [Indexed: 01/02/2023]
Abstract
Most of membrane molecules including cell surface receptors and secreted proteins including ligands are glycoproteins and glycolipids. Therefore, identifying the functional significance of glycans is crucial for developing an understanding of cell signaling and subsequent physiological and pathological cellular events. In particular, the function of N-glycans associated with cell surface receptors has been extensively studied since they are directly involved in controlling cellular functions. In this review, we focus on the roles of glycosyltransferases that are involved in the modification of N-glycans and their target proteins such as epidermal growth factor receptor (EGFR), ErbB3, transforming growth factor β (TGF-β) receptor, T-cell receptors (TCR), β-site APP cleaving enzyme (BACE1), glucose transporter 2 (GLUT2), E-cadherin, and α5β1 integrin in relation to diseases and epithelial-mesenchymal transition (EMT) process. Above of those proteins are subjected to being modified by several glycosyltransferases such as N-acetylglucosaminyltransferase III (GnT-III), N-acetylglucosaminyltransferase IV (GnT-IV), N-acetylglucosaminyltransferase V (GnT-V), α2,6 sialyltransferase 1 (ST6GAL1), and α1,6 fucosyltransferase (Fut8), which are typical N-glycan branching enzymes and play pivotal roles in regulating the function of cell surface receptors in pathological cell signaling.
Collapse
Affiliation(s)
- Motoko Takahashi
- Department of Biochemistry, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-ku, Sapporo 060-8556, Japan
| | - Yasuhiko Kizuka
- Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Kazuaki Ohtsubo
- Department of Analytical Biochemistry, Faculty of Life Sciences, Kumamoto University, 4-24-1 Kuhonji, Chuo-ku, Kumamoto 862-0976, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsusima, Aobaku, Sendai, Miyagi 981-8558, Japan
| | - Naoyuki Taniguchi
- Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan.
| |
Collapse
|
39
|
Schilders KAA, Eenjes E, van Riet S, Poot AA, Stamatialis D, Truckenmüller R, Hiemstra PS, Rottier RJ. Regeneration of the lung: Lung stem cells and the development of lung mimicking devices. Respir Res 2016; 17:44. [PMID: 27107715 PMCID: PMC4842297 DOI: 10.1186/s12931-016-0358-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/25/2016] [Indexed: 01/07/2023] Open
Abstract
Inspired by the increasing burden of lung associated diseases in society and an growing demand to accommodate patients, great efforts by the scientific community produce an increasing stream of data that are focused on delineating the basic principles of lung development and growth, as well as understanding the biomechanical properties to build artificial lung devices. In addition, the continuing efforts to better define the disease origin, progression and pathology by basic scientists and clinicians contributes to insights in the basic principles of lung biology. However, the use of different model systems, experimental approaches and readout systems may generate somewhat conflicting or contradictory results. In an effort to summarize the latest developments in the lung epithelial stem cell biology, we provide an overview of the current status of the field. We first describe the different stem cells, or progenitor cells, residing in the homeostatic lung. Next, we focus on the plasticity of the different cell types upon several injury-induced activation or repair models, and highlight the regenerative capacity of lung cells. Lastly, we summarize the generation of lung mimics, such as air-liquid interface cultures, organoids and lung on a chip, that are required to test emerging hypotheses. Moreover, the increasing collaboration between distinct specializations will contribute to the eventual development of an artificial lung device capable of assisting reduced lung function and capacity in human patients.
Collapse
Affiliation(s)
- Kim A A Schilders
- Department of Pediatric Surgery, Erasmus Medical Center-Sophia Children's Hospital, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Evelien Eenjes
- Department of Pediatric Surgery, Erasmus Medical Center-Sophia Children's Hospital, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Sander van Riet
- Department of Pulmonology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - André A Poot
- Department of Biomaterials Science and Technology, University of Twente, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, P.O Box 217, 7500 AE, Enschede, The Netherlands
| | - Dimitrios Stamatialis
- Department of Biomaterials Science and Technology, University of Twente, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, P.O Box 217, 7500 AE, Enschede, The Netherlands
| | - Roman Truckenmüller
- Department of Complex Tissue Regeneration, Maastricht University, Faculty of Health, Medicine and Life Sciences, MERLN Institute for Technology-Inspired Regenerative Medicine, PO Box 616, 6200 MD, Maastricht, The Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Robbert J Rottier
- Department of Pediatric Surgery, Erasmus Medical Center-Sophia Children's Hospital, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|