1
|
Kim CK, Agrawal DK. Glucocorticoid Insensitivity in Severe Asthma: Underlying Molecular Mechanisms, Challenges, and Emerging Therapies. ARCHIVES OF INTERNAL MEDICINE RESEARCH 2025; 8:107-120. [PMID: 40337626 PMCID: PMC12058211 DOI: 10.26502/aimr.0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Glucocorticoids are the cornerstone of asthma therapy due to their potent anti-inflammatory action. However, a subset of severe asthmatics do not respond to the standard glucocorticoid treatment. Such phenomenon is referred to as glucocorticoid insensitivity (GCI). From a clinical point of view, GCI is characterized by the reduced therapeutic response with improvement of less than 10-15% in lung function parameters, such as FEV1, upon the administration of an adequate glucocorticoid dose. The mechanisms underlying GCI involve disrupted glucocorticoid receptor (GR) signaling, overexpression of the dominant-negative GRβ isoform, increased activity of pro-inflammatory transcription factors such as NF-κB and AP-1, and abnormal GR phosphorylation by kinases such as p38 MAPK. These altered molecular pathways undermine the anti-inflammatory effects of glucocorticoids on immune and structural airway cells, thus maintaining the chronicity of airway inflammation and remodeling. GCI can be of innate genetic origin, as in the case of GR mutations, or acquired through environmental exposures, including viral infections, smoking, and long-term exposure to pollutants in the environment. GCI represents a big challenge in the management of asthma, since a large proportion of cases do not achieve an adequate level of control with the standard treatment options. Recent advances in the understanding of the molecular mechanisms underlying GCI have enabled the development of novel therapeutic strategies, including biologic therapies targeting interleukin-5 and IL-13, Janus kinase inhibitors, and small-molecule drugs aimed at restoring GR function. This article presents a critical discussion on the current state of knowledge regarding the glucocorticoid resistance mechanisms in asthma, identifying the clinical effects of new therapeutic strategies, with special emphasis on the need for personalized treatment regimens to improve outcomes in glucocorticoid insensitivity.
Collapse
Affiliation(s)
- Chang Kon Kim
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California 91766 USA
| | - Devendra K Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California 91766 USA
| |
Collapse
|
2
|
Adam J, Graf LM, Westermann S, Voehringer D, Krappmann S. Signaling events driving Aspergillus fumigatus-induced eosinophil activation. Int J Med Microbiol 2025; 318:151641. [PMID: 39719796 DOI: 10.1016/j.ijmm.2024.151641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/26/2024] [Accepted: 12/13/2024] [Indexed: 12/26/2024] Open
Abstract
Allergic bronchopulmonary aspergillosis is an incurable disease caused by the environmental mold Aspergillus fumigatus. This hypersensitivity pneumonia is characterized by an inflammatory type 2 immune response, accompanied by influx of eosinophils into the lung. To investigate the mode of action of eosinophils and the signaling events triggered by A. fumigatus, we used an in vitro coculture system of murine bone marrow-derived eosinophils confronted with conidia. Using small-molecule inhibitors, we identified signaling modules of eosinophils in the course of A. fumigatus confrontation. Eosinophils reduced fungal metabolic activity, but inhibition of relevant signaling modules did not affect this phenomenon upon eosinophil confrontation. A. fumigatus-induced secretion of Th2 cytokines and chemokines by eosinophils engaged proto-oncogene tyrosine-protein kinase Src, phosphatidylinositol 3-kinase, p38 mitogen-activated protein kinase as well as calcium cations and to some extent serine/threonine-protein kinase Akt and protein arginine deiminase 4. Src and PI3K kinases were also involved in A. fumigatus-mediated ROS production and regulation of eosinophils surface receptors. Especially Src and PI3K inhibitors prevented A. fumigatus-induced eosinophil activation. Taken together, identification of signaling cascades of eosinophils during their interaction with A. fumigatus provides relevant insights into the host-pathogen interaction in the context of ABPA to yield therapeutic perspectives.
Collapse
Affiliation(s)
- Jasmin Adam
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen and Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Germany
| | - Lisa-Marie Graf
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Germany
| | - Stefanie Westermann
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Germany
| | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Germany; FAU Profile Center Immunomedicine (FAU I-MED), Germany
| | - Sven Krappmann
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen and Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Germany; FAU Profile Center Immunomedicine (FAU I-MED), Germany.
| |
Collapse
|
3
|
Kan LLY, Li P, Hon SSM, Lai AYT, Li A, Wong KCY, Huang D, Wong CK. Deciphering the Interplay between the Epithelial Barrier, Immune Cells, and Metabolic Mediators in Allergic Disease. Int J Mol Sci 2024; 25:6913. [PMID: 39000023 PMCID: PMC11241838 DOI: 10.3390/ijms25136913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Chronic exposure to harmful pollutants, chemicals, and pathogens from the environment can lead to pathological changes in the epithelial barrier, which increase the risk of developing an allergy. During allergic inflammation, epithelial cells send proinflammatory signals to group 2 innate lymphoid cell (ILC2s) and eosinophils, which require energy and resources to mediate their activation, cytokine/chemokine secretion, and mobilization of other cells. This review aims to provide an overview of the metabolic regulation in allergic asthma, atopic dermatitis (AD), and allergic rhinitis (AR), highlighting its underlying mechanisms and phenotypes, and the potential metabolic regulatory roles of eosinophils and ILC2s. Eosinophils and ILC2s regulate allergic inflammation through lipid mediators, particularly cysteinyl leukotrienes (CysLTs) and prostaglandins (PGs). Arachidonic acid (AA)-derived metabolites and Sphinosine-1-phosphate (S1P) are significant metabolic markers that indicate immune dysfunction and epithelial barrier dysfunction in allergy. Notably, eosinophils are promoters of allergic symptoms and exhibit greater metabolic plasticity compared to ILC2s, directly involved in promoting allergic symptoms. Our findings suggest that metabolomic analysis provides insights into the complex interactions between immune cells, epithelial cells, and environmental factors. Potential therapeutic targets have been highlighted to further understand the metabolic regulation of eosinophils and ILC2s in allergy. Future research in metabolomics can facilitate the development of novel diagnostics and therapeutics for future application.
Collapse
Affiliation(s)
- Lea Ling-Yu Kan
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Peiting Li
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Sharon Sze-Man Hon
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Andrea Yin-Tung Lai
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Aixuan Li
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Katie Ching-Yau Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Danqi Huang
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Chun-Kwok Wong
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
4
|
Herb M. NADPH Oxidase 3: Beyond the Inner Ear. Antioxidants (Basel) 2024; 13:219. [PMID: 38397817 PMCID: PMC10886416 DOI: 10.3390/antiox13020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Reactive oxygen species (ROS) were formerly known as mere byproducts of metabolism with damaging effects on cellular structures. The discovery and description of NADPH oxidases (Nox) as a whole enzyme family that only produce this harmful group of molecules was surprising. After intensive research, seven Nox isoforms were discovered, described and extensively studied. Among them, the NADPH oxidase 3 is the perhaps most underrated Nox isoform, since it was firstly discovered in the inner ear. This stigma of Nox3 as "being only expressed in the inner ear" was also used by me several times. Therefore, the question arose whether this sentence is still valid or even usable. To this end, this review solely focuses on Nox3 and summarizes its discovery, the structural components, the activating and regulating factors, the expression in cells, tissues and organs, as well as the beneficial and detrimental effects of Nox3-mediated ROS production on body functions. Furthermore, the involvement of Nox3-derived ROS in diseases progression and, accordingly, as a potential target for disease treatment, will be discussed.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50935 Cologne, Germany;
- German Centre for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| |
Collapse
|
5
|
Gaurav R, Poole JA. Interleukin (IL)-33 immunobiology in asthma and airway inflammatory diseases. J Asthma 2022; 59:2530-2538. [PMID: 34928757 PMCID: PMC9234100 DOI: 10.1080/02770903.2021.2020815] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Identify key features of IL-33 immunobiology important in allergic and nonallergic airway inflammatory diseases and potential therapeutic strategies to reduce disease burden. DATA SOURCES PubMed, clinicaltrials.gov. STUDY SELECTIONS A systematic and focused literature search was conducted of PubMed from March 2021 to December 2021 using keywords to either PubMed or BioMed Explorer including IL-33/ST2, genetic polymorphisms, transcription, translation, post-translation modification, nuclear protein, allergy, asthma, and lung disease. Clinical trial information on IL-33 was extracted from clinicaltrials.gov in August 2021. RESULTS In total, 72 publications with relevance to IL-33 immunobiology and/or clinical lung disease were identified (allergic airway inflammation/allergic asthma n = 26, non-allergic airway inflammation n = 9, COPD n = 8, lung fibrosis n = 10). IL-33 levels were higher in serum, BALF and/or lungs across inflammatory lung diseases. Eight studies described viral infections and IL-33 and 4 studies related to COVID-19. Mechanistic studies (n = 39) including transcript variants and post-translational modifications related to the immunobiology of IL-33. Single nucleotide polymorphism in IL-33 or ST2 were described in 9 studies (asthma n = 5, inflammatory bowel disease n = 1, mycosis fungoides n = 1, ankylosing spondylitis n = 1, coronary artery disease n = 1). Clinicaltrials.gov search yielded 84 studies of which 17 were related to therapeutic or biomarker relevance in lung disease. CONCLUSION An integral role of IL-33 in the pathogenesis of allergic and nonallergic airway inflammatory disease is evident with several emerging clinical trials investigating therapeutic approaches. Current data support a critical role of IL-33 in damage signaling, repair and regeneration of lungs.
Collapse
Affiliation(s)
- Rohit Gaurav
- Division of Allergy and Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, USA
| | - Jill A. Poole
- Division of Allergy and Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, USA
| |
Collapse
|
6
|
Goretzki A, Lin Y, Schülke S. Immune metabolism in allergies, does it matter?-A review of immune metabolic basics and adaptations associated with the activation of innate immune cells in allergy. Allergy 2021; 76:3314-3331. [PMID: 33811351 DOI: 10.1111/all.14843] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/11/2021] [Accepted: 03/28/2021] [Indexed: 12/11/2022]
Abstract
Type I allergies are pathological, type 2 inflammatory immune responses against otherwise harmless environmental allergens that arise from complex interactions between different types of immune cells. Activated immune cells undergo extensive changes in phenotype and function to fulfill their effector functions. Hereby, activation, differentiation, proliferation, migration, and mounting of effector responses require metabolic reprogramming. While the metabolic changes associated with activation of dendritic cells, macrophages, and T cells are extensively studied, data about the metabolic phenotypes of the other cell types critically involved in allergic responses (epithelial cells, eosinophils, basophils, mast cells, and ILC2s) are rather limited. This review briefly covers the basics of cellular energy metabolism and its connection to immune cell function. In addition, it summarizes the current state of knowledge in terms of dendritic cell and macrophage metabolism and subsequently focuses on the metabolic changes associated with activation of epithelial cells, eosinophils, basophils, mast cells, as well as ILC2s in allergy. Interestingly, the innate key cell types in allergic inflammation were reported to change their metabolic phenotype during activation, shifting to either glycolysis (epithelial cells, M1 macrophages, DCs, eosinophils, basophils, acutely activated mast cells), oxidative phosphorylation (M2 macrophages, longer term activated mast cells), or fatty acid oxidation (ILC2s). Therefore, immune metabolism is of relevance in allergic diseases and its connection to immune cell effector function needs to be considered to better understand induction and maintenance of allergic responses. Further progress in this field will likely improve both our understanding of disease pathology and enable new treatment targets/strategies.
Collapse
Affiliation(s)
| | - Yen‐Ju Lin
- Molecular Allergology Paul‐Ehrlich‐Institut Langen Germany
| | - Stefan Schülke
- Molecular Allergology Paul‐Ehrlich‐Institut Langen Germany
| |
Collapse
|
7
|
Michaeloudes C, Abubakar-Waziri H, Lakhdar R, Raby K, Dixey P, Adcock IM, Mumby S, Bhavsar PK, Chung KF. Molecular mechanisms of oxidative stress in asthma. Mol Aspects Med 2021; 85:101026. [PMID: 34625291 DOI: 10.1016/j.mam.2021.101026] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/15/2021] [Indexed: 01/18/2023]
Abstract
The lungs are exposed to reactive oxygen species oxygen (ROS) produced as a result of inhalation of oxygen, as well as smoke and other air pollutants. Cell metabolism and the NADPH oxidases (Nox) generate low levels of intracellular ROS that act as signal transduction mediators by inducing oxidative modifications of histones, enzymes and transcription factors. Redox signalling is also regulated by localised production and sensing of ROS in mitochondria, the endoplasmic reticulum (ER) and inside the nucleus. Intracellular ROS are maintained at low levels through the action of a battery of enzymatic and non-enzymatic antioxidants. Asthma is a heterogeneous airway inflammatory disease with different immune endotypes; these include atopic or non-atopic Th2 type immune response associated with eosinophilia, or a non-Th2 response associated with neutrophilia. Airway remodelling and hyperresponsiveness accompany the inflammatory response in asthma. Over-production of ROS resulting from infiltrating immune cells, particularly eosinophils and neutrophils, and a concomitant impairment of antioxidant responses lead to development of oxidative stress in asthma. Oxidative stress is augmented in severe asthma and during exacerbations, as well as by air pollution and obesity, and causes oxidative damage of tissues promoting airway inflammation and hyperresponsiveness. Furthermore, deregulated Nox activity, mitochondrial dysfunction, ER stress and/or oxidative DNA damage, resulting from exposure to irritants, inflammatory mediators or obesity, may lead to redox-dependent changes in cell signalling. ROS play a central role in airway epithelium-mediated sensing, development of innate and adaptive immune responses, and airway remodelling and hyperresponsiveness. Nonetheless, antioxidant compounds have proven clinically ineffective as therapeutic agents for asthma, partly due to issues with stability and in vivo metabolism of these compounds. The compartmentalised nature of ROS production and sensing, and the role of ROS in homeostatic responses and in the action of corticosteroids and β2-adrenergic receptor agonists, adds another layer of complexity to antioxidant therapy development. Nox inhibitors and mitochondrial-targeted antioxidants are in clinical development for a number of diseases but they have not yet been investigated in asthma. A better understanding of the complex role of ROS in the pathogenesis of asthma will highlight new opportunities for more targeted and effective redox therapies.
Collapse
Affiliation(s)
- Charalambos Michaeloudes
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, United Kingdom.
| | - Hisham Abubakar-Waziri
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, United Kingdom
| | - Ramzi Lakhdar
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Katie Raby
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Piers Dixey
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, United Kingdom
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, United Kingdom
| | - Sharon Mumby
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, United Kingdom
| | - Pankaj K Bhavsar
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, United Kingdom
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, United Kingdom; Royal Brompton & Harefield NHS Trust, London, UK
| |
Collapse
|
8
|
Abstract
Chloride channel 3 (ClC-3), a Cl-/H+ antiporter, has been well established as a member of volume-regulated chloride channels (VRCCs). ClC-3 may be a crucial mediator for activating inflammation-associated signaling pathways by regulating protein phosphorylation. A growing number of studies have indicated that ClC-3 overexpression plays a crucial role in mediating increased plasma low-density lipoprotein levels, vascular endothelium dysfunction, pro-inflammatory activation of macrophages, hyper-proliferation and hyper-migration of vascular smooth muscle cells (VSMCs), as well as oxidative stress and foam cell formation, which are the main factors responsible for atherosclerotic plaque formation in the arterial wall. In the present review, we summarize the molecular structures and classical functions of ClC-3. We further discuss its emerging role in the atherosclerotic process. In conclusion, we explore the potential role of ClC-3 as a therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Dun Niu
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, 34706University of South China, Hengyang, China
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, 34706University of South China, Hengyang, China
| | - Zhizhong Xie
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, 34706University of South China, Hengyang, China
| |
Collapse
|
9
|
Cai B, Liu M, Li J, Xu D, Li J. Cigarette smoke extract amplifies NADPH oxidase-dependent ROS production to inactivate PTEN by oxidation in BEAS-2B cells. Food Chem Toxicol 2021; 150:112050. [PMID: 33577944 DOI: 10.1016/j.fct.2021.112050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 10/22/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is widely recognized as a global public health problem and the third leading cause of mortality worldwide by 2020. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a dual-specificity protein and lipid phosphatase that plays an important role in COPD. However, the redox regulation of PTEN in the development of COPD was poorly studied. Our results showed that cigarette smoke extract (CSE) could oxidize PTEN in a time-dependent manner in BEAS-2B cells, whereas PTEN oxidation exposed to CSE was delayed compared to that of H2O2. Additionally, we found that ROS derived from DUOX1 and 2 of NADPH oxidases were mainly responsible for oxidative inactivation PTEN, also simultaneously led to Trx-1 inactivation by dimerization. Oxidative mechanism of PTEN exposed to CSE was mediated by forming a disulfide bond between Cys71and Cys124, similar to H2O2. Inactivation of PTEN resulted in the increased phosphorylation of Akt. In conclusion, CSE exposure could elevate the intracellular ROS mainly from DUOX1 and 2 to oxidize PTEN and Trx-1 resulting in Akt activation, eventually cause the occurrence of COPD, suggesting that PTEN is a potential target for new therapies in COPD.
Collapse
Affiliation(s)
- Bangrong Cai
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China; Henan Research Center for Special Processing Technology of Chinese Medicine, School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Mengya Liu
- Henan Research Center for Special Processing Technology of Chinese Medicine, School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jinxing Li
- Henan Research Center for Special Processing Technology of Chinese Medicine, School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Dujuan Xu
- Henan Research Center for Special Processing Technology of Chinese Medicine, School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiansheng Li
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China; Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China.
| |
Collapse
|
10
|
Gaurav R, Poole JA. Harnessing the Antiinflammatory Power of MyD88 to Reduce Allergic Fungal Inflammation? Am J Respir Cell Mol Biol 2021; 64:1-3. [PMID: 33105084 PMCID: PMC7780992 DOI: 10.1165/rcmb.2020-0442ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Rohit Gaurav
- Department of Internal Medicine University of Nebraska Medical Center Omaha, Nebraska
| | - Jill A Poole
- Department of Internal Medicine University of Nebraska Medical Center Omaha, Nebraska
| |
Collapse
|
11
|
Jones N, Vincent EE, Felix LC, Cronin JG, Scott LM, Hole PS, Lacy P, Thornton CA. Interleukin-5 drives glycolysis and reactive oxygen species-dependent citric acid cycling by eosinophils. Allergy 2020; 75:1361-1370. [PMID: 31856334 DOI: 10.1111/all.14158] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/08/2019] [Accepted: 11/25/2019] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Eosinophils have been long implicated in antiparasite immunity and allergic diseases and, more recently, in regulating adipose tissue homeostasis. The metabolic processes that govern eosinophils, particularly upon activation, are unknown. METHODS Peripheral blood eosinophils were isolated for the analysis of metabolic processes using extracellular flux analysis and individual metabolites by stable isotope tracer analysis coupled to gas chromatography-mass spectrometry following treatment with IL-3, IL-5 or granulocyte-macrophage colony-stimulating factor (GM-CSF). Eosinophil metabolism was elucidated using pharmacological inhibitors. RESULTS Human eosinophils engage a largely glycolytic metabolism but also employ mitochondrial metabolism. Cytokine stimulation generates citric acid cycle (TCA) intermediates from both glucose and glutamine revealing this previously unknown role for mitochondria upon eosinophil activation. We further show that the metabolic programme driven by IL-5 is dependent on the STAT5/PI3K/Akt signalling axis and that nicotinamide adenine dinucleotide phosphate oxidase (NOX)-dependent ROS production might be a driver of mitochondrial metabolism upon eosinophil activation. CONCLUSION We demonstrate for the first time that eosinophils are capable of metabolic plasticity, evidenced by increased glucose-derived lactate production upon ROS inhibition. Collectively, this study reveals a role for both glycolysis and mitochondrial metabolism in cytokine-stimulated eosinophils. Selective targeting of eosinophil metabolism may be of therapeutic benefit in eosinophil-mediated diseases and regulation of tissue homeostasis.
Collapse
Affiliation(s)
- Nicholas Jones
- Institute of Life Science, Swansea University Medical School, Swansea, UK
| | - Emma E Vincent
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Bristol, UK
- Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, Bristol, UK
| | - Lindsey C Felix
- Alberta Respiratory Centre (ARC), Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - James G Cronin
- Institute of Life Science, Swansea University Medical School, Swansea, UK
| | - Louis M Scott
- Institute of Life Science, Swansea University Medical School, Swansea, UK
| | - Paul S Hole
- Division of Cancer and Genetics, Department of Haematology, School of Medicine, Cardiff University, Cardiff, UK
| | - Paige Lacy
- Alberta Respiratory Centre (ARC), Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
12
|
Xu X, Xu J, Zhao C, Hou X, Li M, Wang L, Chen L, Chen Y, Zhu L, Yang H. Antitumor effects of disulfiram/copper complex in the poorly-differentiated nasopharyngeal carcinoma cells via activating ClC-3 chloride channel. Biomed Pharmacother 2019; 120:109529. [PMID: 31606620 DOI: 10.1016/j.biopha.2019.109529] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 12/17/2022] Open
Abstract
The enhancement of the anticancer activity by disulfiram (DSF) chelated with copper (DSF/Cu2+) has been investigated recently, while the underlying molecular mechanisms still need to be fully elucidated. Chloride channel-3 (ClC-3) is over-expressed in a variety of cancers and involves multiple tumor biological events. However, whether the over-expression of ClC-3 in tumor cells affects the sensitivity of anti-tumor drugs remains unclear. Here, we showed that the involvement of ClC-3 chloride channel in the selective cytotoxicity of DSF/Cu2+ in the poorly-differentiated nasopharyngeal carcinoma. The EC50 of DSF alone and DSF/Cu2+ in activating the Cl- channel were 95.36 μM and 0.31 μM in the CNE-2Z cells, respectively. DSF/Cu2+ exhibited a positive correlation between the induction of the Cl- currents and the inhibition of cell proliferation. DSF/Cu2+ increased the ClC-3 protein expression and induced the cell apoptosis. Cl- channel blockers, NPPB and DIDS, and ClC-3 siRNA partially inhibited the cell apoptosis, and depleted the Cl- currents induced by DSF/Cu2+ in CNE-2Z cells. However, these effects could not be observed in the normal nasopharyngeal epithelium NP69-SV40 T cells. In vivo, the transplanted human nasopharyngeal carcinoma tumors size in the DSF/Cu2+ group decreased about 73.2% of those in the solvent control group. The chloride blockers partially inhibited the antitumor action of DSF/Cu2+. These data demonstrated that the selective cytotoxicity of DSF/Cu2+ may relate to its selective activation of ClC-3 Cl- channel pathways in CNE-2Z cells. ClC-3 Cl- channel can be viewed as a new and promising target for the treatment of nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Xiao Xu
- Department of Physiology, School of Medicine, Henan University, Kaifeng, 475000, China; Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jingkui Xu
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Chongyu Zhao
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiuying Hou
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Mengjia Li
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Liwei Wang
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Lixin Chen
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Yehui Chen
- Department of Urology, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Linyan Zhu
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, China; Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China.
| | - Haifeng Yang
- Department of Pathology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China.
| |
Collapse
|
13
|
Affiliation(s)
- Rohit Gaurav
- 1Department of PediatricsNational Jewish HealthDenver, Colorado
| |
Collapse
|
14
|
ClC-3 promotes angiotensin II-induced reactive oxygen species production in endothelial cells by facilitating Nox2 NADPH oxidase complex formation. Acta Pharmacol Sin 2018; 39:1725-1734. [PMID: 29977005 DOI: 10.1038/s41401-018-0072-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/10/2018] [Indexed: 12/28/2022]
Abstract
Recent evidence suggests that ClC-3, a member of the ClC family of Cl- channels or Cl-/H+ antiporters, plays a critical role in NADPH oxidase-derived reactive oxygen species (ROS) generation. However, the underling mechanisms remain unclear. In this study we investigated the effects and mechanisms of ClC-3 on NADPH oxidase activation and ROS generation in endothelial cells. Treatment with angiotensin II (Ang II, 1 μmol/L) significantly elevated ClC-3 expression in cultured human umbilical vein endothelial cells (HUVECs). Furthermore, Ang II treatment increased ROS production and NADPH oxidase activity, an effect that could be significantly inhibited by knockdown of ClC-3, and further enhanced by overexpression of ClC-3. SA-β-galactosidase staining showed that ClC-3 silencing abolished Ang II-induced HUVEC senescence, whereas ClC-3 overexpression caused the opposite effects. We further showed that Ang II treatment increased the translocation of p47phox and p67phox from the cytosol to membrane, accompanied by elevated Nox2 and p22phox expression, which was significantly attenuated by knockdown of ClC-3 and potentiated by overexpression of ClC-3. Moreover, overexpression of ClC-3 increased Ang II-induced phosphorylation of p47phox and p38 MAPK in HUVECs. Pretreatment with a p38 inhibitor SB203580 abolished ClC-3 overexpression-induced increase in p47phox phosphorylation, as well as NADPH oxidase activity and ROS generation. Our results demonstrate that ClC-3 acts as a positive regulator of Ang II-induced NADPH oxidase activation and ROS production in endothelial cells, possibly via promoting both Nox2/p22phox expression and p38 MAPK-dependent p47phox/p67phox membrane translocation, then increasing Nox2 NADPH oxidase complex formation.
Collapse
|
15
|
Gaurav R, Varasteh JT, Weaver MR, Jacobson SR, Hernandez-Lagunas L, Liu Q, Nozik-Grayck E, Chu HW, Alam R, Nordestgaard BG, Kobylecki CJ, Afzal S, Chupp GL, Bowler RP. The R213G polymorphism in SOD3 protects against allergic airway inflammation. JCI Insight 2017; 2:95072. [PMID: 28878123 DOI: 10.1172/jci.insight.95072] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/03/2017] [Indexed: 01/04/2023] Open
Abstract
Oxidative stress is important in the pathogenesis of allergic asthma. Extracellular superoxide dismutase (EC-SOD; SOD3) is the major antioxidant in lungs, but its role in allergic asthma is unknown. Here we report that asthmatics have increased SOD3 transcript levels in sputum and that a single nucleotide polymorphism (SNP) in SOD3 (R213G; rs1799895) changes lung distribution of EC-SOD, and decreases likelihood of asthma-related symptoms. Knockin mice analogous to the human R213G SNP had lower airway hyperresponsiveness, inflammation, and mucus hypersecretion with decreased interleukin-33 (IL-33) in bronchoalveolar lavage fluid and reduced type II innate lymphoid cells (ILC2s) in lungs. SOD mimetic (Mn (III) tetrakis (N-ethylpyridinium-2-yl) porphyrin) attenuated Alternaria-induced expression of IL-33 and IL-8 release in BEAS-2B cells. These results suggest that R213G SNP potentially benefits its carriers by resulting in high EC-SOD in airway-lining fluid, which ameliorates allergic airway inflammation by dampening the innate immune response, including IL-33/ST2-mediated changes in ILC2s.
Collapse
Affiliation(s)
- Rohit Gaurav
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Jason T Varasteh
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Michael R Weaver
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Sean R Jacobson
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Laura Hernandez-Lagunas
- Cardiovascular Pulmonary Research Laboratories and Department of Pediatrics, University of Colorado, Aurora, Colorado, USA
| | - Qing Liu
- Department of Internal Medicine, Yale University, New Haven, Connecticut, USA
| | - Eva Nozik-Grayck
- Cardiovascular Pulmonary Research Laboratories and Department of Pediatrics, University of Colorado, Aurora, Colorado, USA
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Rafeul Alam
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, and.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Shoaib Afzal
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, and.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Geoffrey L Chupp
- Department of Internal Medicine, Yale University, New Haven, Connecticut, USA
| | - Russell P Bowler
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| |
Collapse
|
16
|
Nesi RT, Barroso MV, Souza Muniz VD, de Arantes AC, Martins MA, Brito Gitirana LD, Neves JS, Benjamim CF, Lanzetti M, Valenca SS. Pharmacological modulation of reactive oxygen species (ROS) improves the airway hyperresponsiveness by shifting the Th1 response in allergic inflammation induced by ovalbumin. Free Radic Res 2017; 51:708-722. [PMID: 28776450 DOI: 10.1080/10715762.2017.1364377] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Asthma is an allergic inflammation driven by the Th2 immune response with release of cytokines such as IL-4 and IL-13, which contribute to the airflow limitations and airway hyperresponsiveness (AHR). The involvement of oxidative stress in this process is well-established, but the specific role of the superoxide anion and nitric oxide in asthma are poorly understood. Thus, the aim of this study was to investigate the mechanisms underlying the superoxide anion/nitric oxide production and detoxification in a murine asthma model. BALB/c male mice were sensitised and challenged with ovalbumin (OVA). Pretreatments with either apocynin (14 mg/kg) or allopurinol (25 mg/kg) (superoxide anion synthesis inhibitors), aminoguanidine (50 mg/kg) (nitric oxide synthesis inhibitor) or diethyldithiocarbamate (100 mg/kg) (superoxide dismutase inhibitor) were performed 1 h before the challenge. Our data showed that apocynin and allopurinol ameliorated AHR and reduced eosinophil peroxidase, as well as IL-4 and IL-13 levels. Apocynin also abrogated leukocyte peribronchiolar infiltrate and increased IL-1β secretion. Aminoguanidine preserved lung function and shifted the Th2 to the Th1 response with a reduction of IL-4 and IL-13 and increase in IL-1β production. Diethyldithiocarbamate prevented neither allergen-induced AHR nor eosinophil peroxidase (EPO) generation. All treatments protected against oxidative damage observed by a reduction in TBARS levels. Taken together, these results suggest that AHR in an asthma model can be avoided by the down-regulation of superoxide anion and nitric oxide synthesis in a mechanism that is independent of a redox response. This down-regulation is also associated with a transition in the typical immunological Th2 response toward the Th1 profile.
Collapse
Affiliation(s)
- Renata Tiscoski Nesi
- a Federal University of Rio de Janeiro, Institute of Biomedical Sciences , Rio de Janeiro , Brazil
| | - Marina Valente Barroso
- b Federal University of Rio de Janeiro, Institute of Microbiology Paulo Góes , Rio de Janeiro , Brazil
| | - Valdirene de Souza Muniz
- a Federal University of Rio de Janeiro, Institute of Biomedical Sciences , Rio de Janeiro , Brazil
| | - Ana Carolina de Arantes
- c Laboratory of Inflammation , Fundacao Oswaldo Cruz, Oswaldo Cruz Institute , Rio de Janeiro , Brazil
| | - Marco Aurélio Martins
- c Laboratory of Inflammation , Fundacao Oswaldo Cruz, Oswaldo Cruz Institute , Rio de Janeiro , Brazil
| | - Lycia de Brito Gitirana
- a Federal University of Rio de Janeiro, Institute of Biomedical Sciences , Rio de Janeiro , Brazil
| | - Josiane Sabbadini Neves
- a Federal University of Rio de Janeiro, Institute of Biomedical Sciences , Rio de Janeiro , Brazil
| | - Cláudia Farias Benjamim
- a Federal University of Rio de Janeiro, Institute of Biomedical Sciences , Rio de Janeiro , Brazil
| | - Manuella Lanzetti
- a Federal University of Rio de Janeiro, Institute of Biomedical Sciences , Rio de Janeiro , Brazil
| | - Samuel Santos Valenca
- a Federal University of Rio de Janeiro, Institute of Biomedical Sciences , Rio de Janeiro , Brazil
| |
Collapse
|
17
|
Abstract
Phagocytes, such as neutrophils and macrophages, engulf microbes into phagosomes and launch chemical attacks to kill and degrade them. Such a critical innate immune function necessitates ion participation. Chloride, the most abundant anion in the human body, is an indispensable constituent of the myeloperoxidase (MPO)-H2 O2 -halide system that produces the potent microbicide hypochlorous acid (HOCl). It also serves as a balancing ion to set membrane potentials, optimize cytosolic and phagosomal pH, and regulate phagosomal enzymatic activities. Deficient supply of this anion to or defective attainment of this anion by phagocytes is linked to innate immune defects. However, how phagocytes acquire chloride from their residing environment especially when they are deployed to epithelium-lined lumens, and how chloride is intracellularly transported to phagosomes remain largely unknown. This review article will provide an overview of chloride protein carriers, potential mechanisms for phagocytic chloride preservation and acquisition, intracellular chloride supply to phagosomes for oxidant production, and methods to measure chloride levels in phagocytes and their phagosomes.
Collapse
Affiliation(s)
- Guoshun Wang
- Departments of Microbiology and Immunology, Genetics and Medicine, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
18
|
Qu J, Li Y, Zhong W, Gao P, Hu C. Recent developments in the role of reactive oxygen species in allergic asthma. J Thorac Dis 2017; 9:E32-E43. [PMID: 28203435 DOI: 10.21037/jtd.2017.01.05] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Allergic asthma has a global prevalence, morbidity, and mortality. Many environmental factors, such as pollutants and allergens, are highly relevant to allergic asthma. The most important pathological symptom of allergic asthma is airway inflammation. Accordingly, the unique role of reactive oxygen species (ROS) had been identified as a main reason for this respiratory inflammation. Many studies have shown that inhalation of different allergens can promote ROS generation. Recent studies have demonstrated that several pro-inflammatory mediators are responsible for the development of allergic asthma. Among these mediators, endogenous or exogenous ROS are responsible for the airway inflammation of allergic asthma. Furthermore, several inflammatory cells induce ROS and allergic asthma development. Airway inflammation, airway hyper-responsiveness, tissue injury, and remodeling can be induced by excessive ROS production in animal models. Based on investigations of allergic asthma and ROS formation mechanisms, we have identified several novel anti-inflammatory therapeutic treatments. This review describes the recent data linking ROS to the pathogenesis of allergic asthma.
Collapse
Affiliation(s)
- Jingjing Qu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China;; Division of Allergy and Clinical Immunology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Yuanyuan Li
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Wen Zhong
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Peisong Gao
- Division of Allergy and Clinical Immunology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Chengping Hu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|