1
|
Khan QU, Banu A, Mazhar I, Asif AB, Waseem A. Genetic and Pathological Insights into the rs7216389 Polymorphism in Gasdermin B and Its Association with Childhood Asthma. Discoveries (Craiova) 2024; 12:e196. [PMID: 40104184 PMCID: PMC11913562 DOI: 10.15190/d.2024.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/28/2024] [Accepted: 12/28/2024] [Indexed: 03/20/2025] Open
Abstract
This review provides an overview of genetic and pathological mechanisms associated with childhood asthma, focusing on the Gasdermin B (GSDMB) gene variant rs7216389. Accordingly, asthma is outlined as the most common chronic disease in children, with increased incidence in the worldwide community, critically important complications, and mortality related to severe manifestations, primarily exacerbations. The review provides a clinical definition of asthma exacerbation, briefly goes into the cost aspects, and explains the features of pediatric asthma compared to adult-onset asthma. It recognizes the influence of genetic factors such as single nucleotide polymorphisms at the 17q21 locus concerning asthma and its severe attacks while stressing the need to understand those genetic factors that could be potential targets for treatment. The review also stresses the difficulties in implementing the discovery in the clinic, and the potential of additional research dedicated to unveiling the relationship between genetic risk factors, environmental exposures, and immune reactions in the pathological process of childhood asthma. To this end, the current work should be viewed as an attempt to provide a broad overview of asthma pathogenesis and contribute to the development of novel hypotheses and therapeutic approaches in future studies.
Collapse
Affiliation(s)
| | - Afreen Banu
- Department of Microbiology and Parasitology, Lincoln University College, Malaysia
| | - Ismail Mazhar
- Department of Medicine, CMH Lahore Medical College and Institute of Dentistry, Lahore, Pakistan
| | - Aimen Binte Asif
- Department of Medicine, CMH Lahore Medical College and Institute of Dentistry, Lahore, Pakistan
| | | |
Collapse
|
2
|
Wei K, Qian F, Li Y, Zeng T, Huang T. Integrating multi-omics data of childhood asthma using a deep association model. FUNDAMENTAL RESEARCH 2024; 4:738-751. [PMID: 39156565 PMCID: PMC11330118 DOI: 10.1016/j.fmre.2024.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 08/20/2024] Open
Abstract
Childhood asthma is one of the most common respiratory diseases with rising mortality and morbidity. The multi-omics data is providing a new chance to explore collaborative biomarkers and corresponding diagnostic models of childhood asthma. To capture the nonlinear association of multi-omics data and improve interpretability of diagnostic model, we proposed a novel deep association model (DAM) and corresponding efficient analysis framework. First, the Deep Subspace Reconstruction was used to fuse the omics data and diagnostic information, thereby correcting the distribution of the original omics data and reducing the influence of unnecessary data noises. Second, the Joint Deep Semi-Negative Matrix Factorization was applied to identify different latent sample patterns and extract biomarkers from different omics data levels. Third, our newly proposed Deep Orthogonal Canonical Correlation Analysis can rank features in the collaborative module, which are able to construct the diagnostic model considering nonlinear correlation between different omics data levels. Using DAM, we deeply analyzed the transcriptome and methylation data of childhood asthma. The effectiveness of DAM is verified from the perspectives of algorithm performance and biological significance on the independent test dataset, by ablation experiment and comparison with many baseline methods from clinical and biological studies. The DAM-induced diagnostic model can achieve a prediction AUC of 0.912, which is higher than that of many other alternative methods. Meanwhile, relevant pathways and biomarkers of childhood asthma are also recognized to be collectively altered on the gene expression and methylation levels. As an interpretable machine learning approach, DAM simultaneously considers the non-linear associations among samples and those among biological features, which should help explore interpretative biomarker candidates and efficient diagnostic models from multi-omics data analysis for human complex diseases.
Collapse
Affiliation(s)
- Kai Wei
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo 315000, China
| | - Fang Qian
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yixue Li
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Guangzhou National Laboratory, Guangzhou 510000, China
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou 510000, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Tao Zeng
- Guangzhou National Laboratory, Guangzhou 510000, China
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou 510000, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
3
|
Böck A, Urner K, Eckert JK, Salvermoser M, Laubhahn K, Kunze S, Kumbrink J, Hoeppner MP, Kalkbrenner K, Kreimeier S, Beyer K, Hamelmann E, Kabesch M, Depner M, Hansen G, Riedler J, Roponen M, Schmausser-Hechfellner E, Barnig C, Divaret-Chauveau A, Karvonen AM, Pekkanen J, Frei R, Roduit C, Lauener R, Schaub B. An integrated molecular risk score early in life for subsequent childhood asthma risk. Clin Exp Allergy 2024; 54:314-328. [PMID: 38556721 DOI: 10.1111/cea.14475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Numerous children present with early wheeze symptoms, yet solely a subgroup develops childhood asthma. Early identification of children at risk is key for clinical monitoring, timely patient-tailored treatment, and preventing chronic, severe sequelae. For early prediction of childhood asthma, we aimed to define an integrated risk score combining established risk factors with genome-wide molecular markers at birth, complemented by subsequent clinical symptoms/diagnoses (wheezing, atopic dermatitis, food allergy). METHODS Three longitudinal birth cohorts (PAULINA/PAULCHEN, n = 190 + 93 = 283, PASTURE, n = 1133) were used to predict childhood asthma (age 5-11) including epidemiological characteristics and molecular markers: genotype, DNA methylation and mRNA expression (RNASeq/NanoString). Apparent (ap) and optimism-corrected (oc) performance (AUC/R2) was assessed leveraging evidence from independent studies (Naïve-Bayes approach) combined with high-dimensional logistic regression models (LASSO). RESULTS Asthma prediction with epidemiological characteristics at birth (maternal asthma, sex, farm environment) yielded an ocAUC = 0.65. Inclusion of molecular markers as predictors resulted in an improvement in apparent prediction performance, however, for optimism-corrected performance only a moderate increase was observed (upto ocAUC = 0.68). The greatest discriminate power was reached by adding the first symptoms/diagnosis (up to ocAUC = 0.76; increase of 0.08, p = .002). Longitudinal analysis of selected mRNA expression in PASTURE (cord blood, 1, 4.5, 6 years) showed that expression at age six had the strongest association with asthma and correlation of genes getting larger over time (r = .59, p < .001, 4.5-6 years). CONCLUSION Applying epidemiological predictors alone showed moderate predictive abilities. Molecular markers from birth modestly improved prediction. Allergic symptoms/diagnoses enhanced the power of prediction, which is important for clinical practice and for the design of future studies with molecular markers.
Collapse
Affiliation(s)
- Andreas Böck
- Pediatric Allergology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
- Member of the CHildhood Allergy and Tolerance Consortium (CHAMP), LMU Munich, Munich, Germany
| | - Kathrin Urner
- Pediatric Allergology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
- Member of the CHildhood Allergy and Tolerance Consortium (CHAMP), LMU Munich, Munich, Germany
| | - Jana Kristin Eckert
- Pediatric Allergology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
- Member of the CHildhood Allergy and Tolerance Consortium (CHAMP), LMU Munich, Munich, Germany
| | - Michael Salvermoser
- Pediatric Allergology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
- Member of the CHildhood Allergy and Tolerance Consortium (CHAMP), LMU Munich, Munich, Germany
| | - Kristina Laubhahn
- Pediatric Allergology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center - Munich (CPC-M), German Center for Lung Research (DZL), Munich, Germany
| | - Sonja Kunze
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jörg Kumbrink
- Institute of Pathology, Medical Faculty, LMU Munich, Munich, Germany
| | - Marc P Hoeppner
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Kathrin Kalkbrenner
- Pediatric Allergology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
- Member of the CHildhood Allergy and Tolerance Consortium (CHAMP), LMU Munich, Munich, Germany
| | - Simone Kreimeier
- Member of the CHildhood Allergy and Tolerance Consortium (CHAMP), LMU Munich, Munich, Germany
- Department of Health Economics and Health Care Management, School of Public Health, Bielefeld University, Bielefeld, Germany
| | - Kirsten Beyer
- Member of the CHildhood Allergy and Tolerance Consortium (CHAMP), LMU Munich, Munich, Germany
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Eckard Hamelmann
- Member of the CHildhood Allergy and Tolerance Consortium (CHAMP), LMU Munich, Munich, Germany
- Department for Pediatrics, Children's Center Bethel, University Hospital OWL, Bielefeld University, Bielefeld, Germany
| | - Michael Kabesch
- Member of the CHildhood Allergy and Tolerance Consortium (CHAMP), LMU Munich, Munich, Germany
- University Children's Hospital Regensburg (KUNO), St. Hedwig's Hospital of the Order of St. John and the University of Regensburg, Regensburg, Germany
| | - Martin Depner
- Member of the CHildhood Allergy and Tolerance Consortium (CHAMP), LMU Munich, Munich, Germany
- Institute of Asthma and Allergy Prevention, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Gesine Hansen
- Member of the CHildhood Allergy and Tolerance Consortium (CHAMP), LMU Munich, Munich, Germany
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
- Excellence Cluster Resolving Infection Susceptibility RESIST (EXC 2155), Deutsche Forschungsgemeinschaft, Hannover Medical School, Hannover, Germany
| | | | - Marjut Roponen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Elisabeth Schmausser-Hechfellner
- Institute of Asthma and Allergy Prevention, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Cindy Barnig
- Department of Respiratory Disease, University Hospital, Besanҫon, France
- INSERM, EFS BFC, LabEx LipSTIC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Univ. Bourgogne Franche-Comté, Besançon, France
| | - Amandine Divaret-Chauveau
- Pediatric Allergy Department, Children's Hospital, University Hospital of Nancy, Vandoeuvre les Nancy, France
- EA3450 Development, Adaptation and Handicap (devah), Pediatric Allergy Department, University of Lorraine, Nancy, France
- UMR/CNRS 6249 Chrono-environment, University of Franche Comté, Besançon, France
| | - Anne M Karvonen
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Juha Pekkanen
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Remo Frei
- Christine Kühne Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
- Division of Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, University of Bern, Bern, Switzerland
| | - Caroline Roduit
- Christine Kühne Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
- Division of Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, University of Bern, Bern, Switzerland
- Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
- Children's Hospital, University of Zürich, Zürich, Switzerland
| | - Roger Lauener
- Christine Kühne Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
- Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
| | - Bianca Schaub
- Pediatric Allergology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
- Member of the CHildhood Allergy and Tolerance Consortium (CHAMP), LMU Munich, Munich, Germany
- Comprehensive Pneumology Center - Munich (CPC-M), German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
4
|
Lima DDS, de Morais RV, Rechenmacher C, Michalowski MB, Goldani MZ. Epigenetics, hypersensibility and asthma: what do we know so far? Clinics (Sao Paulo) 2023; 78:100296. [PMID: 38043345 DOI: 10.1016/j.clinsp.2023.100296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 12/05/2023] Open
Abstract
In this review, we describe recent advances in understanding the relationship between epigenetic changes, especially DNA methylation (DNAm), with hypersensitivity and respiratory disorders such as asthma in childhood. It is clearly described that epigenetic mechanisms can induce short to long-term changes in cells, tissues, and organs. Through the growing number of studies on the Origins of Health Development and Diseases, more and more data exist on how environmental and genomic aspects in early life can induce allergies and asthma. The lack of biomarkers, standardized assays, and access to more accessible tools for data collection and analysis are still a challenge for future studies. Through this review, the authors draw a panorama with the available information that can assist in the establishment of an epigenetic approach for the risk analysis of these pathologies.
Collapse
Affiliation(s)
- Douglas da Silva Lima
- Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Departamento de Pediatria, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Pediatria Translacional, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Rahuany Velleda de Morais
- Laboratório de Pediatria Translacional, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Ciliana Rechenmacher
- Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Departamento de Pediatria, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Pediatria Translacional, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Mariana Bohns Michalowski
- Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Departamento de Pediatria, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Pediatria Translacional, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Serviço de Oncologia Pediátrica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| | - Marcelo Zubaran Goldani
- Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Departamento de Pediatria, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Pediatria Translacional, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
5
|
Gao J, Yi X, Wang Z. The application of multi-omics in the respiratory microbiome: Progresses, challenges and promises. Comput Struct Biotechnol J 2023; 21:4933-4943. [PMID: 37867968 PMCID: PMC10585227 DOI: 10.1016/j.csbj.2023.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/24/2023] Open
Abstract
The study of the respiratory microbiome has entered a multi-omic era. Through integrating different omic data types such as metagenome, metatranscriptome, metaproteome, metabolome, culturome and radiome surveyed from respiratory specimens, holistic insights can be gained on the lung microbiome and its interaction with host immunity and inflammation in respiratory diseases. The power of multi-omics have moved the field forward from associative assessment of microbiome alterations to causative understanding of the lung microbiome in the pathogenesis of chronic, acute and other types of respiratory diseases. However, the application of multi-omics in respiratory microbiome remains with unique challenges from sample processing, data integration, and downstream validation. In this review, we first introduce the respiratory sample types and omic data types applicable to studying the respiratory microbiome. We next describe approaches for multi-omic integration, focusing on dimensionality reduction, multi-omic association and prediction. We then summarize progresses in the application of multi-omics to studying the microbiome in respiratory diseases. We finally discuss current challenges and share our thoughts on future promises in the field.
Collapse
Affiliation(s)
- Jingyuan Gao
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Xinzhu Yi
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Zhang Wang
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| |
Collapse
|
6
|
Espuela-Ortiz A, Martin-Gonzalez E, Poza-Guedes P, González-Pérez R, Herrera-Luis E. Genomics of Treatable Traits in Asthma. Genes (Basel) 2023; 14:1824. [PMID: 37761964 PMCID: PMC10531302 DOI: 10.3390/genes14091824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/12/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
The astounding number of genetic variants revealed in the 15 years of genome-wide association studies of asthma has not kept pace with the goals of translational genomics. Moving asthma diagnosis from a nonspecific umbrella term to specific phenotypes/endotypes and related traits may provide insights into features that may be prevented or alleviated by therapeutical intervention. This review provides an overview of the different asthma endotypes and phenotypes and the genomic findings from asthma studies using patient stratification strategies and asthma-related traits. Asthma genomic research for treatable traits has uncovered novel and previously reported asthma loci, primarily through studies in Europeans. Novel genomic findings for asthma phenotypes and related traits may arise from multi-trait and specific phenotyping strategies in diverse populations.
Collapse
Affiliation(s)
- Antonio Espuela-Ortiz
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Tenerife, Spain; (A.E.-O.); (E.M.-G.)
| | - Elena Martin-Gonzalez
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Tenerife, Spain; (A.E.-O.); (E.M.-G.)
| | - Paloma Poza-Guedes
- Allergy Department, Hospital Universitario de Canarias, 38320 Santa Cruz de Tenerife, Tenerife, Spain; (P.P.-G.); (R.G.-P.)
- Severe Asthma Unit, Hospital Universitario de Canarias, 38320 San Cristóbal de La Laguna, Tenerife, Spain
| | - Ruperto González-Pérez
- Allergy Department, Hospital Universitario de Canarias, 38320 Santa Cruz de Tenerife, Tenerife, Spain; (P.P.-G.); (R.G.-P.)
- Severe Asthma Unit, Hospital Universitario de Canarias, 38320 San Cristóbal de La Laguna, Tenerife, Spain
| | - Esther Herrera-Luis
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
7
|
Nowakowska J, Olechnowicz A, Langwiński W, Koteluk O, Lemańska Ż, Jóźwiak K, Kamiński K, Łosiewski W, Stegmayr J, Wagner D, Alsafadi HN, Lindstedt S, Dziuba M, Bielicka A, Graczyk Z, Szczepankiewicz A. Increased expression of ORMDL3 in allergic asthma: a case control and in vitro study. J Asthma 2023; 60:458-467. [PMID: 35321632 DOI: 10.1080/02770903.2022.2056896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Asthma is the most frequent chronic disease in children. One of the most replicated genetic findings in childhood asthma is the ORMDL3 gene confirmed in several GWA studies in several pediatric populations. OBJECTIVES The purpose of this study was to analyze ORMDL3 variants and expression in childhood asthma in the Polish population. METHODS In the study we included 416 subject, 223 asthmatic children and 193 healthy control subjects. The analysis of two SNPs (rs3744246 and rs8076131) was performed using genotyping with TaqMan probes. The methylation of the ORMDL3 promoter was examined with Methylation Sensitive HRM (MS-HRM), covering 9 CpG sites. The expression of ORMDL3 was analyzed in PBMCs from pediatric patients diagnosed with allergic asthma and primary human bronchial epithelial cells derived from healthy subjects treated with IL-13, IL-4, or co-treatment with both cytokines to model allergic airway inflammation. RESULTS We found that ORMDL3 expression was increased in allergic asthma both in PBMCs from asthmatic patients as well as in human bronchial epithelial cells stimulated with the current cytokines. We did not observe significant differences between cases and controls either in the genotype distribution of analyzed SNPs (rs3744246 and rs8076131) nor in the level of promoter methylation. CONCLUSIONS Increased ORMDL3 expression is associated with pediatric allergic asthma and upregulated in the airways upon Th2-cytokines stimulation, but further functional studies are required to fully understand its role in this disease.
Collapse
Affiliation(s)
- Joanna Nowakowska
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Olechnowicz
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Wojciech Langwiński
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Oliwia Koteluk
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Żaneta Lemańska
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Kacper Jóźwiak
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Kacper Kamiński
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Wojciech Łosiewski
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - John Stegmayr
- Lung Bioengineering and Regeneration, Department of Experimental Medical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Darcy Wagner
- Lung Bioengineering and Regeneration, Department of Experimental Medical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Hani N Alsafadi
- Lung Bioengineering and Regeneration, Department of Experimental Medical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Sandra Lindstedt
- Lung Bioengineering and Regeneration, Department of Experimental Medical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Maria Dziuba
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Antonina Bielicka
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Zuzanna Graczyk
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Aleksandra Szczepankiewicz
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
8
|
Wei B, Dang YH, Liu XP, Li M. Protective effect of inhaled corticosteroid on children with asthma with Mycoplasma pneumoniae pneumonia. Front Pediatr 2022; 10:908857. [PMID: 36090550 PMCID: PMC9452955 DOI: 10.3389/fped.2022.908857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The aim of this study was to determine the differences in the characteristics of Mycoplasma pneumoniae pneumonia (MPP) in children with and without asthma and in children with asthma with and without inhaled corticosteroid (ICS) therapy in order to determine the risk factors for asthma exacerbation and the effect of regular ICS therapy on children with asthma with MPP. MATERIALS AND METHODS Children with MPP were divided into two groups according to whether they had a history of asthma. Children with asthma were further divided into an ICS therapy group and a group without ICS therapy. The clinical characteristics, laboratory test results, and pulmonary images were compared between the children with and without asthma. Differences in the severity of acute exacerbation were compared between the children with asthma in the ICS therapy and without ICS therapy groups. Multivariable logistic regression was used to determine the risk factors for exacerbation of MPP in children with asthma. RESULTS In children with MPP, the differences in the eosinophil counts; total immunoglobulin E (IgE), C-reactive protein, procalcitonin (PCT), and lactate dehydrogenase (LDH) levels; and fever duration, wheezing, extrapulmonary complications, oxygen saturation < 92%, severe pneumonia, pleural effusion, co-infection with other pathogens, and lobar pneumonia between children with and without asthma were statistically significant. Among children with asthma with MPP, those in the ICS therapy group were less likely to experience an exacerbation, and exacerbations were less severe than those in the without ICS therapy group. The multivariable logistic regression analysis showed that the ICS therapy was an independent protective factor against exacerbation. CONCLUSION Among children with MPP, the chance of wheezing was higher in children with asthma than in children without asthma. The ICS therapy was a protective factor against exacerbation in children with asthma with MPP.
Collapse
Affiliation(s)
- Bing Wei
- Department of Neonatology, General Hospital of Northern Theater Command, Shenyang, China
| | - Yan-Hong Dang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiang-Ping Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Miao Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
9
|
Could the Epigenetics of Eosinophils in Asthma and Allergy Solve Parts of the Puzzle? Int J Mol Sci 2021; 22:ijms22168921. [PMID: 34445627 PMCID: PMC8396248 DOI: 10.3390/ijms22168921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/15/2022] Open
Abstract
Epigenetics is a field of study investigating changes in gene expression that do not alter the DNA sequence. These changes are often influenced by environmental or social factors and are reversible. Epigenetic mechanisms include DNA methylation, histone modification, and noncoding RNA. Understanding the role of these epigenetic mechanisms in human diseases provides useful information with regard to disease severity and development. Several studies have searched for the epigenetic mechanisms that regulate allergies and asthma; however, only few studies have used samples of eosinophil, a proinflammatory cell type known to be largely recruited during allergic or asthmatic inflammation. Such studies would enable us to better understand the factors that influence the massive recruitment of eosinophils during allergic and asthmatic symptoms. In this review, we sought to summarize different studies that aimed to discover differential patterns of histone modifications, DNA methylation, and noncoding RNAs in eosinophil samples of individuals with certain diseases, with a particular focus on those with asthma or allergic diseases.
Collapse
|
10
|
Lee EY, Mak ACY, Hu D, Sajuthi S, White MJ, Keys KL, Eckalbar W, Bonser L, Huntsman S, Urbanek C, Eng C, Jain D, Abecasis G, Kang HM, Germer S, Zody MC, Nickerson DA, Erle D, Ziv E, Rodriguez-Santana J, Seibold MA, Burchard EG. Whole-Genome Sequencing Identifies Novel Functional Loci Associated with Lung Function in Puerto Rican Youth. Am J Respir Crit Care Med 2020; 202:962-972. [PMID: 32459537 PMCID: PMC7528787 DOI: 10.1164/rccm.202002-0351oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/27/2020] [Indexed: 12/22/2022] Open
Abstract
Rationale: Puerto Ricans have the highest childhood asthma prevalence in the United States (23.6%); however, the etiology is uncertain.Objectives: In this study, we sought to uncover the genetic architecture of lung function in Puerto Rican youth with and without asthma who were recruited from the island (n = 836).Methods: We used admixture-mapping and whole-genome sequencing data to discover genomic regions associated with lung function. Functional roles of the prioritized candidate SNPs were examined with chromatin immunoprecipitation sequencing, RNA sequencing, and expression quantitative trait loci data.Measurements and Main Results: We discovered a genomic region at 1q32 that was significantly associated with a 0.12-L decrease in the lung volume of exhaled air (95% confidence interval, -0.17 to -0.07; P = 6.62 × 10-8) with each allele of African ancestry. Within this region, two SNPs were expression quantitative trait loci of TMEM9 in nasal airway epithelial cells and MROH3P in esophagus mucosa. The minor alleles of these SNPs were associated with significantly decreased lung function and decreased TMEM9 gene expression. Another admixture-mapping peak was observed on chromosome 5q35.1, indicating that each Native American ancestry allele was associated with a 0.15-L increase in lung function (95% confidence interval, 0.08-0.21; P = 5.03 × 10-6). The region-based association tests identified four suggestive windows that harbored candidate rare variants associated with lung function.Conclusions: We identified common and rare genetic variants that may play a critical role in lung function among Puerto Rican youth. We independently validated an inflammatory pathway that could potentially be used to develop more targeted treatments and interventions for patients with asthma.
Collapse
Affiliation(s)
- Eunice Y. Lee
- Department of Bioengineering and Therapeutic Sciences and
- Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Angel C. Y. Mak
- Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Donglei Hu
- Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Satria Sajuthi
- Department of Pediatrics, Center for Genes, Environment, and Health, and
| | - Marquitta J. White
- Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Kevin L. Keys
- Department of Medicine, University of California, San Francisco, San Francisco, California
| | | | - Luke Bonser
- Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Scott Huntsman
- Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Cydney Urbanek
- Department of Pediatrics, Center for Genes, Environment, and Health, and
| | - Celeste Eng
- Department of Medicine, University of California, San Francisco, San Francisco, California
| | | | - Gonçalo Abecasis
- Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan
- Regeneron Pharmaceuticals, Tarrytown, New York
| | - Hyun M. Kang
- Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan
| | | | | | - Deborah A. Nickerson
- Department of Genome Sciences, University of Washington, Seattle, Washington
- Northwest Genomics Center, Seattle, Washington
- Brotman Baty Institute, Seattle, Washington
| | - David Erle
- Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Elad Ziv
- Department of Medicine, University of California, San Francisco, San Francisco, California
| | | | - Max A. Seibold
- Department of Pediatrics, Center for Genes, Environment, and Health, and
- Department of Pediatrics, National Jewish Health, Denver, Colorado
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado–Anschutz Medical Campus, Aurora, Colorado
| | - Esteban G. Burchard
- Department of Bioengineering and Therapeutic Sciences and
- Department of Medicine, University of California, San Francisco, San Francisco, California
| |
Collapse
|
11
|
Louhaichi S, Mlika M, Hamdi B, Hamzaoui K, Hamzaoui A. Sputum IL-26 Is Overexpressed in Severe Asthma and Induces Proinflammatory Cytokine Production and Th17 Cell Generation: A Case-Control Study of Women. J Asthma Allergy 2020; 13:95-107. [PMID: 32099415 PMCID: PMC7006858 DOI: 10.2147/jaa.s229522] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/12/2020] [Indexed: 12/16/2022] Open
Abstract
Objective Asthma inflammation is a complex pathway involving numerous mediators. Interleukin-26 (IL-26), a member of the IL-10 cytokine family, is abundant in human airways and induces the production of proinflammatory cytokines. Our aim was to investigate the possible role of IL-26 in severe asthma. We analysed the expression of IL-26 in severe asthma both in peripheral blood and induced sputum. Patients and Methods A total of 50 adult women with severe asthma were recruited and compared to 30 healthy controls (HC). Serum and sputum fluid (SF) levels of IL-26 and IL-17 were defined by ELISA. IL-26 mRNA expression and IL-26 protein were analysed using RT-PCR and Western blot. In vitro, we studied the effect of recombinant IL-26 (rIL-26) and SF-IL-26 on cultured CD4+ T cells and monocytes, comparing patients and controls. Results Concentrations of IL-26 are higher in serum and induced sputum of asthmatic patients than in HC. Moreover, IL-26 protein and mRNA expression were significantly elevated in asthma sputum cells compared to PBMCs. We observed a positive correlation between body mass index (BMI) and sputum fluid IL-26, while the correlation between IL-26 and lung function tests (FEV1% and FEV1/FVC ratio) was negative. IL-17A was highly expressed in SF and correlated positively with IL-26. In patients’ sputum IL-26 and IL-17A were significantly associated with neutrophils. Stimulation of cultured CD4+ T cells with monocytes by recombinant IL-26 promoted the generation of RORγt+ Th17+ cells inducing the production of IL-17A, IL-1β, IL-6 and TNF-α cytokines. IL-26 expressed in SF was biologically active and induced IL-17 secretion in the presence of IL-1β and IL-6 cytokines. Conclusion These findings show that IL-26 is highly produced in asthmatic sputum, induces pro-inflammatory cytokine secretion by monocytes/macrophages, and favours Th17 cell generation. IL-26 thereby appears as a novel pro-inflammatory cytokine, produced locally in the airways that may constitute a promising target to treat asthma inflammatory process.
Collapse
Affiliation(s)
- Sabrine Louhaichi
- Research Laboratory 19SP02 "Chronic Pulmonary Pathologies: From Genome to Management", Abderrahman Mami Hospital, Ariana, Tunisia.,Medicine Faculty of Tunis, Department of Basic Sciences, Tunis El Manar University, Tunis, Tunisia.,Department of Paediatric and Respiratory Diseases, Abderrahman Mami Hospital, Pavillon B, Ariana, Tunisia
| | - Mona Mlika
- Medicine Faculty of Tunis, Department of Basic Sciences, Tunis El Manar University, Tunis, Tunisia.,Pathology Department, Abderrahman Mami Hospital, Ariana, Tunisia
| | - Besma Hamdi
- Research Laboratory 19SP02 "Chronic Pulmonary Pathologies: From Genome to Management", Abderrahman Mami Hospital, Ariana, Tunisia.,Medicine Faculty of Tunis, Department of Basic Sciences, Tunis El Manar University, Tunis, Tunisia.,Department of Paediatric and Respiratory Diseases, Abderrahman Mami Hospital, Pavillon B, Ariana, Tunisia
| | - Kamel Hamzaoui
- Research Laboratory 19SP02 "Chronic Pulmonary Pathologies: From Genome to Management", Abderrahman Mami Hospital, Ariana, Tunisia.,Medicine Faculty of Tunis, Department of Basic Sciences, Tunis El Manar University, Tunis, Tunisia
| | - Agnès Hamzaoui
- Research Laboratory 19SP02 "Chronic Pulmonary Pathologies: From Genome to Management", Abderrahman Mami Hospital, Ariana, Tunisia.,Medicine Faculty of Tunis, Department of Basic Sciences, Tunis El Manar University, Tunis, Tunisia.,Department of Paediatric and Respiratory Diseases, Abderrahman Mami Hospital, Pavillon B, Ariana, Tunisia
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Asthma exacerbations have been suggested to result from complex interactions between genetic and nongenetic components. In this review, we provide an overview of the genetic association studies of asthma exacerbations, their main results and limitations, as well as future directions of this field. RECENT FINDINGS Most studies on asthma exacerbations have been performed using a candidate-gene approach. Although few genome-wide association studies of asthma exacerbations have been conducted up to date, they have revealed promising associations but with small effect sizes. Additionally, the analysis of interactions between genetic and environmental factors has contributed to better understand of genotype-specific responses in asthma exacerbations. SUMMARY Genetic association studies have allowed identifying the 17q21 locus and the ADRB2 gene as the loci most consistently associated with asthma exacerbations. Future studies should explore the full spectrum of genetic variation and will require larger sample sizes, a better representation of racial/ethnic diversity and a more precise definition of asthma exacerbations. Additionally, the analysis of important environmental gene-environment analysis and the integration of multiple omics will allow understanding the genetic factors and biological processes underlying the risk for asthma exacerbations.
Collapse
|
13
|
Donovan BM, Bastarache L, Turi KN, Zutter MM, Hartert TV. The current state of omics technologies in the clinical management of asthma and allergic diseases. Ann Allergy Asthma Immunol 2019; 123:550-557. [PMID: 31494234 PMCID: PMC6931133 DOI: 10.1016/j.anai.2019.08.460] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To review the state of omics science specific to asthma and allergic diseases and discuss the current and potential applicability of omics in clinical disease prediction, treatment, and management. DATA SOURCES Studies and reviews focused on the use of omics technologies in asthma and allergic disease research and clinical management were identified using PubMed. STUDY SELECTIONS Publications were included based on relevance, with emphasis placed on the most recent findings. RESULTS Omics-based research is increasingly being used to differentiate asthma and allergic disease subtypes, identify biomarkers and pathological mediators, predict patient responsiveness to specific therapies, and monitor disease control. Although most studies have focused on genomics and transcriptomics approaches, increasing attention is being placed on omics technologies that assess the effect of environmental exposures on disease initiation and progression. Studies using omics data to identify biological targets and pathways involved in asthma and allergic disease pathogenesis have primarily focused on a specific omics subtype, providing only a partial view of the disease process. CONCLUSION Although omics technologies have advanced our understanding of the molecular mechanisms underlying asthma and allergic disease pathology, omics testing for these diseases are not standard of care at this point. Several important factors need to be addressed before these technologies can be used effectively in clinical practice. Use of clinical decision support systems and integration of these systems within electronic medical records will become increasingly important as omics technologies become more widely used in the clinical setting.
Collapse
Affiliation(s)
- Brittney M Donovan
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lisa Bastarache
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Kedir N Turi
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mary M Zutter
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Tina V Hartert
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
14
|
Krautenbacher N, Flach N, Böck A, Laubhahn K, Laimighofer M, Theis FJ, Ankerst DP, Fuchs C, Schaub B. A strategy for high-dimensional multivariable analysis classifies childhood asthma phenotypes from genetic, immunological, and environmental factors. Allergy 2019; 74:1364-1373. [PMID: 30737985 PMCID: PMC6767756 DOI: 10.1111/all.13745] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 12/22/2018] [Accepted: 01/06/2019] [Indexed: 12/14/2022]
Abstract
Background Associations between childhood asthma phenotypes and genetic, immunological, and environmental factors have been previously established. Yet, strategies to integrate high‐dimensional risk factors from multiple distinct data sets, and thereby increase the statistical power of analyses, have been hampered by a preponderance of missing data and lack of methods to accommodate them. Methods We assembled questionnaire, diagnostic, genotype, microarray, RT‐qPCR, flow cytometry, and cytokine data (referred to as data modalities) to use as input factors for a classifier that could distinguish healthy children, mild‐to‐moderate allergic asthmatics, and nonallergic asthmatics. Based on data from 260 German children aged 4‐14 from our university outpatient clinic, we built a novel multilevel prediction approach for asthma outcome which could deal with a present complex missing data structure. Results The optimal learning method was boosting based on all data sets, achieving an area underneath the receiver operating characteristic curve (AUC) for three classes of phenotypes of 0.81 (95%‐confidence interval (CI): 0.65‐0.94) using leave‐one‐out cross‐validation. Besides improving the AUC, our integrative multilevel learning approach led to tighter CIs than using smaller complete predictor data sets (AUC = 0.82 [0.66‐0.94] for boosting). The most important variables for classifying childhood asthma phenotypes comprised novel identified genes, namely PKN2 (protein kinase N2), PTK2 (protein tyrosine kinase 2), and ALPP (alkaline phosphatase, placental). Conclusion Our combination of several data modalities using a novel strategy improved classification of childhood asthma phenotypes but requires validation in external populations. The generic approach is applicable to other multilevel data‐based risk prediction settings, which typically suffer from incomplete data.
Collapse
Affiliation(s)
- Norbert Krautenbacher
- Institute of Computational Biology Helmholtz Zentrum München German Research Center for Environmental Health GmbH Neuherberg Germany
- Technische Universität München Center for Mathematics Chair of Mathematical Modeling of Biological Systems Garching Germany
| | - Nicolai Flach
- Institute of Computational Biology Helmholtz Zentrum München German Research Center for Environmental Health GmbH Neuherberg Germany
- Technische Universität München Center for Mathematics Chair of Mathematical Modeling of Biological Systems Garching Germany
| | - Andreas Böck
- Department of Pulmonary and Allergy Dr. von Hauner Children's Hospital LMU Munich Germany
| | - Kristina Laubhahn
- Department of Pulmonary and Allergy Dr. von Hauner Children's Hospital LMU Munich Germany
- Member of German Lung Centre (DZL) CPC Munich Germany
| | - Michael Laimighofer
- Institute of Computational Biology Helmholtz Zentrum München German Research Center for Environmental Health GmbH Neuherberg Germany
- Technische Universität München Center for Mathematics Chair of Mathematical Modeling of Biological Systems Garching Germany
| | - Fabian J. Theis
- Institute of Computational Biology Helmholtz Zentrum München German Research Center for Environmental Health GmbH Neuherberg Germany
- Technische Universität München Center for Mathematics Chair of Mathematical Modeling of Biological Systems Garching Germany
| | - Donna P. Ankerst
- Technische Universität München Center for Mathematics Chair of Mathematical Modeling of Biological Systems Garching Germany
- University of Texas Health Science Center at San Antonio San Antonio Texas
| | - Christiane Fuchs
- Institute of Computational Biology Helmholtz Zentrum München German Research Center for Environmental Health GmbH Neuherberg Germany
- Technische Universität München Center for Mathematics Chair of Mathematical Modeling of Biological Systems Garching Germany
- Faculty of Business Administration and Economics Bielefeld University Bielefeld Germany
| | - Bianca Schaub
- Department of Pulmonary and Allergy Dr. von Hauner Children's Hospital LMU Munich Germany
- Member of German Lung Centre (DZL) CPC Munich Germany
| |
Collapse
|
15
|
Zhang H, Kaushal A, Merid SK, Melén E, Pershagen G, Rezwan FI, Han L, Ewart S, Arshad SH, Karmaus W, Holloway JW. DNA methylation and allergic sensitizations: A genome-scale longitudinal study during adolescence. Allergy 2019; 74:1166-1175. [PMID: 30762239 DOI: 10.1111/all.13746] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/21/2018] [Accepted: 01/08/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND The presence of allergic sensitization has a major influence on the development and course of common childhood conditions such as asthma and rhinitis. The etiology of allergic sensitization is poorly understood, and its underlying biological mechanisms are not well established. Several studies showed that DNA methylation (DNAm) at some CpGs is associated with allergic sensitization. However, no studies have focused on the critical adolescence period. METHODS We assessed the association of pre- and postadolescence genome-wide DNAm with allergic sensitization against indoor, outdoor and food allergens, using linear mixed models. We hypothesized that DNAm is associated with sensitization in general, and with poly-sensitization status, and these associations are age- and gender-specific. We tested these hypotheses in the IoW cohort (n = 376) and examined the findings in the BAMSE cohort (n = 267). RESULTS Via linear mixed models, we identified 35 CpGs in IoW associated with allergic sensitization (at false discovery rate of 0.05), of which 33 were available in BAMSE and replicated with respect to the direction of associations with allergic sensitization. At the 35 CpGs except for cg19210306 on C13orf27, a reduction in methylation among atopic subjects was observed, most notably for cg21220721 and cg11699125 (ACOT7). DNAm at cg10159529 was strongly correlated with expression of IL5RA in peripheral blood (P-value = 6.76 × 10-20 ). Three CpGs (cg14121142, cg23842695, and cg26496795) were identified in IoW with age-specific association between DNAm and allergic sensitization. CONCLUSION In adolescence, the status of allergic sensitization was associated with DNAm differentiation and at some CpGs the association is likely to be age-specific.
Collapse
Affiliation(s)
- Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health Sciences; School of Public Health; University of Memphis; Memphis TN
| | - Akhilesh Kaushal
- Center for Precision Environmental Health; Baylor College of Medicine; Houston Texas
| | - Simon Kebede Merid
- Institute of Environmental Medicine; Karolinska Institutet; Stockholm Sweden
| | - Erik Melén
- Institute of Environmental Medicine; Karolinska Institutet; Stockholm Sweden
- Sachs' Children's Hospital; Stockholm Sweden
| | - Göran Pershagen
- Institute of Environmental Medicine; Karolinska Institutet; Stockholm Sweden
| | - Faisal I. Rezwan
- Faculty of Medicine; Clinical and Experimental Sciences; University of Southampton; Southampton UK
| | - Luhang Han
- Department of Mathematical Sciences; University of Memphis; Memphis Tennessee
| | - Susan Ewart
- College of Veterinary Medicine; Michigan State University; East Lansing Michigan
| | - S. Hasan Arshad
- Faculty of Medicine; Clinical and Experimental Sciences; University of Southampton; Southampton UK
- David Hide Asthma and Allergy Research Centre; Isle of Wight UK
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health Sciences; School of Public Health; University of Memphis; Memphis TN
| | - John W. Holloway
- Faculty of Medicine; Clinical and Experimental Sciences; University of Southampton; Southampton UK
- Human Development and Health; Faculty of Medicine; University of Southampton; Southampton UK
| |
Collapse
|
16
|
Jiang Y, Gruzieva O, Wang T, Forno E, Boutaoui N, Sun T, Merid SK, Acosta-Pérez E, Kull I, Canino G, Antó JM, Bousquet J, Melén E, Chen W, Celedón JC. Transcriptomics of atopy and atopic asthma in white blood cells from children and adolescents. Eur Respir J 2019; 53:13993003.00102-2019. [PMID: 30923181 DOI: 10.1183/13993003.00102-2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/02/2019] [Indexed: 02/07/2023]
Abstract
Early allergic sensitisation (atopy) is the first step in the development of allergic diseases such as atopic asthma later in life. Genes and pathways associated with atopy and atopic asthma in children and adolescents have not been well characterised.A transcriptome-wide association study (TWAS) of atopy and atopic asthma in white blood cells (WBCs) or whole blood was conducted in a cohort of 460 Puerto Ricans aged 9-20 years (EVA-PR study) and in a cohort of 250 Swedish adolescents (BAMSE study). Pathway enrichment and network analyses were conducted to further assess top findings, and classification models of atopy and atopic asthma were built using expression levels for the top differentially expressed genes (DEGs).In a meta-analysis of the study cohorts, both previously implicated genes (e.g. IL5RA and IL1RL1) and genes not previously reported in TWASs (novel) were significantly associated with atopy and/or atopic asthma. Top novel genes for atopy included SIGLEC8 (p=8.07×10-13), SLC29A1 (p=7.07×10-12) and SMPD3 (p=1.48×10-11). Expression quantitative trait locus analyses identified multiple asthma-relevant genotype-expression pairs, such as rs2255888/ALOX15 Pathway enrichment analysis uncovered 16 significantly enriched pathways at adjusted p<0.01, including those relevant to T-helper cell type 1 (Th1) and Th2 immune responses. Classification models built using the top DEGs and a few demographic/parental history variables accurately differentiated subjects with atopic asthma from nonatopic control subjects (area under the curve 0.84).We have identified genes and pathways for atopy and atopic asthma in children and adolescents, using transcriptome-wide data from WBCs and whole blood samples.
Collapse
Affiliation(s)
- Yale Jiang
- Division of Pulmonary Medicine, Dept of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA.,School of Medicine, Tsinghua University, Beijing, China.,These two authors contributed equally to this work
| | - Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,These two authors contributed equally to this work
| | - Ting Wang
- Division of Pulmonary Medicine, Dept of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Erick Forno
- Division of Pulmonary Medicine, Dept of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nadia Boutaoui
- Division of Pulmonary Medicine, Dept of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tao Sun
- Dept of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Simon K Merid
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Edna Acosta-Pérez
- Behavioral Sciences Research Institute, University of Puerto Rico, San Juan, Puerto Rico
| | - Inger Kull
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Glorisa Canino
- Behavioral Sciences Research Institute, University of Puerto Rico, San Juan, Puerto Rico
| | - Josep M Antó
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
| | - Jean Bousquet
- CESP, Inserm U1018, Villejuif, France.,University Hospital, Montpellier, France
| | - Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,These three authors are joint senior authors
| | - Wei Chen
- Division of Pulmonary Medicine, Dept of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA.,These three authors are joint senior authors
| | - Juan C Celedón
- Division of Pulmonary Medicine, Dept of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA .,These three authors are joint senior authors
| |
Collapse
|
17
|
Forno E, Celedón JC. Epigenomics and Transcriptomics in the Prediction and Diagnosis of Childhood Asthma: Are We There Yet? Front Pediatr 2019; 7:115. [PMID: 31001502 PMCID: PMC6454089 DOI: 10.3389/fped.2019.00115] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/11/2019] [Indexed: 01/15/2023] Open
Abstract
Asthma is the most common non-communicable chronic disease of childhood. Despite its high prevalence, to date we lack methods that are both efficient and accurate in diagnosing asthma. Most traditional approaches have been based on garnering clinical evidence, such as risk factors and exposures. Given the high heritability of asthma, more recent approaches have looked at genetic polymorphisms as potential "risk factors." However, genetic variants explain only a small proportion of asthma risk, and have been less than optimal at predicting risk for individual subjects. Epigenomic studies offer significant advantages over previous approaches. Epigenetic regulation is highly tissue-specific, and can induce both short- and long-term changes in gene expression. Such changes can start in utero, can vary throughout the life span, and in some instances can be passed on from one generation to another. Most importantly, the epigenome can be modified by environmental factors and exposures, and thus epigenetic and transcriptomic profiling may yield the most accurate risk estimates for a given patient by incorporating environmental (and treatment) effects throughout the lifespan. Here we will review the most recent advances in the use of epigenetic and transcriptomic analysis for the early diagnosis of asthma and atopy, as well as challenges and future directions in the field as it moves forward. We will particularly focus on DNA methylation, the most studied mechanism of epigenetic regulation.
Collapse
Affiliation(s)
- Erick Forno
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States.,Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Juan C Celedón
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States.,Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
18
|
Forno E, Wang T, Qi C, Yan Q, Xu CJ, Boutaoui N, Han YY, Weeks DE, Jiang Y, Rosser F, Vonk JM, Brouwer S, Acosta-Perez E, Colón-Semidey A, Alvarez M, Canino G, Koppelman GH, Chen W, Celedón JC. DNA methylation in nasal epithelium, atopy, and atopic asthma in children: a genome-wide study. THE LANCET RESPIRATORY MEDICINE 2018; 7:336-346. [PMID: 30584054 DOI: 10.1016/s2213-2600(18)30466-1] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/26/2018] [Accepted: 10/30/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Epigenetic mechanisms could alter the airway epithelial barrier and ultimately lead to atopic diseases such as asthma. We aimed to identify DNA methylation profiles that are associated with-and could accurately classify-atopy and atopic asthma in school-aged children. METHODS We did a genome-wide study of DNA methylation in nasal epithelium and atopy or atopic asthma in 483 Puerto Rican children aged 9-20 years, recruited using multistage probability sampling. Atopy was defined as at least one positive IgE (≥0·35 IU/mL) to common aeroallergens, and asthma was defined as a physician's diagnosis plus wheeze in the previous year. Significant (false discovery rate p<0·01) methylation signals were correlated with gene expression, and top CpGs were validated by pyrosequencing. We then replicated our top methylation findings in a cohort of 72 predominantly African American children, and in 432 children from a European birth cohort. Next, we tested classification models based on nasal methylation for atopy or atopic asthma in all cohorts. FINDINGS DNA methylation profiles were markedly different between children with (n=312) and without (n=171) atopy in the Puerto Rico discovery cohort, recruited from Feb 12, 2014, until May 8, 2017. After adjustment for covariates and multiple testing, we found 8664 differentially methylated CpGs by atopy, with false discovery rate-adjusted p values ranging from 9·58 × 10-17 to 2·18 × 10-22 for the top 30 CpGs. These CpGs were in or near genes relevant to epithelial barrier function, including CDHR3 and CDH26, and in other genes related to airway epithelial integrity and immune regulation, such as FBXL7, NTRK1, and SLC9A3. Moreover, 28 of the top 30 CpGs replicated in the same direction in both independent cohorts. Classification models of atopy based on nasal methylation performed well in the Puerto Rico cohort (area under the curve [AUC] 0·93-0·94 and accuracy 85-88%) and in both replication cohorts (AUC 0·74-0·92, accuracy 68-82%). The models also performed well for atopic asthma in the Puerto Rico cohort (AUC 0·95-1·00, accuracy 88%) and the replication cohorts (AUC 0·82-0·88, accuracy 86%). INTERPRETATION We identified specific methylation profiles in airway epithelium that are associated with atopy and atopic asthma in children, and a nasal methylation panel that could classify children by atopy or atopic asthma. Our findings support the feasibility of using the nasal methylome for future clinical applications, such as predicting the development of asthma among wheezing infants. FUNDING US National Institutes of Health.
Collapse
Affiliation(s)
- Erick Forno
- Division of Pulmonary Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ting Wang
- Division of Pulmonary Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Cancan Qi
- Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, Groningen, Netherlands; GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Qi Yan
- Division of Pulmonary Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Cheng-Jian Xu
- Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, Groningen, Netherlands; GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Nadia Boutaoui
- Division of Pulmonary Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yueh-Ying Han
- Division of Pulmonary Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Daniel E Weeks
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yale Jiang
- Division of Pulmonary Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; School of Medicine, Tsinghua University, Beijing, China
| | - Franziska Rosser
- Division of Pulmonary Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Judith M Vonk
- GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, Netherlands; Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Sharon Brouwer
- GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, Netherlands; Department of Pathology and Medical Biology, Experimental Pulmonology and Inflammation Research, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Edna Acosta-Perez
- Behavioral Sciences Research Institute of Puerto Rico, Medical Science Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Angel Colón-Semidey
- Department of Pediatrics, Medical Science Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - María Alvarez
- Department of Pediatrics, Medical Science Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Glorisa Canino
- Behavioral Sciences Research Institute of Puerto Rico, Medical Science Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Gerard H Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, Groningen, Netherlands; GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Wei Chen
- Division of Pulmonary Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Juan C Celedón
- Division of Pulmonary Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
19
|
McDonald ML. Multiomics Approach to Asthma: Navigating the Network. Am J Respir Cell Mol Biol 2018; 57:381-382. [PMID: 28960106 DOI: 10.1165/rcmb.2017-0220ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Merry-Lynn McDonald
- 1 Division of Pulmonary, Allergy and Critical Care Medicine University of Alabama at Birmingham Birmingham, AL
| |
Collapse
|
20
|
Daugule I, Karklina D, Remberga S, Rumba-Rozenfelde I. Helicobacter pylori Infection and Risk Factors in Relation to Allergy in Children. Pediatr Gastroenterol Hepatol Nutr 2017; 20:216-221. [PMID: 29302502 PMCID: PMC5750375 DOI: 10.5223/pghn.2017.20.4.216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/17/2017] [Accepted: 11/22/2017] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To analyze presence of Helicobacter pylori infection and environmental risk factors among children with and without allergy. METHODS Parents of children at primary health care centres/kindergartens and allergologist consultation were asked to answer a questionnaire and to bring a faecal sample. H. pylori infection was detected by monoclonal stool antigen test. Prevalence of H. pylori infection and risk factors were compared between individuals with and without allergy using χ2 test, ANOVA test and parameters and logistic regression. RESULTS Among 220 children (mean age, 4.7 years; ±standard deviation 2.3 years) H. pylori positivity was non-significantly lower among patients with allergy (n=122) compared to individuals without allergy (n=98): 13.9% (17/122) vs. 22.4% (22/98); p=0.106. In logistic regression analysis presence of allergy was significantly associated with family history of allergy (odds ratio [OR], 8.038; 95% confidence interval [CI], 4.067-15.886; p<0.0001), delivery by Caesarean section (OR, 2.980; 95% CI, 1.300-6.831; p=0.009), exclusive breast feeding for five months (OR, 2.601; 95% CI, 1.316-5.142; p=0.006), antibacterial treatment during the previous year (OR, 2.381; 95% CI, 1.186-4.782; p=0.015). CONCLUSION Prevalence of H. pylori infection did not differ significantly between children with and without allergy. Significant association of allergy with delivery by Caesarean section and antibacterial therapy possibly suggests the role of gastrointestinal flora in the development of allergy, while association with family history of allergy indicates the importance of genetic factors in the arise of allergy.
Collapse
Affiliation(s)
- Ilva Daugule
- Faculty of Medicine, University of Latvia, Riga, Latvia
| | - Daiga Karklina
- Faculty of Medicine, University of Latvia, Riga, Latvia.,Clinics for Children Diseases, Children Clinical University Hospital, Riga, Latvia
| | - Silvija Remberga
- Faculty of Medicine, University of Latvia, Riga, Latvia.,Clinics for Children Diseases, Children Clinical University Hospital, Riga, Latvia
| | - Ingrida Rumba-Rozenfelde
- Faculty of Medicine, University of Latvia, Riga, Latvia.,Clinics for Children Diseases, Children Clinical University Hospital, Riga, Latvia
| |
Collapse
|
21
|
Global issues in allergy and immunology: Parasitic infections and allergy. J Allergy Clin Immunol 2017; 140:1217-1228. [PMID: 29108604 DOI: 10.1016/j.jaci.2017.09.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 02/07/2023]
Abstract
Allergic diseases are on the increase globally in parallel with a decrease in parasitic infection. The inverse association between parasitic infections and allergy at an ecological level suggests a causal association. Studies in human subjects have generated a large knowledge base on the complexity of the interrelationship between parasitic infection and allergy. There is evidence for causal links, but the data from animal models are the most compelling: despite the strong type 2 immune responses they induce, helminth infections can suppress allergy through regulatory pathways. Conversely, many helminths can cause allergic-type inflammation, including symptoms of "classical" allergic disease. From an evolutionary perspective, subjects with an effective immune response against helminths can be more susceptible to allergy. This narrative review aims to inform readers of the most relevant up-to-date evidence on the relationship between parasites and allergy. Experiments in animal models have demonstrated the potential benefits of helminth infection or administration of helminth-derived molecules on chronic inflammatory diseases, but thus far, clinical trials in human subjects have not demonstrated unequivocal clinical benefits. Nevertheless, there is sufficiently strong evidence to support continued investigation of the potential benefits of helminth-derived therapies for the prevention or treatment of allergic and other inflammatory diseases.
Collapse
|