1
|
Conley HE, Davis KU, Adler KB, Lavoie JP, Sheats MK. MARCKS protein is a potential target in a naturally occurring equine model of neutrophilic asthma. Respir Res 2025; 26:126. [PMID: 40176021 PMCID: PMC11967018 DOI: 10.1186/s12931-025-03194-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 03/17/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Asthma is a chronic inflammatory airway disease that affects millions of people worldwide. Horses develop asthma spontaneously and serve as a relevant model for multiple phenotypes and endotypes of human asthma. In horses with equine asthma (EA), environmental organic dust triggers increased inflammatory cytokines, excess airway mucus, reversible bronchoconstriction, and airway inflammation. In horses with severe EA (sEA), lower airway inflammation is invariably neutrophilic, making sEA a potential model for severe neutrophilic asthma in humans. Alveolar macrophages (AM) and airway neutrophils contribute to lower airway inflammation and tissue damage through the release of cytokines and toxic mediators including reactive oxygen species. Previous work shows that the Myristoylated Alanine Rich C Kinase Substrate (MARCKS) protein is increased in activated macrophages and neutrophils and is an essential regulator of inflammatory functions in these cell types. We hypothesized that MARCKS protein would be increased in bronchoalveolar lavage (BAL) cells from horses with EA, and that in vitro inhibition of MARCKS with a specific inhibitor peptide known as MyristoylAted N-terminal Sequence (MANS), would diminish cytokine production and respiratory burst. METHODS BAL cells from two populations of healthy and asthmatic horses were evaluated for cytology and MARCKS protein analysis. Isolated alveolar macrophages and peripheral blood neutrophils were stimulated with zymosan to evaluate MARCKS inhibition in cytokine secretion and respiratory burst. RESULTS We found increased levels of normalized MARCKS protein in total BAL cells from horses with asthma compared to normal horses. MARCKS inhibition with the MANS peptide had no effect on zymosan-stimulated release of tumor necrosis factor alpha (TNFα) or interleukin-8 (IL-8) from alveolar macrophages but did attenuate zymosan-stimulated respiratory burst in both alveolar macrophages and peripheral blood neutrophils. CONCLUSIONS These findings point to a possible role for MARCKS in the pathophysiology of neutrophilic equine asthma and support further investigation of MARCKS as a novel anti-inflammatory target for severe neutrophilic asthma.
Collapse
Affiliation(s)
- Haleigh E Conley
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Dr, Raleigh, NC, 27607, USA
- Comparative Medicine Institute, North Carolina State University, 1060 William Moore Dr, Raleigh, NC, 27607, USA
| | - Kaori Uchiumi Davis
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Dr, Raleigh, NC, 27607, USA
- Comparative Medicine Institute, North Carolina State University, 1060 William Moore Dr, Raleigh, NC, 27607, USA
| | - Kenneth B Adler
- Comparative Medicine Institute, North Carolina State University, 1060 William Moore Dr, Raleigh, NC, 27607, USA
- Department of Molecular and Biomedical Science, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Dr, Raleigh, NC, 27607, USA
| | - Jean-Pierre Lavoie
- Département des Sciences Cliniques, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, QC, J2S 2M2, Canada
| | - M Katie Sheats
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Dr, Raleigh, NC, 27607, USA.
- Comparative Medicine Institute, North Carolina State University, 1060 William Moore Dr, Raleigh, NC, 27607, USA.
| |
Collapse
|
2
|
Heinzelmann K, Fysikopoulos A, Jaquin TJ, Peper-Gabriel JK, Hansbauer EM, Grüner S, Prassler J, Wurzenberger C, Kennedy JGC, Snead JY, Wrennall JA, Heinig K, Wurzenberger C, Bel Aiba RS, Tarran R, Livraghi-Butrico A, Fitzgerald MF, Anderson GP, Rothe C, Matschiner G, Olwill SA, Hagner M. Pulmonary-delivered Anticalin Jagged-1 antagonists reduce experimental airway mucus hyperproduction and obstruction. Am J Physiol Lung Cell Mol Physiol 2025; 328:L75-L92. [PMID: 39499257 PMCID: PMC11905813 DOI: 10.1152/ajplung.00059.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 10/01/2024] [Accepted: 10/27/2024] [Indexed: 11/07/2024] Open
Abstract
Mucus hypersecretion and mucus obstruction are pathogenic features in many chronic lung diseases directly linked to disease severity, exacerbation, progression, and mortality. The Jagged-1/Notch pathway is a promising therapeutic target that regulates secretory and ciliated cell trans-differentiation in the lung. However, the Notch pathway is also required in various other organs. Hence, pulmonary delivery of therapeutic agents is a promising approach to target this pathway while minimizing systemic exposure. Using Anticalin technology, Jagged-1 Anticalin binding proteins were generated and engineered to potent and selective inhalable Jagged-1 antagonists. Their therapeutic potential to reduce airway mucus hyperproduction and obstruction was investigated ex vivo and in vivo. In primary airway cell cultures grown at an air-liquid interface and stimulated with inflammatory cytokines, Jagged-1 Anticalin binding proteins reduced both mucin gene expression and mucous cell metaplasia. In vivo, prophylactic and therapeutic treatment with a pulmonary-delivered Jagged-1 Anticalin binding protein reduced mucous cell metaplasia, epithelial thickening, and airway mucus hyperproduction in IL-13 and house dust mite allergen-challenged mice, respectively. Furthermore, in a transgenic mouse model with pathophysiologic features of cystic fibrosis and chronic obstructive pulmonary disease (COPD), pulmonary-delivered Jagged-1 Anticalin binding protein reduced hallmarks of airway mucus obstruction. In all in vivo models, a reduction of mucous cells with a concomitant increase of ciliated cells was observed. Collectively, these findings support Jagged-1 antagonists' therapeutic potential for patients with muco-obstructive lung diseases and the feasibility of targeting the Jagged-1/Notch pathway by inhalation.NEW & NOTEWORTHY Airway mucus drives severity and mortality in diverse chronic lung diseases. The Jagged-1/Notch pathway controls the balance of ciliated versus mucous cells, but targeting the pathway systemically carries the risk of side effects. Here we developed novel, Anticalin-derived, pulmonary-delivered Jagged-1 antagonists, to inhibit airway mucus hyperproduction and obstruction in chronic lung diseases. Our preclinical data demonstrate the effectiveness of these antagonists in diminishing secretory cell and mucus levels and alleviating hallmarks of mucus obstruction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Joseph G C Kennedy
- Marsico Lung Institute/Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Jazmin Y Snead
- Marsico Lung Institute/Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Joe A Wrennall
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | | | | | | | - Robert Tarran
- Division of Genetic, Environmental and Inhalational Disease, Department of Internal Medicine, Kansas University Medical Center, Kansas City, Kansas, United States
| | - Alessandra Livraghi-Butrico
- Marsico Lung Institute/Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | | | - Gary P Anderson
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|
3
|
Li Y, Wang Z, Yang J, Sun Y, He Y, Wang Y, Chen X, Liang Y, Zhang N, Wang X, Zhao W, Hu G, Yang Q. CircTRIM1 encodes TRIM1-269aa to promote chemoresistance and metastasis of TNBC via enhancing CaM-dependent MARCKS translocation and PI3K/AKT/mTOR activation. Mol Cancer 2024; 23:102. [PMID: 38755678 PMCID: PMC11097450 DOI: 10.1186/s12943-024-02019-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024] Open
Abstract
Peptides and proteins encoded by noncanonical open reading frames (ORFs) of circRNAs have recently been recognized to play important roles in disease progression, but the biological functions and mechanisms of these peptides and proteins are largely unknown. Here, we identified a potential coding circular RNA, circTRIM1, that was upregulated in doxorubicin-resistant TNBC cells by intersecting transcriptome and translatome RNA-seq data, and its expression was correlated with clinicopathological characteristics and poor prognosis in patients with TNBC. CircTRIM1 possesses a functional IRES element along with an 810 nt ORF that can be translated into a novel endogenously expressed protein termed TRIM1-269aa. Functionally, we demonstrated that TRIM1-269aa, which is involved in the biological functions of circTRIM1, promoted chemoresistance and metastasis in TNBC cells both in vitro and in vivo. In addition, we found that TRIM1-269aa can be packaged into exosomes and transmitted between TNBC cells. Mechanistically, TRIM1-269aa enhanced the interaction between MARCKS and calmodulin, thus promoting the calmodulin-dependent translocation of MARCKS, which further initiated the activation of the PI3K/AKT/mTOR pathway. Overall, circTRIM1, which encodes TRIM1-269aa, promoted TNBC chemoresistance and metastasis by enhancing MARCKS translocation and PI3K/AKT/mTOR activation. Our investigation has yielded novel insights into the roles of protein-coding circRNAs and supported circTRIM1/TRIM1-269aa as a novel promising prognostic and therapeutic target for patients with TNBC.
Collapse
Affiliation(s)
- Yaming Li
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Zekun Wang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Jingwen Yang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Yuhan Sun
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Yinqiao He
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Yuping Wang
- School of Basic Medicine, Jining Medical College, Jining, Shandong, 272067, China
| | - Xi Chen
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Yiran Liang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Ning Zhang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Xiaolong Wang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Wenjing Zhao
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Guohong Hu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Qifeng Yang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China.
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China.
- Research Institute of Breast Cancer, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
4
|
Calabrese B, Halpain S. MARCKS and PI(4,5)P 2 reciprocally regulate actin-based dendritic spine morphology. Mol Biol Cell 2024; 35:ar23. [PMID: 38088877 PMCID: PMC10881156 DOI: 10.1091/mbc.e23-09-0370] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/27/2023] [Accepted: 12/07/2023] [Indexed: 01/14/2024] Open
Abstract
Myristoylated, alanine-rich C-kinase substrate (MARCKS) is an F-actin and phospholipid binding protein implicated in numerous cellular activities, including the regulation of morphology in neuronal dendrites and dendritic spines. MARCKS contains a lysine-rich effector domain that mediates its binding to plasma membrane phosphatidylinositol-4,5-biphosphate (PI(4,5)P2) in a manner controlled by PKC and calcium/calmodulin. In neurons, manipulations of MARCKS concentration and membrane targeting strongly affect the numbers, shapes, and F-actin properties of dendritic spines, but the mechanisms remain unclear. Here, we tested the hypothesis that the effects of MARCKS on dendritic spine morphology are due to its capacity to regulate the availability of plasma membrane PI(4,5)P2. We observed that the concentration of free PI(4,5)P2 on the dendritic plasma membrane was inversely proportional to the concentration of MARCKS. Endogenous PI(4,5)P2 levels were increased or decreased, respectively, by acutely overexpressing either phosphatidylinositol-4-phosphate 5-kinase (PIP5K) or inositol polyphosphate 5-phosphatase (5ptase). PIP5K, like MARCKS depletion, induced severe spine shrinkage; 5ptase, like constitutively membrane-bound MARCKS, induced aberrant spine elongation. These phenotypes involved changes in actin properties driven by the F-actin severing protein cofilin. Collectively, these findings support a model in which neuronal activity regulates actin-dependent spine morphology through antagonistic interactions of MARCKS and PI(4,5)P2.
Collapse
Affiliation(s)
- Barbara Calabrese
- Department of Neurobiology, School of Biological Sciences, University of California San Diego and Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037
| | - Shelley Halpain
- Department of Neurobiology, School of Biological Sciences, University of California San Diego and Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037
| |
Collapse
|
5
|
Yang Y, Yang H, Yang C. Circ-AMOTL1 enhances cardiac fibrosis through binding with EIF4A3 and stabilizing MARCKS expression in diabetic cardiomyopathy. Cell Signal 2023; 111:110853. [PMID: 37586467 DOI: 10.1016/j.cellsig.2023.110853] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/13/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
OBJECTIVE To evaluate the effects and possible mechanisms of circular RNAs (circRNAs) on diabetic myocardial fibrosis (DMF). METHODS We used an in vivo mice model of streptozotocin (STZ)-induced diabetes and conducted in vitro studies using cultured mouse cardiac fibroblast cells (CFs). RESULTS We found that the expression of circ-AMOTL1 was significantly upregulated in the myocardial tissue of diabetic mice compared to that in normal tissues. Inhibition of circ-AMOTL1 improved cardiac function in mice with type I diabetes and significantly repressed STZ-induced myocardial mesenchymal and perivascular fibrosis. In addition, silencing circ-AMOTL1 inhibited cell proliferation, decreased the expression levels of TGF-β1, collagen 1, collagen III, and α-SMA, and reduced the levels of ROS and NO in HG-treated CFs. Our data also indicated that silencing circ-AMOTL1 significantly reduced the expression of myristoylated alanine-rich C-kinase substrate (MARCKS). Finally, circ-AMOTL1 combined with the RNA-binding protein EIF4A3 to improve MARCKS stability. Moreover, co-transfection with si-circ-AMOTL1 and MARCKS reversed the effects of si-circ-AMOTL1 on cell proliferation, fibrotic marker proteins, and ROS and NO levels in vitro. CONCLUSION Our data suggest that circ-AMOTL1 plays a key role in STZ-induced DMF by modulating MARCKS, and that targeting circ-AMOTL1 may be a potential strategy to treat DMF.
Collapse
Affiliation(s)
- Yang Yang
- Emergency Department, Dingzhou city People's Hospital, Dingzhou 073000, Hebei, PR China
| | - Huan Yang
- Emergency Department, Dingzhou city People's Hospital, Dingzhou 073000, Hebei, PR China
| | - Chong Yang
- Cardiology department, Dingzhou city People's Hospital, Dingzhou 073000, Hebei, PR China.
| |
Collapse
|
6
|
Tschang M, Kumar S, Young W, Schachner M, Theis T. Small Organic Compounds Mimicking the Effector Domain of Myristoylated Alanine-Rich C-Kinase Substrate Stimulate Female-Specific Neurite Outgrowth. Int J Mol Sci 2023; 24:14271. [PMID: 37762575 PMCID: PMC10532424 DOI: 10.3390/ijms241814271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/15/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Myristoylated alanine-rich C-kinase substrate (MARCKS) is a critical member of a signaling cascade that influences disease-relevant neural functions such as neural growth and plasticity. The effector domain (ED) of MARCKS interacts with the extracellular glycan polysialic acid (PSA) through the cell membrane to stimulate neurite outgrowth in cell culture. We have shown that a synthetic ED peptide improves functional recovery after spinal cord injury in female but not male mice. However, peptides themselves are unstable in therapeutic applications, so we investigated more pharmacologically relevant small organic compounds that mimic the ED peptide to maximize therapeutic potential. Using competition ELISAs, we screened small organic compound libraries to identify molecules that structurally and functionally mimic the ED peptide of MARCKS. Since we had shown sex-specific effects of MARCKS on spinal cord injury recovery, we assayed neuronal viability as well as neurite outgrowth from cultured cerebellar granule cells of female and male mice separately. We found that epigallocatechin, amiodarone, sertraline, tegaserod, and nonyloxytryptamine bind to a monoclonal antibody against the ED peptide, and compounds stimulate neurite outgrowth in cultured cerebellar granule cells of female mice only. Therefore, a search for compounds that act in males appears warranted.
Collapse
Affiliation(s)
- Monica Tschang
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08554, USA; (M.T.); (W.Y.)
| | - Suneel Kumar
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08844, USA;
| | - Wise Young
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08554, USA; (M.T.); (W.Y.)
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08554, USA; (M.T.); (W.Y.)
| | - Thomas Theis
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08554, USA; (M.T.); (W.Y.)
| |
Collapse
|
7
|
Rong W, Shao S, Pu Y, Ji Q, Zhu H. Circulating extracellular vesicle-derived MARCKSL1 is a potential diagnostic non-invasive biomarker in metastatic colorectal cancer patients. Sci Rep 2023; 13:9957. [PMID: 37340044 DOI: 10.1038/s41598-023-37008-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/14/2023] [Indexed: 06/22/2023] Open
Abstract
Extracellular vesicle-derived proteins are closely related to colorectal cancer metastasis, and early detection and diagnosis of colorectal cancer metastasis is very important to improve the prognosis. In this study, we evaluated the clinical significance of plasma EV-derived MARCKSL1 in differentiating patients with metastatic and nonmetastatic CRC. This study included 78 patients, including 40 patients with nonmetastatic colorectal cancer, 38 patients with metastatic colorectal cancer, and 15 healthy volunteers. The extracellular vesicles extracted from the participants' plasma were characterized through transmission electron microscopy, nanoparticle tracking analysis and western blotting. MARCKSL1 protein expression in the EVs was detected by ELISA, and the diagnostic efficacy of MARCKSL1 alone or in combination with CA125 and lymphocyte levels was evaluated by receiver operating characteristic curve (ROC) analysis. Pearson's correlation test was performed to detect the correlation between MARCKSL1, CA125, lymphocyte level and clinicopathological characteristics of tumors. The present study demonstrated that the level of circulating EV-derived MARCKSL1 in patients with metastatic colorectal cancer was significantly higher than that in patients with nonmetastatic colorectal cancer and healthy people. Combined with CA125 and lymphocyte levels, the best diagnostic effect was achieved, and the area under the ROC curve was 0.7480. Together, our findings indicated that circulating EV-derived MARCKSL1 could be used as a new potential diagnostic biomarker for metastatic CRC.
Collapse
Affiliation(s)
- Wenqing Rong
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shiyun Shao
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yunzhou Pu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qing Ji
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Huirong Zhu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
8
|
Czaplewska P, Bogucka A, Macur K, Rybicka M, Rychłowski M, Fiołka MJ. Proteomic response of A549 lung cancer cell line to protein-polysaccharide complex Venetin-1 isolated from earthworm coelomic fluid. Front Mol Biosci 2023; 10:1128320. [PMID: 37377864 PMCID: PMC10292018 DOI: 10.3389/fmolb.2023.1128320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
Earthworms' celomic fluid has long attracted scientists' interest due to their toxic properties. It has been shown that the elimination of coelomic fluid cytotoxicity to normal human cells was crucial for the generation of the non-toxic Venetin-1 protein-polysaccharide complex, which exhibits selective activity against Candida albicans cells as well as A549 non-small cell lung cancer cells. To find the molecular mechanisms behind the anti-cancer properties of the preparation, this research investigated the proteome response of A549 cells to the presence of Venetin-1. The sequential window acquisition of all theoretical mass spectra (SWATH-MS) methodology was used for the analysis, which allows for a relative quantitative analysis to be carried out without radiolabelling. The results showed that the formulation did not induce significant proteome responses in normal BEAS-2B cells. In the case of the tumour line, 31 proteins were up regulated, and 18 proteins down regulated. Proteins with increased expression in neoplastic cells are mainly associated with the mitochondrion, membrane transport and the endoplasmic reticulum. In the case of altered proteins, Venetin-1 interferes with proteins that stabilise the structures, i.e., keratin, glycolysis/gluconeogenesis and metabolic processes.
Collapse
Affiliation(s)
- Paulina Czaplewska
- Intercollegiate Faculty of Biotechnology, The University of Gdansk, Gdańsk, Poland
| | - Aleksandra Bogucka
- Intercollegiate Faculty of Biotechnology, The University of Gdansk, Gdańsk, Poland
- Institute of Biochemistry, Justus Liebig University of Giessen, Giessen, Germany
| | - Katarzyna Macur
- Intercollegiate Faculty of Biotechnology, The University of Gdansk, Gdańsk, Poland
| | - Magda Rybicka
- Intercollegiate Faculty of Biotechnology, The University of Gdansk, Gdańsk, Poland
| | - Michał Rychłowski
- Intercollegiate Faculty of Biotechnology, The University of Gdansk, Gdańsk, Poland
| | - Marta J. Fiołka
- Department of Immunobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
9
|
Hua Y, Han A, Yu T, Hou Y, Ding Y, Nie H. Small Extracellular Vesicles Containing miR-34c Derived from Bone Marrow Mesenchymal Stem Cells Regulates Epithelial Sodium Channel via Targeting MARCKS. Int J Mol Sci 2022; 23:ijms23095196. [PMID: 35563590 PMCID: PMC9101277 DOI: 10.3390/ijms23095196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 12/18/2022] Open
Abstract
Epithelial sodium channel (ENaC) is a pivotal regulator of alveolar fluid clearance in the airway epithelium and plays a key role in the treatment of acute lung injury (ALI), which is mainly composed of the three homologous subunits (α, β and γ). The mechanisms of microRNAs in small extracellular vesicles (sEVs) derived from mesenchymal stem cell (MSC-sEVs) on the regulation of lung ion transport are seldom reported. In this study, we aimed at investigating whether miR-34c had an effect on ENaC dysfunction induced by lipopolysaccharide and explored the underlying mechanism in this process. Primarily, the effect of miR-34c on lung edema and histopathology changes in an ALI mouse model was investigated. Then the uptake of PKH26-labeled sEVs was observed in recipient cells, and we observed that the overexpression of miR-34c in MSC-sEVs could upregulate the LPS-inhibited γ-ENaC expression. The dual luciferase reporter gene assay demonstrated that myristoylated alanine-rich C kinase substrate (MARCKS) was one of target genes of miR-34c, the protein expression of which was negatively correlated with miR-34c. Subsequently, either upregulating miR-34c or knocking down MARCKS could increase the protein expression of phospho-phosphatidylinositol 3-kinase (p-PI3K) and phospho-protein kinase B (p-AKT), implying a downstream regulation pathway was involved. All of the above suggest that miR-34c in MSC-sEVs can attenuate edematous lung injury via enhancing γ-ENaC expression, at least partially, through targeting MARCKS and activating the PI3K/AKT signaling pathway subsequently.
Collapse
|
10
|
Stonex T, Salmon JH, Adler KB, Gilger BC. Peptide Inhibitors of MARCKS Suppress Endotoxin Induced Uveitis in Rats. J Ocul Pharmacol Ther 2022; 38:223-231. [PMID: 35385320 PMCID: PMC9048183 DOI: 10.1089/jop.2021.0114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/28/2022] [Indexed: 11/12/2022] Open
Abstract
Purpose: To determine if inhibition of Myristoylated Alanine Rich C Kinase Substrate (MARCKS) protein, using novel MARCKS inhibitor peptides, will reduce the severity of endotoxin-induced uveitis (EIU) in rats. Methods: EIU was induced in Lewis rats using subcutaneous administration of lipopolysaccharide. In the first phase of the study, 3 different novel MARCKS inhibitor peptides that mimic the N-terminal region of MARCKS (BIO-11006, or lower molecular weight analogs BIO-91201 or BIO-91202; Biomarck Pharmaceuticals, Ltd., Newtown, PA) were administered intravitreally (IVT) at 50 and 100 μM. In the second phase, BIO-91201 was administered IVT at 10, 50, and 100 μM and topically at the 100 μM concentration. The efficacy of MARCKS inhibitor peptides was assessed by clinical examination using slit lamp biomicroscopy, optical coherence tomography (OCT) anterior chamber cell counts, histopathology, and aqueous humor cytokine analysis. Results: Clinical scores were significantly reduced 24 h following uveitis induction in the first phase of the study in the following treatment groups: BIO-11006 50 μM IVT and 100 μM IVT, BIO-91201 50 μM IVT, and BIO-91202 100 μM IVT (P < 0.05). OCT anterior chamber cell counts were significantly reduced in the first phase of the study in all treatment groups (P < 0.001). OCT anterior chamber cell counts and histopathology scores were significantly reduced in the second phase of the study in the BIO-91201 50 μM IVT group (P < 0.05). No effect was seen with topical administration. Conclusion: MARCKS inhibitor peptides were effective in reducing the severity of ocular inflammation and cellular influx in EIU.
Collapse
Affiliation(s)
- Tara Stonex
- Department of Clinical Science, North Carolina State University, Raleigh, North Carolina, USA
| | - Jacklyn H. Salmon
- Department of Clinical Science, North Carolina State University, Raleigh, North Carolina, USA
| | - Kenneth B. Adler
- Department of Molecular Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Brian C. Gilger
- Department of Clinical Science, North Carolina State University, Raleigh, North Carolina, USA
- Department of Ophthalmology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
11
|
Phosphorylation-dependent proteome of Marcks in ependyma during aging and behavioral homeostasis in the mouse forebrain. GeroScience 2022; 44:2077-2094. [DOI: 10.1007/s11357-022-00517-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 01/13/2022] [Indexed: 11/04/2022] Open
|
12
|
Iyer DN, Faruq O, Zhang L, Rastgoo N, Liu A, Chang H. Pathophysiological roles of myristoylated alanine-rich C-kinase substrate (MARCKS) in hematological malignancies. Biomark Res 2021; 9:34. [PMID: 33958003 PMCID: PMC8101130 DOI: 10.1186/s40364-021-00286-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022] Open
Abstract
The myristoylated alanine-rich C-kinase substrate (MARCKS) protein has been at the crossroads of multiple signaling pathways that govern several critical operations in normal and malignant cellular physiology. Functioning as a target of protein kinase C, MARCKS shuttles between the phosphorylated cytosolic form and the unphosphorylated plasma membrane-bound states whilst regulating several molecular partners including, but not limited to calmodulin, actin, phosphatidylinositol-4,5-bisphosphate, and phosphoinositide-3-kinase. As a result of these interactions, MARCKS directly or indirectly modulates a host of cellular functions, primarily including cytoskeletal reorganization, membrane trafficking, cell secretion, inflammatory response, cell migration, and mitosis. Recent evidence indicates that dysregulated expression of MARCKS is associated with the development and progression of hematological cancers. While it is understood that MARCKS impacts the overall carcinogenesis as well as plays a part in determining the disease outcome in blood cancers, we are still at an early stage of interpreting the pathophysiological roles of MARCKS in neoplastic disease. The situation is further complicated by contradictory reports regarding the role of phosphorylated versus an unphosphorylated form of MARCKS as an oncogene versus tumor suppressor in blood cancers. In this review, we will investigate the current body of knowledge and evolving concepts of the physical properties, molecular network, functional attributes, and the likely pathogenic roles of MARCKS in hematological malignancies. Key emphasis will also be laid upon understanding the novel mechanisms by which MARCKS determines the overall disease prognosis by playing a vital role in the induction of therapeutic resistance. Additionally, we will highlight the importance of MARCKS as a valuable therapeutic target in blood cancers and will discuss the potential of existing strategies available to tackle MARCKS-driven blood cancers.
Collapse
Affiliation(s)
- Deepak Narayanan Iyer
- Laboratory medicine program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada
| | - Omar Faruq
- Laboratory medicine program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada
| | - Lun Zhang
- Laboratory medicine program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada
| | - Nasrin Rastgoo
- Laboratory medicine program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada
| | - Aijun Liu
- Department of Hematology, Beijing Chaoyang Hospital, Capital University, Beijing, China.
| | - Hong Chang
- Laboratory medicine program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada.
| |
Collapse
|
13
|
George B, Amjesh R, Paul AM, Santhoshkumar TR, Pillai MR, Kumar R. Evidence of a dysregulated vitamin D endocrine system in SARS-CoV-2 infected patient's lung cells. Sci Rep 2021; 11:8570. [PMID: 33883570 PMCID: PMC8060306 DOI: 10.1038/s41598-021-87703-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/30/2021] [Indexed: 12/19/2022] Open
Abstract
Although a defective vitamin D endocrine system has been widely suspected to be associated in SARS-CoV-2 pathobiology, the status of the vitamin D endocrine system and vitamin D-modulated genes in lung cells of patients infected with SARS-CoV-2 remains unknown. To understand the significance of the vitamin D endocrine system in SARS-CoV-2 pathobiology, computational approaches were applied to transcriptomic datasets from bronchoalveolar lavage fluid (BALF) cells of such patients or healthy individuals. Levels of vitamin D receptor, retinoid X receptor, and CYP27A1 in BALF cells of patients infected with SARS-CoV-2 were found to be reduced. Additionally, 107 differentially expressed, predominantly downregulated genes, as potentially modulated by vitamin D endocrine system, were identified in transcriptomic datasets from patient's cells. Further analysis of differentially expressed genes provided eight novel genes with a conserved motif with vitamin D-responsive elements, implying the role of both direct and indirect mechanisms of gene expression by the dysregulated vitamin D endocrine system in SARS-CoV-2-infected cells. Protein-protein interaction network of differentially expressed vitamin D-modulated genes were enriched in the immune system, NF-κB/cytokine signaling, and cell cycle regulation as top predicted pathways that might be affected in the cells of such patients. In brief, the results presented here povide computational evidence to implicate a dysregulated vitamin D endocrine system in the pathobiology of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Bijesh George
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- PhD Program, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Revikumar Amjesh
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| | - Aswathy Mary Paul
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- PhD Program, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - T R Santhoshkumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| | | | - Rakesh Kumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India.
- Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, USA.
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, USA.
| |
Collapse
|
14
|
Fröhlich E, Salar-Behzadi S. Oral inhalation for delivery of proteins and peptides to the lungs. Eur J Pharm Biopharm 2021; 163:198-211. [PMID: 33852968 DOI: 10.1016/j.ejpb.2021.04.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/17/2021] [Accepted: 04/01/2021] [Indexed: 12/14/2022]
Abstract
Oral inhalation is the preferred route for delivery of small molecules to the lungs, because high tissue levels can be achieved shortly after application. Biologics are mainly administered by intravenous injection but inhalation might be beneficial for the treatment of lung diseases (e.g. asthma). This review discusses biological and pharmaceutical challenges for delivery of biologics and describes promising candidates. Insufficient stability of the proteins during aerosolization and the biological environment of the lung are the main obstacles for pulmonary delivery of biologics. Novel nebulizers will improve delivery by inducing less shear stress and administration as dry powder appears suitable for delivery of biologics. Other promising strategies include pegylation and development of antibody fragments, while carrier-encapsulated systems currently play no major role in pulmonary delivery of biologics for lung disease. While development of various biologics has been halted or has shown little effects, AIR DNase, alpha1-proteinase inhibitor, recombinant neuraminidase, and heparin are currently being evaluated in phase III trials. Several biologics are being tested for the treatment of coronavirus disease (COVID)-19, and it is expected that these trials will lead to improvements in pulmonary delivery of biologics.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, Graz, Austria; Research Center Pharmaceutical Engineering GmbH, Graz, Austria.
| | - Sharareh Salar-Behzadi
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria; Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, University of Graz, Austria
| |
Collapse
|
15
|
Liu J, Chen SJ, Hsu SW, Zhang J, Li JM, Yang DC, Gu S, Pinkerton KE, Chen CH. MARCKS cooperates with NKAP to activate NF-kB signaling in smoke-related lung cancer. Am J Cancer Res 2021; 11:4122-4136. [PMID: 33754052 PMCID: PMC7977464 DOI: 10.7150/thno.53558] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/19/2021] [Indexed: 12/24/2022] Open
Abstract
Rationale: Cigarette smoking is a major risk factor for lung cancer development and progression; however, the mechanism of how cigarette smoke activates signaling pathways in promoting cancer malignancy remains to be established. Herein, we aimed to determine the contribution of a signaling protein, myristoylated alanine-rich C kinase substrate (MARCKS), in smoke-mediated lung cancer. Methods: We firstly examined the levels of phosphorylated MARCKS (phospho-MARCKS) in smoke-exposed human lung cancer cells and specimens as well as non-human primate airway epithelium. Next, the MARCKS-interactome and its gene networks were identified. We also used genetic and pharmacological approaches to verify the functionality and molecular mechanism of smoke-induced phospho-MARCKS. Results: We observed that MARCKS becomes activated in airway epithelium and lung cancer cells in response to cigarette smoke. Functional proteomics revealed MARCKS protein directly binds to NF-κB-activating protein (NKAP). Following MARCKS phosphorylation at ser159 and ser163, the MARCKS-NKAP interaction was inhibited, leading to the activation of NF-κB signaling. In a screen of two cohorts of lung cancer patients, we confirmed that phospho-MARCKS is positively correlated with phospho-NF-κB (phospho-p65), and poor survival. Surprisingly, smoke-induced phospho-MARCKS upregulated the expression of pro-inflammatory cytokines, epithelial-mesenchymal transition, and stem-like properties. Conversely, targeting of MARCKS phosphorylation with MPS peptide, a specific MARCKS phosphorylation inhibitor, suppressed smoke-mediated NF-κB signaling activity, pro-inflammatory cytokines expression, aggressiveness and stemness of lung cancer cells. Conclusion: Our results suggest that phospho-MARCKS is a novel NF-kB activator in smoke-mediated lung cancer progression and provide a promising molecular model for developing new anticancer strategies.
Collapse
|
16
|
Emerging mechanisms to modulate VWF release from endothelial cells. Int J Biochem Cell Biol 2020; 131:105900. [PMID: 33301925 DOI: 10.1016/j.biocel.2020.105900] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/13/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023]
Abstract
Agonist-mediated exocytosis of Weibel-Palade bodies underpins the endothelium's ability to respond to injury or infection. Much of this important response is mediated by the major constituent of Weibel-Palade bodies: the ultra-large glycoprotein von Willebrand factor. Upon regulated WPB exocytosis, von Willebrand factor multimers unfurl into long, platelet-catching 'strings' which instigate the pro-haemostatic response. Accordingly, excessive levels of VWF are associated with thrombotic pathologies, including myocardial infarction and ischaemic stroke. Failure to appropriately cleave von Willebrand Factor strings results in thrombotic thrombocytopenic purpura, a life-threatening pathology characterised by tissue ischaemia and multiple microvascular occlusions. Historically, treatment of thrombotic thrombocytopenic purpura has relied heavily on plasma exchange therapy. However, the demonstrated efficacy of Rituximab and Caplacizumab in the treatment of acquired thrombotic thrombocytopenic purpura highlights how insights into pathophysiology can improve treatment options for von Willebrand factor-related disease. Directly limiting von Willebrand factor release from Weibel-Palade bodies has the potential as a therapeutic for cardiovascular disease. Cell biologists aim to map the WPB biogenesis and secretory pathways in order to find novel ways to control von Willebrand factor release. Emerging paradigms include the modulation of Weibel-Palade body size, trafficking and mechanism of fusion. This review focuses on the promise, progress and challenges of targeting Weibel-Palade bodies as a means to inhibit von Willebrand factor release from endothelial cells.
Collapse
|
17
|
Beisang DJ, Smith K, Yang L, Benyumov A, Gilbertsen A, Herrera J, Lock E, Racila E, Forster C, Sandri BJ, Henke CA, Bitterman PB. Single-cell RNA sequencing reveals that lung mesenchymal progenitor cells in IPF exhibit pathological features early in their differentiation trajectory. Sci Rep 2020; 10:11162. [PMID: 32636398 PMCID: PMC7341888 DOI: 10.1038/s41598-020-66630-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
In Idiopathic Pulmonary Fibrosis (IPF), there is unrelenting scarring of the lung mediated by pathological mesenchymal progenitor cells (MPCs) that manifest autonomous fibrogenicity in xenograft models. To determine where along their differentiation trajectory IPF MPCs acquire fibrogenic properties, we analyzed the transcriptome of 335 MPCs isolated from the lungs of 3 control and 3 IPF patients at the single-cell level. Using transcriptional entropy as a metric for differentiated state, we found that the least differentiated IPF MPCs displayed the largest differences in their transcriptional profile compared to control MPCs. To validate entropy as a surrogate for differentiated state functionally, we identified increased CD44 as a characteristic of the most entropic IPF MPCs. Using FACS to stratify IPF MPCs based on CD44 expression, we determined that CD44hi IPF MPCs manifested an increased capacity for anchorage-independent colony formation compared to CD44lo IPF MPCs. To validate our analysis morphologically, we used two differentially expressed genes distinguishing IPF MPCs from control (CD44, cell surface; and MARCKS, intracellular). In IPF lung tissue, pathological MPCs resided in the highly cellular perimeter region of the fibroblastic focus. Our data support the concept that IPF fibroblasts acquire a cell-autonomous pathological phenotype early in their differentiation trajectory.
Collapse
Affiliation(s)
- Daniel J Beisang
- University of Minnesota, Department of Pediatrics, Division of Pediatric Pulmonology, Minneapolis, USA
| | - Karen Smith
- University of Minnesota, Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Minneapolis, USA
| | - Libang Yang
- University of Minnesota, Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Minneapolis, USA
| | - Alexey Benyumov
- University of Minnesota, Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Minneapolis, USA
| | - Adam Gilbertsen
- University of Minnesota, Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Minneapolis, USA
| | - Jeremy Herrera
- University of Manchester, School of Biological Sciences, Division of Cell Matrix Biology & Regenerative Medicine, Manchester, United Kingdom
| | - Eric Lock
- University of Minnesota, School of Public Health, Division of Biostatistics, Minneapolis, USA
| | - Emilian Racila
- University of Minnesota, Department of Laboratory Medicine and Pathology, Minneapolis, USA
| | - Colleen Forster
- University of Minnesota, Clinical and Translational Science Institute, Minneapolis, USA
| | - Brian J Sandri
- University of Minnesota, Department of Pediatrics, Division of Neonatology, Minneapolis, USA
| | - Craig A Henke
- University of Minnesota, Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Minneapolis, USA
| | - Peter B Bitterman
- University of Minnesota, Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Minneapolis, USA.
| |
Collapse
|
18
|
Miklavc P, Frick M. Actin and Myosin in Non-Neuronal Exocytosis. Cells 2020; 9:cells9061455. [PMID: 32545391 PMCID: PMC7348895 DOI: 10.3390/cells9061455] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 12/18/2022] Open
Abstract
Cellular secretion depends on exocytosis of secretory vesicles and discharge of vesicle contents. Actin and myosin are essential for pre-fusion and post-fusion stages of exocytosis. Secretory vesicles depend on actin for transport to and attachment at the cell cortex during the pre-fusion phase. Actin coats on fused vesicles contribute to stabilization of large vesicles, active vesicle contraction and/or retrieval of excess membrane during the post-fusion phase. Myosin molecular motors complement the role of actin. Myosin V is required for vesicle trafficking and attachment to cortical actin. Myosin I and II members engage in local remodeling of cortical actin to allow vesicles to get access to the plasma membrane for membrane fusion. Myosins stabilize open fusion pores and contribute to anchoring and contraction of actin coats to facilitate vesicle content release. Actin and myosin function in secretion is regulated by a plethora of interacting regulatory lipids and proteins. Some of these processes have been first described in non-neuronal cells and reflect adaptations to exocytosis of large secretory vesicles and/or secretion of bulky vesicle cargoes. Here we collate the current knowledge and highlight the role of actomyosin during distinct phases of exocytosis in an attempt to identify unifying molecular mechanisms in non-neuronal secretory cells.
Collapse
Affiliation(s)
- Pika Miklavc
- School of Science, Engineering & Environment, University of Salford, Manchester M5 4WT, UK
- Correspondence: (P.M.); (M.F.); Tel.: +44-0161-295-3395 (P.M.); +49-731-500-23115 (M.F.); Fax: +49-731-500-23242 (M.F.)
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Correspondence: (P.M.); (M.F.); Tel.: +44-0161-295-3395 (P.M.); +49-731-500-23115 (M.F.); Fax: +49-731-500-23242 (M.F.)
| |
Collapse
|