1
|
Wu Y, Hu S, Mao Q, Shi D, Liu X, Liu B, Hua L, Hu G, Li C, Duan H, Tang B. The impact of three thioxothiazolidin compounds on trehalase activity and development of Spodoptera frugiperda larvae. PeerJ 2024; 12:e18233. [PMID: 39399419 PMCID: PMC11470766 DOI: 10.7717/peerj.18233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024] Open
Abstract
Trehalases (TREs), serving as crucial enzymes regulating trehalose and chitin metabolism in insects, represent prime targets for pest control strategies. We investigated the impact of three thioxothiazolidin compounds (1G, 2G, and 11G) on TRE activity and summarized their effects on the growth and development of Spodoptera frugiperda (Lepidoptera, Noctuidae). The experimental larvae of S. frugiperda were injected with the three thioxothiazolidin compounds (1G, 2G, and 11G), while the control group received an equivalent volume of 2% DMSO as a control. All three compounds had a strong effect on inhibiting TRE activity, significantly prolonging the pre-pupal development stage. However, compared with the 11G-treated group, the survival rate of larvae treated with 1G and 2G was significantly reduced by 31.11% and 27.78% respectively, while the occurrence of phenotypic abnormalities related to growth and development was higher. These results manifest that only the TRE inhibitors, 1G and 2G, modulate trehalose and chitin metabolism pathways of larvae, ultimately resulting in the failure molting and reduction of survival rates. Consequently, the thioxothiazolidin compounds, 1G and 2G, hold potential as environmentally friendly insecticides.
Collapse
Affiliation(s)
- Yan Wu
- Key Laboratory of Surveillance and Management of Invasive Alien Species, Guizhou Education Department, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, China
| | - Shangrong Hu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Qixuan Mao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Dongmei Shi
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Xiangyu Liu
- Key Laboratory of Surveillance and Management of Invasive Alien Species, Guizhou Education Department, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, China
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Busheng Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Liyuhan Hua
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Gao Hu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Can Li
- Key Laboratory of Surveillance and Management of Invasive Alien Species, Guizhou Education Department, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, China
| | - Hongxia Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Bin Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
2
|
Ji X, Zhang J, Tang X, Chen HZ. What we talk about when we talk about spinal cord aging. Cell Metab 2024; 36:7-9. [PMID: 38171339 DOI: 10.1016/j.cmet.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
Abstract
Spinal cord-associated disorders are common in the elderly population; however, the mechanisms underlying spinal aging remain elusive. In a recent Nature paper, Sun et al. systemically analyzed aged spines in nonhuman primates and identified a new cluster of CHIT1-positive microglia that drives motor neuron senescence and subsequent spine aging.
Collapse
Affiliation(s)
- Xianhong Ji
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | - Jiajia Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, No.17 People's South Road, Chengdu, Sichuan 610041, China; National Health Commission Key Laboratory of Chronobiology, Sichuan University, No.17 People's South Road, Chengdu, Sichuan 610041, China; Development and Related Diseases of Women and Children, Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, No.17 People's South Road, Chengdu, Sichuan 610041, China; Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou 310013, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, No.17 People's South Road, Chengdu, Sichuan 610041, China; National Health Commission Key Laboratory of Chronobiology, Sichuan University, No.17 People's South Road, Chengdu, Sichuan 610041, China; Development and Related Diseases of Women and Children, Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, No.17 People's South Road, Chengdu, Sichuan 610041, China.
| | - Hou-Zao Chen
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China; Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, 5 Dong Dan San Tiao, Beijing 100005, China.
| |
Collapse
|
3
|
Han H, Choi YJ, Hong H, Kim CY, Byun MK, Cho JH, Lee JH, Park JW, Doherty TA, Park HJ. Effects of chitinase-1 inhibitor in obesity-induced and -aggravated asthma in a murine model. Life Sci 2023; 334:122163. [PMID: 37890698 PMCID: PMC12034102 DOI: 10.1016/j.lfs.2023.122163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023]
Abstract
AIMS Despite recent investigations on the role of chitinase in asthma, its role in obesity-induced asthma has not been evaluated. Therefore, we investigated the roles of chitin, chitinase-1, and a chitinase-1 inhibitor (compound X, CPX) in a murine model. MAIN METHODS We assigned C57BL/6 mice to the ovalbumin (OVA) model or obesity model group. In the OVA model, mice received intraperitoneal OVA twice within a 2-week interval and intranasal OVA for 3 consecutive days. Additionally, chitin was intranasally administered for 3 consecutive days, and CPX was intraperitoneally injected three times over 5 days. In the obesity model, a high-fat diet (HFD) was maintained for 13 weeks, and CPX was intraperitoneally injected eight times over 4 weeks. KEY FINDINGS In the OVA model, chitin aggravated OVA-induced airway hyper-responsiveness (AHR), increased bronchoalveolar lavage fluid (BALF) cell proliferation, increased fibrosis, and increased the levels of various inflammatory cytokines (including chitinase-1, TGF-β, TNF-α, IL-1 β, IL-6, IL-4, and IL-13). CPX treatment significantly ameliorated these effects. In the obesity model, HFD significantly increased AHR, BALF cell proliferation, fibrosis, and the levels of various inflammatory cytokines. Particularly, compared to the control group, the mRNA expression of chitinase, chitinase-like molecules, and other molecules associated with inflammation and the immune system was significantly upregulated in the HFD and HFD/OVA groups. Immunofluorescence analysis also showed increased chitinase-1 expression in these groups. CPX significantly ameliorated all these effects in this model. SIGNIFICANCE This study showed that CPX can be an effective therapeutic agent in asthma, especially, obesity-induced and -aggravated asthma to protect against the progression to airway remodeling and fibrosis.
Collapse
Affiliation(s)
- Heejae Han
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Yong Jun Choi
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Hyerim Hong
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Chi Young Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Min Kwang Byun
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Jae Hwa Cho
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Jae-Hyun Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Institute of Allergy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung-Won Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Institute of Allergy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Taylor A Doherty
- Section of Allergy and Immunology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Hye Jung Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Section of Allergy and Immunology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
4
|
Wu T, Wu S, Jiao H, Feng J, Zeng X. Overexpression of hsa_circ_0001861 inhibits pulmonary fibrosis through targeting miR-296-5p/BCL-2 binding component 3 axis. Eur J Histochem 2023; 67:3839. [PMID: 37781863 PMCID: PMC10614724 DOI: 10.4081/ejh.2023.3839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
Pulmonary fibrosis is a progressive lung disorder. Evidence has shown that hsa_circular (circ)RNA_0001861 is dysregulated in pulmonary fibrosis. However, the detailed function of hsa_circRNA_0001861 in pulmonary fibrosis remains unexplored. To investigate the function of hsa_circRNA_0001861 in pulmonary fibrosis, human pulmonary fibroblasts in vitro were used, and cell counting kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EdU) staining were performed to assess cell viability and proliferation, respectively. Western blot analysis and reverse transcription-quantitative PCR (RT-qPCR) were used to evaluate protein and mRNA levels. Meanwhile, the relationship among hsa_circRNA_0001861, miR-296-5p and BCL-2 binding component 3 (BBC3) was investigated by RNA pull-down assays. Furthermore, an in vivo model of lung fibrosis was constructed to assess the function of hsa_circRNA_0001861 in lung fibrosis. The data revealed that TGF‑β1 significantly increased the proliferation of pulmonary fibroblasts, while this phenomenon was markedly abolished by hsa_circRNA_0001861 overexpression. hsa_circRNA_0001861 overexpression markedly inhibited TGF‑β1‑induced fibrosis in pulmonary fibroblasts through the mediation of α-smooth muscle actin, E-cadherin, collagen III and fibronectin 1. Meanwhile, hsa_circRNA_0001861 could bind with miR-296-5p, and BBC3 was identified to be the downstream mRNA of miR-296-5p. In addition, the upregulation of hsa_circRNA_0001861 clearly reversed TGF‑β1‑induced fibrosis and proliferation in pulmonary fibroblasts through the upregulation of BBC3. Furthermore, hsa_circRNA_0001861 upregulation markedly alleviated pulmonary fibrosis in vivo. Hsa_circRNA_0001861 upregulation attenuated pulmonary fibrosis by modulating the miR-296-5p/BBC3 axis. Hence, the present study may provide some insights for the discovery of new methods against pulmonary fibrosis.
Collapse
Affiliation(s)
- Tao Wu
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Hunan Provincial College of Traditional Chinese Medicine, Zhuzhou, Hunan.
| | - Shikui Wu
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Hunan Provincial College of Traditional Chinese Medicine, Zhuzhou, Hunan.
| | - Hailu Jiao
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Hunan Provincial College of Traditional Chinese Medicine, Zhuzhou, Hunan.
| | - Jun Feng
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Hunan Provincial College of Traditional Chinese Medicine, Zhuzhou, Hunan.
| | - Xiang Zeng
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Hunan Provincial College of Traditional Chinese Medicine, Zhuzhou, Hunan.
| |
Collapse
|
5
|
Choi YJ, Han H, Lee JH, Lee J, Kim CY, Byun MK, Cho JH, Park HJ. Particulate matter 10-induced airway inflammation and fibrosis can be regulated by chitinase-1 suppression. Respir Res 2023; 24:85. [PMID: 36934237 PMCID: PMC10024831 DOI: 10.1186/s12931-023-02392-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/09/2023] [Indexed: 03/20/2023] Open
Abstract
BACKGROUND Particulate matter10 (PM10) can induce airway inflammation and fibrosis. Recently, chitinase-1 has been shown to play key roles in inflammation and fibrosis. We aimed to investigate the effects of chitinase-1 inhibitor in PM10-treated murine mice models. METHODS In female BALB/c mice, PM10 was intranasally administered six times over 3 weeks, and ovalbumin (OVA) was intraperitoneally injected and then intranasally administered. Chitinase-1 inhibitor (CPX) 6 times over 3 weeks or dexamethasone 3 times in the last week were intraperitoneally administered. Two days after the last challenges, mice were euthanized. Messenger RNA sequencing using lung homogenates was conducted to evaluate signaling pathways. RESULTS PM10 and/or OVA-induced airway inflammation and fibrosis murine models were established. CPX and dexamethasone ameliorated PM10 or PM10/OVA-induced airway hyper-responsiveness, airway inflammation, and fibrosis. CPX and dexamethasone also reduced levels of various inflammatory markers in lung homogenates. PM10 and OVA also induced changes in mRNA expression across an extreme range of genes. CPX and dexamethasone decreased levels of mRNA expression especially associated with inflammation and immune regulation. They also significantly regulated asthma and asthma-related pathways, including the JACK-STAT signaling pathway. CONCLUSIONS Chitinase-1 suppression by CPX can regulate PM10- and OVA-induced and aggravated airway inflammation and fibrosis via an asthma-related signaling pathway.
Collapse
Affiliation(s)
- Yong Jun Choi
- grid.459553.b0000 0004 0647 8021Division of Pulmonology, Department of Internal Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, 211, Eonju-Ro, Gangnam-Gu, Seoul, 06273 Korea
| | - Heejae Han
- grid.459553.b0000 0004 0647 8021Division of Pulmonology, Department of Internal Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, 211, Eonju-Ro, Gangnam-Gu, Seoul, 06273 Korea
| | - Jae-Hyun Lee
- grid.459553.b0000 0004 0647 8021Division of Pulmonology, Department of Internal Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, 211, Eonju-Ro, Gangnam-Gu, Seoul, 06273 Korea
| | - Jaeuk Lee
- grid.459553.b0000 0004 0647 8021Division of Pulmonology, Department of Internal Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, 211, Eonju-Ro, Gangnam-Gu, Seoul, 06273 Korea
| | - Chi Young Kim
- grid.459553.b0000 0004 0647 8021Division of Pulmonology, Department of Internal Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, 211, Eonju-Ro, Gangnam-Gu, Seoul, 06273 Korea
| | - Min Kwang Byun
- grid.459553.b0000 0004 0647 8021Division of Pulmonology, Department of Internal Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, 211, Eonju-Ro, Gangnam-Gu, Seoul, 06273 Korea
| | - Jae Hwa Cho
- grid.459553.b0000 0004 0647 8021Division of Pulmonology, Department of Internal Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, 211, Eonju-Ro, Gangnam-Gu, Seoul, 06273 Korea
| | - Hye Jung Park
- grid.459553.b0000 0004 0647 8021Division of Pulmonology, Department of Internal Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, 211, Eonju-Ro, Gangnam-Gu, Seoul, 06273 Korea
| |
Collapse
|
6
|
Sklepkiewicz P, Dymek B, Mlacki M, Zagozdzon A, Salamon M, Siwińska AM, Mazurkiewicz MP, de Souza Xavier Costa N, Mazur M, Mauad T, Gołębiowski A, Dzwonek K, Gołąb J, Zasłona Z. Inhibition of Macrophage-Specific CHIT1 as an Approach to Treat Airway Remodeling in Severe Asthma. Int J Mol Sci 2023; 24:ijms24054719. [PMID: 36902148 PMCID: PMC10003607 DOI: 10.3390/ijms24054719] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/15/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
Chitotriosidase (CHIT1) is an enzyme produced by macrophages that regulates their differentiation and polarization. Lung macrophages have been implicated in asthma development; therefore, we asked whether pharmacological inhibition of macrophage-specific CHIT1 would have beneficial effects in asthma, as it has been shown previously in other lung disorders. CHIT1 expression was evaluated in the lung tissues of deceased individuals with severe, uncontrolled, steroid-naïve asthma. OATD-01, a chitinase inhibitor, was tested in a 7-week-long house dust mite (HDM) murine model of chronic asthma characterized by accumulation of CHIT1-expressing macrophages. CHIT1 is a dominant chitinase activated in fibrotic areas of the lungs of individuals with fatal asthma. OATD-01 given in a therapeutic treatment regimen inhibited both inflammatory and airway remodeling features of asthma in the HDM model. These changes were accompanied by a significant and dose-dependent decrease in chitinolytic activity in BAL fluid and plasma, confirming in vivo target engagement. Both IL-13 expression and TGFβ1 levels in BAL fluid were decreased and a significant reduction in subepithelial airway fibrosis and airway wall thickness was observed. These results suggest that pharmacological chitinase inhibition offers protection against the development of fibrotic airway remodeling in severe asthma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Natalia de Souza Xavier Costa
- Department of Pathology, Faculty of Medicine, University of São Paulo, Avenida Dr. Arnaldo, 455, Room 1150, Cerqueira Cesar, São Paulo 01246-903, Brazil
| | | | - Thais Mauad
- Department of Pathology, Faculty of Medicine, University of São Paulo, Avenida Dr. Arnaldo, 455, Room 1150, Cerqueira Cesar, São Paulo 01246-903, Brazil
| | | | | | - Jakub Gołąb
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | | |
Collapse
|