1
|
Microalgal Systems for Wastewater Treatment: Technological Trends and Challenges towards Waste Recovery. ENERGIES 2021. [DOI: 10.3390/en14238112] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Wastewater (WW) treatment using microalgae has become a growing trend due the economic and environmental benefits of the process. As microalgae need CO2, nitrogen, and phosphorus to grow, they remove these potential pollutants from wastewaters, making them able to replace energetically expensive treatment steps in conventional WW treatment. Unlike traditional sludge, biomass can be used to produce biofuels, biofertilizers, high value chemicals, and even next-generation growth media for “organically” grown microalgal biomass targeting zero-waste policies and contributing to a more sustainable circular bioeconomy. The main challenge in this technology is the techno-economic feasibility of the system. Alternatives such as the isolation of novel strains, the use of native consortia, and the design of new bioreactors have been studied to overcome this and aid the scale-up of microalgal systems. This review focuses on the treatment of urban, industrial, and agricultural wastewaters by microalgae and their ability to not only remove, but also promote the reuse, of those pollutants. Opportunities and future prospects are discussed, including the upgrading of the produced biomass into valuable compounds, mainly biofuels.
Collapse
|
2
|
Emparan Q, Harun R, Sing Jye Y. Efficiency of pollutants removal in treated palm oil mill effluent (TPOME) using different concentrations of sodium alginate-immobilized Nannochloropsis sp. cells. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 23:454-461. [PMID: 32976718 DOI: 10.1080/15226514.2020.1825327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Palm oil mill effluent (POME) has high chemical oxygen demand (COD), thus requires effective treatments to environmentally benign levels before discharge. In this study, immobilized microalgae cells are used for removing pollutants in treated palm oil mill effluent (TPOME). Different ratios of microalgae beads to TPOME concentration were examined at 1:2.5, 1:5, and 1:10. The biomass concentration and COD removal were measured through a standard method. The color of the cultivated microalgae beads changed from light green to darker green after the POME treatment for 9 days, hence demonstrating that microalgae cells were successfully grown inside the beads with pH up to 9.84. The immobilized cells cultivated in the POME at 1:10 achieved a higher biomass concentration of 1.268 g/L and a COD removal percentage of 72% than other treatment ratios. The increment of the ratio of microalgae cells beads to POME concentration did not cause any improvement in COD removal efficiency. This was due to the inhibitory effect of self-shading resulting in the slow growth rate of microalgae cells which responsible for low COD removal. Therefore, this system could be a viable technology for simultaneous biomass production and POME treatment. This will contribute to research efforts toward the development of new and improved technologies in treating POME.
Collapse
Affiliation(s)
- Quin Emparan
- Faculty of Engineering, Department of Chemical and Environmental Engineering, Universiti Putra Malaysia, Serdang, Malaysia
| | - Razif Harun
- Faculty of Engineering, Department of Chemical and Environmental Engineering, Universiti Putra Malaysia, Serdang, Malaysia
| | - Yew Sing Jye
- Faculty of Engineering, Department of Chemical and Environmental Engineering, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
3
|
Chong WC, Mohammad AW, Mahmoudi E, Chung YT, Kamarudin KF, Takriff MS. Nanohybrid membrane in algal-membrane photoreactor: Microalgae cultivation and wastewater polishing. Chin J Chem Eng 2019. [DOI: 10.1016/j.cjche.2019.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
4
|
Microalgae biorefineries: The Brazilian scenario in perspective. N Biotechnol 2017; 39:90-98. [DOI: 10.1016/j.nbt.2016.04.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/04/2016] [Accepted: 04/07/2016] [Indexed: 11/19/2022]
|
5
|
Hariz HB, Takriff MS. Palm oil mill effluent treatment and CO 2 sequestration by using microalgae-sustainable strategies for environmental protection. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:20209-20240. [PMID: 28791508 DOI: 10.1007/s11356-017-9742-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 07/10/2017] [Indexed: 06/07/2023]
Abstract
In this era of globalization, various products and technologies are being developed by the industries. While resources and energy are utilized from processes, wastes are being excreted through water streams, air, and ground. Without realizing it, environmental pollutions increase as the country develops. Effective technology is desired to create green factories that are able to overcome these issues. Wastewater is classified as the water coming from domestic or industrial sources. Wastewater treatment includes physical, chemical, and biological treatment processes. Aerobic and anaerobic processes are utilized in biological treatment approach. However, the current biological approaches emit greenhouse gases (GHGs), methane, and carbon dioxide that contribute to global warming. Microalgae can be the alternative to treating wastewater as it is able to consume nutrients from wastewater loading and fix CO2 as it undergoes photosynthesis. The utilization of microalgae in the system will directly reduce GHG emissions with low operating cost within a short period of time. The aim of this review is to discuss the uses of native microalgae species in palm oil mill effluent (POME) and flue gas remediation. In addition, the discussion on the optimal microalgae cultivation parameter selection is included as this is significant for effective microalgae-based treatment operations.
Collapse
Affiliation(s)
- Harizah Bajunaid Hariz
- Faculty of Chemical and Process Engineering, The National University of Malaysia, 43600, Bangi, Selangor, Malaysia.
| | - Mohd Sobri Takriff
- Research Center for Sustainable Process Technology (CESPRO), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
6
|
Atiku H, Mohamed RMSR, Al-Gheethi AA, Wurochekke AA, Kassim AHM. Harvesting of microalgae biomass from the phycoremediation process of greywater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:24624-24641. [PMID: 27544526 DOI: 10.1007/s11356-016-7456-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 08/10/2016] [Indexed: 06/06/2023]
Abstract
The wide application of microalgae in the field of wastewater treatment and bioenergy source has improved research studies in the past years. Microalgae represent a good source of biomass and bio-products which are used in different medical and industrial activities, among them the production of high-valued products and biofuels. The present review focused on greywater treatment through the application of phycoremediation technique with microalgae and presented recent advances in technologies used for harvesting the microalgae biomass. The advantages and disadvantages of each method are discussed. The microbiological aspects of production, harvesting and utilization of microalgae biomass are viewed.
Collapse
Affiliation(s)
- Hauwa Atiku
- Micro-pollution Research Centre (MPRC), Department of Water and Environmental Engineering, Faculty of Civil & Environmental Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia
| | - R M S R Mohamed
- Micro-pollution Research Centre (MPRC), Department of Water and Environmental Engineering, Faculty of Civil & Environmental Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia.
| | - A A Al-Gheethi
- Micro-pollution Research Centre (MPRC), Department of Water and Environmental Engineering, Faculty of Civil & Environmental Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia
| | - A A Wurochekke
- Micro-pollution Research Centre (MPRC), Department of Water and Environmental Engineering, Faculty of Civil & Environmental Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia
| | - Amir Hashim M Kassim
- Micro-pollution Research Centre (MPRC), Department of Water and Environmental Engineering, Faculty of Civil & Environmental Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia
| |
Collapse
|
7
|
Marjakangas JM, Chen CY, Lakaniemi AM, Puhakka JA, Whang LM, Chang JS. Selecting an indigenous microalgal strain for lipid production in anaerobically treated piggery wastewater. BIORESOURCE TECHNOLOGY 2015; 191:369-376. [PMID: 25746595 DOI: 10.1016/j.biortech.2015.02.075] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/17/2015] [Accepted: 02/19/2015] [Indexed: 06/04/2023]
Abstract
The aim of this study was to select a potential microalgal strain for lipid production and to examine the suitability of anaerobically treated piggery wastewater as a nutrient source for production of lipid-rich biomass with the selected microalga. Biomass and lipid productivity of three microalgal strains (Chlorella sorokiniana CY1, Chlorella vulgaris CY5 and Chlamydomonas sp. JSC-04) were compared by using different media, nitrogen sources, and nitrogen concentrations. The highest lipid content and productivity (62.5 wt%, 162 mg/L/d) were obtained with C. vulgaris with BG-11 with 62 mg N/L. Secondly, C. vulgaris was cultivated in sterilized, diluted (1-20×), anaerobically treated piggery wastewater. Biomass production decreased and lipid content increased, when wastewater was more diluted. The highest lipid content of 54.7 wt% was obtained with 20× dilution, while the highest lipid productivity of 100.7 mg/L/d with 5× dilution. Piggery wastewater is a promising resource for mass production of oleaginous microalgal biomass.
Collapse
Affiliation(s)
- Jatta M Marjakangas
- Department of Chemistry and Bioengineering, Tampere University of Technology, Tampere 33101, Finland.
| | - Chun-Yen Chen
- Center of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Aino-Maija Lakaniemi
- Department of Chemistry and Bioengineering, Tampere University of Technology, Tampere 33101, Finland
| | - Jaakko A Puhakka
- Department of Chemistry and Bioengineering, Tampere University of Technology, Tampere 33101, Finland
| | - Liang-Ming Whang
- Department of Environmental Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Jo-Shu Chang
- Center of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
8
|
Ahmad A, Shah SMU, Othman MF, Abdullah MA. Enhanced palm oil mill effluent treatment and biomethane production by co-digestion of oil palm empty fruit bunches withChlorellaSp. CAN J CHEM ENG 2014. [DOI: 10.1002/cjce.22029] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ashfaq Ahmad
- Department of Chemical Engineering; Universiti Teknologi PETRONAS; Bandar Seri Iskandar 31750 Tronoh Perak Malaysia
| | - Syed Muhammad Usman Shah
- Department of Bio Sciences; COMSATS Institute of Information Technology; Park Road, 44000 Islamabad Pakistan
| | - Mohd Fariduddin Othman
- Department of Freshwater Fisheries Research Division; FRI Glami Lemi, Jelebu; 71650 Titi Negeri Sembilan Malaysia
| | - Mohd Azmuddin Abdullah
- Department of Chemical Engineering; Universiti Teknologi PETRONAS; Bandar Seri Iskandar 31750 Tronoh Perak Malaysia
| |
Collapse
|