1
|
Tosaka R, Eguchi T, Ishizuka T, Kawaguchi K, Nagashima T, Nakayama R, Hamada Y. The effects of silk sheets derived from germ-free silkworms on wound healing of full-thickness epithelial defects. Burns 2025; 51:107470. [PMID: 40327970 DOI: 10.1016/j.burns.2025.107470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/24/2025] [Accepted: 03/24/2025] [Indexed: 05/08/2025]
Abstract
Collagen is widely used as a scaffold for full-thickness epithelial defects but has poor biostability and often induces hypertrophic scarring. Silk, especially silk derived from germ-free silkworms (SGFS), has high biocompatibility and controllable durability. Therefore, SGFS is possibly for medicine. Herein, we evaluated the effects of SGFS as a scaffold in the wound healing of full-thickness epithelial defects. Epithelial defects were made in the dorsal skin of C57BL/6 J mice, and an SGFS or a collagen sheet was applied to each defect and compared. On days 1, 3, 7, and 14 after surgery, re-epithelialization, inflammatory responses, and granulation tissue formation of each wound were assessed and compared between the groups. Re-epithelialization was observed in the SGFS group on day 3 but no re-epithelialization occurred in the collagen group. Histopathological examination showed less granulation tissue formation in the SGFS group than in the collagen group. IL-6 expression was significantly higher in the SGFS group than in the collagen group on day 1. TGF-β1 expression in the SGFS group was significantly lower than that in the collagen sheet group on days 7 and 14. Based on these results, SGFS promoted re-epithelialization and reduced hypertrophic scarring in the wound healing process compared with collagen.
Collapse
Affiliation(s)
- Ryo Tosaka
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| | - Takanori Eguchi
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| | - Tadatoshi Ishizuka
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| | - Koji Kawaguchi
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| | - Takayuki Nagashima
- Department of Human Animal Relations, Yamazaki University of Animal Health Technology, 4-7-2, Minami-Osawa, Hachioji-shi, Tokyo 192-0364, Japan.
| | - Ryoko Nakayama
- Department of Pathology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| | - Yoshiki Hamada
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| |
Collapse
|
2
|
Laomeephol C, Punjataewakupt A, Kanchanasin P, Phongsopitanun W, Ferreira H, Neves NM, Aramwit P. Silver Cross-Linking of Silk Sericin-Based Hydrogels for Improved Stability and Broad-Spectrum Antimicrobial Properties. ACS APPLIED BIO MATERIALS 2025; 8:2312-2322. [PMID: 39939119 PMCID: PMC11921025 DOI: 10.1021/acsabm.4c01801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/14/2025]
Abstract
Silk sericin (SS), a biocompatible protein derived from silkworms, exhibits valuable properties for medicinal applications, including antioxidant activity and cell growth support. However, their rapid degradation limits their practical use. This study introduces silver ions (Ag+) as a dual-function cross-linking agent to enhance the structural and functional properties of SS-based hydrogels. The incorporation of Ag+ stabilized the hydrogel network through dityrosine cross-links and coordination bonds with SS amino acid side chains, significantly improving hydrolytic and enzymatic resistance. Hydrogels cross-linked with 1 mM Ag+ demonstrated optimal performance, retaining excellent structural integrity while preserving the cytocompatibility and antioxidant activity of SS. These hydrogels also exhibited broad-spectrum antimicrobial activity against bacteria (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and methicillin-resistant S. aureus), fungus (Aspergillus niger), and yeast (Candida albicans). Higher Ag+ concentrations, however, increased the cytotoxicity without enhancing the antimicrobial efficacy. This study highlights the potential of Ag+ cross-linked SS-based hydrogels as scalable, multifunctional 3D structures for antimicrobial applications.
Collapse
Affiliation(s)
- Chavee Laomeephol
- Department
of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
- Center
of Excellence in Biomaterial Engineering in Medical and Health, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Apirujee Punjataewakupt
- Department
of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Pawina Kanchanasin
- Department
of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Wongsakorn Phongsopitanun
- Department
of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Helena Ferreira
- 3B’s
Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables
and Biomimetics, University of Minho, Headquarters
of the European Institute of Excellence on Tissue Engineering and
Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Rua Ave 1, Edificio
1 (Sede), 4805-694 Barco, Guimarães, Portugal
- ICVS/3B’s,
PT Government Associate Laboratory, 4805-694 Braga, Guimarães, Portugal
| | - Nuno M. Neves
- 3B’s
Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables
and Biomimetics, University of Minho, Headquarters
of the European Institute of Excellence on Tissue Engineering and
Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Rua Ave 1, Edificio
1 (Sede), 4805-694 Barco, Guimarães, Portugal
- ICVS/3B’s,
PT Government Associate Laboratory, 4805-694 Braga, Guimarães, Portugal
| | - Pornanong Aramwit
- Department
of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
- The Academy
of Science, The Royal Society of Thailand, Dusit, Bangkok 10330, Thailand
- Faculty
of
Pharmacy, Silpakorn University, Ratchamankanai, Phra Pathom Chedi,
Mueang District, Nakhon Pathom 73000, Thailand
| |
Collapse
|
3
|
Tian Z, Chen H, Zhao P. Compliant immune response of silk-based biomaterials broadens application in wound treatment. Front Pharmacol 2025; 16:1548837. [PMID: 40012629 PMCID: PMC11861559 DOI: 10.3389/fphar.2025.1548837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 01/23/2025] [Indexed: 02/28/2025] Open
Abstract
The unique properties of sericin and silk fibroin (SF) favor their widespread application in biopharmaceuticals, particularly in wound treatment and bone repair. The immune response directly influences wound healing cycle, and the extensive immunomodulatory functions of silk-based nanoparticles and hydrogels have attracted wide attention. However, different silk-processing methods may trigger intense immune system resistance after implantation into the body. In this review, we elaborate on the inflammation and immune responses caused by the implantation of sericin and SF and also explore their anti-inflammatory properties and immune regulatory functions. More importantly, we describe the latest research progress in enhancing the immunotherapeutic and anti-inflammatory effects of composite materials prepared from silk from a mechanistic perspective. This review will provide a useful reference for using the correct processes to exploit silk-based biomaterials in different wound treatments.
Collapse
Affiliation(s)
- Zhiqiang Tian
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing, China
| | - Hong Chen
- Department of Orthopedics, 903 Hospital of Joint Logistic Support Force of The People’s Liberation Army, Hangzhou, China
| | - Ping Zhao
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing, China
| |
Collapse
|
4
|
Golshan M, Dortaj H, Rajabi M, Omidi Z, Golshan M, Pourentezari M, Rajabi A. Animal origins free products in cell culture media: a new frontier. Cytotechnology 2025; 77:12. [PMID: 39654546 PMCID: PMC11625046 DOI: 10.1007/s10616-024-00666-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/02/2024] [Indexed: 12/12/2024] Open
Abstract
Despite the importance of finding replacements for fetal bovine serum (FBS), very few studies have focused on this subject. Historically, the use of animals and their derivatives in growth, reproduction, and physiological studies has raised several concerns. The supplementation of culture media with FBS, also known as fetal calf serum, continues to be widespread, despite its limitations in quality, reproducibility, and implications for animal welfare. Moreover, the presence of counterfeit and illegal products can adversely affect cell cultures and treatments, prompting the search for alternative solutions. To reduce reliance on FBS, various substitutes have been introduced, such as plant-derived proteins, bovine eye fluid, sericin protein, human platelet lysate, and inactivated coelomic fluid, which can provide roles similar to that of FBS. Therefore, it is essential to develop serum-free and animal supplement-free environments suitable for therapeutic and clinical applications, tailored to the specific needs of different cell types. Among the alternatives, plant-based options have gained attention as sustainable and ethical solutions. These include plant-derived peptones from sources like soy and wheat, which are rich in amino acids and peptides essential for mammalian cell growth, as well as plant protein hydrolysates from beans and peas that serve as sources of amino acids and growth factors. Plant extracts, especially from soy and various seeds, contain necessary proteins and growth factors, while phytohormones such as cytokinins and plant polysaccharides can help regulate cell growth. While these alternatives offer benefits like reduced costs and lower risks of disease transmission, further research is necessary to refine and align them with the specific requirements of diverse cell types. Graphical abstract
Collapse
Affiliation(s)
- Mahsa Golshan
- Department of Tissue Engineering and Applied Cell Science, Shiraz University of Medical Science, P.O.Box: 7154614111, Shiraz, Iran
| | - Hengameh Dortaj
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Rajabi
- Department of Periodontics, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Omidi
- Department of Cardiovascular Disease, Alzahra Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Golshan
- Shiraz Transplant Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Majid Pourentezari
- Department of Anatomical Sciences, School of Medicine Shahid, Sadoughi University of Medical Sciences, Yazd, Iran
- Yazd Neuroendocrine Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Rajabi
- Department of Tissue Engineering and Applied Cell Science, Shiraz University of Medical Science, P.O.Box: 7154614111, Shiraz, Iran
| |
Collapse
|
5
|
Huang T, Ma Y, Chen H, Chen M, Jia R, Lin L, Fan Y. Preparation of carboxylated-silk nanofibers by the one-pot method of maleic acid hydrolysis. Int J Biol Macromol 2024; 283:137719. [PMID: 39551295 DOI: 10.1016/j.ijbiomac.2024.137719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/06/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
In this study, a maleic acid (MA) hydrolysis one-pot method is proposed to prepare carboxylated silk nanofibers (MA-SNFs). The MA concentration, hydrolysis temperature, and processing time were optimized. Combined with high-pressure homogenization, MA-SNFs with a carboxyl content of 0.617±0.019 mmol/g and length of 333±116 nm were obtained with a yield of 54.90±1.98 % at the optimal conditions: 50 wt% of MA concentration, 110 °C of hydrolysis temperature and 120 min of processing time. The morphology, chemical structure, and crystal structure of raw silk fibroin (SF), acid-hydrolyzed silk fibroin and nanofibers were studied. Furthermore, MA was reused several times with a recovery rate of >94 % and maintained almost the same treatment effect. Finally, due to the presence of carboxyl groups, MA-SNF hydrogels were successfully prepared by an acetic coagulation vapor bath which exhibited excellent self-supporting ability and mechanical properties as well as a more sensitive pH response compared with regenerated silk fibroin solution and other non-carboxylated silk nanofibers. The MA-SNF aerogels had the characteristics of light weight, high strength and porous with cross-linked nanostructures.
Collapse
Affiliation(s)
- Tian Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, Jiangsu, China.
| | - Yue Ma
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, Jiangsu, China.
| | - Huangjingyi Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, Jiangsu, China.
| | - Meijuan Chen
- Jiangsu Opera Medical Supplies Co., LTd, Gaoyou, Jiangsu 225600, China
| | - Ruoxian Jia
- Jiangsu Opera Medical Supplies Co., LTd, Gaoyou, Jiangsu 225600, China
| | - Lin Lin
- Jiangsu Opera Medical Supplies Co., LTd, Gaoyou, Jiangsu 225600, China.
| | - Yimin Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, Jiangsu, China.
| |
Collapse
|
6
|
Majumder N, Bhattacharjee M, Spagnoli GC, Ghosh S. Immune response profiles induced by silk-based biomaterials: a journey from 'immunogenicity' towards 'immuno-compatibility. J Mater Chem B 2024; 12:9508-9523. [PMID: 39225012 DOI: 10.1039/d4tb01231c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Silk is a widely accepted biomaterial for tissue regeneration owing to its tunable biomechanical properties and ease of chemical modification. However, a number of aspects associated with its clinical use are still debated. Indeed, to achieve clinical success, a biomaterial must favorably interact with host tissues without evoking local or systemic immuno-inflammatory responses. The analysis of immune responses associated with silk under in vitro and in vivo conditions provides useful insights, improving the understanding of the functional characteristics of silk biomaterials and further promoting their clinical application. Silk evokes moderate immune responses upon implantation in vivo, depending on the material structure, fabrication method, degradation time, and implantation in soft or hard tissue sites, which rapidly subside within a few days/weeks. In vitro studies indicate that its immune-stimulatory properties are largely due to inherent protein conformation and differential processing parameters. Strategically controlled levels of immune responses in vivo with marginal immunogenicity of silk-based biomaterials may contribute to matrix remodeling and replacement by native tissue matrix around the implanted site. Therefore, immunomodulatory strategies should be developed to promote the use of silk-based biomaterials as promising candidates for numerous clinical applications.
Collapse
Affiliation(s)
- Nilotpal Majumder
- Regenerative Engineering Laboratory, Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
| | - Maumita Bhattacharjee
- Regenerative Engineering Laboratory, Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
| | - Giulio C Spagnoli
- National Research Council Institute of Translational Pharmacology, Rome, Italy
| | - Sourabh Ghosh
- Regenerative Engineering Laboratory, Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
| |
Collapse
|
7
|
Nadeem Butt E, Ali S, Summer M, Siddiqua Khan A, Noor S. Exploring the mechanistic role of silk sericin biological and chemical conjugates for effective acute and chronic wound repair and related complications. Drug Dev Ind Pharm 2024; 50:577-592. [PMID: 39087808 DOI: 10.1080/03639045.2024.2387814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
OBJECTIVE The current review is designed to elaborate and reveal the underlying mechanism of sericin and its conjugates of drug delivery during wounds and wound-related issues. SIGNIFICANCE Wound healing is a combination of different humoral, molecular, and cellular mechanisms. Various natural products exhibit potential in wound healing but among them, sericin, catches much attention of researchers due to its bio-functional properties such as being biodegradable, biocompatible, anti-oxidant, anti-bacterial, photo-protector, anti-inflammatory and moisturizing agent. METHODS AND RESULTS Sericin triggers the activity of anti-inflammatory cytokines which decrease cell adhesion and promote epithelial cell formation. Moreover, sericin enhances the anti-oxidant enzymes in the wounded area which scavenge the toxic consequences of reactive species (ROS). CONCLUSIONS This article highlights the mechanisms of how topical administration of sericin formulations along with 4-hexylresorcinol,\Chitosan\Ag@MOF-GO, polyvinyl alcohol (PVA), platelet lysate and UV photo cross-linked hydrogel sericin methacrylate which recruits a large number of cytokines on wounded area that stimulate fibroblasts and keratinocyte production as well as collagen deposition that led to early wound contraction. It also reviews the different sericin-based nanoparticles that play a significant role in rapid wound healing.
Collapse
Affiliation(s)
- Esham Nadeem Butt
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Ayesha Siddiqua Khan
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Shehzeen Noor
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| |
Collapse
|
8
|
Wang J, Liu H, Shi X, Qin S, Liu J, Lv Q, Liu J, Li Q, Wang Z, Wang L. Development and Application of an Advanced Biomedical Material-Silk Sericin. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311593. [PMID: 38386199 DOI: 10.1002/adma.202311593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/18/2024] [Indexed: 02/23/2024]
Abstract
Sericin, a protein derived from silkworm cocoons, is considered a waste product derived from the silk industry for thousands of years due to a lack of understanding of its properties. However, in recent decades, a range of exciting properties of sericin are studied and uncovered, including cytocompatibility, low-immunogenicity, photo-luminescence, antioxidant properties, as well as cell-function regulating activities. These properties make sericin-based biomaterials promising candidates for biomedical applications. This review summarizes the properties and bioactivities of silk sericin and highlights the latest developments in sericin in tissue engineering and regenerative medicine. Furthermore, the extended application of sericin in developing flexible electronic devices and 3D bioprinting is also discussed. It is believed that sericin-based biomaterials have great potential of being developed into novel tissue engineering products and smart implantable devices for various medical applications toward improving clinical outcomes.
Collapse
Affiliation(s)
- Jian Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huan Liu
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaolei Shi
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sumei Qin
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jingwei Liu
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qiying Lv
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jia Liu
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qilin's Li
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zheng Wang
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
9
|
Hu J, Jiang Z, Zhang J, Yang G. Application of silk fibroin coatings for biomaterial surface modification: a silk road for biomedicine. J Zhejiang Univ Sci B 2023; 24:943-956. [PMID: 37961798 PMCID: PMC10646393 DOI: 10.1631/jzus.b2300003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/18/2023] [Indexed: 11/15/2023]
Abstract
Silk fibroin (SF) as a natural biopolymer has become a popular material for biomedical applications due to its minimal immunogenicity, tunable biodegradability, and high biocompatibility. Nowadays, various techniques have been developed for the applications of SF in bioengineering. Most of the literature reviews focus on the SF-based biomaterials and their different forms of applications such as films, hydrogels, and scaffolds. SF is also valuable as a coating on other substrate materials for biomedicine; however, there are few reviews related to SF-coated biomaterials. Thus, in this review, we focused on the surface modification of biomaterials using SF coatings, demonstrated their various preparation methods on substrate materials, and introduced the latest procedures. The diverse applications of SF coatings for biomedicine are discussed, including bone, ligament, skin, mucosa, and nerve regeneration, and dental implant surface modification. SF coating is conducive to inducing cell adhesion and migration, promoting hydroxyapatite (HA) deposition and matrix mineralization, and inhibiting the Notch signaling pathway, making it a promising strategy for bone regeneration. In addition, SF-coated composite scaffolds can be considered prospective candidates for ligament regeneration after injury. SF coating has been proven to enhance the mechanical properties of the substrate material, and render integral stability to the dressing material during the regeneration of skin and mucosa. Moreover, SF coating is a potential strategy to accelerate nerve regeneration due to its dielectric properties, mechanical flexibility, and angiogenesis promotion effect. In addition, SF coating is an effective and popular means for dental implant surface modification to promote osteogenesis around implants made of different materials. Thus, this review can be of great benefit for further improvements in SF-coated biomaterials, and will undoubtedly contribute to clinical transformation in the future.
Collapse
Affiliation(s)
- Jinxing Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Disease, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Disease, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Jing Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Disease, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Disease, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| |
Collapse
|
10
|
Li Y, Champion JA. Self-assembling nanocarriers from engineered proteins: Design, functionalization, and application for drug delivery. Adv Drug Deliv Rev 2022; 189:114462. [PMID: 35934126 DOI: 10.1016/j.addr.2022.114462] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/09/2022] [Accepted: 07/15/2022] [Indexed: 01/24/2023]
Abstract
Self-assembling proteins are valuable building blocks for constructing drug nanocarriers due to their self-assembly behavior, monodispersity, biocompatibility, and biodegradability. Genetic and chemical modifications allow for modular design of protein nanocarriers with effective drug encapsulation, targetability, stimuli responsiveness, and in vivo half-life. Protein nanocarriers have been developed to deliver various therapeutic molecules including small molecules, proteins, and nucleic acids with proven in vitro and in vivo efficacy. This article reviews recent advances in protein nanocarriers that are not derived from natural protein nanostructures, such as protein cages or virus like particles. The protein nanocarriers described here are self-assembled from rationally or de novo designed recombinant proteins, as well as recombinant proteins complexed with other biomolecules, presenting properties that are unique from those of natural protein carriers. Design, functionalization, and therapeutic application of protein nanocarriers will be discussed.
Collapse
Affiliation(s)
- Yirui Li
- BioEngineering Program, Georgia Institute of Technology, United States
| | - Julie A Champion
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, GA 30332, United States; BioEngineering Program, Georgia Institute of Technology, United States.
| |
Collapse
|
11
|
Bucciarelli A, Motta A. Use of Bombyx mori silk fibroin in tissue engineering: From cocoons to medical devices, challenges, and future perspectives. BIOMATERIALS ADVANCES 2022; 139:212982. [PMID: 35882138 DOI: 10.1016/j.bioadv.2022.212982] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 05/26/2023]
Abstract
Silk fibroin has become a prominent material in tissue engineering (TE) over the last 20 years with almost 10,000 published works spanning in all the TE applications, from skeleton to neuronal regeneration. Fibroin is an extremely versatile biopolymer that, due to its ease of processing, has enabled the development of an entire plethora of materials whose properties and architectures can be tailored to suit target applications. Although the research and development of fibroin TE materials and devices is mature, apart from sutures, only a few medical products made of fibroin are used in the clinical routines. <40 clinical trials of Bombyx mori silk-related products have been reported by the FDA and few of them resulted in a commercialized device. In this review, after explaining the structure and properties of silk fibroin, we provide an overview of both fibroin constructs existing in the literature and fibroin devices used in clinic. Through the comparison of these two categories, we identified the burning issues faced by fibroin products during their translation to the market. Two main aspects will be considered. The first is the standardization of production processes, which leads both to the standardization of the characteristics of the issued device and the correct assessment of its failure. The second is the FDA regulations, which allow new devices to be marketed through the 510(k) clearance by demonstrating their equivalence to a commercialized medical product. The history of some fibroin medical devices will be taken as a case study. Finally, we will outline a roadmap outlining what actions we believe are needed to bring fibroin products to the market.
Collapse
Affiliation(s)
- Alessio Bucciarelli
- CNR nanotech, National Council of Research, University Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy.
| | - Antonella Motta
- BIOtech research centre and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Department of Industrial Engineering, University of Trento, Via delle Regole 101, 38123 Trento, Italy.
| |
Collapse
|