1
|
Lin W, He Z, Zhou S, Weng L, Zou L, Ye R, Zhu J, Lu F, Zhou J. Monocular Contrast Sensitivity Visual Perceptual Learning Rebalances Adult Amblyopes' Two Eyes. Invest Ophthalmol Vis Sci 2025; 66:25. [PMID: 40402517 DOI: 10.1167/iovs.66.5.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025] Open
Abstract
Purpose This study investigates the effects of monocular contrast sensitivity visual perceptual learning on binocular visual functions of adults with binocular imbalances. Methods Sixteen adults with anisometropic amblyopia (mean age, 24.63 ± 3.56 years), 20 adults with myopic anisometropia (mean age, 24.20 ± 1.94 years), and 16 visually normal adults (mean age, 24.88 ± 1.89 years) participated in this study. Each group was evenly divided into training (anisometropic amblyopia, myopic anisometropia, normal training group) and untrained control groups (anisometropic amblyopia controls, myopic anisometropia controls, and normal controls). Training groups underwent 10 days of monocular contrast sensitivity perceptual learning (two-alternative forced-choice contrast detection task at 6 cycles per degree) using the amblyopic or nondominant eye, whereas the control groups received no intervention during the same period. Monocular visual acuity, monocular and binocular contrast sensitivity, and balance point were measured before and after the intervention. Results Monocular contrast sensitivity perceptual learning significantly improved both contrast sensitivity and balance point at the trained spatial frequency (6 cycles per degree) in the trained eyes of the anisometropic amblyopia training group and myopic anisometropia training group, with improvements generalizing to nearby untrained spatial frequencies. However, no significant improvements were observed in binocular summation ratios for either group. The normal training group showed modest improvements limited to the trained eye at both trained and neighboring spatial frequencies, without significant binocular or untrained eye benefits. Conclusions Monocular contrast sensitivity visual perceptual learning effectively enhances monocular visual performance and positively affects binocular functions across trained and nearby untrained spatial frequencies, indicating its potential clinical usefulness in improving binocular vision among adults with binocular imbalances.
Collapse
Affiliation(s)
- Wenman Lin
- State Key Laboratory of Eye Health, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zhifen He
- State Key Laboratory of Eye Health, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Shiqi Zhou
- State Key Laboratory of Eye Health, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Liuqing Weng
- State Key Laboratory of Eye Health, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Liying Zou
- State Key Laboratory of Eye Health, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Renhao Ye
- State Key Laboratory of Eye Health, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jinli Zhu
- State Key Laboratory of Eye Health, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Fan Lu
- State Key Laboratory of Eye Health, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jiawei Zhou
- State Key Laboratory of Eye Health, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
Notaro G, Hasson U. Quantifying sighting dominance using on-display projections of monocular and binocular views. Behav Res Methods 2025; 57:52. [PMID: 39779640 DOI: 10.3758/s13428-024-02512-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2024] [Indexed: 01/11/2025]
Abstract
Sighting dominance is an important behavioral property which has been difficult to measure quantitatively with high precision. We developed a measurement method that is grounded in a two-camera model that satisfies these aims. Using a simple alignment task, this method quantifies sighting ocular dominance during binocular viewing, identifying each eye's relative contribution to binocular vision. The method involves placing a physical target between the viewer and a display. The viewer indicates the perceived target's projection on the display with both eyes open and with only one eye open. The relative location of the binocular projection in relation to the two monocular projections is the index of dominance. The method produces a continuous variable with robust test-retest reliability (ICC = 0.96). The unit of measurement for the computed quantity is physiologically grounded: it is proportional to the distance between the monocular projections, which we show is predictable from interpupillary distance and phoria. Comparisons with the classic 'hole in card' sighting dominance test show good agreement, but also hint at potential bias for determining right-eye dominance in the latter. Interestingly, we find that some individuals systematically demonstrate nearly balanced vision, a phenomenon previously construed as mixed dominance or noisy responses. We also present ways to quantify and mitigate sources of random noise in this measurement. Overall, this new method allows for precise estimation of sighting dominance during binocular viewing. We expect it will allow a more effective understanding of the neural basis of dominance and improved effectiveness when using sighting dominance as a covariate in more complex analyses.
Collapse
Affiliation(s)
- Giuseppe Notaro
- CIMeC, Center for Mind/Brain Sciences, The University of Trento, Trento, Italy
| | - Uri Hasson
- CIMeC, Center for Mind/Brain Sciences, The University of Trento, Trento, Italy.
| |
Collapse
|
3
|
Reynaud A, Lorenzini MC, Koenekoop RK, Hess RF, Baldwin AS. Amblyopic binocular imbalance quantified by the dichoptic contrast ordering test and dichoptic letters test. Sci Rep 2025; 15:361. [PMID: 39748000 PMCID: PMC11696884 DOI: 10.1038/s41598-024-82899-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025] Open
Abstract
In amblyopia, abnormal binocular interactions lead to an overwhelming dominance of one eye. One mechanism implied in this imbalance is the suppression between the inputs from the two eyes. This interocular suppression involves two components: an overlay suppression and a surround suppression. Here, we propose a new method for measuring surround suppression which has been demonstrated in both strabismic and anisometropic amblyopes, based on a novel interocular contrast scaling task, suitable for use as a clinical tool. We compare the results obtained with this method against those from another method designed to measure overlay suppression: the Dichoptic Letter Test. We find a strong correlation between the results obtained with the two methods. Additionally, we observe strong correlations between the imbalance measured with the two tests and visual acuity and stereopsis. Altogether this suggests that amblyopic suppression is spatially broad and has direct relevance in global vision. So our new method is a relevant, clinically suitable tool to track the disease state in amblyopia.
Collapse
Affiliation(s)
- Alexandre Reynaud
- Department Ophthalmology and Visual Sciences, McGill Vision Research, McGill University, Montreal, QC, Canada.
- BRaIN Program, Research Institute of the McGill University Health Center, Montreal, QC, Canada.
| | - Marie-Céline Lorenzini
- BRaIN Program, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Robert K Koenekoop
- Department of Pediatric Surgery, Human Genetics and Ophthalmology, Montreal Children's Hospital, McGill University, Montreal, QC, Canada
| | - Robert F Hess
- Department Ophthalmology and Visual Sciences, McGill Vision Research, McGill University, Montreal, QC, Canada
- BRaIN Program, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Alex S Baldwin
- Department Ophthalmology and Visual Sciences, McGill Vision Research, McGill University, Montreal, QC, Canada
- BRaIN Program, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| |
Collapse
|
4
|
Yassin M, Lev M, Polat U. What Factors Affect Binocular Summation? Brain Sci 2024; 14:1205. [PMID: 39766404 PMCID: PMC11674417 DOI: 10.3390/brainsci14121205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Binocular vision may serve as a good model for research on awareness. Binocular summation (BS) can be defined as the superiority of binocular over monocular visual performance. Early studies of BS found an improvement of a factor of about 1.4 (empirically), leading to models suggesting a quadratic summation of the two monocular inputs (√2). Neural interaction modulates a target's visibility within the same eye or between eyes (facilitation or suppression). Recent results indicated that at a closely flanked stimulus, BS is characterized by instability; it relies on the specific order in which the stimulus condition is displayed. Otherwise, BS is stable. These results were revealed in experiments where the tested eye was open, whereas the other eye was occluded (mono-optic glasses, blocked presentation); thus, the participants were aware of the tested eye. Therefore, in this study, we repeated the same experiments but utilized stereoscopic glasses (intermixed at random presentation) to control the monocular and binocular vision, thus potentially eliminating awareness of the tested condition. The stimuli consisted of a central vertically oriented Gabor target and high-contrast Gabor flankers positioned in two configurations (orthogonal or collinear) with target-flanker separations of either two or three wavelengths (λ), presented at four different presentation times (40, 80, 120, and 200 ms). The results indicate that when utilizing stereoscopic glasses and mixing the testing conditions, the BS is normal, raising the possibility that awareness may be involved.
Collapse
Affiliation(s)
| | | | - Uri Polat
- School of Optometry and Vision Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel; (M.Y.); (M.L.)
| |
Collapse
|
5
|
Lakshmi Marella B, Conway ML, Vaddavalli PK, Suttle CM, Bharadwaj SR. Optical phase nullification partially restores visual and stereo acuity lost to simulated blur from higher-order wavefront aberrations of keratoconic eyes. Vision Res 2024; 224:108486. [PMID: 39298859 DOI: 10.1016/j.visres.2024.108486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
Contrast demodulation and phase distortions are exaggerated in retinal images blurred by the higher-order wavefront aberrations of keratoconic eyes. While the performance loss from the former parameter is well understood, little is known about the impact of the latter on visual functions in this disease condition. The present study investigated the impact of phase distortions on the monocular logMAR visual acuity, letter discriminability and random-dot stereoacuity of seventeen visually healthy adults (ten for visual acuity and letter discriminability; ten for stereoacuity and three common to both experiments) using images that were computationally blurred by four different higher-order wavefront aberration profiles of keratoconic eyes that showed significant distortions in the phase spectrum. Participants viewed these images through 2 mm artificial pupils to negate their native ocular wavefront aberrations. The results showed progressive losses in visual acuity and stereoacuity with increasing blur, a third of which could be recovered following phase nullification. Letter discriminability also improved following phase nullification, more so for smaller than larger optotypes. Stereoacuity loss and, consequently, its recovery following phase nullification was more prominent for profiles simulating unilateral asymmetric keratoconus than for profiles simulating bilateral symmetric keratoconus. These results agree with previous reports obtained from blur induced with lower-order aberrations and indicate that a similar trend may be observed for more complex patterns of blur like keratoconus. Overall, both contrast demodulation and misalignment of the local features of the blurred image may contribute to losses of spatial and depth vision in keratoconus. Phase nullification may partially mitigate these losses, thereby allowing the processing of finer spatial details and veridical disparity estimations for improved depth perception.
Collapse
Affiliation(s)
- Bhagya Lakshmi Marella
- Brien Holden Institute of Optometry and Vision Sciences, L V Prasad Eye Institute, Road 2 Banjara Hills, Hyderabad 500034, Telangana, India; Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Road 2 Banjara Hills, Hyderabad 500034, Telangana, India; Centre for Applied Vision Research, City, University of London, Northampton Square, London EC1V 0HB, United Kingdom
| | - Miriam L Conway
- Centre for Applied Vision Research, City, University of London, Northampton Square, London EC1V 0HB, United Kingdom
| | - Pravin K Vaddavalli
- Shantilal Sanghvi Cornea Institute, L V Prasad Eye Institute, Road no. 2, Banjara Hills, Hyderabad 500034, Telangana, India
| | - Catherine M Suttle
- Centre for Applied Vision Research, City, University of London, Northampton Square, London EC1V 0HB, United Kingdom
| | - Shrikant R Bharadwaj
- Brien Holden Institute of Optometry and Vision Sciences, L V Prasad Eye Institute, Road 2 Banjara Hills, Hyderabad 500034, Telangana, India; Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Road 2 Banjara Hills, Hyderabad 500034, Telangana, India.
| |
Collapse
|
6
|
Hu J, Chen J, Yu M, Ku Y. Binocular imbalance measured by SSVEP predicts impaired stereoacuity in amblyopia. Heliyon 2024; 10:e39358. [PMID: 39497992 PMCID: PMC11532837 DOI: 10.1016/j.heliyon.2024.e39358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/25/2024] [Accepted: 10/12/2024] [Indexed: 11/07/2024] Open
Abstract
Purpose The current study aims to implement steady-state visual evoked potentials (SSVEPs) in quantifying the binocular imbalance of amblyopia and to assess the predictive value of SSVEP-derived indices for amblyopic stereoacuity. Methods We measure frequency-tagged SSVEP responses elicited by each eye (F1 = 6 Hz through the fellow eye; F2 = 7.5 Hz through the amblyopic eye) within a binocular rivalry paradigm among a cohort of anisometropic amblyopic observers (n = 29, mean age: 12 years). Binocular suppression was quantified by assessing the disparity in SSVEP amplitudes between the eyes, while the strength of interocular interaction was evaluated through the intermodulation response at F1+F2 = 13.5 Hz. Subsequent analyses explored the associations between these neural indices and relevant behavioral metrics in amblyopia. Results Results reveal a significant difference in SSVEP amplitudes elicited from the fellow eye and the amblyopic eye, with the former exhibiting notably higher responses. Moreover, the fellow eye demonstrated prolonged dominance duration compared to its amblyopic counterpart. Furthermore, a negative correlation between binocular suppression and interocular interaction was observed, with stereoacuity showing a significant correlation with binocular suppression. Utilizing stepwise mulptiple linear regression analysis, we established that a predictive model combining binocular suppression and visual acuity of the amblyopic eye provided the best prediction of stereoacuity. Conclusions These results highlight the potential of binocular suppression, as assessed by SSVEPs within a binocular rivalry paradigm, as a promising neural predictor of stereopsis in amblyopia.
Collapse
Affiliation(s)
- Jingyi Hu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Lab of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jing Chen
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Minbin Yu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Lab of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yixuan Ku
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Center for Brain and Mental Wellbeing, Department of Psychology, Sun Yat-sen University, Guangzhou, Guangdong, China
- Peng Cheng Laboratory, Shenzhen, Guangdong, China
| |
Collapse
|
7
|
Wei J, Cheng Z, Kong D, Lin W, Hess RF, Zhou J, Reynaud A. Understanding contrast perception in amblyopia: a psychophysical analysis of the ON and OFF visual pathways. Front Psychol 2024; 15:1494964. [PMID: 39498331 PMCID: PMC11532024 DOI: 10.3389/fpsyg.2024.1494964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/07/2024] [Indexed: 11/07/2024] Open
Abstract
Purpose The study aimed to explore potential discrepancies in contrast sensitivity in the ON and OFF visual pathways among individuals with amblyopia compared to controls. Methods Eleven adult amblyopes (26.2 ± 4.4 [SD] years old) and 10 controls (24.6 ± 0.8 years old) with normal or corrected to normal visual acuity (logMAR VA ≤ 0) participated in this study. Using the quick contrast sensitivity function (qCSF) algorithm, we measured balanced CSF which would stimulate the ON and OFF pathways unselectively, and CSFs for increments and decrements that would selectively stimulate the ON and OFF visual pathways. Contrast sensitivity and area under log contrast sensitivity function were extracted for statistical analysis. Results For the balanced CSF, we found significant interocular differences in sensitivity and area under log contrast sensitivity function in both amblyopes [F(1,10) = 74.992, p < 0.001] and controls [F(1,9) = 35.6, p < 0.001], while such differences were more pronounced in amblyopes than in controls. For increment and decrement CSFs, we found that the increment sensitivity (p = 0.038) and area under log contrast sensitivity function (p = 0.001) were significantly lower than the decrement in the amblyopic eye. Such differences between increment and decrement CSFs were not observed in the fellow eye of the amblyopes or in the controls. Conclusion There is a subtle difference in the contrast sensitivity of the amblyopic eye when exposed to stimulation in the ON and OFF pathways.
Collapse
Affiliation(s)
- Junhan Wei
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Shaanxi Eye Hospital, Xi'an People’s Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, China
| | - Ziyun Cheng
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Deying Kong
- Department of Medical Information Management, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wenman Lin
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Robert F. Hess
- McGill Vision Research, Department of Ophthalmology and Visual Sciences, McGill University, Montreal, QC, Canada
| | - Jiawei Zhou
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Alexandre Reynaud
- McGill Vision Research, Department of Ophthalmology and Visual Sciences, McGill University, Montreal, QC, Canada
| |
Collapse
|
8
|
Ip IB, Clarke WT, Wyllie A, Tracey K, Matuszewski J, Jbabdi S, Starling L, Templer S, Willis H, Breach L, Parker AJ, Bridge H. The relationship between visual acuity loss and GABAergic inhibition in amblyopia. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2024; 2:1-18. [PMID: 40110226 PMCID: PMC11917722 DOI: 10.1162/imag_a_00256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 03/22/2025]
Abstract
Early childhood experience alters visual development, a process exemplified by amblyopia, a common neurodevelopmental condition resulting in cortically reduced vision in one eye. Visual deficits in amblyopia may be a consequence of abnormal suppressive interactions in the primary visual cortex by inhibitory neurotransmitter γ-aminobutyric acid (GABA). We examined the relationship between visual acuity loss and GABA+ in adult human participants with amblyopia. Single-voxel proton magnetic resonance spectroscopy (MRS) data were collected from the early visual cortex (EVC) and posterior cingulate cortex (control region) of 28 male and female adults with current or past amblyopia while they viewed flashing checkerboards monocularly, binocularly, or while they had their eyes closed. First, we compared GABA+ concentrations between conditions to evaluate suppressive binocular interactions. Then, we correlated the degree of visual acuity loss with GABA+ levels to test whether GABAergic inhibition could explain visual acuity deficits. Visual cortex GABA+ was not modulated by viewing condition, and we found weak evidence for a negative correlation between visual acuity deficits and GABA+. These findings suggest that reduced vision in one eye due to amblyopia is not strongly linked to GABAergic inhibition in the visual cortex. We advanced our understanding of early experience dependent plasticity in the human brain by testing the association between visual acuity deficits and visual cortex GABA in amblyopes of the most common subtypes. Our study shows that the relationship was not as clear as expected and provides avenues for future investigation.
Collapse
Affiliation(s)
- I Betina Ip
- Wellcome Centre for Integrative Neuroimaging, FMRIB Building, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - William T Clarke
- Wellcome Centre for Integrative Neuroimaging, FMRIB Building, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Abigail Wyllie
- Wellcome Centre for Integrative Neuroimaging, FMRIB Building, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Kathleen Tracey
- Wellcome Centre for Integrative Neuroimaging, FMRIB Building, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Jacek Matuszewski
- Wellcome Centre for Integrative Neuroimaging, FMRIB Building, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, FMRIB Building, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Lucy Starling
- Wellcome Centre for Integrative Neuroimaging, FMRIB Building, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Sophie Templer
- Wellcome Centre for Integrative Neuroimaging, FMRIB Building, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Hanna Willis
- Wellcome Centre for Integrative Neuroimaging, FMRIB Building, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Laura Breach
- Orthoptics Department, Oxford Eye Hospital, John Radcliffe Hospital, Oxford, United Kingdom
| | - Andrew J Parker
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- Institut für Biologie, Otto-Von-Guericke Universität, Magdeburg, Germany
| | - Holly Bridge
- Wellcome Centre for Integrative Neuroimaging, FMRIB Building, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
9
|
Yu X, Wei L, Chen Y, Zhang H, Yu H, Zhou J, Xu M. Binocular Visual Deficits at Low to High Spatial Frequency in Intermittent Exotropia After Surgery. Invest Ophthalmol Vis Sci 2024; 65:41. [PMID: 39189992 PMCID: PMC11361387 DOI: 10.1167/iovs.65.10.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 08/03/2024] [Indexed: 08/28/2024] Open
Abstract
Purpose To investigate binocular visual deficits at low to high spatial frequencies in patients with intermittent exotropia (IXT) after surgical correction, using the binocular orientation combination task. Methods Thirteen patients whose IXT has been aligned surgically (17 ± 4.8 years old; 7 females) and 13 normal individuals (21.8 ± 2.5 years old; 6 females) were recruited. All participants had normal or corrected-to-normal visual acuity. The IXT patients had undergone surgery at least one month prior to the study and achieved successful eye alignment post-surgery. We measured participants' balance points (BPs), defined as the interocular contrast ratio (nondominant eye/dominant eye) when both eyes contributed equally to binocular combination, using the binocular orientation combination task at three spatial frequencies (0.5, 4.0, and 8.0 cycles/degree). The absolute values of log10(BP) (i.e., |logBP|) and the area under of the |logBP| versus spatial frequency curve were used to quantify the extent of binocular imbalance. Results Surgery aligned the eye position of patients with IXT, with a postoperative exodeviation of -4.92 ± 4.29 prism diopters at distance. Participants' |logBP| values showed significant differences between groups, F(1,24) = 9.175, P = 0.006, and across spatial frequencies, F(2,48) = 7.127, P = 0.002. However, the interaction between group and spatial frequency was not significant, F(2,48) = 0.379, P = 0.687. Conclusions Patients whose IXT has been alighted surgically experience binocular imbalance across a wide range of spatial frequencies, with greater binocular imbalance occurring at high spatial frequencies than low spatial frequencies.
Collapse
Affiliation(s)
- Xi Yu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Lili Wei
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yiya Chen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hanyi Zhang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Huanyun Yu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jiawei Zhou
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Meiping Xu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
10
|
Thompson B, Concetta Morrone M, Bex P, Lozama A, Sabel BA. Harnessing brain plasticity to improve binocular vision in amblyopia: An evidence-based update. Eur J Ophthalmol 2024; 34:901-912. [PMID: 37431104 PMCID: PMC11295393 DOI: 10.1177/11206721231187426] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/11/2023] [Indexed: 07/12/2023]
Abstract
Amblyopia is a developmental visual disorder resulting from atypical binocular experience in early childhood that leads to abnormal visual cortex development and vision impairment. Recovery from amblyopia requires significant visual cortex neuroplasticity, i.e. the ability of the central nervous system and its synaptic connections to adapt their structure and function. There is a high level of neuroplasticity in early development and, historically, neuroplastic responses to changes in visual experience were thought to be restricted to a "critical period" in early life. However, as our review now shows, the evidence is growing that plasticity of the adult visual system can also be harnessed to improve vision in amblyopia. Amblyopia treatment involves correcting refractive error to ensure clear and equal retinal image formation in both eyes, then, if necessary, promoting the use of the amblyopic eye by hindering or reducing visual input from the better eye through patching or pharmacologic therapy. Early treatment in children can lead to visual acuity gains and the development of binocular vision in some cases; however, many children do not respond to treatment, and many adults with amblyopia have historically been untreated or undertreated. Here we review the current evidence on how dichoptic training can be used as a novel binocular therapeutic approach to facilitate visual processing of input from the amblyopic eye and can simultaneously engage both eyes in a training task that requires binocular integration. It is a novel and promising treatment for amblyopia in both children and adults.
Collapse
Affiliation(s)
- Benjamin Thompson
- Department of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
- Centre for Eye and Vision Science, Hong Kong
| | - Maria Concetta Morrone
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Peter Bex
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - Anthony Lozama
- Novartis Pharmaceutical Corporation, East Hanover, NJ, USA
| | - Bernhard A. Sabel
- Institute of Medical Psychology, Faculty of Medicine, Otto-von-Guericke University of Magdeburg, Magdeburg, Germany
| |
Collapse
|
11
|
Wiecek E, Kosovicheva A, Ahmed Z, Nabasaliza A, Kazlas M, Chan K, Hunter DG, Bex PJ. Peripheral Binocular Imbalance in Anisometropic and Strabismic Amblyopia. Invest Ophthalmol Vis Sci 2024; 65:36. [PMID: 38652649 PMCID: PMC11044833 DOI: 10.1167/iovs.65.4.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/27/2024] [Indexed: 04/25/2024] Open
Abstract
Purpose Individuals with amblyopia experience central vision deficits, including loss of visual acuity, binocular vision, and stereopsis. In this study, we examine the differences in peripheral binocular imbalance in children with anisometropic amblyopia, strabismic amblyopia, and typical binocular vision to determine if there are systematic patterns of deficits across the visual field. Methods This prospective cohort study recruited 12 participants with anisometropic amblyopia, 10 with strabismic amblyopia, and 10 typically sighted controls (age range, 5-18 years). Binocular imbalance was tested at 0°, 4°, and 8° eccentricities (4 angular locations each) using band-pass filtered Auckland optotypes (5 cycles per optotype) dichoptically presented with differing contrast to each eye. The interocular contrast ratio was adjusted until the participant reported each optotype with equal frequency. Results Participants with anisometropic and strabismic amblyopia had a more balanced contrast ratio, or decreased binocular imbalance, at 4° and 8° eccentricities as compared with central vision. Participants with strabismic amblyopia had significantly more binocular imbalance in the periphery as compared with individuals with anisometropic amblyopia or controls. A linear mixed effects model showed a main effect for strabismic amblyopia and eccentricity on binocular imbalance across the visual field. Conclusions There is evidence of decreased binocularity deficits, or interocular suppression, in the periphery in anisometropic and strabismic amblyopia as compared with controls. Notably, those with strabismic amblyopia exhibited more significant peripheral binocular imbalance. These variations in binocularity across the visual field among different amblyopia subtypes may necessitate tailored approaches for dichoptic treatment.
Collapse
Affiliation(s)
- Emily Wiecek
- Department of Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, United States
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Anna Kosovicheva
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Zain Ahmed
- Department of Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Amanda Nabasaliza
- Department of Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Melanie Kazlas
- Department of Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, United States
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Kimberley Chan
- Department of Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, United States
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - David G. Hunter
- Department of Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, United States
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Peter J. Bex
- Department of Psychology, Northeastern University, Boston, Massachusetts, United States
| |
Collapse
|
12
|
Zhou S, Weng L, Zhou C, Zhou J, Min SH. Reduced Monocular Luminance Promotes Fusion But Not Mixed Perception in Amblyopia. Invest Ophthalmol Vis Sci 2024; 65:15. [PMID: 38587443 PMCID: PMC11008760 DOI: 10.1167/iovs.65.4.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
Purpose The purpose of this study was to understand how monocular luminance reduction affects binocular balance and examine whether it differentially influences fusion and mixed perception in amblyopia. Methods Twenty-three normally sighted observers and 12 adults with amblyopia participated in this study. A novel binocular rivalry task was used to measure the phase duration of four perceptual responses (right- and left-tilts, fusion, and mixed perception) before and after a neutral density (ND) filter was applied at various levels to the dominant eye (DE) of controls and the fellow eye (FE) of patients with amblyopia. Phase durations were analyzed to assess whether the duration of fusion or mixed perception shifted after monocular luminance reduction. Moreover, we quantified ocular dominance and adjusted monocular contrast and luminance separately to investigate the relationship between changes in ocular dominance induced by the two manipulations. Results In line with previous studies, binocular balance shifted in favor of the brighter eye in both normal adults and patients with amblyopia. As a function of the ND filter's density, the duration of fusion and mixed perception decreased in normal controls, whereas that of fusion but not mixed perception increased significantly in patients with amblyopia. In addition, changes in binocular balance from luminance reduction were more significant in more balanced amblyopes or normal observers. Furthermore, shifts in binocular balance after contrast and luminance modulation were correlated in both normal and amblyopic observers. Conclusions The duration of fusion but not mixed perception increased in amblyopia after monocular luminance reduction in the FE. Moreover, our findings demonstrate that changes in ocular dominance from contrast-modulation and luminance-modulation are correlated in both normal and amblyopic observers.
Collapse
Affiliation(s)
- Shiqi Zhou
- School of Ophthalmology and Optometry and Eye Hospital, and State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liuqing Weng
- School of Ophthalmology and Optometry and Eye Hospital, and State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chenyan Zhou
- School of Ophthalmology and Optometry and Eye Hospital, and State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiawei Zhou
- School of Ophthalmology and Optometry and Eye Hospital, and State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Seung Hyun Min
- School of Ophthalmology and Optometry and Eye Hospital, and State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
13
|
Jiang N, Zheng Y, Chen M, Zhou J, Min SH. Binocular balance across spatial frequency in anisomyopia. Front Neurosci 2024; 18:1349436. [PMID: 38332861 PMCID: PMC10850230 DOI: 10.3389/fnins.2024.1349436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/08/2024] [Indexed: 02/10/2024] Open
Abstract
Purpose Anisomyopia is prevalent in myopia and studies have reported it exhibits impaired binocular function. We investigated the binocular balance across spatial frequency in adults with anisomyopia and compared it to in individuals with less differences in refractive error, and examined whether ocular characteristics can predict binocular balance in anisomyopia. Methods Fifteen anisomyopes, 15 isomyopes and 12 emmetropes were recruited. Binocular balance was quantitatively measured at 0.5, 1, 2 and 4 c/d. The first two groups of the observers were tested with and without optical correction with contact lenses. Emmetropes were tested without optical correction. Results Binocular balance across spatial frequency in optically corrected anisomyopes and isomyopes, as well as emmetropes were found to be similar. Their binocular balance nevertheless still got worse as a function of spatial frequency. However, before optical correction, anisomyopes but not isomyopes showed significant imbalance at higher spatial frequencies. There was a significant correlation between the dependence on spatial frequency of binocular imbalance in uncorrected anisomyopia and interocular difference in visual acuity, and between the dependence and interocular difference in spherical equivalent refraction. Conclusion Anisomyopes had intact binocular balance following correction across spatial frequency compared to those in isomyopes and emmetropes. Their balance was weakly correlated with their refractive status after optical correction. However, their binocular balance before correction and binocular improvement following optical correction were strongly correlated with differences in ocular characteristics between eyes.
Collapse
Affiliation(s)
| | | | | | - Jiawei Zhou
- School of Ophthalmology and Optometry, Affiliated Eye Hospital, State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Seung Hyun Min
- School of Ophthalmology and Optometry, Affiliated Eye Hospital, State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
14
|
Dong X, Liu L, Du X, Wang Y, Zhang P, Li Z, Bao M. Treating amblyopia using altered reality enhances the fine-scale functional correlations in early visual areas. Hum Brain Mapp 2023; 44:6499-6510. [PMID: 37929783 PMCID: PMC10681636 DOI: 10.1002/hbm.26526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/02/2023] [Accepted: 10/13/2023] [Indexed: 11/07/2023] Open
Abstract
Amblyopia is a developmental visual disorder that causes substantial visual deficits. Studies using resting-state functional magnetic resonance imaging have disclosed abnormal brain functional connectivity (FC) both across long-range cortical sites and within the visual cortex in amblyopes, which is considered to be related to impaired visual functions. However, little work has examined whether restoring the vision of amblyopes accompanies with an improvement of FC. Here in adult amblyopes and healthy participants, we compared their brain FC before and after an altered-reality adaptation training. Before the training, the voxel-wise FCs of amblyopia patients were substantially weaker than those of healthy control participants both within and across the early visual areas. After the training, visual acuities improved in amblyopes but not in the control participants. The effect kept strengthening in the subsequent month without further adaptation. Importantly, we observed enhanced voxel-wise FC both within and across the early visual areas of amblyopes. Moreover, the enhancement continued for at least 1 month. These results suggest that the effective treatment can improve both the amblyopes' vision and functional connections in the visual cortex.
Collapse
Affiliation(s)
- Xue Dong
- CAS Key Laboratory of Behavioral Science, Institute of PsychologyChinese Academy of SciencesBeijingChina
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
| | - Lijuan Liu
- Beijing Institute of Ophthalmology, Beijing Tongren HospitalCapital Medical UniversityBeijingChina
| | - Xinxin Du
- CAS Key Laboratory of Behavioral Science, Institute of PsychologyChinese Academy of SciencesBeijingChina
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
| | - Yue Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Peng Zhang
- State Key Laboratory of Brain and Cognitive Science, Institute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Zhihao Li
- School of PsychologyShenzhen UniversityShenzhenGuangdongChina
- Department of Psychiatry and Behavioral SciencesEmory UniversityAtlantaGeorgiaUSA
| | - Min Bao
- CAS Key Laboratory of Behavioral Science, Institute of PsychologyChinese Academy of SciencesBeijingChina
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
15
|
Yassin M, Lev M, Polat U. Space, time, and dynamics of binocular interactions. Sci Rep 2023; 13:21449. [PMID: 38052879 DOI: 10.1038/s41598-023-48380-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/25/2023] [Indexed: 12/07/2023] Open
Abstract
Binocular summation (BS), defined as the superiority of binocular over monocular visual performance, shows that thresholds are about 40% (a factor of 1.4) better in binocular than in monocular viewing. However, it was reported that different amounts of BS exist in a range from 1.4 to 2 values because BS is affected by the spatiotemporal parameters of the stimulus. Lateral interactions can be defined as the neuron's ability to affect the neighboring neurons by either inhibiting or exciting their activity. We investigated the effect of the spatial and temporal domains on binocular interactions and BS under the lateral masking paradigm and how BS would be affected by lateral interactions via a lateral masking experiment. The two temporal alternative forced-choice (2TAFC) method was used. The stimuli consisted of a central vertically oriented Gabor target and high-contrast Gabor flankers positioned in two configurations (orthogonal or collinear) with target-flanker separations of either 2 or 3 wavelengths (λ), presented at 4 different presentation times (40, 80, 120, and 200 ms) using a different order of measurements across the different experiments. Opaque lenses were used to control the monocular and binocular vision. BS is absent at close distances (2λ), depending on the presentation time's order, for the collinear but not for the orthogonal configuration. However, BS exists at more distant flankers (collinear and orthogonal, 3λ). BS is not uniform (1.4); it depends on the stimulus condition, the presentation times, the order, and the method that was used to control the monocular and binocular vision.
Collapse
Affiliation(s)
- Marzouk Yassin
- School of Optometry and Vision Sciences, Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Maria Lev
- School of Optometry and Vision Sciences, Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Uri Polat
- School of Optometry and Vision Sciences, Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
16
|
Plaumann MD, Roberts KL, Wei W, Han C, Ooi TL. Refining Clinical Quantification of Depth of Suppression in Amblyopia through Synoptophore Measurement. Life (Basel) 2023; 13:1900. [PMID: 37763304 PMCID: PMC10532546 DOI: 10.3390/life13091900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Amblyopia is associated with unbalanced suppression between the two eyes. Existing clinical measures of suppression, such as the Worth 4 Dot test, provide qualitative information about suppression but cannot precisely quantify it. The Synoptophore, a well-established instrument in binocular vision clinics, has historically been used to gauge suppression qualitatively as well but has the capability to quantify suppression. We extended the capability of the Synoptophore through the development of a systematic protocol of illumination manipulation to quantify suppression in amblyopia. METHODS Twenty-six previously treated adult amblyopes underwent our protocol on the Synoptophore to measure the illumination balance needed to obtain fusion responses. Separately, these same amblyopes were tested with Worth 4 Dot as it is classically performed in the United States, utilizing different test distances and room illuminations to qualify the suppression response. RESULTS Smaller, more central targets revealed larger magnitudes of suppression for both the Synoptophore and Worth 4 Dot tests (Synoptophore: χ25,26 = 25.538, p < 0.001; Worth 4 Dot: χ23,26 = 39.020, p < 0.001). There was a significant correlation between the two tests for depth of suppression measurements (rΤ > 0.345, p < 0.036), with more sensitivity measured by the Synoptophore, as suppression could be graded on a quantitative scale. Strabismic amblyopes demonstrated more suppression than non-strabismic amblyopes (z > 2.410, p < 0.016). Additionally, depth of suppression was correlated with interocular difference in both visual acuity (rΤ = 0.604, p < 0.001) and stereoacuity (rΤ = 0.488, p = 0.001). CONCLUSIONS We extended the utility of the Synoptophore by measuring its illuminance outputs and developing a suppression testing protocol that compared favorably with Worth 4 Dot (clinic standard) while improving upon the latter through more sensitive quantification of suppression.
Collapse
Affiliation(s)
| | | | | | | | - Teng Leng Ooi
- College of Optometry, The Ohio State University, Columbus, OH 43210, USA; (M.D.P.)
| |
Collapse
|
17
|
Kam KY, Chang DHF. Sensory eye dominance plasticity in the human adult visual cortex. Front Neurosci 2023; 17:1250493. [PMID: 37746154 PMCID: PMC10513037 DOI: 10.3389/fnins.2023.1250493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023] Open
Abstract
Sensory eye dominance occurs when the visual cortex weighs one eye's data more heavily than those of the other. Encouragingly, mechanisms underlying sensory eye dominance in human adults retain a certain degree of plasticity. Notably, perceptual training using dichoptically presented motion signal-noise stimuli has been shown to elicit changes in sensory eye dominance both in visually impaired and normal observers. However, the neural mechanisms underlying these learning-driven improvements are not well understood. Here, we measured changes in fMRI responses before and after a five-day visual training protocol to determine the neuroplastic changes along the visual cascade. Fifty visually normal observers received training on a dichoptic or binocular variant of a signal-in-noise (left-right) motion discrimination task over five consecutive days. We show significant shifts in sensory eye dominance following training, but only for those who received dichoptic training. Pattern analysis of fMRI responses revealed that responses of V1 and hMT+ predicted sensory eye dominance for both groups, but only before training. After dichoptic (but not binocular) visual training, responses of V1 changed significantly, and were no longer able to predict sensory eye dominance. Our data suggest that perceptual training-driven changes in eye dominance are driven by a reweighting of the two eyes' data in the primary visual cortex. These findings may provide insight into developing region-targeted rehabilitative paradigms for the visually impaired, particularly those with severe binocular imbalance.
Collapse
Affiliation(s)
- Ka Yee Kam
- Department of Psychology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Dorita H. F. Chang
- Department of Psychology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
18
|
Hozumi K, Yagasaki T, Yokoyama Y, Yagasaki A, Haga Y, Eboshita R. Relationship Between Suppression Scotomas and Stereoacuity in Anisometropic Amblyopia With Successfully Treated Visual Acuity. Invest Ophthalmol Vis Sci 2023; 64:16. [PMID: 37561448 PMCID: PMC10424799 DOI: 10.1167/iovs.64.11.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 07/23/2023] [Indexed: 08/11/2023] Open
Abstract
Purpose The purpose of this study was to investigate the relationship among suppression scotoma size, stereoacuity, and four-prism base-out test (4ΔBOT) results in anisometropic amblyopia with successfully treated visual acuity. Methods We included 103 cases of anisometropic amblyopia successfully treated for visual acuity without strabismus. Stereoacuity was measured using a Randot Stereotest. The size of the suppression scotomas was measured using a new device, the polarized four dot (P4D) test. This is a modification of the Worth 4 dot test (W4D) device. The patients were divided into three groups based on the 4ΔBOT results: normal (group A = 29 cases), subnormal (group B = 48 cases), and abnormal (group C = 26 cases) response groups. The horizontal diameter of the suppression scotomas and stereoacuity in logarithmic values with a base of 20 seconds of arc (″) were compared among the 3 groups. Results The mean age at P4D testing was 8.4 ± 2.1 years. The average horizontal diameters of the suppression scotomas were 0.35 ± 0.79Δ, 2.01 ± 0.82Δ, and 5.50 ± 2.72Δ in groups A, B, and C, respectively, showing significant differences (A versus B: P < 0.0001, A versus C: P < 0.0001, and B versus C: P < 0.0001; 1-way ANOVA). The average logarithmic stereoacuity were 1.07 (24.95″), 1.22 (38.84″), and 1.47 (82.79″) in groups A, B, and C, respectively, thereby showing significant differences between the groups (A versus B: P < 0.0001, A versus C: P < 0.0001, and B versus C: P < 0.0001; 1-way ANOVA). Stereoacuity and horizontal diameter of the suppression scotoma were strongly correlated (r = 0.732, P < 0.0001). Conclusions The suppression scotoma size measured using P4D correlated significantly with stereoacuity and the 4ΔBOT results.
Collapse
Affiliation(s)
- Kenta Hozumi
- Department of Ophthalmology, Japan Community Health Care Organization Chukyo Hospital, Minamiku, Nagoya, Aichi, Japan
| | - Teiji Yagasaki
- Department of Ophthalmology, Japan Community Health Care Organization Chukyo Hospital, Minamiku, Nagoya, Aichi, Japan
- Yagasaki Eye Clinic, Ichinomiya, Aichi, Japan
| | - Yoshimi Yokoyama
- Department of Ophthalmology, Japan Community Health Care Organization Chukyo Hospital, Minamiku, Nagoya, Aichi, Japan
| | - Ayaka Yagasaki
- Yagasaki Eye Clinic, Ichinomiya, Aichi, Japan
- Department of Ophthalmology, Gifu Prefectural General Medical Center, Gifu, Japan
| | - Yayoi Haga
- Yagasaki Eye Clinic, Ichinomiya, Aichi, Japan
| | | |
Collapse
|
19
|
Meier K, Tarczy-Hornoch K, Boynton GM, Fine I. Characterizing amblyopic perception under non-rivalrous viewing conditions. Sci Rep 2023; 13:7993. [PMID: 37198211 PMCID: PMC10189719 DOI: 10.1038/s41598-023-31301-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/09/2023] [Indexed: 05/19/2023] Open
Abstract
Current assessments of interocular interactions in amblyopia often use rivalrous stimuli, with conflicting stimuli in each eye, which does not reflect vision under typical circumstances. Here we measure interocular interactions in observers with amblyopia, strabismus with equal vision, and controls using a non-rivalrous stimulus. Observers used a joystick to continuously report the perceived binocular contrast of dichoptic grating stimuli, identical except that the stimulus was contrast-modulated independently in each eye over time. Consistent with previous studies, a model predicting the time-course of perceived contrast found increased amblyopic eye attenuation, and reduced contrast normalization of the fellow eye by the amblyopic eye, in amblyopic participants compared to controls. However, these suppressive interocular effects were weaker than those found in previous studies, suggesting that rivalrous stimuli may overestimate the effects of amblyopia on interocular interactions during naturalistic viewing conditions.
Collapse
Affiliation(s)
- Kimberly Meier
- Department of Psychology, University of Washington, Seattle, WA, USA.
| | | | | | - Ione Fine
- Department of Psychology, University of Washington, Seattle, WA, USA
| |
Collapse
|
20
|
Eisen-Enosh A, Farah N, Polat U, Mandel Y. Perceptual learning based on a temporal stimulus enhances visual function in adult amblyopic subjects. Sci Rep 2023; 13:7643. [PMID: 37169784 PMCID: PMC10175483 DOI: 10.1038/s41598-023-34421-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/29/2023] [Indexed: 05/13/2023] Open
Abstract
Studies have shown that Perceptual Learning (PL) can lead to enhancement of spatial visual functions in amblyopic subjects. Here we aimed to determine whether a simple flickering stimulus can be utilized in PL to enhance temporal function performance and whether enhancement will transfer to spatial functions in amblyopic subjects. Six adult amblyopic and six normally sighted subjects underwent an evaluation of their performance of baseline psychophysics spatial functions (Visual acuity (VA), contrast sensitivity (CS), temporal functions (critical fusion frequency (CFF) test), as well as a static and flickering stereopsis test, and an electrophysiological evaluation (VEP). The subjects then underwent 5 training sessions (on average, a total of 150 min over 2.5 weeks), which included a task similar to the CFF test using the method of constant stimuli. After completing the training sessions, subjects repeated the initial performance evaluation tasks. All amblyopic subjects showed improved temporal visual performance (CFF) in the amblyopic eye (on average, 17%, p << 0.01) following temporal PL. Generalization to spatial, spatio-temporal, and binocular tasks was also found: VA increased by 0.12 logMAR (p = 0.004), CS in backward masking significantly increased (by up to 19%, p = 0.003), and flickering stereopsis increased by 85 arcsec (p = 0.048). These results were further electrophysiologically manifested by an increase in VEP amplitude (by 43%, p = 0.03), increased Signal-to-Noise ratio (SNR) (by 39%, p = 0.024) to levels not different from normally sighted subjects, along with an improvement in inter-ocular delay (by 5.8 ms, p = 0.003). In contrast, no significant effect of training was found in the normally sighted group. These results highlight the potential of PL based on a temporal stimulus to improve the temporal and spatial visual performance in amblyopes. Future work is needed to optimize this method for clinical applications.
Collapse
Affiliation(s)
- Auria Eisen-Enosh
- School of Optometry and Vision Science, Bar-Ilan University, Ramat Gan, Israel
| | - Nairouz Farah
- School of Optometry and Vision Science, Bar-Ilan University, Ramat Gan, Israel
| | - Uri Polat
- School of Optometry and Vision Science, Bar-Ilan University, Ramat Gan, Israel
| | - Yossi Mandel
- School of Optometry and Vision Science, Bar-Ilan University, Ramat Gan, Israel.
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan, Israel.
- The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel.
| |
Collapse
|
21
|
Nguyen LC, Lew WH, Kauffman MJ, Marsack JD, Applegate RA, Coates DR. Case Report: When Two Is Worse Than One-Stereo Imbalance in a Case of Wavefront-guided Scleral Lenses. Optom Vis Sci 2023; 100:299-303. [PMID: 36951821 PMCID: PMC10205691 DOI: 10.1097/opx.0000000000002014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023] Open
Abstract
SIGNIFICANCE Wavefront-guided scleral lenses (WGSLs) reduce visually debilitating residual higher-order aberrations. Although reduced higher-order aberrations lead to improvement in monocular high-contrast visual acuity (VA), the success of the lenses in everyday life depends on additional factors such as retinal contrast, binocular balance, and stereoacuity. PURPOSE This report describes a case where WGSLs provided improved monocular vision compared with scleral lenses (SLs) but reduced binocularity and stereoacuity. CASE REPORT A 48-year-old woman with moderate keratoconus right eye (OD) and severe left eye (OS) was fitted with SLs and WGSLs. Visual acuity with best SLs was 20/20 -2 OD and 20/25 -2 OS. Residual higher-order root-mean-square (HORMS) wavefront error (6 mm pupil) was 0.56 μm OD and 1.38 μm OS. Visual acuity with WGSLs was 20/16 -2 OD and 20/25 +2 OS, and residual HORMS was 0.41 μm OD and 0.98 μm OS. Monocularly, WGSLs were reported to provide better VA. However, binocularly, the patient reported an "imbalanced feeling" and preferred the SLs over WGSLs. Binocular VA at distance was 20/25 with SLs and 20/25 -2 with WGSL. To investigate, the Worth Four-Dot test was performed, and the outcomes reported fusion with SLs but suppression OS at distance with WGSLs. Stereoacuity was 160 arc seconds at near and 120 arc seconds at distance with SLs and 400 arc seconds at near and >1200 arc seconds at distance with WGSLs. Dichoptic contrast balancing showed a balance point of 0.48 with SLs and 0.17 with WGSLs, indicating a strong preference toward OD. Simulation of the patient's retinal image revealed a greater difference in image contrast between the two eyes with WGSLs. CONCLUSIONS Wavefront-guided scleral lenses reduced HORMS and improved VA compared with SLs. However, in this case, it inadvertently caused binocular imbalance. As WGSLs become more widely available, future work should include methods to optimize binocular balance to maximize overall patient satisfaction.
Collapse
Affiliation(s)
| | - Wei Hau Lew
- College of Optometry, University of Houston, Houston, Texas
| | | | | | | | | |
Collapse
|
22
|
Du X, Liu L, Dong X, Bao M. Effects of altered-reality training on interocular disinhibition in amblyopia. Ann N Y Acad Sci 2023; 1522:126-138. [PMID: 36811156 DOI: 10.1111/nyas.14969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Training of viewing an altered-reality environment dichoptically has been found to reactivate human adult ocular dominance plasticity, allowing improvement of vision for amblyopia. One suspected mechanism for this training effect is ocular dominance rebalancing through interocular disinhibition. Here, we investigated whether the training modulated the neural responses reflecting interocular inhibition. Thirteen patients with amblyopia and 11 healthy controls participated in this study. Before and after six daily altered-reality training sessions, participants watched flickering video stimuli with their steady-state visually evoked potential (SSVEP) signals recorded simultaneously. We assessed the amplitude of SSVEP response at intermodulation frequencies, which was a potential neural indicator of interocular suppression. The results showed that training weakened the intermodulation response only in the amblyopic group, which was in agreement with the hypothesis that the training reduced interocular suppression specific to amblyopia. Moreover, even one month after the training ended, we could still observe this neural training effect. These findings provide preliminary neural evidence in support of the disinhibition account for treating amblyopia. We also explain these results with the ocular opponency model, which, to our knowledge, is the first time for this binocular rivalry model to be used in explaining long-term ocular dominance plasticity.
Collapse
Affiliation(s)
- Xinxin Du
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Lijuan Liu
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Captital Medical University, Beijing, China
| | - Xue Dong
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Min Bao
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Brain and Cognitive Science, Beijing, China
| |
Collapse
|
23
|
Chen Y, Chen Y, Tao C, Zhou S, Chen H, Huang PC, Hess RF, Zhou J. Temporal synchrony discrimination is abnormal in dichoptic but not monocular visual processing in treated anisometropic amblyopes. Ophthalmic Physiol Opt 2023; 43:263-272. [PMID: 36648010 DOI: 10.1111/opo.13090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023]
Abstract
PURPOSE To evaluate whether temporal synchrony processing deficits remain when normal visual acuity is restored in adults with unilateral anisometropic amblyopia. METHODS We recruited 14 clinically treated anisometropic amblyopes (mean age 23.17 ± 2.53 years) with best-corrected visual acuity ≤ 0.1 logMAR and 15 age-matched emmetropes (mean age 24.40 ± 1.92 years) with normal vision to participate in our experiment. We presented two pairs of flicking Gaussian dots (1 Hz) as visual stimuli: one pair of dots was synchronous (reference), and the other pair of dots was asynchronous (signal). Subjects were asked to determine the position of the asynchronous pair. We applied the constant stimuli method to measure the temporal synchrony threshold under monocular and dichoptic viewing conditions. There were eight temporal phase lags in the asynchronous pair. The minimum degree of the temporal phase at which a participant can discriminate a signal pair is defined as the temporal synchrony threshold. RESULTS Under monocular viewing conditions where both the reference and signal pairs were presented to one eye, the temporal synchrony thresholds of previous amblyopic eyes and fellow eyes were not significantly different (p = 0.15). Under dichoptic viewing conditions where both the reference and signal pairs were dichoptically presented to both eyes, the temporal synchrony threshold in the treated anisometropic amblyopes was significantly higher than that of the controls (119.34 ± 20.43 vs. 99.78 ± 16.60 ms, p = 0.009). There was no significant correlation between the monocular and dichoptic viewing conditions in the treated amblyopes (r = -0.22, p = 0.94). CONCLUSIONS Temporal synchrony discrimination is abnormal under dichoptic but not under monocular visual stimulation in treated anisometropic amblyopes with normalised visual acuity.
Collapse
Affiliation(s)
- Yao Chen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, Wenzhou, China
| | - Yiya Chen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, Wenzhou, China
| | - Chunwen Tao
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, Wenzhou, China
| | - Shiqi Zhou
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, Wenzhou, China
| | - Hao Chen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, Wenzhou, China
| | - Pi-Chun Huang
- Department of Psychology, National Cheng Kung University, Tainan, Taiwan
| | - Robert F Hess
- McGill Vision Research, Department of Ophthalmology and Visual Sciences, McGill University, Montreal, Canada
| | - Jiawei Zhou
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
24
|
Li Q, Fu T, Ma X, Ren C, Guo B, Li Z. Quantitative Evaluation of Binocular Visual Perception in Patients With Strabismus: An Observational Study. J Pediatr Ophthalmol Strabismus 2023; 60:120-130. [PMID: 35611820 DOI: 10.3928/01913913-20220324-03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE To quantitatively evaluate and compare binocular visual perception between normal individuals and patients with different types of strabismus using a binocular phase combination paradigm. METHODS A total of 117 participants were included in the study and were divided into the normal control group, exophoria group, comitant exotropia group, comitant esotropia group, and special strabismus group according to the type of strabismus. The effective contrast ratio (ECR) was measured to quantitatively evaluate binocular visual perception. Binocular fusion was evaluated using the Worth 4-dots flashlight. Stereoacuity was detected by the Titmus stereo test. RESULTS The mean ECRs in the normal control group, exophoria group, comitant exotropia group, comitant esotropia group, and special strabismus group were 0.896 ± 0.214, 0.824 ± 0.234, 0.520 ± 0.279, 0.261 ± 0.139, and 0.461 ± 0.243, respectively. Within-group differences in the ECR were statistically significant. In addition, there was no statistically significant difference between the normal control group and exophoria group, and the concomitant exotropia group and special strabismus group and the other groups were statistically significant in pairwise comparison. The binocular visual perception was basically balanced in the exotropia group and most imbalanced in the comitant esotropia group, followed by the comitant exotropia group and the special strabismus group. The results also indicated that the decreased ECR was related to poor stereopsis and ECR had a significant positive correlation with binocular fusion function. CONCLUSIONS Different types of strabismus have different degrees of visual perception imbalance. The binocular phase combination paradigm applied in this study can quickly and accurately quantify the degree of binocular visual perception imbalance in patients with strabismus by measuring ECR. [J Pediatr Ophthalmol Strabismus. 2023;60(2):120-130.].
Collapse
|
25
|
Michalski A, Dubas K, Nogaj S, Stopa M. Visual rehabilitation indicating neuroplasticity in an esotropic adult patient with diplopia after sudden visual acuity loss in the non-amblyopic eye: A case report. NeuroRehabilitation 2023; 53:155-160. [PMID: 37424479 PMCID: PMC10473052 DOI: 10.3233/nre-220303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/09/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND The aim of this case report is to present the successful management of both diplopia and amblyopia in a specific clinical situation, demonstrating neuroplasticity of the visual system in an adult patient. Causes of diplopia include eye pathologies in monocular diplopia and ischemic ocular motor nerve palsies, sudden life-threatening and chronic conditions in central nervous system in binocular diplopia. Strabismic amblyopia and nonarteritic anterior ischemic optic neuropathy are quite often ophthalmic conditions, first one is caused by suppression during developmental period and the latter one by ischemia of the optic nerve in adults. Coexistence of aforementioned conditions may cause unusual clinical situation in which ability of nervous system to functional reorganization could be demonstrated. CASE PRESENTATION In our adult patient, diplopia was incited by the loss of suppression of the strabismic amblyopic eye, which was the consequence of a sudden decrease of the visual acuity in the previously better eye in the course of nonarteritic anterior ischemic optic neuropathy. This led to impairment in daily activities. RESULTS Visual training rehabilitation improved distance and near visual acuity in the amblyopic eye over three months, and prescribing two pairs of glasses with prisms enabled the patient to return to daily activities. CONCLUSION The discussed patient lost the suppression of the strabismic amblyopic eye. Management of amblyopia is usually undertaken in children, however considering neuroplasticity we successfully attempted to improve visual functioning of our patient, despite lower intensity of neuroplasticity functions in an adult brain.
Collapse
Affiliation(s)
- Andrzej Michalski
- Department of Ophthalmology, Chair of Ophthalmology and Optometry, Poznan University of Medical Sciences, Poznan, Poland
| | - Katarzyna Dubas
- Department of Optometry, Chair of Ophthalmology and Optometry, Poznan University of Medical Sciences, Poznan, Poland
| | - Sławomir Nogaj
- Department of Optometry, Chair of Ophthalmology and Optometry, Poznan University of Medical Sciences, Poznan, Poland
- Laboratory of Vision Science and Optometry, Faculty of Physics, Adam Mickiewicz University, Poznan, Poland
| | - Marcin Stopa
- Department of Ophthalmology, Chair of Ophthalmology and Optometry, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
26
|
Neural Correlates of Sensory Eye Dominance in Human Visual White Matter Tracts. eNeuro 2022; 9:ENEURO.0232-22.2022. [PMID: 36347601 PMCID: PMC9698723 DOI: 10.1523/eneuro.0232-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/12/2022] [Accepted: 11/01/2022] [Indexed: 11/10/2022] Open
Abstract
A significant proportion of the human neurotypical population exhibits some degree of sensory eye dominance (SED), referring to the brain's preferential processing of one eye's input versus another. The neural substrates underlying this functional imbalance are not well known. Here, we investigated the relationship between visual white matter tract properties and SED in the human neurotypical population. Observers' performance on two commonly used dichoptic tasks were used to index SED, along with performance on a third task to address a functional implication of binocular imbalance: stereovision. We show that diffusivity metrics of the optic radiations (ORs) well predict behavioral SED metrics. We found no relationship between SED and stereosensitivity. Our data suggest that SED is not simply reflected by gray matter structural and functional alterations, as often suggested, but relates, at least in part to the microstructural properties of thalamocortical white matter.
Collapse
|
27
|
Abstract
To obtain a single percept of the world, the visual system must combine inputs from the two eyes. Understanding the principles that govern this binocular combination process has important real-world clinical and technological applications. However, most research examining binocular combination has relied on relatively simple visual stimuli and it is unclear how well the findings apply to real-world scenarios. For example, it is well-known that, when the two eyes view sine wave gratings with differing contrast (dichoptic stimuli), the binocular percept often matches the higher contrast grating. Does this winner-take-all property of binocular contrast combination apply to more naturalistic imagery, which include broadband structure and spatially varying contrast? To better understand binocular combination during naturalistic viewing, we conducted psychophysical experiments characterizing binocular contrast perception for a range of visual stimuli. In two experiments, we measured the binocular contrast perception of dichoptic sine wave gratings and naturalistic stimuli, and asked how the contrast of the surrounding context affected percepts. Binocular contrast percepts were close to winner-take-all across many of the stimuli when the surrounding context was the average contrast of the two eyes. However, we found that changing the surrounding context modulated the binocular percept of some patterns and not others. We show evidence that this contextual effect may be due to the spatial orientation structure of the stimuli. These findings provide a step toward understanding binocular combination in the natural world and highlight the importance of considering the effect of the spatial interactions in complex stimuli.
Collapse
Affiliation(s)
- Minqi Wang
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, CA USA
| | - Jian Ding
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, CA USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Dennis M. Levi
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, CA USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Emily A. Cooper
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, CA USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
28
|
Mukerji A, Byrne KN, Yang E, Levi DM, Silver MA. Visual cortical γ-aminobutyric acid and perceptual suppression in amblyopia. Front Hum Neurosci 2022; 16:949395. [PMID: 36118971 PMCID: PMC9479630 DOI: 10.3389/fnhum.2022.949395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/17/2022] [Indexed: 01/23/2023] Open
Abstract
In amblyopia, abnormal visual experience during development leads to an enduring loss of visual acuity in adulthood. Physiological studies in animal models suggest that intracortical GABAergic inhibition may mediate visual deficits in amblyopia. To better understand the relationship between visual cortical γ-aminobutyric acid (GABA) and perceptual suppression in persons with amblyopia (PWA), we employed magnetic resonance spectroscopy (MRS) to quantify GABA levels in both PWA and normally-sighted persons (NSP). In the same individuals, we obtained psychophysical measures of perceptual suppression for a variety of ocular configurations. In PWA, we found a robust negative correlation between the depth of amblyopia (the difference in visual acuity between the amblyopic and non-amblyopic eyes) and GABA concentration that was specific to visual cortex and was not observed in a sensorimotor cortical control region. Moreover, lower levels of visual cortical GABA were associated with weaker perceptual suppression of the fellow eye by the amblyopic eye and stronger suppression of the amblyopic eye by the fellow eye. Taken together, our findings provide evidence that intracortical GABAergic inhibition is an important component of the pathology of human amblyopia and suggest possible therapeutic interventions to restore vision in the amblyopic eye through enhancement of visual cortical GABAergic signaling in PWA.
Collapse
Affiliation(s)
- Arjun Mukerji
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States,Henry H. Wheeler, Jr. Brain Imaging Center, University of California, Berkeley, Berkeley, CA, United States
| | - Kelly N. Byrne
- Henry H. Wheeler, Jr. Brain Imaging Center, University of California, Berkeley, Berkeley, CA, United States,Vision Science Graduate Group, University of California, Berkeley, Berkeley, CA, United States,School of Optometry, University of California, Berkeley, Berkeley, CA, United States
| | - Eunice Yang
- Henry H. Wheeler, Jr. Brain Imaging Center, University of California, Berkeley, Berkeley, CA, United States,School of Optometry, University of California, Berkeley, Berkeley, CA, United States
| | - Dennis M. Levi
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States,Henry H. Wheeler, Jr. Brain Imaging Center, University of California, Berkeley, Berkeley, CA, United States,Vision Science Graduate Group, University of California, Berkeley, Berkeley, CA, United States,School of Optometry, University of California, Berkeley, Berkeley, CA, United States
| | - Michael A. Silver
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States,Henry H. Wheeler, Jr. Brain Imaging Center, University of California, Berkeley, Berkeley, CA, United States,Vision Science Graduate Group, University of California, Berkeley, Berkeley, CA, United States,School of Optometry, University of California, Berkeley, Berkeley, CA, United States,*Correspondence: Michael A. Silver,
| |
Collapse
|
29
|
Chen Y, Mao Y, Zhou J, He Z, Hess RF. The shift in sensory eye dominance from short-term monocular deprivation exhibits no dependence on test spatial frequency. EYE AND VISION 2022; 9:32. [PMID: 36045414 PMCID: PMC9434876 DOI: 10.1186/s40662-022-00303-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 08/08/2022] [Indexed: 12/02/2022]
Abstract
Background Studies have shown that short-term monocular deprivation induces a shift in sensory eye dominance in favor of the deprived eye. Yet, how short-term monocular deprivation modulates sensory eye dominance across spatial frequency is not clear. To address this issue, we conducted a study to investigate the dependence of short-term monocular deprivation effect on test spatial frequency. Methods Ten healthy young adults (age: 24.7 ± 1.7 years, four males) with normal vision participated. We deprived their dominant eye with a translucent patch for 2.5 h. The interocular contrast ratio (dominant eye/non-dominant eye, i.e., the balance point [BP]), which indicates the contribution that the two eyes make to binocular combination, was measured using a binocular orientation combination task. We assessed if BPs at 0.5, 4 or 6 cycles/degree (c/d) change as a result of monocular deprivation. Different test spatial frequency conditions were conducted on three separate days in a random fashion. Results We compared the BPs at 0.5, 4 and 6 c/d before and after monocular deprivation. The BPs were found to be significantly affected by deprivation, where sensory eye dominance shift to the deprived eye (F1.86, 16.76 = 33.09, P < 0.001). The changes of BP were consistent at 0.5, 4, and 6 c/d spatial frequencies (F2,18 = 0.15, P = 0.57). Conclusion The sensory eye dominance plasticity induced by short-term deprivation is not dependent on test spatial frequency, suggesting it could provide a practical solution for amblyopic therapy that was concerned with the binocular outcome. Supplementary Information The online version contains supplementary material available at 10.1186/s40662-022-00303-4.
Collapse
|
30
|
Min SH, Chen Y, Jiang N, He Z, Zhou J, Hess RF. Issues Revisited: Shifts in Binocular Balance Depend on the Deprivation Duration in Normal and Amblyopic Adults. Ophthalmol Ther 2022; 11:2027-2044. [PMID: 36008603 DOI: 10.1007/s40123-022-00560-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/03/2022] [Indexed: 10/15/2022] Open
Abstract
INTRODUCTION Recent studies indicate that short-term monocular deprivation increases the deprived eye's contribution to binocular fusion in both adults with normal vision and amblyopia. In this study, we investigated whether the changes in visual plasticity depended on the duration of deprivation in normal and amblyopic adults. METHODS Twelve anisometropia amblyopic observers (aged 24.8 ± 2.3 years) and 12 age-matched normal observers (aged 23.9 ± 1.2 years) participated in the study. The non-dominant eye of normal observers or amblyopic eye of amblyopic observers was deprived for 30, 120, and 300 min in a randomized order. Their eye balance was measured with a phase combination task, which is a psychophysical test, before and after the deprivation. This design enabled us to measure changes induced in binocular balance as an index visual plasticity due to monocular deprivations. RESULTS By comparing the ocular dominance changes as a result of monocular deprivation with different deprivation durations, we found evidence that the ocular dominance changes are slightly larger after longer deprivations in both normal and amblyopic observers, albeit with a statistical significance. The changes from 120-min were significantly greater than those from 30-min deprivation in both groups. The magnitude of changes in sensory eye balance was significantly larger in normal observers than that in the amblyopic observers; however, the longevity of changes in visual plasticity was found to be more long-lasting in amblyopic observers than the normal counterparts. CONCLUSIONS The duration of deprivation matters in both normal and amblyopic observers. Ocular dominance imbalance that is typically observed in amblyopia can be more ameliorated with a longer duration of deprivation.
Collapse
Affiliation(s)
- Seung Hyun Min
- School of Ophthalmology and Optometry, Affiliated Eye Hospital, State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang, China.,McGill Vision Research, Department of Ophthalmology and Visual Sciences, McGill University, Montreal, Canada
| | - Yiya Chen
- School of Ophthalmology and Optometry, Affiliated Eye Hospital, State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Nan Jiang
- School of Ophthalmology and Optometry, Affiliated Eye Hospital, State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhifen He
- School of Ophthalmology and Optometry, Affiliated Eye Hospital, State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Jiawei Zhou
- School of Ophthalmology and Optometry, Affiliated Eye Hospital, State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Robert F Hess
- McGill Vision Research, Department of Ophthalmology and Visual Sciences, McGill University, Montreal, Canada
| |
Collapse
|
31
|
MRI Stereoscope: A Miniature Stereoscope for Human Neuroimaging. eNeuro 2022; 9:ENEURO.0382-21.2021. [PMID: 35045974 PMCID: PMC8856700 DOI: 10.1523/eneuro.0382-21.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 11/29/2022] Open
Abstract
Stereoscopic vision enables the perception of depth. To study the brain mechanisms behind stereoscopic vision using noninvasive brain imaging (magnetic resonance brain imaging; MRI), scientists need to reproduce the independent views of the left and right eyes in the brain scanner using "dichoptic" displays. However, high-quality dichoptic displays are technically challenging and costly to implement in the MRI scanner. The novel miniature stereoscope system ("MRI stereoscope") is an affordable and open-source tool that displays high-quality dichoptic images inside the MRI scanner. The MRI stereoscope takes advantage of commonly used display equipment, the MRI head coil, and a display screen. To validate the MRI stereoscope, binocular disparity stimuli were presented in a 3T MRI scanner while neural activation was recorded using functional MRI in six human participants. The comparison of large binocular disparities compared with disparities close to zero evoked strong responses across dorsal and ventral extra-striate visual cortex. In contrast, binocularly anti-correlated stimuli, which are not perceived in depth, did not evoke comparable activation. These results are the proof-of-concept that the MRI stereoscope can deliver dichoptic images that produce the perception of stereoscopic depth during acquisition of MR responses. Application of the MRI stereoscope to neuroscience can help to address important questions in perception and consciousness.
Collapse
|
32
|
Min SH, Mao Y, Chen S, He Z, Hess RF, Zhou J. A clinically convenient test to measure binocular balance across spatial frequency in amblyopia. iScience 2022; 25:103652. [PMID: 35024586 PMCID: PMC8733258 DOI: 10.1016/j.isci.2021.103652] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/25/2021] [Accepted: 12/13/2021] [Indexed: 11/29/2022] Open
Abstract
Amblyopia is a visual disorder that originates from the brain. It exhibits no pathology in the eye. Studies have shown that measuring both visual acuity and binocular balance for assessing amblyopia could be more helpful. However, tests that measure binocular balance are time-consuming, often exceeding 30 min. Their long test durations prevent them from being used in the clinic. For this reason, we have developed a quick (i.e., about 7 min) and precise tool that quantitatively measures binocular balance of patients with amblyopia. The new test can capture binocular imbalance that is typically exhibited at high spatial frequency in amblyopes. In addition, it has an excellent test-retest reliability and repeatability between two experimental sessions. We hope that our newly developed test can pave the road for physicians and researchers to better assess and diagnose amblyopia and other visual disorders that disrupt binocular balance beyond the laboratory. Measuring binocular balance of amblyopes is difficult and time-consuming (>30 min) We introduce a psychophysical test that is reliable and quick (7 min)
Collapse
Affiliation(s)
- Seung Hyun Min
- School of Ophthalmology and Optometry, Affiliated Eye Hospital, State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang, China.,McGill Vision Research, Department of Ophthalmology and Visual Sciences, McGill University, Montreal, Canada
| | - Yu Mao
- School of Ophthalmology and Optometry, Affiliated Eye Hospital, State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shijia Chen
- School of Ophthalmology and Optometry, Affiliated Eye Hospital, State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhifen He
- School of Ophthalmology and Optometry, Affiliated Eye Hospital, State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Robert F Hess
- McGill Vision Research, Department of Ophthalmology and Visual Sciences, McGill University, Montreal, Canada
| | - Jiawei Zhou
- School of Ophthalmology and Optometry, Affiliated Eye Hospital, State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
33
|
Xu M, Chen Y, Peng Y, He Z, Jiang J, Yu X, Hou F, Zhou J, Qu J. Binocular Summation Is Intact in Intermittent Exotropia After Surgery. Front Med (Lausanne) 2021; 8:791548. [PMID: 34993215 PMCID: PMC8724027 DOI: 10.3389/fmed.2021.791548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/30/2021] [Indexed: 11/25/2022] Open
Abstract
Purpose: To determine binocular summation of surgically treated intermittent exotropia (IXT) patients by measuring the contrast threshold. Methods: We recruited 38 surgically treated IXT patients aged 8–24 years and 20 age-matched healthy controls. All participants had normal or corrected-to-normal visual acuity (Snellen ≥ 20/20) in both eyes. The IXT patients had undergone the surgery at least a year prior to the study. Twenty-one of them obtained good alignment and 17 experienced a recurrence of exotropia. We measured the observers' monocular and binocular contrast sensitivities (CS) at six spatial frequencies (1.5, 3, 6, 12, 18, 24 cycles/degree) as an index of visual information processing at the threshold level. Binocular summation was evaluated against a baseline model of simple probability summation based on the CS at each spatial frequency and the area under the log contrast sensitivity function (AULCSF). Results: The exo-deviation of IXTs with good alignment was −6.38 ± 3.61 prism diopters (pd) at 33 cm and −5.14 ± 4.07 pd at 5 m. For the patients with recurrence, it was −23.47 ± 5.53 pd and −21.12 ± 4.28 pd, respectively. There was no significant difference in the binocular summation ratio (BSR) between the surgically treated IXT patients, including those with good alignment and recurrence, and normal controls at each spatial frequency [F(2,55) = 0.416, P = 0.662] and AULCSF [F(2,55) = 0.469, P = 0.628]. In addition, the BSR was not associated with stereopsis (r = −0.151, P = 0.365). Conclusion: Our findings of normal contrast sensitivity binocular summation ratio in IXT after surgical treatment suggest that the ability of the visual cortex in processing binocular information is intact at the contrast threshold level.
Collapse
Affiliation(s)
- Meiping Xu
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Wenzhou, China
| | - Yiya Chen
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Wenzhou, China
| | - Yiyi Peng
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Wenzhou, China
| | - Zhifen He
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Wenzhou, China
| | - Jun Jiang
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Wenzhou, China
| | - Xinping Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Fang Hou
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Wenzhou, China
| | - Jiawei Zhou
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Wenzhou, China
- *Correspondence: Jiawei Zhou
| | - Jia Qu
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Wenzhou, China
- Jia Qu
| |
Collapse
|
34
|
Candy TR, Cormack LK. Recent understanding of binocular vision in the natural environment with clinical implications. Prog Retin Eye Res 2021; 88:101014. [PMID: 34624515 PMCID: PMC8983798 DOI: 10.1016/j.preteyeres.2021.101014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/26/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
Technological advances in recent decades have allowed us to measure both the information available to the visual system in the natural environment and the rich array of behaviors that the visual system supports. This review highlights the tasks undertaken by the binocular visual system in particular and how, for much of human activity, these tasks differ from those considered when an observer fixates a static target on the midline. The everyday motor and perceptual challenges involved in generating a stable, useful binocular percept of the environment are discussed, together with how these challenges are but minimally addressed by much of current clinical interpretation of binocular function. The implications for new technology, such as virtual reality, are also highlighted in terms of clinical and basic research application.
Collapse
Affiliation(s)
- T Rowan Candy
- School of Optometry, Programs in Vision Science, Neuroscience and Cognitive Science, Indiana University, 800 East Atwater Avenue, Bloomington, IN, 47405, USA.
| | - Lawrence K Cormack
- Department of Psychology, Institute for Neuroscience, and Center for Perceptual Systems, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
35
|
Chow A, Silva AE, Tsang K, Ng G, Ho C, Thompson B. Binocular Integration of Perceptually Suppressed Visual Information in Amblyopia. Invest Ophthalmol Vis Sci 2021; 62:11. [PMID: 34515731 PMCID: PMC8444466 DOI: 10.1167/iovs.62.12.11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 08/20/2021] [Indexed: 01/01/2023] Open
Abstract
Purpose The purpose of this study was to assess whether motion information from suppressed amblyopic eyes can influence visual perception. Methods Participants with normal vision (n = 20) and with amblyopia (n = 20; 11 anisometropic and 9 strabismic/mixed) viewed dichoptic, orthogonal drifting gratings through a mirror stereoscope. Participants continuously reported form and motion percepts as gratings rivaled for 60 seconds. Responses were binned into categories ranging from binocular integration to complete suppression. Periods when the grating presented to the nondominant/amblyopic eye was suppressed were analyzed further to determine the extent of binocular integration of motion. Results Individuals with amblyopia experienced longer periods of non-preferred eye suppression than controls. When the non-preferred eye grating was suppressed, binocular integration of motion occurred 48.1 ± 6.2% and 31.2 ± 5.8% of the time in control and amblyopic participants, respectively. Periods of motion integration from the suppressed eye were significantly non-zero for both groups. Conclusions Visual information seen only by a suppressed amblyopic eye can be binocularly integrated and influence the overall visual percept. These findings reveal that visual information subjected to interocular suppression can still contribute to binocular vision and suggest the use of appropriate optical correction for the amblyopic eye to improve image quality for binocular combination.
Collapse
Affiliation(s)
- Amy Chow
- Department of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Andrew E. Silva
- Department of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Katelyn Tsang
- Department of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Gabriel Ng
- Mount Pleasant Optometry Centre, Vancouver, British Columbia, Canada
| | - Cindy Ho
- Mount Pleasant Optometry Centre, Vancouver, British Columbia, Canada
| | - Benjamin Thompson
- Department of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
- Center for Eye and Vision Research, 17W Science Park, Hong Kong
- Liggins Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
36
|
Lev M, Ding J, Polat U, Levi DM. Nearby contours abolish the binocular advantage. Sci Rep 2021; 11:16920. [PMID: 34413354 PMCID: PMC8376993 DOI: 10.1038/s41598-021-96053-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/28/2021] [Indexed: 11/29/2022] Open
Abstract
That binocular viewing confers an advantage over monocular viewing for detecting isolated low luminance or low contrast objects, has been known for well over a century; however, the processes involved in combining the images from the two eyes are still not fully understood. Importantly, in natural vision, objects are rarely isolated but appear in context. It is well known that nearby contours can either facilitate or suppress detection, depending on their distance from the target and the global configuration. Here we report that at close distances collinear (but not orthogonal) flanking contours suppress detection more under binocular compared to monocular viewing, thus completely abolishing the binocular advantage, both at threshold and suprathreshold levels. In contrast, more distant flankers facilitate both monocular and binocular detection, preserving a binocular advantage up to about four times the detection threshold. Our results for monocular and binocular viewing, for threshold contrast discrimination without nearby flankers, can be explained by a gain control model with uncertainty and internal multiplicative noise adding additional constraints on detection. However, in context with nearby flankers, both contrast detection threshold and suprathreshold contrast appearance matching require the addition of both target-to-target and flank-to-target interactions occurring before the site of binocular combination. To test an alternative model, in which the interactions occur after the site of binocular combination, we performed a dichoptic contrast matching experiment, with the target presented to one eye, and the flanks to the other eye. The two models make very different predictions for abutting flanks under dichoptic conditions. Interactions after the combination site predict that the perceived contrast of the flanked target will be strongly suppressed, while interactions before the site predict the perceived contrast will be more or less veridical. The data are consistent with the latter model, strongly suggesting that the interactions take place before the site of binocular combination.
Collapse
Affiliation(s)
- Maria Lev
- School of Optometry and Vision Science, The Mina & Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel.,School of Optometry and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720-2020, USA
| | - Jian Ding
- School of Optometry and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720-2020, USA
| | - Uri Polat
- School of Optometry and Vision Science, The Mina & Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| | - Dennis M Levi
- School of Optometry and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720-2020, USA.
| |
Collapse
|
37
|
Kam KY, Chang DHF. Dichoptic Perceptual Training and Sensory Eye Dominance Plasticity in Normal Vision. Invest Ophthalmol Vis Sci 2021; 62:12. [PMID: 34106211 PMCID: PMC8196419 DOI: 10.1167/iovs.62.7.12] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose We introduce a set of dichoptic training tasks that differ in terms of (1) the presence of external noise and (2) the visual feature implicated (motion, orientation), examining the generality of training effects between the different training and test cues and their capacity for driving changes in sensory eye dominance and stereoscopic depth perception. Methods We randomly assigned 116 normal-sighted observers to five groups (four training groups and one no training group). All groups completed both pre- and posttests, during which they were tested on dichoptic motion and orientation tasks under noisy and noise-free conditions, as well as a binocular phase combination task and two depth tasks to index sensory eye dominance and binocular function. Training groups received visual training on one of the four dichoptic tasks over 3 consecutive days. Results Training under noise-free conditions supported generalization of learning to noise-free tasks involving an untrained feature. By contrast, there was a symmetric learning transfer between the signal-noise and no-noise tasks within the same visual feature. Further, training on all tasks reduced sensory eye dominance but did not improve depth perception. Conclusions Training-driven changes in sensory eye balance do not depend on the stimulus feature or whether the training entails the presence of external noise. We conjecture that dichoptic visual training acts to balance interocular suppression before or at the site of binocular combination.
Collapse
Affiliation(s)
- Ka Yee Kam
- Department of Psychology, The University of Hong Kong, Hong Kong
| | - Dorita H F Chang
- Department of Psychology, The University of Hong Kong, Hong Kong.,The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong
| |
Collapse
|
38
|
Godinez A, Martín-González S, Ibarrondo O, Levi DM. Scaffolding depth cues and perceptual learning in VR to train stereovision: a proof of concept pilot study. Sci Rep 2021; 11:10129. [PMID: 33980895 PMCID: PMC8114935 DOI: 10.1038/s41598-021-89064-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/19/2021] [Indexed: 02/03/2023] Open
Abstract
Stereopsis is a valuable feature of human visual perception, which may be impaired or absent in amblyopia and/or strabismus but can be improved through perceptual learning (PL) and videogames. The development of consumer virtual reality (VR) may provide a useful tool for improving stereovision. We report a proof of concept study, especially useful for strabismic patients and/or those with reduced or null stereoacuity. Our novel VR PL strategy is based on a principled approach which included aligning and balancing the perceptual input to the two eyes, dichoptic tasks, exposure to large disparities, scaffolding depth cues and perception for action. We recruited ten adults with normal vision and ten with binocular impairments. Participants played two novel PL games (DartBoard and Halloween) using a VR-HMD. Each game consisted of three depth cue scaffolding conditions, starting with non-binocular and binocular cues to depth and ending with only binocular disparity. All stereo-anomalous participants improved in the game and most (9/10) showed transfer to clinical and psychophysical stereoacuity tests (mean stereoacuity changed from 569 to 296 arc seconds, P < 0.0001). Stereo-normal participants also showed in-game improvement, which transferred to psychophysical tests (mean stereoacuity changed from 23 to a ceiling value of 20 arc seconds, P = 0.001). We conclude that a VR PL approach based on depth cue scaffolding may provide a useful method for improving stereoacuity, and the in-game performance metrics may provide useful insights into principles for effective treatment of stereo anomalies.This study was registered as a clinical trial on 04/05/2010 with the identifier NCT01115283 at ClinicalTrials.gov.
Collapse
Affiliation(s)
| | | | | | - Dennis M Levi
- School of Optometry, University of California, Berkeley, USA
| |
Collapse
|
39
|
Yan FF, Lv H, Fan S, Chen L, Wu Y, Huang CB. Effect of physiological aging on binocular vision. Psych J 2021; 10:340-351. [PMID: 33686774 DOI: 10.1002/pchj.437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 09/25/2020] [Accepted: 10/30/2020] [Indexed: 11/09/2022]
Abstract
We see the world with two eyes. Binocular vision provides more ample information through interocular interaction. Previous studies have shown that aging impairs a variety of visual functions, but how aging affects binocular vision is still unclear. In this study, we measured three typical binocular functions-binocular combination, binocular rivalry, and stereo vision-to investigate aging-related effects on binocular vision in a relatively large sample (48 younger adults and 27 older adults) with normal or corrected-to-normal distance vision and no ophthalmological and mental diseases. We found that there were no consistent aging-related declines in binocular vision, with the worst effect on alternation frequency in binocular rivalry and no effect on binocular phase combination and stereo vision tested by Titmus. In addition, aging changed the correlation pattern among some of these binocular functions. These results reflected (at least partially) different aging-related mechanism(s) in binocular vision.
Collapse
Affiliation(s)
- Fang-Fang Yan
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Hongyu Lv
- Qinhuangdao Maternal and Child Health Care Hospital, Qinhuangdao, China
| | - Shuhan Fan
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Lijun Chen
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yifan Wu
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Chang-Bing Huang
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
40
|
Neural markers of suppression in impaired binocular vision. Neuroimage 2021; 230:117780. [PMID: 33503479 PMCID: PMC8063178 DOI: 10.1016/j.neuroimage.2021.117780] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/29/2020] [Accepted: 01/17/2021] [Indexed: 11/26/2022] Open
Abstract
Even after conventional patching treatment, individuals with a history of amblyopia typically lack good stereo vision. This is often attributed to atypical suppression between the eyes, yet the specific mechanism is still unclear. Guided by computational models of binocular vision, we tested explicit predictions about how neural responses to contrast might differ in individuals with impaired binocular vision. Participants with a history of amblyopia (N = 25), and control participants with typical visual development (N = 19) took part in the study. Neural responses to different combinations of contrast in the left and right eyes, were measured using both electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). Stimuli were sinusoidal gratings with a spatial frequency of 3c/deg, flickering at 4 Hz. In the fMRI experiment, we also ran population receptive field and retinotopic mapping sequences, and a phase-encoded localiser stimulus, to identify voxels in primary visual cortex (V1) sensitive to the main stimulus. Neural responses in both modalities increased monotonically with stimulus contrast. When measured with EEG, responses were attenuated in the weaker eye, consistent with a fixed tonic suppression of that eye. When measured with fMRI, a low contrast stimulus in the weaker eye substantially reduced the response to a high contrast stimulus in the stronger eye. This effect was stronger than when the stimulus-eye pairings were reversed, consistent with unbalanced dynamic suppression between the eyes. Measuring neural responses using different methods leads to different conclusions about visual differences in individuals with impaired binocular vision. Both of the atypical suppression effects may relate to binocular perceptual deficits, e.g. in stereopsis, and we anticipate that these measures could be informative for monitoring the progress of treatments aimed at recovering binocular vision.
Collapse
|
41
|
Levi DM. Amblyopia. HANDBOOK OF CLINICAL NEUROLOGY 2021; 178:13-30. [PMID: 33832673 DOI: 10.1016/b978-0-12-821377-3.00002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Amblyopia is a neurodevelopmental abnormality that results in physiological alterations in the visual pathways and impaired vision in one eye, less commonly in both. It reflects a broad range of neural, perceptual, oculomotor, and clinical abnormalities that can occur when normal visual development is disrupted early in life. Aside from refractive error, amblyopia is the most common cause of vision loss in infants and young children. It causes a constellation of perceptual deficits in the vision of the amblyopic eye, including a loss of visual acuity, position acuity, and contrast sensitivity, particularly at high spatial frequencies, as well as increased internal noise and prolonged manual and saccadic reaction times. There are also perceptual deficits in the strong eye, such as certain types of motion perception, reflecting altered neural responses and functional connectivity in visual cortex (Ho et al., 2005). Treatment in young children consists of correction of any refractive error and patching of the strong eye. Compliance with patching is challenging and a substantial proportion of amblyopic children fail to achieve normal acuity or stereopsis even after extended periods of treatment. There are a number of promising experimental treatments that may improve compliance and outcomes, such as the playing of action video games with the strong eye patched. Although there may be a sensitive period for optimal effects of treatment, there is evidence that amblyopic adults may still show some benefit of treatment. However, there is as yet no consensus on the treatment of adults with amblyopia.
Collapse
Affiliation(s)
- Dennis M Levi
- School of Optometry & Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, United States.
| |
Collapse
|
42
|
Ding J, Levi DM. A unified model for binocular fusion and depth perception. Vision Res 2020; 180:11-36. [PMID: 33359897 DOI: 10.1016/j.visres.2020.11.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 11/27/2022]
Abstract
We describe a new unified model to explain both binocular fusion and depth perception, over a broad range of depths. At each location, the model consists of an array of paired spatial frequency filters, with different relative horizontal shifts (position disparity) and interocular phase disparities of 0, 90, ±180, or -90°. The paired filters with different spatial profiles (non-zero phase disparity) compute interocular misalignment and provide phase-disparity energy (binocular fusion energy) to drive selection of the appropriate filters along the position disparity space until the misalignment is eliminated and sensory fusion is achieved locally. The paired filters with identical spatial profiles (0 phase disparity) compute the position-disparity energy. After sensory fusion, the combination of position and possible residual phase disparity energies is calculated for binocular depth perception. Binocular fusion occurs at multiple scales following a coarse-to-fine process. At a given location, the apparent depth is the weighted sum of fusion shifts combined with residual phase disparity in all spatial-frequency channels, and the weights depend on stimulus spatial frequency and stimulus contrast. To test the theory, we measured disparity minimum and maximum thresholds (Dmin and Dmax) at three spatial frequencies and with different intraocular contrast levels. The stimuli were Random-Gabor-Patch (RGP) stereograms consisting of Gabor patches with random positions and phases, but with a fixed spatial frequency. The two eyes viewed identical arrays of patches except that one eye's array could be shifted horizontally and could differ in contrast. Our experiments and modeling reveal two contrast normalization mechanisms: (1) Energy Normalization (EN): Binocular energy is normalized with monocular energy after the site of binocular combination. This predicts constant Dmin thresholds when varying stimulus contrast in the two eyes; (2) DSKL model Interocular interactions: Monocular contrasts are normalized before the binocular combination site through interocular contrast gain-control and gain-enhancement mechanisms. This predicts contrast dependent Dmax thresholds. We tested a range of models and found that a model consisting of a second-order pathway with DSKL interocular interactions and a first-order pathway with EN at each spatial-frequency band can account for both the Dmin and Dmax data very well. Simulations show that the model makes reasonable predictions of suprathreshold depth perception.
Collapse
Affiliation(s)
- Jian Ding
- School of Optometry and the Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720-2020, United States.
| | - Dennis M Levi
- School of Optometry and the Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720-2020, United States
| |
Collapse
|
43
|
Abstract
Recent work has transformed our ideas about the neural mechanisms, behavioral consequences and effective therapies for amblyopia. Since the 1700's, the clinical treatment for amblyopia has consisted of patching or penalizing the strong eye, to force the "lazy" amblyopic eye, to work. This treatment has generally been limited to infants and young children during a sensitive period of development. Over the last 20 years we have learned much about the nature and neural mechanisms underlying the loss of spatial and binocular vision in amblyopia, and that a degree of neural plasticity persists well beyond the sensitive period. Importantly, the last decade has seen a resurgence of research into new approaches to the treatment of amblyopia both in children and adults, which emphasize that monocular therapies may not be the most effective for the fundamentally binocular disorder that is amblyopia. These approaches include perceptual learning, video game play and binocular methods aimed at reducing inhibition of the amblyopic eye by the strong fellow eye, and enhancing binocular fusion and stereopsis. This review focuses on the what we've learned over the past 20 years or so, and will highlight both the successes of these new treatment approaches in labs around the world, and their failures in clinical trials. Reconciling these results raises important new questions that may help to focus future directions.
Collapse
Affiliation(s)
- Dennis M Levi
- University of California, Berkeley, School of Optometry & Helen Wills Neuroscience Institute, Berkeley, CA, USA.
| |
Collapse
|
44
|
Barboni MTS, Maneschg OA, Németh J, Nagy ZZ, Vidnyánszky Z, Bankó ÉM. Dichoptic Spatial Contrast Sensitivity Reflects Binocular Balance in Normal and Stereoanomalous Subjects. Invest Ophthalmol Vis Sci 2020; 61:23. [PMID: 32931571 PMCID: PMC7500129 DOI: 10.1167/iovs.61.11.23] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/17/2020] [Indexed: 01/27/2023] Open
Abstract
Purpose To study binocular balance by comparing dichoptic and standard monocular contrast sensitivity function (CSF) in stereonormal and stereoanomalous/stereoblind amblyopic subjects. Methods Sixteen amblyopes and 17 controls participated. Using the capability of the passive three-dimensional display, we measured their CSF both monocularly and dichoptically at spatial frequencies 0.5, 1, 2, 4, and 8 cpds using achromatic Gabor patches on a luminance noise background. During monocular stimulation, the untested eye was covered, while for the dichoptic stimulation the untested eye viewed background noise. Dichoptic CSF of both eyes was acquired within one block. Results In patients with central fixation, dichoptic viewing had a large negative impact on the CSF of the amblyopic eye, although it hardly affected that of the dominant eye. In contrast, dichoptic viewing had a small but significant effect on both eyes for controls. In addition, all participants lay along a continuum in terms of how much their two eyes were affected by dichoptic stimulation: by using two predefined contrast sensitivity ratios, namely, amblyopic sensitivity decrement and dichoptic sensitivity decrement, not only did we find a significant correlation between these variables among all participants, but also the two groups were identified with minimum error using a cluster analysis. Conclusions Dichoptic CSF may be considered to measure visual performance in patients with altered binocular vision, because it better reflects the visual capacity of the amblyopic eye than the standard monocular examinations. It may also be a more reliable parameter to assess the efficacy of modern approaches to treat amblyopia.
Collapse
Affiliation(s)
| | - Otto Alexander Maneschg
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
- Bionic Innovation Center, Budapest, Hungary
| | - János Németh
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
- Bionic Innovation Center, Budapest, Hungary
| | - Zoltán Zsolt Nagy
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Zoltán Vidnyánszky
- Brain Imaging Centre, Research Centre for Natural Sciences, Budapest, Hungary
| | - Éva M. Bankó
- Brain Imaging Centre, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
45
|
Martín S, Portela JA, Ding J, Ibarrondo O, Levi DM. Evaluation of a Virtual Reality implementation of a binocular imbalance test. PLoS One 2020; 15:e0238047. [PMID: 32822405 PMCID: PMC7446887 DOI: 10.1371/journal.pone.0238047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/07/2020] [Indexed: 01/12/2023] Open
Abstract
The purpose of this study was (1) to implement a test for binocular imbalance in a Virtual Reality headset, (2) to assess its testability, reliability and outcomes in a population of clinical patients and (3) to evaluate the relationships of interocular acuity difference, stereoacuity and binocular imbalance to amblyogenic risk factors. 100 volunteers (6 to 70 years old, mean 21.2 ± 16.2), 21 with no amblyogenic risk factors and 79 with amblyopia or a history of amblyopia participated. Participants were classified by amblyogenic risk factor (24 anisometropic, 25 strabismic and 30 mixed) and, for those with strabismus, also by refractive response (16 accommodative and 39 non-accommodative). We characterized our sample using three variables, called the ‘triplet’ henceforth: interocular acuity difference, stereoacuity and imbalance factor. Binocular imbalance showed high test-retest reliability (no significant difference between test and retest in a subgroup, n = 20, p = 0.831); was correlated with Worth 4 dots test (r = 0.538, p<0.0001); and correlated with both interocular acuity difference (r = 0.575, p<0.0001) and stereoacuity (r = 0.675, p<0.0001). The mean values of each variable of the triplet differed depending on group classification. Mixed and non-accommodative groups showed the worst mean values compared with the other groups. Among participants with strabismus, strabismic vs mixed subgroups did not show significant differences in any variable of the triplet, whereas the accommodative vs non-accommodative subgroups showed significant differences in all of them. According to a univariate logistic model, any variable of the triplet provides a good metric for differentiating patients from controls, except for binocular imbalance for anisometropic subgroup. The proposed binocular imbalance test is feasible and reliable. We recommend monitoring amblyopia clinically not only considering visual acuity, but also stereoacuity and interocular imbalance. Stereoacuity on its own fails because of the high percentage of patients with no measurable stereoacuity. Binocular imbalance may help to fill that gap.
Collapse
Affiliation(s)
| | | | - Jian Ding
- School of Optometry, University of California, Berkeley, CA, United States of America
| | | | - Dennis M. Levi
- School of Optometry, University of California, Berkeley, CA, United States of America
| |
Collapse
|
46
|
Measuring Virtual Reality Headset Resolution and Field of View: Implications for Vision Care Applications. Optom Vis Sci 2020; 97:573-582. [PMID: 32769841 DOI: 10.1097/opx.0000000000001541] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
SIGNIFICANCE To judge the feasibility of virtual reality (VR) headsets for vision testing and treatment of binocular vision disorders and low vision, angular resolution (logMAR) and field of view must be known and may not be reliably provided. This is the first study to measure the limitations of VR systems for eye care applications. PURPOSE This study aimed to measure, in a sample of VR headsets, eye-to-screen distance and other physical and optical characteristics needed to calculate minimum angular resolution in logMAR and field of view in determining feasibility for vision applications. METHODS Eye-to-screen distance was measured, and logMAR, field of view, and maximum convergence demand were calculated for two standalone VR devices, Oculus Rift DK2 and HTC Vive, and, for four smartphone VR headsets, Zeiss VR1, Samsung Gear VR, VR Box, and SunnyPeak, each paired with four high-resolution smartphones, Samsung Galaxy S7/S8, iPhone X, and LG VR30. RESULTS On average, the smallest letter that could be displayed in VR was 0.41 ± 0.09 (20/51), ranging from 0.59 (20/78) in the DK2 to 0.28 (20/39) in VR Box with S7. Mean field of view was 50.2 ± 4.8°, ranging from 39.6° in the VR Box with S7 to 55° in the HTC Vive. The mean field of view when used as a low vision aid was 23.0° and 12.7° for 2.2× and 4×, respectively. The mean maximum near convergence demand produced for a 60-mm interpupillary distance was 38.6 ± 10.1Δ. CONCLUSIONS The minimum angular resolution in logMAR of current VR technology is insufficient for visual acuity testing and may be insufficient for standalone treatment of amblyopia. Field of view during movie watching or gaming is about half that reported by manufacturers but adequate for some types of visual field testing. Use for vergence testing and training is a concern for headsets with long eye-to-screen distance or interpupillary distances <60 mm.
Collapse
|
47
|
Wu Y, Reynaud A, Tao C, Mao Y, He Z, Zhou J, Hess RF. Two Patterns of Interocular Delay Revealed by Spontaneous Motion-in-Depth Pulfrich Phenomenon in Amblyopes with Stereopsis. Invest Ophthalmol Vis Sci 2020; 61:22. [PMID: 32181800 PMCID: PMC7401735 DOI: 10.1167/iovs.61.3.22] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Purpose To assess interocular delays in amblyopes with stereopsis and to evaluate the relationship between interocular delays and the clinical characteristics. Methods Twenty amblyopes with stereopsis (median, 400 arcseconds) and 20 controls with normal or corrected to normal visual acuity (≤0 logMAR) and normal stereopsis (≤60 arcseconds) participated. Using a rotating cylinder defined by horizontally moving Gabor patches, we produced a spontaneous Pulfrich phenomenon in order to determine the interocular delays, that is, the interocular phase difference at which ambiguous motion in plane was perceived. Two spatial frequencies—a low (0.95 cycles/degree [c/d]) and a medium (2.85 c/d) spatial frequency—were tested. Results The absolute interocular delays of the amblyopic group was significantly longer than that of the controls at both low or medium spatial frequencies (P < 0.01). However, the interocular delays was not always in favor of the fellow eye: 35% of the amblyopes (7/20) showed a faster processing of the amblyopic eye than that of the fellow eye at 0.95 c/d and 29.5% (5/17) at 2.85 c/d. No significant correlation was found between interocular delays and the clinical characteristics (e.g., age, treatment history, stereoacuity, and magnitude of anisometropia) in this amblyopic cohort. Conclusions The interocular delays in amblyopes with stereopsis might result from either a faster or slower processing of the amblyopic eye relative to the fellow eye. This work provides important additional information for binocular processing of dynamic visual stimuli in amblyopia. However, the special role between this form of interocular delays and patients’ clinical characteristics remains unknown.
Collapse
|
48
|
Chima AS, Formankiewicz MA, Waugh SJ. Interocular ND filter suppression: Eccentricity and luminance polarity effects. J Vis 2020; 20:35. [PMID: 32735341 PMCID: PMC7424104 DOI: 10.1167/jov.20.7.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The depth and extent of interocular suppression were measured in binocularly normal observers who unilaterally adapted to neutral density (ND) filters (0, 1.5, 2, and 3 ND). Suppression was measured by dichoptically matching sectors of a ring presented to the adapted eye to a fixed contrast contiguous ring presented to the non-adapted eye. Other rings of alternating polarity were viewed binocularly. Rings were defined by luminance (L), luminance with added dynamic binary luminance noise (LM), and contrast modulating the same noise (CM). Interocular suppression depth increased with increasing ND, nearing significance (p = 0.058) for 1.5 ND. For L and LM stimuli, suppression depth across eccentricity (±12° visual field) differed for luminance increment (white) versus luminance decrement (black) stimuli, potentially confounding eccentricity results. Suppression for increment-only (white) luminance stimuli was steeper centrally and extended across the visual field, but was deeper for L than for LM stimuli. Suppression for decrement-only (black) luminance stimuli revealed only central suppression. Suppression was deeper with CM than LM stimuli, suggesting that CM stimuli are extracted in areas receiving predominantly binocular input which may be more sensitive to binocular disruption. Increment (white) luminance stimuli demonstrate deeper interocular suppression in the periphery than decrement (black) stimuli, so they are more sensitive to changes in peripheral suppression. Asymmetry of suppression in the periphery for opposite polarity luminance stimuli may be due to interocular receptive field size mismatch as a result of dark adaptation separately affecting ON and OFF pathways. Clinically, measurement of suppression with CM stimuli may provide the best information about post-combination binocularity.
Collapse
|
49
|
Mao Y, Min SH, Chen S, Gong L, Chen H, Hess RF, Zhou J. Binocular Imbalance in Amblyopia Depends on Spatial Frequency in Binocular Combination. Invest Ophthalmol Vis Sci 2020; 61:7. [PMID: 32634205 PMCID: PMC7425706 DOI: 10.1167/iovs.61.8.7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To assess the role of spatial frequency on binocular imbalance in binocular combination in adults with amblyopia. Methods Ten amblyopes (23 ± 4.9 [SD] years old; one deprivation, two mixed, seven anisometropia patients) and 10 age-matched normal adults (23 ± 2.3 years old) participated. The interocular contrast ratio (fellow eye/amblyopic eye, i.e., the balance point [BP]) that resulted in an equal contribution of both eyes in binocular combination was measured using a binocular orientation combination task at 0.5, 1, 2, and 4 cycles per degree (c/d). The extent of binocular imbalance was quantified as the absolute value of the BP on log scale (i.e., |logBP|). Results When the base contrast of the amblyopic eye was set at 100% (Experiment 1), the |logBP| was found to be significantly affected by stimulus spatial frequency (F(1.44, 26.01) = 51.6, P < 0.001, ηg2= 0.40) and group (F(1, 18) = 66.97, P < 0.001, ηg2 = 0.74), the interaction between spatial frequency and group was also significant (F(1.44, 26.01) = 38.12, P < 0.001, ηg2= 0.33). Such spatial frequency–dependent binocular imbalance remained present, even when the base contrast of the amblyopic eye was set at equal suprathreshold contrast levels across spatial frequencies (Experiment 2). Conclusions Binocular balance was more disrupted at higher spatial frequencies in binocular combination in amblyopia. This imbalance might not originate solely from the amblyopic eye's deficit in contrast sensitivity but is likely to be related to the difference in contrast sensitivity between the eyes.
Collapse
|
50
|
Wang M, McGraw P, Ledgeway T. Short-term monocular deprivation reduces inter-ocular suppression of the deprived eye. Vision Res 2020; 173:29-40. [PMID: 32460171 DOI: 10.1016/j.visres.2020.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/07/2020] [Accepted: 05/10/2020] [Indexed: 10/24/2022]
Abstract
The adult visual system was traditionally thought to be relatively hard-wired, but recent studies have challenged this view by demonstrating plasticity following short-term monocular deprivation. Depriving one eye of spatial information for 2-3 h increased subsequent sensory dominance of that eye. However, the mechanism underlying this phenomenon is unclear. The present study sought to address this issue and determine the consequences of short-term monocular deprivation on inter-ocular suppression of each eye. Sensory eye dominance was examined before and after depriving an eye of all input using an opaque patch for 2.5 h, in six adult participants with normal binocular vision. We used a percept tracking task during binocular rivalry (BR) to assess the relative eye dominance, and an objective probe detection task under continuous flash suppression (CFS) to quantify each eye's susceptibility to inter-ocular suppression. The monocular contrast increment threshold of each eye was also measured using the probe task to ascertain if the altered eye dominance is accompanied by changes in monocular perception. Our BR results replicated previous findings of a shift of relative dominance towards the eye that has been deprived of form information. More crucially, using CFS we demonstrated reduced inter-ocular suppression of the deprived eye with no complementary changes in the other eye, and no monocular changes in increment threshold. These findings imply that short-term monocular deprivation alters binocular interactions. The differential effect on inter-ocular suppression between eyes may have important implications for the use of patching as a therapy to recover visual function in amblyopia.
Collapse
Affiliation(s)
- Mengxin Wang
- School of Psychology, University of Nottingham, Nottingham NG7 2RD, United Kingdom.
| | - Paul McGraw
- School of Psychology, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Timothy Ledgeway
- School of Psychology, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|