1
|
Gao AY, Haak AJ, Bakri SJ. In vitro laboratory models of proliferative vitreoretinopathy. Surv Ophthalmol 2023; 68:861-874. [PMID: 37209723 DOI: 10.1016/j.survophthal.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Proliferative vitreoretinopathy (PVR), the most common cause of recurrent retinal detachment, is characterized by the formation and contraction of fibrotic membranes on the surface of the retina. There are no Food and Drug Administration (FDA)-approved drugs to prevent or treat PVR. Therefore, it is necessary to develop accurate in vitro models of the disease that will enable researchers to screen drug candidates and prioritize the most promising candidates for clinical studies. We provide a summary of recent in vitro PVR models, as well as avenues for model improvement. Several in vitro PVR models were identified, including various types of cell cultures. Additionally, novel techniques that have not been used to model PVR were identified, including organoids, hydrogels, and organ-on-a-chip models. Novel ideas for improving in vitro PVR models are highlighted. Researchers may consult this review to help design in vitro models of PVR, which will aid in the development of therapies to treat the disease.
Collapse
Affiliation(s)
- Ashley Y Gao
- Mayo Clinic, Department of Ophthalmology, Rochester, Minnesota, USA
| | - Andrew J Haak
- Mayo Clinic, Department of Physiology and Biomedical Engineering, Rochester, Minnesota, USA
| | - Sophie J Bakri
- Mayo Clinic, Department of Ophthalmology, Rochester, Minnesota, USA.
| |
Collapse
|
2
|
Proteome Landscape of Epithelial-to-Mesenchymal Transition (EMT) of Retinal Pigment Epithelium Shares Commonalities With Malignancy-Associated EMT. Mol Cell Proteomics 2021; 20:100131. [PMID: 34455105 PMCID: PMC8482521 DOI: 10.1016/j.mcpro.2021.100131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 07/09/2021] [Accepted: 07/30/2021] [Indexed: 02/08/2023] Open
Abstract
Stress and injury to the retinal pigment epithelium (RPE) often lead to dedifferentiation and epithelial-to-mesenchymal transition (EMT). These processes have been implicated in several retinal diseases, including proliferative vitreoretinopathy, diabetic retinopathy, and age-related macular degeneration. Despite the importance of RPE-EMT and the large body of data characterizing malignancy-related EMT, comprehensive proteomic studies to define the protein changes and pathways underlying RPE-EMT have not been reported. This study sought to investigate the temporal protein expression changes that occur in a human-induced pluripotent stem cell–based RPE-EMT model. We utilized multiplexed isobaric tandem mass tag labeling followed by high-resolution tandem MS for precise and in-depth quantification of the RPE-EMT proteome. We have identified and quantified 7937 protein groups in our tandem mass tag–based MS analysis. We observed a total of 532 proteins that are differentially regulated during RPE-EMT. Furthermore, we integrated our proteomic data with prior transcriptomic (RNA-Seq) data to provide additional insights into RPE-EMT mechanisms. To validate these results, we have performed a label-free single-shot data-independent acquisition MS study. Our integrated analysis indicates both the commonality and uniqueness of RPE-EMT compared with malignancy-associated EMT. Our comparative analysis also revealed that multiple age-related macular degeneration–associated risk factors are differentially regulated during RPE-EMT. Together, our integrated dataset provides a comprehensive RPE-EMT atlas and resource for understanding the molecular signaling events and associated biological pathways that underlie RPE-EMT onset. This resource has already facilitated the identification of chemical modulators that could inhibit RPE-EMT, and it will hopefully aid in ongoing efforts to develop EMT inhibition as an approach for the treatment of retinal disease. Proteomics data were integrated with prior transcriptomic (RNA-Seq) data on RPE-EMT. Dysregulated RPE-EMT proteome shares commonality with malignancy-associated EMT. Altered RPE-EMT proteome signatures correlated with known AMD-associated risk factors. Protein kinases and phosphatases crosstalk modulate RPE-EMT.
Collapse
|
3
|
Kaczmarek R, Gajdzis P, Gajdzis M. Eph Receptors and Ephrins in Retinal Diseases. Int J Mol Sci 2021; 22:ijms22126207. [PMID: 34201393 PMCID: PMC8227845 DOI: 10.3390/ijms22126207] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
Retinal diseases are the leading cause of irreversible blindness. They affect people of all ages, from newborns in retinopathy of prematurity, through age-independent diabetic retinopathy and complications of retinal detachment, to age-related macular degeneration (AMD), which occurs mainly in the elderly. Generally speaking, the causes of all problems are disturbances in blood supply, hypoxia, the formation of abnormal blood vessels, and fibrosis. Although the detailed mechanisms underlying them are varied, the common point is the involvement of Eph receptors and ephrins in their pathogenesis. In our study, we briefly discussed the pathophysiology of the most common retinal diseases (diabetic retinopathy, retinopathy of prematurity, proliferative vitreoretinopathy, and choroidal neovascularization) and collected available research results on the role of Eph and ephrins. We also discussed the safety aspect of the use of drugs acting on Eph and ephrin for ophthalmic indications.
Collapse
Affiliation(s)
- Radoslaw Kaczmarek
- Department of Ophthalmology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Pawel Gajdzis
- Department of Pathomorphology and Oncological Cytology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Malgorzata Gajdzis
- Department of Ophthalmology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
- Correspondence: ; Tel.: +00-48-71-736-4300
| |
Collapse
|
4
|
He S, Ouyang S, Li X, Ma B. Inhibition of laser induced rats choroidal neovascularization by intravitreous injection of sEphB4-HSA. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:18. [PMID: 33553311 PMCID: PMC7859820 DOI: 10.21037/atm-20-3810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background Choroidal neovascularization (CNV) is a leading cause of central vision loss complicated with age-related macular degeneration. Although intravitreal anti-VEGF therapy is widely used in wet age-related macular degeneration, optimal treatment regimens for the disease are still under investigation. EphrinB2 and EphB4 regulate angiogenesis, and interruption of EphB4/ephrinB2 has been demonstrated to inhibit angiogenesis. In the current study, we studied the effects of soluble EphB4 (sEphB4) on laser induced CNV in a rat model by intravitreous injection and the underlying mechanism. Methods Male rats (Brown-Norway) were used in the study. CNV was induced by laser and the sEphB4 was injected intravitreous after laser at days 3 and 7. The CNV lesions were evaluated by three methods: fluorescein angiography (FA) in vivo, CNV volume by confocal analysis of choroidal flat-mounts and H&E staining. The expression of fibronectin (FN), VEGFR-2, phospho-VEGFR-2 (pVEGFR-2), the double labeling of EphB4 with FN was analyzed by immunofluorescence. The interaction of FN with EphB4 and the effects of intraocular injection of sEphB4 on the inhibition of pVEGFR-2 were determined by western blot. Results The FA leakage and CNV volume were significantly inhibited by the injection of the sEphB4. Further, histology analysis showed that CNV lesion was significantly smaller in the rats with sEphB4 injection than rats with placebo application. The expressions of pVEGFR-2 and FN in the CNV lesions were reduced compared with controls. Conclusions Our study suggests that the inhibition of CNV by sEphB4 may be through suppression of VEGFR-2 phosphorylation and the expression of FN. sEphB4 may be a new potential therapeutic strategy of CNV.
Collapse
Affiliation(s)
- Shikun He
- Department of Pathology and USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Sha Ouyang
- Department of Pathology and USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.,Department of Ophthalmology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaohua Li
- Department of Ophthalmology, Henan Provincial People's Hospital, Zhengzhou, China.,Department of Ophthalmology, Henan Eye Hospital, Zhengzhou, China
| | - Binyun Ma
- Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
5
|
Jun JH, Son MJ, Lee HG, Shim KY, Baek WK, Kim JY, Joo CK. Regulation of Ras homolog family member G by microRNA-124 regulates proliferation and migration of human retinal pigment epithelial cells. Sci Rep 2020; 10:15420. [PMID: 32963317 PMCID: PMC7508981 DOI: 10.1038/s41598-020-72360-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 08/30/2020] [Indexed: 11/09/2022] Open
Abstract
Uncontrolled retinal pigment epithelial (RPE) cell proliferation/migration contribute to the pathological tractional membrane development in proliferative vitreoretinopathy. Recent studies reported that microRNA (miR)-124 controls various cellular functions via the direct targeting of small Ras homolog family member G (RHOG). Therefore, we investigated the role of the neuron-specific miR-124 and RHOG in RPE cell proliferation/migration. Alterations in miR-124 and RhoG expression, as per cell confluence were evaluated through quantitative real-time PCR and western blotting, respectively. After transfection with miR-124, we quantified RPE cell viability and migration and observed cell polarization and lamellipodia protrusions. We evaluated the expression of RHOG/RAC1 pathway molecules in miR-124-transfected RPE cells. Endogenous miR-124 expression increased proportionally to RPE cell density, but decreased after 100% confluence. Overexpression of miR-124 decreased cell viability and migration, BrdU incorporation, and Ki-67 expression. Inhibition of endogenous miR-124 expression promoted RPE cell migration. Transfection with miR-124 reduced cell polarization, lamellipodia protrusion, and RHOG mRNA 3′ untranslated region luciferase activity. Like miR-124 overexpression, RhoG knockdown decreased RPE cell viability, wound healing, and migration, and altered the expression of cell cycle regulators. These results suggest that miR-124 could be a therapeutic target to alleviate fibrovascular proliferation in retinal diseases by regulating RPE proliferation/migration via RHOG.
Collapse
Affiliation(s)
- Jong Hwa Jun
- Department of Ophthalmology, Dongsan Medical Center, Keimyung University School of Medicine, Daegu, Korea.
| | - Myeong-Jin Son
- Department of Ophthalmology, Dongsan Medical Center, Keimyung University School of Medicine, Daegu, Korea
| | - Hyun-Gyo Lee
- Department of Ophthalmology, Dongsan Medical Center, Keimyung University School of Medicine, Daegu, Korea
| | - Kyu Young Shim
- Department of Ophthalmology, Dongsan Medical Center, Keimyung University School of Medicine, Daegu, Korea
| | - Won-Ki Baek
- Department of Microbiology, Keimyung University School of Medicine, Daegu, Korea
| | - Jae-Young Kim
- Department of Oral Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Choun-Ki Joo
- Department of Ophthalmology and Visual Science, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
6
|
Du E, Li X, He S, Li X, He S. The critical role of the interplays of EphrinB2/EphB4 and VEGF in the induction of angiogenesis. Mol Biol Rep 2020; 47:4681-4690. [PMID: 32488576 DOI: 10.1007/s11033-020-05470-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 04/25/2020] [Indexed: 12/12/2022]
Abstract
The significant role of VEGF (vascular endothelial growth factor) as an angiogenesis inducer is well recognized. Besides VEGF, EphrinB2/EphB4 also plays essential roles in vascular development and postnatal angiogenesis. Compared with classical proangiogenic factors, not only does EphrinB2/EphB4 promote sprouting of new vessels, it is also involved in the vessel maturation. Given their involvement in many physiologic and pathological conditions, EphB4 and EphrinB2 are increasingly recognized as attractive therapeutic targets for angiogenesis-related diseases through modulating their expression and function. Previous works mainly focused on the individual role of VEGF and EphrinB2/EphB4 in angiogenesis, respectively, but the correlation between EphrinB2/EphB4 and VEGF in angiogenesis has not been fully disclosed. Here, we summarize the structure and bidirectional signaling of EphrinB2/EphB4, provide an overview on the relationship between EphrinB2/EphB4 signaling and VEGF pathway in angiogenesis and highlight the associated potential usefulness in anti-angiogenetic therapy.
Collapse
Affiliation(s)
- Enming Du
- Henan Eye Institute, Zhengzhou, 450003, Henan, China.,Henan Eye Hospital, Zhengzhou, 450003, Henan, China.,Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, 450003, Henan, China.,People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China.,People's Hospital of Henan University, Zhengzhou, 450003, Henan, China.,Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
| | - Xue Li
- Henan Eye Institute, Zhengzhou, 450003, Henan, China.,Henan Eye Hospital, Zhengzhou, 450003, Henan, China.,Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, 450003, Henan, China.,People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China.,People's Hospital of Henan University, Zhengzhou, 450003, Henan, China.,Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
| | - Siyu He
- Henan Eye Institute, Zhengzhou, 450003, Henan, China.,Henan Eye Hospital, Zhengzhou, 450003, Henan, China.,Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, 450003, Henan, China.,People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China.,People's Hospital of Henan University, Zhengzhou, 450003, Henan, China.,Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
| | - Xiaohua Li
- Henan Eye Institute, Zhengzhou, 450003, Henan, China. .,Henan Eye Hospital, Zhengzhou, 450003, Henan, China. .,Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, 450003, Henan, China. .,People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China. .,People's Hospital of Henan University, Zhengzhou, 450003, Henan, China. .,Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China.
| | - Shikun He
- Henan Eye Institute, Zhengzhou, 450003, Henan, China. .,Henan Eye Hospital, Zhengzhou, 450003, Henan, China. .,Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China. .,Departments of Pathology and Ophthalmology, Keck School of Medicine of the University of Southern California, USC Roski Eye Institute, Los Angeles, CA, 90033, USA.
| |
Collapse
|
7
|
Tsotridou E, Loukovitis E, Zapsalis K, Pentara I, Asteriadis S, Tranos P, Zachariadis Z, Anogeianakis G. A Review of Last Decade Developments on Epiretinal Membrane Pathogenesis. MEDICAL HYPOTHESIS, DISCOVERY & INNOVATION OPHTHALMOLOGY JOURNAL 2020; 9:91-110. [PMID: 32490016 PMCID: PMC7134239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Epiretinal membrane (ERM) is a pathologic tissue that develops at the vitreoretinal interface. ERM is responsible for pathological changes of vision with varying degrees of clinical significance. It is either idiopathic or secondary to a wide variety of diseases such as proliferative diabetic retinopathy (PDR) and proliferative vitreoretinopathy (PVR). A great variation in the prevalence of idiopathic ERM among different ethnic groups proposed that genetic and lifestyle factors may play a role in ERM occurrence. Histopathological studies demonstrate that various cell types including retinal pigment epithelium (RPE) cells, fibrocytes, fibrous astrocytes, myofibroblast-like cells, glial cells, endothelial cells (ECs) and macrophages, as well as trophic and transcription factors, including transforming growth factor (TGF), vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF) etc., are directly or indirectly involved in the pathogenesis of idiopathic or secondary ERMs. These processes are driven (on the last count) by more than 50 genes, such as Tumor Necrosis Factor (TNF), CCL2 (chemokine (C-C motif) ligand )), Metastasis Associated Lung Adenocarcinoma Transcript 1 )MALAT1(, transforming growth factor (TGF)-β1, TGF-β2, Interleukin-6 (IL-6), IL-10, VEGF and glial fibrillary acidic protein (GFAP), some of which have been studied more intensely than others. The present paper tried to summarize, highlight and cross-correlate the major findings made in the last decade on the function of these genes and their association with different types of cells, genes and gene expression products in the ERM formation.
Collapse
Affiliation(s)
- Eleni Tsotridou
- Ophthalmica Eye Institute, Thessaloniki, Greece.,Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleftherios Loukovitis
- Ophthalmica Eye Institute, Thessaloniki, Greece.,Department of Ophthalmology, 424 General Military Hospital, Thessaloniki, Greece
| | - Konstantinos Zapsalis
- Ophthalmica Eye Institute, Thessaloniki, Greece.,Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Iro Pentara
- Ophthalmica Eye Institute, Thessaloniki, Greece.,Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | | | - George Anogeianakis
- Ophthalmica Eye Institute, Thessaloniki, Greece.,Association for Training in Biomedical Technology, Thessaloniki, Greece
| |
Collapse
|
8
|
Du Y, Yang X, Gong Q, Xu Z, Cheng Y, Su G. Inhibitor of growth 4 affects hypoxia-induced migration and angiogenesis regulation in retinal pigment epithelial cells. J Cell Physiol 2019; 234:15243-15256. [PMID: 30667053 DOI: 10.1002/jcp.28170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Inhibitor of growth 4 (ING4), a potential tumor suppressor, is implicated in cell migration and angiogenesis. However, its effects on diabetic retinopathy (DR) have not been elucidated. In this study, we aimed to evaluate ING4 expression in normal and diabetic rats and clarify its effects on hypoxia-induced dysfunction in human retinal pigment epithelial (ARPE-19) cells. A Type 1 diabetic model was generated by injecting rats intraperitoneally with streptozotocin and then killed them 4, 8, or 12 weeks later. ING4 expression in retinal tissue was detected using western blot analysis, reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR), and immunohistochemistry assays. After transfection with an ING4 overexpression lentiviral vector or small interfering RNA (siRNA), ARPE-19 migration under hypoxia was tested using wound healing and transwell assays. The angiogenic effect of conditioned medium (CM) from ARPE-19 cells was examined by assessing human retinal endothelial cell (HREC) capillary tube formation. Additionally, western blot analysis and RT-qPCR were performed to investigate the signaling pathways in which ING4, specificity protein 1 (Sp1), matrix metalloproteinase 2 (MMP-2), MMP-9, and vascular endothelial growth factor A (VEGF-A) were involved. Here, we found that ING4 expression was significantly reduced in the diabetic rats' retinal tissue. Silencing ING4 aggravated hypoxia-induced ARPE-19 cell migration. CM collected from ING4 siRNA-transfected ARPE-19 cells under hypoxia promoted HREC angiogenesis. These effects were reversed by ING4 overexpression. Furthermore, ING4 suppressed MMP-2, MMP-9, and VEGF-A expression in an Sp1-dependent manner in hypoxia-conditioned ARPE-19 cells. Overall, our results provide valuable mechanistic insights into the protective effects of ING4 on hypoxia-induced migration and angiogenesis regulation in ARPE-19 cells. Restoring ING4 may be a novel strategy for treating DR.
Collapse
Affiliation(s)
- Yang Du
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xinyue Yang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Qiaoyun Gong
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Zhixiang Xu
- Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Yan Cheng
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Guanfang Su
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
9
|
Li R, Du JH, Yao GM, Yao Y, Zhang J. Autophagy: a new mechanism for regulating VEGF and PEDF expression in retinal pigment epithelium cells. Int J Ophthalmol 2019; 12:557-562. [PMID: 31024806 DOI: 10.18240/ijo.2019.04.05] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 01/22/2019] [Indexed: 12/28/2022] Open
Abstract
AIM To investigate the regulation of vascular endothelial growth factors (VEGF) and pigment epithelium-derived factor (PEDF) expression by autophagy in retinal pigment epithelium (RPE) cells on exposure to hypoxia. METHODS ARPE-19, an RPE cell line, was treated as following: the control group was kept in a normoxic incubator; the hypoxia group was incubated in a hypoxic incubator with 1% O2/5% CO2/94% N2 for 24h; the hypoxia + 3-methyladenine (3-MA) group was pretreated with 10 mmol/L 3-MA for 1h and then in the hypoxic incubator for 24h; and the hypoxia + chloroquine (CQ) group was pretreated with 50 µmol/L CQ for 1h and then in the hypoxic incubator for 24h. The morphology and ultrastructure of the cells was observed by an inverted microscope or a transmission electronic microscope (TEM). Western blot was performed to assay the expression of autophagy-associated markers, including microtubule associated protein 1 light chain 3 B (LC3B), Beclin-1, Atg5 and p62. The concentration of VEGF and PEDF in the culture supernatant was determined by ELISA, and the ratio of VEGF/PEDF was calculated. RESULTS There were no obvious differences in cell morphology among different groups and autolysosomes could be observed in the cytoplasm in all groups. Compared to the control cells, the LC3B-II/I ratio and levels of Beclin-1 and Atg5 were significantly increased and p62 level was significantly decreased in the hypoxia group. With the increase of VEGF and decrease of PEDF concentration, the VEGF/PEDF ratio was significantly increased in the hypoxia group compared to the control cells. The LC3B-II/I ratio was significantly reduced by 3-MA treatment and increased by CQ treatment. The expressions of Beclin-1 and Atg5 were significantly reduced by 3-MA or CQ treatment, while expression of p62 was increased in the 3-MA or CQ treated cells. The concentration of VEGF was significantly decreased and PEDF increased, thereby the VEGF/PEDF ratio was decreased in the hypoxia + 3-MA group and hypoxia + CQ group compared with that in the hypoxia group. CONCLUSION Hypoxia leads to elevated autophagy in RPE cells, and expression of VEGF and PEDF might be regulated by autophagy on exposure to hypoxia to further participate in regulating the formation of retinal neovascularization.
Collapse
Affiliation(s)
- Rong Li
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, Shaanxi Province, China
| | - Jun-Hui Du
- Department of Ophthalmology, Xi'an Ninth Hospital Affiliated to Medical College of Xi'an Jiaotong University, Xi'an 710054, Shaanxi Province, China
| | - Guo-Min Yao
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, Shaanxi Province, China
| | - Yang Yao
- Department of Central Laboratory, the First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, Shaanxi Province, China
| | - Jin Zhang
- Department of Ophthalmology, the First Hospital of Yulin, Yulin 719000, Shaanxi Province, China
| |
Collapse
|
10
|
Shao Y, Dong LJ, Takahashi Y, Chen J, Liu X, Chen Q, Ma JX, Li XR. miRNA-451a regulates RPE function through promoting mitochondrial function in proliferative diabetic retinopathy. Am J Physiol Endocrinol Metab 2019; 316:E443-E452. [PMID: 30576241 PMCID: PMC6459296 DOI: 10.1152/ajpendo.00360.2018] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The purpose of this study was to explore the role of microRNA-451a (miR-451a) in diabetic retinopathy through activating transcription factor 2 (ATF2). The epiretinal membrane samples from patients with proliferative diabetic retinopathy (PDR) were immunolabeled with an antibody for Ki-67 to identify the proliferative cells. The expression of miR-451a was measured by qRT-PCR in the retina of Akita mice and in RPE cells under diabetic conditions. The potential downstream targets of miR-451a were predicted by bioinformatics and confirmed by dual luciferase assay, qRT-PCR, and Western blotting. Mitochondrial function, cell proliferation, and migration assays were used to detect the functional change after transfection of miR-451a mimic and inhibitor. Proliferative RPE cells were identified in the epiretinal membrane from PDR patients. The expression of miR-451a was downregulated both in the retina of Akita mice and 4-hydroxynonenal (4-HNE)-treated RPE cells. Bioinformatic analysis and luciferase assay identified ATF2 as a potential target of miR-451a. miR-451a inhibited proliferation and migration of RPE cells. The mitochondrial function was enhanced by miR-451a mimic, but suppressed by miR-451a inhibitor. In diabetic conditions, miR-451a showed a protective effect on mitochondrial function. The results of qRT-PCR and Western blotting revealed that overexpression of miR-451a downregulated the expression of ATF2 and its downstream target genes CyclinA1, CyclinD1, and MMP2. In conclusion, miR-451a/ATF2 plays a vital role in the regulation of proliferation and migration in RPE cells through regulation of mitochondrial function, which may provide new perspectives for developing effective therapies for PDR.
Collapse
Affiliation(s)
- Yan Shao
- Tianjin Medical University Eye Hospital, Eye Institute & School of Optometry and Ophthalmology , Tianjin , China
- Department of Physiology, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Li-Jie Dong
- Tianjin Medical University Eye Hospital, Eye Institute & School of Optometry and Ophthalmology , Tianjin , China
| | - Yusuke Takahashi
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Department of Medicine, Section of Diabetes and Endocrinology, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Jianglei Chen
- Department of Physiology, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Xun Liu
- Tianjin Medical University Eye Hospital, Eye Institute & School of Optometry and Ophthalmology , Tianjin , China
| | - Qian Chen
- Department of Physiology, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Eye Institute of Xiamen University & Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University , Xiamen, Fujian , China
| | - Jian-Xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Xiao-Rong Li
- Tianjin Medical University Eye Hospital, Eye Institute & School of Optometry and Ophthalmology , Tianjin , China
| |
Collapse
|
11
|
Li J, Hui L, Kang Q, Li R. Down-regulation of microRNA-27b promotes retinal pigment epithelial cell proliferation and migration by targeting Nox2. Pathol Res Pract 2018; 214:925-933. [DOI: 10.1016/j.prp.2018.05.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 12/11/2022]
|
12
|
Groppa E, Brkic S, Uccelli A, Wirth G, Korpisalo-Pirinen P, Filippova M, Dasen B, Sacchi V, Muraro MG, Trani M, Reginato S, Gianni-Barrera R, Ylä-Herttuala S, Banfi A. EphrinB2/EphB4 signaling regulates non-sprouting angiogenesis by VEGF. EMBO Rep 2018; 19:embr.201745054. [PMID: 29643120 PMCID: PMC5934775 DOI: 10.15252/embr.201745054] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 03/03/2018] [Accepted: 03/08/2018] [Indexed: 12/17/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is the master regulator of angiogenesis, whose best-understood mechanism is sprouting. However, therapeutic VEGF delivery to ischemic muscle induces angiogenesis by the alternative process of intussusception, or vascular splitting, whose molecular regulation is essentially unknown. Here, we identify ephrinB2/EphB4 signaling as a key regulator of intussusceptive angiogenesis and its outcome under therapeutically relevant conditions. EphB4 signaling fine-tunes the degree of endothelial proliferation induced by specific VEGF doses during the initial stage of circumferential enlargement of vessels, thereby limiting their size and subsequently enabling successful splitting into normal capillary networks. Mechanistically, EphB4 neither inhibits VEGF-R2 activation by VEGF nor its internalization, but it modulates VEGF-R2 downstream signaling through phospho-ERK1/2. In vivo inhibitor experiments show that ERK1/2 activity is required for EphB4 regulation of VEGF-induced intussusceptive angiogenesis. Lastly, after clinically relevant VEGF gene delivery with adenoviral vectors, pharmacological stimulation of EphB4 normalizes dysfunctional vascular growth in both normoxic and ischemic muscle. These results identify EphB4 as a druggable target to modulate the outcome of VEGF gene delivery and support further investigation of its therapeutic potential.
Collapse
Affiliation(s)
- Elena Groppa
- Department of Biomedicine, University Hospital, University of Basel, Basel, Switzerland.,Department of Surgery, University Hospital, Basel, Switzerland
| | - Sime Brkic
- Department of Biomedicine, University Hospital, University of Basel, Basel, Switzerland.,Department of Surgery, University Hospital, Basel, Switzerland
| | - Andrea Uccelli
- Department of Biomedicine, University Hospital, University of Basel, Basel, Switzerland.,Department of Surgery, University Hospital, Basel, Switzerland
| | - Galina Wirth
- A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | | | - Maria Filippova
- Department of Biomedicine, University Hospital, University of Basel, Basel, Switzerland.,Department of Surgery, University Hospital, Basel, Switzerland
| | - Boris Dasen
- Department of Biomedicine, University Hospital, University of Basel, Basel, Switzerland.,Department of Surgery, University Hospital, Basel, Switzerland
| | - Veronica Sacchi
- Department of Biomedicine, University Hospital, University of Basel, Basel, Switzerland.,Department of Surgery, University Hospital, Basel, Switzerland
| | - Manuele Giuseppe Muraro
- Department of Biomedicine, University Hospital, University of Basel, Basel, Switzerland.,Department of Surgery, University Hospital, Basel, Switzerland
| | - Marianna Trani
- Department of Biomedicine, University Hospital, University of Basel, Basel, Switzerland.,Department of Surgery, University Hospital, Basel, Switzerland
| | - Silvia Reginato
- Department of Biomedicine, University Hospital, University of Basel, Basel, Switzerland.,Department of Surgery, University Hospital, Basel, Switzerland
| | - Roberto Gianni-Barrera
- Department of Biomedicine, University Hospital, University of Basel, Basel, Switzerland.,Department of Surgery, University Hospital, Basel, Switzerland
| | - Seppo Ylä-Herttuala
- A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland.,Heart Center, Kuopio University Hospital, Kuopio, Finland
| | - Andrea Banfi
- Department of Biomedicine, University Hospital, University of Basel, Basel, Switzerland .,Department of Surgery, University Hospital, Basel, Switzerland
| |
Collapse
|
13
|
Wei Q, Liu Q, Ren C, Liu J, Cai W, Zhu M, Jin H, He M, Yu J. Effects of bradykinin on TGF‑β1‑induced epithelial‑mesenchymal transition in ARPE‑19 cells. Mol Med Rep 2018; 17:5878-5886. [PMID: 29436636 PMCID: PMC5866033 DOI: 10.3892/mmr.2018.8556] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 12/15/2017] [Indexed: 12/19/2022] Open
Abstract
The aim of the present study was to investigate the effects of bradykinin (BK) on an epithelial-mesenchymal transition (EMT) model in retinal pigment epithelium (RPE) cells through exposure to transforming growth factor‑β1 (TGF‑β1). The aim was to improve the effect of BK on proliferative vitreoretinopathy (PVR) progression, and to find a novel method of clinical prevention and treatment for PVR. The morphology of ARPE‑19 cells was observed using an inverted phase‑contrast microscope. A Cell Counting Kit‑8 was used to assess the effects of TGF‑β1 on the proliferation of ARPE‑19 cells. Western blotting and immunofluorescence were used to detect the expression levels of the epithelial marker E‑cadherin, mesenchymal markers α‑smooth muscle actin (SMA) and vimentin, and phosphorylated (p) mothers against decapentaplegic homolog (Smad)3 and Smad7 of the TGF/Smad signaling pathway. Wound healing tests and Transwell assays were performed to detect cell migration ability. Reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) analysis was performed to detect the expression levels of pSmad3 and Smad7 in the TGF/Smad signaling pathway. The results revealed that the addition of 10 ng/ml TGF‑β1 resulted in the expression of factors associated with EMT in ARPE‑19 cells. BK decreased the expression levels of the mesenchymal markers α‑SMA and vimentin, and increased the expression of the epithelial marker E‑cadherin. BK decreased cell migration in TGF‑β1‑induced EMT. These effects were reversed by HOE‑140, a specific BK 2 receptor antagonist. BK significantly downregulated the expression of pSmad3 and upregulated the expression of Smad7 in TGF‑β1‑treated ARPE‑19 cells, and the protective alterations produced by BK were inhibited by HOE‑140. In conclusion, 10 ng/ml TGF‑β1 resulted in EMT in ARPE‑19 cells and BK served a negative role in TGF‑β1‑induced EMT. BK had effects in TGF‑β1‑induced EMT by upregulating the expression of Smad7 and downregulating the expression of pSmad3 in TGF‑β/Smad signaling pathway, indicating that BK may be a novel and effective therapy for PVR.
Collapse
Affiliation(s)
- Qingquan Wei
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai 200072, P.R. China
| | - Qingyu Liu
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai 200072, P.R. China
| | - Chengda Ren
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai 200072, P.R. China
| | - Junling Liu
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai 200072, P.R. China
| | - Wenting Cai
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai 200072, P.R. China
| | - Meijiang Zhu
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai 200072, P.R. China
| | - Huizi Jin
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai 200072, P.R. China
| | - Mengmei He
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi 710061, P.R. China
| | - Jing Yu
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai 200072, P.R. China
| |
Collapse
|
14
|
Matoba R, Morizane Y, Shiode Y, Hirano M, Doi S, Toshima S, Araki R, Hosogi M, Yonezawa T, Shiraga F. Suppressive effect of AMP-activated protein kinase on the epithelial-mesenchymal transition in retinal pigment epithelial cells. PLoS One 2017; 12:e0181481. [PMID: 28719670 PMCID: PMC5515442 DOI: 10.1371/journal.pone.0181481] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 06/30/2017] [Indexed: 01/28/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) in retinal pigment epithelial (RPE) cells plays a central role in the development of proliferative vitreoretinopathy (PVR). The purpose of this study was to investigate the effect of AMP-activated protein kinase (AMPK), a key regulator of energy homeostasis, on the EMT in RPE cells. In this study, EMT-associated formation of cellular aggregates was induced by co-stimulation of cultured ARPE-19 cells with tumor necrosis factor (TNF)-α (10 ng/ml) and transforming growth factor (TGF)-β2 (5 ng/ml). 5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR), a potent activator of AMPK, significantly suppressed TNF-α and TGF-β2-induced cellular aggregate formation (p < 0.01). Dipyridamole almost completely reversed the suppressive effect of AICAR, whereas 5’-amino-5’-deoxyadenosine restored aggregate formation by approximately 50%. AICAR suppressed the downregulation of E-cadherin and the upregulation of fibronectin and α-smooth muscle actin by TNF-α and TGF-β2. The levels of matrix metalloproteinase (MMP)-2, MMP-9, interleukin-6, and vascular endothelial growth factor were significantly decreased by AICAR. Activation of the mitogen-activated protein kinase and mammalian target of rapamycin pathways, but not the Smad pathway, was inhibited by AICAR. These findings indicate that AICAR suppresses the EMT in RPE cells at least partially via activation of AMPK. AMPK is a potential target molecule for the prevention and treatment of PVR, so AICAR may be a promising candidate for PVR therapy.
Collapse
Affiliation(s)
- Ryo Matoba
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yuki Morizane
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- * E-mail:
| | - Yusuke Shiode
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masayuki Hirano
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shinichiro Doi
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shinji Toshima
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ryoichi Araki
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Mika Hosogi
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tomoko Yonezawa
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Fumio Shiraga
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
15
|
LGR4 Is a Direct Target of MicroRNA-34a and Modulates the Proliferation and Migration of Retinal Pigment Epithelial ARPE-19 Cells. PLoS One 2016; 11:e0168320. [PMID: 27977785 PMCID: PMC5158047 DOI: 10.1371/journal.pone.0168320] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 11/30/2016] [Indexed: 01/02/2023] Open
Abstract
The pathology of proliferative vitreoretinopathy and proliferative diabetic retinopathy is linked to proliferation, migration, and adhesion of the retinal pigment epithelium. MicroRNA-34a (miR-34a) expression modulates changes in proliferation and migration of retinal pigment epithelial cell line ARPE-19. In this study, we determined that miR-34a interacts with LGR4, identified by bioinformatics using TargetScan Human 5.0, to affect these changes. Double luciferase gene reporter assay confirmed miR-34a involvement in mediating control. miR-34a mimic transfection decreased LGR4 expression. Western blot analysis documented corresponding protein expression inhibition. MTS, Ki67 immunostaining, scratch and transwell testing, along with attachment assay showed that miR-34a upregulation inhibited ARPE-19 cell proliferation, migration and attachment partly through downregulation of LGR4 protein expression. Western blot analysis revealed that both miR-34a upregulation and LGR4 downregulation induced declines in E2F1, p-CDC2, CDK2, CDK4 and CDK6 protein expression. Taken together, miR-34a gene expression upregulation inhibits ARPE-19 cell proliferation, migration and adhesion partly by suppressing LGR4 expression. These results substantiate earlier indications that both miR-34a and LGR4 are potential drug targets to prevent fibrosis in a clinical setting.
Collapse
|
16
|
Chang YC, Chang YS, Hsieh MC, Wu HJ, Wu MH, Lin CW, Wu WC, Kao YH. All-trans retinoic acid suppresses the adhering ability of ARPE-19 cells via mitogen-activated protein kinase and focal adhesion kinase. J Pharmacol Sci 2016; 132:262-270. [PMID: 27919568 DOI: 10.1016/j.jphs.2016.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 10/21/2016] [Accepted: 11/03/2016] [Indexed: 12/11/2022] Open
Abstract
This study investigated the signaling mechanism underlying the anti-adhesive effect of all-trans retinoic acid (ATRA) on retinal pigment epithelial ARPE-19 cells. Adhesion kinetics with or without ATRA treatment were profiled by adhesion assay. Surface coating with type IV collagen, fibronectin, laminin, but not type I collagen, significantly enhanced adhesion and spreading of ARPE-19 cells, while ATRA at subtoxic doses (ranging from 10-7 to 10-6 M) profoundly suppressed the extracellular matrix-enhanced adhesion ability. Cell attachment on FN activated PI3K/Akt and MAPK cascades, whereas ATRA pretreatment blunted the early phosphorylation of Akt and MAPK signaling mediators including p38 MAPK, JNK1/2, and ERK1/2. Mechanistically, signaling blockade with selective kinase inhibitors demonstrated that all MAPK pathways were involved in the anti-adhesive effect of ATRA, whereas the PI3K inhibitor treatment significantly potentiated the ATRA-suppressed RPE cell adhesion. Moreover, ATRA treatment did not affect intracellular F-actin distribution, but remarkably reduced focal adhesion kinase (FAK) expression and its nuclear localization during ARPE-19 cell attachment. In conclusion, ATRA suppresses the adhering ability of ARPE-19 cells at least in part through MAPK and FAK pathways. Signaling blockade with PI3K inhibitor could be regarded as an alternative modality for treating proliferative vitreoretinopathy.
Collapse
Affiliation(s)
- Yo-Chen Chang
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Ophthalmology, School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yuh-Shin Chang
- Department of Ophthalmology, Chi Mei Medical Center, Tainan 71004, Taiwan; Graduate Institute of Medical Science, College of Health Science, Chang Jung Christian University, Tainan 71101, Taiwan
| | - Ming-Chu Hsieh
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Horng-Jiun Wu
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Meng-Hsien Wu
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chia-Wei Lin
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Wen-Chuan Wu
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Ying-Hsien Kao
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan.
| |
Collapse
|
17
|
Auranofin Inhibits Retinal Pigment Epithelium Cell Survival through Reactive Oxygen Species-Dependent Epidermal Growth Factor Receptor/ Mitogen-Activated Protein Kinase Signaling Pathway. PLoS One 2016; 11:e0166386. [PMID: 27846303 PMCID: PMC5112952 DOI: 10.1371/journal.pone.0166386] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/27/2016] [Indexed: 11/26/2022] Open
Abstract
Abnormal survival of retinal pigment epithelium (RPE) cells contributes to the pathogenesis of proliferative vitreoretinopathy (PVR), a sight-threatening disease. In this study, we explored the effect of the anti-rheumatic agent auranofin (AF) on RPE cell survival and studied the underlying signaling mechanisms in vitro. Our results showed that AF inhibited ARPE-19 cell survival in a dose and time-dependent manner. Application of AF induced several effects: a significant decrease in total epidermal growth factor receptor (EGFR) and an increase in phosphorylated EGFR and mitogen-activated protein kinase (MAPK), including extracellular signal-regulated kinase (ERK), P38 mitogen-activated protein kinase (P38MAPK), c-Jun N-terminal kinase (JNK), c-Jun, mitogen activated protein kinase activated protein kinase 2(MAPKAPK2), and heat shock protein 27 (HSP27). AF also inhibited epidermal growth factor (EGF)-dependent cell proliferation and migration through affecting EGFR/MAPK signaling. The antioxidant N-acetylcysteine (NAC) blocked the AF-induced increase of reactive oxygen species (ROS) production, the reduction of total EGFR, and the phosphorylation of multiple nodes in EGFR/MAPK signaling pathway. P38MAPK inhibitor SB203580, but not inhibitors of EGFR (erlotinib), ERK (FR180204) and JNK (SP600125), suppressed AF-induced phosphorylation of EGFR/p38MAPK/MAPKAPK2/Hsp27. In conclusion, the ROS-dependent phosphorylation of EGFR/MAPK is an important signaling pathway for AF-induced inhibition of RPE cell survival, and AF may have the potential for treatment of abnormal survival of RPE cells in PVR.
Collapse
|
18
|
He S, Barron E, Ishikawa K, Nazari Khanamiri H, Spee C, Zhou P, Kase S, Wang Z, Dustin LD, Hinton DR. Inhibition of DNA Methylation and Methyl-CpG-Binding Protein 2 Suppresses RPE Transdifferentiation: Relevance to Proliferative Vitreoretinopathy. Invest Ophthalmol Vis Sci 2015; 56:5579-89. [PMID: 26305530 DOI: 10.1167/iovs.14-16258] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
PURPOSE The purpose of this study was to evaluate expression of methyl-CpG-binding protein 2 (MeCP2) in epiretinal membranes from patients with proliferative vitreoretinopathy (PVR) and to investigate effects of inhibition of MeCP2 and DNA methylation on transforming growth factor (TGF)-β-induced retinal pigment epithelial (RPE) cell transdifferentiation. METHODS Expression of MeCP2 and its colocalization with cytokeratin and α-smooth muscle actin (α-SMA) in surgically excised PVR membranes was studied using immunohistochemistry. The effects of 5-AZA-2'-deoxycytidine (5-AZA-dC) on human RPE cell migration and viability were evaluated using a modified Boyden chamber assay and the colorimetric 3-(4,5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide (MTT) assay. Expression of RASAL1 mRNA and its promoter region methylation were evaluated by real-time PCR and methylation-specific PCR. Effects of 5-AZA-dC on expression of α-SMA, fibronectin (FN), and TGF-β receptor 2 (TGF-β R2) and Smad2/3 phosphorylation were analyzed by Western blotting. Effect of short interfering RNA (siRNA) knock-down of MeCP2 on expression of α-SMA and FN induced by TGFβ was determined. RESULTS MeCP2 was abundantly expressed in cells within PVR membranes where it was double labeled with cells positive for cytokeratin and α-SMA. 5-AZA-dC inhibited expression of MeCP2 and suppressed RASAL1 gene methylation while increasing expression of the RASAL1 gene. Treatment with 5-AZA-dC significantly suppressed the expression of α-SMA, FN, TGF-β R2 and phosphorylation of Smad2/3 and inhibited RPE cell migration. TGF-β induced expression of α-SMA, and FN was suppressed by knock-down of MeCP2. CONCLUSIONS MeCP2 and DNA methylation regulate RPE transdifferentiation and may be involved in the pathogenesis of PVR.
Collapse
Affiliation(s)
- Shikun He
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States 2Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, Unit
| | - Ernesto Barron
- Doheny Eye Institute, Los Angeles, California, United States
| | | | - Hossein Nazari Khanamiri
- Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States
| | - Chris Spee
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States
| | - Peng Zhou
- Doheny Eye Institute, Los Angeles, California, United States
| | - Satoru Kase
- Doheny Eye Institute, Los Angeles, California, United States
| | - Zhuoshi Wang
- Doheny Eye Institute, Los Angeles, California, United States
| | - Laurie Diane Dustin
- Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States
| | - David R Hinton
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States 2Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, Unit
| |
Collapse
|
19
|
Abstract
Alveolar rhabdomyosarcoma (aRMS) is an aggressive myogenic childhood malignancy, not infrequently presenting as incurable metastatic disease. To identify therapeutic targets, we performed an unbiased tyrosine kinome RNA interference screen in primary cell cultures from a genetically engineered, conditional mouse model of aRMS. We identified ephrin receptor B4 (EphB4) as a target that is widely expressed in human aRMS and that portends a poor clinical outcome in an expression level-dependent manner. We also uncovered cross-talk of this ephrin receptor with another receptor tyrosine kinase, PDGFRβ, which facilitates PDGF ligand-dependent, ephrin ligand-independent activation of EphB4 converging on the Akt and Erk1/2 pathways. Conversely, EphB4 activation by its cognate ligand, EphrinB2, did not stimulate PDGFRβ; instead, apoptosis was paradoxically induced. Finally, we showed that small-molecule inhibition of both PDGFRβ and EphB4 by dasatinib resulted in a significant decrease in tumor cell viability in vitro, as well as decreased tumor growth rate and significantly prolonged survival in vivo. To our knowledge, these results are the first to identify EphB4 and its cross-talk with PDGFRβ as unexpected vital determinants of tumor cell survival in aRMS, with EphB4 at the crux of a bivalent signaling node that is either mitogenic or proapoptotic.
Collapse
|
20
|
Wehrman T, Nguyen M, Feng W, Bader B. EphB4 cellular kinase activity assayed using an enzymatic protein interaction system. Assay Drug Dev Technol 2013; 11:237-43. [PMID: 23557019 DOI: 10.1089/adt.2012.490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Receptor tyrosine kinases (RTKs) are important players in various cellular processes, including proliferation, migration, metabolism, and neuronal development. EphB4 RTK is essential for the development of a functional arterial-venous network in embryonic and adult neoangiogenesis. To develop novel inhibitors of EphB4 that might have applications in severe diseases like cancer and retinopathies, assays need to be in place that resemble, in a most physiological fashion, the activation and downstream function of the kinase. In addition, such assays need to be amenable to high-throughput screening to serve efficiently the modern drug discovery processes in the pharmaceutical industry. The authors have developed an enzyme fragment complementation assay that measures the interaction of a downstream docking protein to the activated and phosphorylated full-length EphB4 kinase in cells. The assay is specific, robust, and amenable to miniaturization and high-throughput screening. It covers most steps in the activation process of EphB4, including ligand binding, autophosphorylation, and docking of a downstream interactor. This assay format can be transferred to other RTKs and adds an important cell-based kinase assay option to researchers in the field.
Collapse
Affiliation(s)
- Tom Wehrman
- DiscoveRx Corporation, Fremont, California 94538, USA.
| | | | | | | |
Collapse
|
21
|
Kenchegowda S, He J, Bazan H. Involvement of pigment epithelium-derived factor, docosahexaenoic acid and neuroprotectin D1 in corneal inflammation and nerve integrity after refractive surgery. Prostaglandins Leukot Essent Fatty Acids 2013; 88:27-31. [PMID: 22579364 PMCID: PMC3431458 DOI: 10.1016/j.plefa.2012.03.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/23/2012] [Accepted: 03/27/2012] [Indexed: 01/05/2023]
Abstract
Alterations in corneal innervations result in impaired corneal sensation, severe dry eye and damage to the epithelium that may in turn lead to corneal ulcers, melting and perforation. These alterations can occur after refractive surgery. We have discovered that pigment epithelium-derived factor (PEDF) plus docosahexaenoic acid (DHA or the docosanoid bioactive neuroprotectin D1 (NPD1)) induces nerve regeneration after corneal surgery that damages the stromal nerves. We found that PEDF is released from corneal epithelial cells after injury, and when DHA is provided to the cells it stimulates the biosynthesis of NPD1 by an autocrine mechanism. The combination of PEDF plus DHA also decreased the production of leukotriene B4 (LTB4), a neutrophil chemotactic factor, thereby decreasing the inflammation induced after corneal damage. These studies suggest that PEDF plus DHA and its derivative NPD1 hold promise as a future treatment to restore a healthy cornea after nerve damage.
Collapse
Affiliation(s)
| | | | - H.E.P Bazan
- Corresponding author: Haydee E.P.Bazan, LSU Eye Center and Neuroscience center, 2020 Gravier Street, Suite D, New Orleans, LA 70112, USA; , Ph: 504- 599- 0877, FAX: 504- 568- 0977
| |
Collapse
|
22
|
|
23
|
Si Y, Wang J, Guan J, Han Q, Hui Y. Platelet-derived growth factor induced alpha-smooth muscle actin expression by human retinal pigment epithelium cell. J Ocul Pharmacol Ther 2012; 29:310-8. [PMID: 23116162 DOI: 10.1089/jop.2012.0137] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PURPOSES (1) To evaluate the association between expression of α-smooth muscle actin (α-SMA) in proliferative vitreoretinopathy (PVR) and the pathological grading of PVR, and the effect of platelet-derived growth factor (PDGF) on the expression of α-SMA by human retinal pigment epithelial (RPE) cells. (2) To investigate the potential induction of PDGF on the proliferation and migration of human RPE cells as well as the signaling pathways responsible. METHODS We immunohistochemically investigated the expression of α-SMA in PVR. To further investigate the effect of PDGF and the downstream signaling, exogenous PDGF-BB and signaling inhibitors were added to cultured human RPE cells. The MTT method was performed to detected cell proliferation, while cell migration was also measured. RESULTS α-SMA expression was positively correlated with the pathological grading of PVR. PDGF-BB could stimulate the proliferation and migration of cultured RPE cells through the participation of mitogen-activated protein kinase. In addition, PDGF induced α-SMA expression. The promotion of proliferate/migration and α-SMA expression by PDGF-BB was enhanced by the presence of serum. CONCLUSIONS PDGF and α-SMA are 2 potential therapeutic targets for the treatment of PVR.
Collapse
Affiliation(s)
- Yanfang Si
- Department of Ophthalmology, Hospital 309 of PLA, Beijing, People's Republic of China
| | | | | | | | | |
Collapse
|
24
|
Du J, Zhao W, Wang Y, Cai Y. Lentivirus vector-mediated knockdown of erythropoietin-producing hepatocellular carcinoma receptors B4 inhibits laser-induced choroidal neovascularization. J Ocul Pharmacol Ther 2012; 29:14-22. [PMID: 23035975 DOI: 10.1089/jop.2012.0077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
PURPOSE To evaluate the efficacy of erythropoietin-producing hepatocellular carcinoma receptors B4 (EphB4) knockdown on the development of laser-induced choroidal neovascularization (CNV) in vivo. METHODS We constructed recombinant lentiviral vectors (Lv) Lv-shRNA-EphB4 to specifically knock down the expression of EphB4. The mRNA and protein expression of EphB4 was investigated by real-time reverse transcription-polymerase chain reaction (RT-PCR) and western blot. CNV was induced by laser photocoagulation in C57BL/6 mice. The mice were then randomly assigned to be intravitreally injected with phosphate-buffered saline (PBS), Lv-shRNA-EphB4 recombinant lentivirus, or an unrelated shRNA recombinant lentivirus (pFU LV-shRNA-NC). An uninjected group was used as the control. Fundus fluorescein angiography (FFA), histologic analysis, and choroidal flat mounts analysis were applied to evaluate the inhibition of CNV after an intravitreal injection. RESULTS Transfection of Lv-shRNA-EphB4 led to the knockdown of EphB4, and EphB4 mRNA was down-regulated by about 80%. FFA and histologic analysis revealed that the leakage areas and the mean thickness of CNV were much smaller in the Lv-shRNA-EphB4 group than in the PBS-treated, pFU Lv-shRNA-NC group and the non-injection group. Choroidal flat mounts showed significantly less leakage and smaller leakage areas in the Lv-shRNA-EphB4 group than those in other groups. CONCLUSION Knocking down the expression of EphB4 exerts an inhibitory effect on CNV in vivo. It may provide a potential strategy for the treatment of CNV.
Collapse
Affiliation(s)
- Jing Du
- Department of Ophthalmology, Xijing Hospital, Eye Institute of Chinese PLA, Fourth Military Medical University , Xi'an, People's Republic of China
| | | | | | | |
Collapse
|
25
|
Chen YJ, Tsai RK, Wu WC, He MS, Kao YH, Wu WS. Enhanced PKCδ and ERK signaling mediate cell migration of retinal pigment epithelial cells synergistically induced by HGF and EGF. PLoS One 2012; 7:e44937. [PMID: 23028692 PMCID: PMC3447816 DOI: 10.1371/journal.pone.0044937] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/10/2012] [Indexed: 12/04/2022] Open
Abstract
Proliferative vitreoretinopathy (PVR) and proliferative diabetic retinopathy (PDR) are characterized by the development of epi-retinal membranes which may exert a tractional force on retina. A lot of inflammatory growth factors may disturb the local ocular cells such as retinal pigment epithelial (RPE) cells, causing them to migrate and proliferate in the vitreous cavity and ultimately forming the PVR membrane. In this study, the signal pathways mediating cell migration of RPE induced by growth factors were investigated. Hepatocyte growth factor (HGF), epidermal growth factor (EGF) or heparin-binding epidermal growth factor (HB-EGF) induced a greater extent of migration of RPE50 and ARPE19 cells, compared with other growth factors. According to inhibitor studies, migration of RPE cells induced by each growth factor was mediated by protein kinase C (PKC) and ERK (MAPK). Moreover, HGF coupled with EGF or HB-EGF had synergistic effects on cell migration and enhanced activation of PKC and ERK, which were attributed to cross activation of growth factor receptors by heterogeneous ligands. Furthermore, using the shRNA technique, PKCδ was found to be the most important PKC isozyme involved. Finally, vitreous fluids from PVR and PDR patients with high concentration of HGF may induce RPE cell migration in PKCδ- and ERK- dependent manner. In conclusion, migration of RPE cells can be synergistically induced by HGF coupled with HB-EGF or EGF, which were mediated by enhanced PKCδ activation and ERK phosphorylation.
Collapse
Affiliation(s)
- Yu Jung Chen
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Rong Kung Tsai
- Department of Ophthalmology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
- Department of Ophthalmology and Visual Science, Tzu Chi University, Hualien, Taiwan
| | - Wen Chen Wu
- Department of Ophthalmology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming Shan He
- Department of Ophthalmology and Visual Science, Tzu Chi University, Hualien, Taiwan
| | - Ying-Hsien Kao
- Department of Medical Research, E-DA Hospital, I-Shou University College, Kaohsiung, Taiwan
| | - Wen Sheng Wu
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan
- * E-mail:
| |
Collapse
|
26
|
Wnuk M, Hlushchuk R, Janot M, Tuffin G, Martiny-Baron G, Holzer P, Imbach-Weese P, Djonov V, Huynh-Do U. Podocyte EphB4 signaling helps recovery from glomerular injury. Kidney Int 2012; 81:1212-25. [PMID: 22398409 DOI: 10.1038/ki.2012.17] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Eph receptor tyrosine kinases and their ligands (ephrins) have a pivotal role in the homeostasis of many adult organs and are widely expressed in the kidney. Glomerular diseases beginning with mesangiolysis can recover, with podocytes having a critical role in this healing process. We studied here the role of Eph signaling in glomerular disease recovery following mesangiolytic Thy1.1 nephritis in rats. EphB4 and ephrinBs were expressed in healthy glomerular podocytes and were upregulated during Thy1.1 nephritis, with EphB4 strongly phosphorylated around day 9. Treatment with NPV-BHG712, an inhibitor of EphB4 phosphorylation, did not cause glomerular changes in control animals. Nephritic animals treated with vehicle did not have morphological evidence of podocyte injury or loss; however, application of this inhibitor to nephritic rats induced glomerular microaneurysms, podocyte damage, and loss. Prolonged NPV-BHG712 treatment resulted in increased albuminuria and dysregulated mesangial recovery. Additionally, NPV-BHG712 inhibited capillary repair by intussusceptive angiogenesis (an alternative to sprouting angiogenesis), indicating a previously unrecognized role of podocytes in regulating intussusceptive vessel splitting. Thus, our results identify EphB4 signaling as a pathway allowing podocytes to survive transient capillary collapse during glomerular disease.
Collapse
Affiliation(s)
- Monika Wnuk
- Department of Nephrology and Hypertension, Inselspital, University of Bern Medical School, Bern, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Singh A, Winterbottom E, Daar IO. Eph/ephrin signaling in cell-cell and cell-substrate adhesion. Front Biosci (Landmark Ed) 2012; 17:473-97. [PMID: 22201756 DOI: 10.2741/3939] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cell-cell and cell-matrix adhesion are critical processes for the formation and maintenance of tissue patterns during development, as well as control of invasion and metastasis of cancer cells. Although great strides have been made regarding our understanding of the processes that play a role in cell adhesion and cell movement, the precise mechanisms by which diverse signaling events regulate cell and tissue architecture are poorly understood. One group of cell surface molecules, Eph receptor tyrosine kinases, and their membrane-bound ligands, ephrins, are key regulators in these processes. It is the ability of Eph/ephrin signaling pathways to regulate cell-cell adhesion and motility that establishes this family as a formidable system for regulating tissue separation and morphogenesis. Moreover, the de-regulation of this signaling system is linked to the promotion of more aggressive and metastatic tumors in humans.
Collapse
Affiliation(s)
- Arvinder Singh
- Laboratory of Cell and Developmental Signaling, National Cancer Institute-Frederick, Frederick, Maryland 21702, USA
| | | | | |
Collapse
|
28
|
Microphthalmia-associated transcription factor acts through PEDF to regulate RPE cell migration. Exp Cell Res 2011; 318:251-61. [PMID: 22115973 DOI: 10.1016/j.yexcr.2011.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 10/12/2011] [Accepted: 11/02/2011] [Indexed: 02/06/2023]
Abstract
Cells of the retinal pigment epithelium (RPE) play major roles in metabolic functions, maintenance of photoreceptor function, and photoreceptor survival in the retina. They normally form a stable monolayer, but migrate during disease states. Although growth factors produced by the RPE cells primarily control these cellular events, how these factors are regulated in RPE cells remain largely unknown. Here we show that the basic-helix-loop-helix-leucine zipper microphthalmia-associated transcription factor (MITF), which plays central roles in the development and function of a variety of cell types including RPE cells, upregulates the expression of a multifunctional factor PEDF in RPE cells. Consequently, the upregulation of PEDF impairs microtubule assembly and thus inhibits RPE cell migration. Conversely, specific knockdown of PEDF partially rescues the impairment of microtubule assembly and cell migration proceeds in MITF overexpressing stable cells. We conclude that MITF acts through PEDF to inhibit RPE cell migration and to play a significant role in regulating RPE cellular function. We suggest that MITF has a novel and important role in maintaining RPE cells as a stable monolayer and the down-regulation of PEDF that may contribute to retinal degenerative diseases.
Collapse
|
29
|
Al-Khazraji BK, Medeiros PJ, Novielli NM, Jackson DN. An automated cell-counting algorithm for fluorescently-stained cells in migration assays. Biol Proced Online 2011; 13:9. [PMID: 22011343 PMCID: PMC3214125 DOI: 10.1186/1480-9222-13-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 10/19/2011] [Indexed: 11/24/2022] Open
Abstract
A cell-counting algorithm, developed in Matlab®, was created to efficiently count migrated fluorescently-stained cells on membranes from migration assays. At each concentration of cells used (10,000, and 100,000 cells), images were acquired at 2.5 ×, 5 ×, and 10 × objective magnifications. Automated cell counts strongly correlated to manual counts (r2 = 0.99, P < 0.0001 for a total of 47 images), with no difference in the measurements between methods under all conditions. We conclude that our automated method is accurate, more efficient, and void of variability and potential observer bias normally associated with manual counting.
Collapse
Affiliation(s)
- Baraa K Al-Khazraji
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada.
| | | | | | | |
Collapse
|
30
|
Zhou P, Lu Y, Sun XH. Zebularine suppresses TGF-beta-induced lens epithelial cell-myofibroblast transdifferentiation by inhibiting MeCP2. Mol Vis 2011; 17:2717-23. [PMID: 22065925 PMCID: PMC3209433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 10/14/2011] [Indexed: 11/01/2022] Open
Abstract
PURPOSE Posterior capsular opacification (PCO) is a common long-term complication of modern cataract surgery. Remnant lens epithelial cells (LECs) undergo a myofibroblast transdifferentiation that is thought to be the initial step of PCO pathogenesis. The purpose of this study is to determine the effects of zebularine on transforming growth factor-β (TGFβ)-induced, LEC-myofibroblast transdifferentiation. METHODS The expression levels of methyl CpG binding protein 2 (MeCP2) and α-smooth muscle actin (α-SMA) in human PCO membranes were evaluated by confocal microscopy. The role that MeCP2 played in TGFβ2-induced α-SMA expression was analyzed by western blotting both before and after MeCP2 knockdown with MeCP2-specific siRNA. The effect of zebularine on MeCP2 expression was analyzed over time using a variety of dosages. The effect of zebularine on TGFβ2-induced α-SMA expression was determined by western blot analysis. RESULTS MeCP2 and α-SMA co-localized in human PCO membranes. When MeCP2 was depleted, TGFβ2 could not induce α-SMA expression. Zebularine decreased MeCP2 expression in lens epithelial cells in a time- and dose-dependent pattern and reversed TGFβ2-induced α-SMA expression. CONCLUSIONS MeCP2 plays an important role in TGFβ2-induced α-SMA expression in lens epithelial cells. Zebularine could reverse the TGFβ2-induced α-SMA expression by inhibiting MeCP2 expression. Therefore, zebularine could potentially prevent PCO formation.
Collapse
|
31
|
van Roeyen CRC, Ostendorf T, Floege J. The platelet-derived growth factor system in renal disease: an emerging role of endogenous inhibitors. Eur J Cell Biol 2011; 91:542-51. [PMID: 21872965 DOI: 10.1016/j.ejcb.2011.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 07/05/2011] [Accepted: 07/05/2011] [Indexed: 01/28/2023] Open
Abstract
The platelet-derived growth factor (PDGF) family consists of four isoforms which are secreted as homodimers (PDGF-AA, PDGF-BB, PDGF-CC and PDGF-DD) or heterodimers (PDGF-AB), and two receptor chains (PDGFR-α and -β). All members of the PDGF system are constitutively or inducibly expressed in renal cells and are involved in the regulation of cell proliferation and migration, the accumulation of extracellular matrix proteins and the secretion of pro- and anti-inflammatory mediators. Particular roles have been identified in mediating mesangioproliferative changes, renal interstitial fibrosis and glomerular angiogenesis. Different endogenous inhibitors of PDGF-induced biological responses exist which affect the activation/deactivation of PDGF isoforms, the activity of the PDGFRs, or which block downstream signaling pathways of the autophosphorylated PDGFRs. The novel endogenous inhibitor nephroblastoma overexpressed gene (NOV, CCN3) reduces PDGF-induced cell proliferation and is downregulated by PDGF isoforms itself. Among all identified inhibitors only few "true" PDGF antagonists have been identified. A better understanding of these inhibitors may aid in the design of novel therapeutic approaches to PDGF-mediated diseases.
Collapse
Affiliation(s)
- Claudia R C van Roeyen
- Department of Nephrology and Clinical Immunology, RWTH University Hospital Aachen, Pauwelsstr. 30, D-52057 Aachen, Germany.
| | | | | |
Collapse
|
32
|
Krasnoperov V, Kumar SR, Ley E, Li X, Scehnet J, Liu R, Zozulya S, Gill PS. Novel EphB4 monoclonal antibodies modulate angiogenesis and inhibit tumor growth. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:2029-38. [PMID: 20133814 DOI: 10.2353/ajpath.2010.090755] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
EphB4 receptor tyrosine kinase and its cognate ligand EphrinB2 regulate induction and maturation of newly forming vessels. Inhibition of their interaction arrests angiogenesis, vessel maturation, and pericyte recruitment. In addition, EphB4 is expressed in the vast majority of epithelial cancers and provides a survival advantage to most. Here, we describe two anti-EphB4 monoclonal antibodies that inhibit tumor angiogenesis and tumor growth by two distinct pathways. MAb131 binds to fibronectin-like domain 1 and induces degradation of human EphB4, but not murine EphB4. MAb131 inhibits human endothelial tube formation in vitro and growth of human tumors expressing EphB4 in vivo. In contrast, MAb47 targets fibronectin-like domain 2 of both human and murine EphB4 and does not alter EphB4 receptor levels, but inhibits angiogenesis and growth of both EphB4-positive and EphB4-negative tumors in a mouse s.c. xenograft model. Combination of MAb47 and bevacizumab enhances the antitumor activity and induces tumor regression. Indeed, humanized antibodies hAb47 and hAb131 showed similar affinity for EphB4 and retained efficacy in the inhibition of primary tumor development and experimental metastasis.
Collapse
|