1
|
Gardiner SK, Cull G, Fortune B. Changes in vascular resistance with intraocular pressure and damage severity in experimental glaucoma. Exp Eye Res 2025; 252:110271. [PMID: 39920973 PMCID: PMC11847595 DOI: 10.1016/j.exer.2025.110271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/24/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
There is evidence of changes in retinal hemodynamics in both experimental glaucoma and human disease. A major potential confound is that intraocular pressure (IOP) may also be directly affecting vascular resistance and/or the vasodilatory capacity of vessels in the optic nerve head and retina. This is particularly problematic in experimental glaucoma, where chronic IOP elevation is maintained, without the IOP-reducing medications typically used by patients involved in human studies. However, those animal studies remain invaluable, due to the possibility of extensive baseline testing in the knowledge that no glaucomatous loss has commenced, and due to the degree of control that is possible over parameters such as medication regimens. In this study, we aim to assess the impact of chronic IOP elevation on vascular resistance parameters, and separate it from the impact of glaucomatous damage severity. Longitudinal measurements were made using laser speckle flowgraphy before and after unilateral IOP elevation in 31 non-human primates. The pulsatile waveform was extracted and used to calculate the pulsatility index (maximum minus minimum, as a proportion of the mean) and resistivity index (maximum flow minus minimum flow, as a proportion of the maximum), in both the major vessels and the other tissue within the optic nerve head, for an average of 18 time points per animal. The vascular resistance indices increased with IOP at both locations, both in the full dataset, and in the subset of data points restricted to the visit at which IOP first exceeded 30 mmHg until the resistance index reached its maximum for that eye (all p < 0.001). After adjusting for the influence of IOP using coefficients from linear mixed effects models, the resistance indices exhibited non-monotonic relations with damage severity, first increasing from baseline, but then decreasing back to or beyond the normal range in eyes with more severe damage. Further studies are needed to accurately characterize the location and timing of these changes during the course of glaucomatous damage, which would help identify the pathophysiologic processes that are underway at different stages of the disease.
Collapse
Affiliation(s)
- Stuart K Gardiner
- Devers Eye Institute, Legacy Health, 1225 NE 2nd Ave, Portland, OR, 97232, USA.
| | - Grant Cull
- Devers Eye Institute, Legacy Health, 1225 NE 2nd Ave, Portland, OR, 97232, USA
| | - Brad Fortune
- Devers Eye Institute, Legacy Health, 1225 NE 2nd Ave, Portland, OR, 97232, USA
| |
Collapse
|
2
|
Sit AJ, Toris CB, Gulati V, Kazemi A, Gilbert J, Fan S, Reed DM, Hodge DO, Moroi SE. Objective Grading of Tonography Tracings for the Measurement of Outflow Facility. Transl Vis Sci Technol 2025; 14:10. [PMID: 39913125 PMCID: PMC11806433 DOI: 10.1167/tvst.14.2.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 01/07/2025] [Indexed: 02/07/2025] Open
Abstract
Purpose Tonography is the standard method for non-invasive measurement of aqueous humor outflow facility. However, assessment of tonography tracing quality is currently subjective, and acceptance of poor-quality data or inappropriately discarding valid data can bias results. The purpose of this study was to develop an objective method for assessing the quality of tonography tracings. Methods Pneumatonography tracings were obtained from glaucoma and ocular hypertension patients as part of an ongoing multicenter study of aqueous humor dynamics. Intraocular pressure (IOP) was captured digitally at 40 Hz over 2 minutes. Root mean square error (RMSE) of a linear best-fit line was obtained for each tracing. Each tracing was also graded by seven experienced tonographers using a scale of 1 (worst) to 10 (best) for quality (Expert score). A Reference set of 35 tracings was used to determine the relationship between RMSE values and Expert scores using a logarithmic curve. This relationship was used to calculate a predicted score in a second Test set of 20 tracings. A logarithmic curve was used to account for the fixed range of Expert scores and unbounded upper range for RMSE values. The differences between the predicted scores and the Expert scores were evaluated using Bland-Altman analysis. Results There was a very strong correlation between predicted and Expert scores (R = 0.94). The mean difference between Expert and predicted scores was -1.01 ± 0.84, and the limits of agreement were between -2.65 and +0.63. Conclusions Objective assessment of pneumatonography tracings can be performed using RMSE of a fitted line and calculation of a predicted quality score that closely matches scores given by expert graders. Translational Relevance Tonography tracing quality can now be objectively assessed.
Collapse
Affiliation(s)
- Arthur J. Sit
- Department of Ophthalmology, Mayo Clinic, Rochester, MN, USA
| | - Carol B. Toris
- Department of Ophthalmology and Visual Sciences, The Ohio State University, Columbus, OH, USA
| | - Vikas Gulati
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Arash Kazemi
- Department of Ophthalmology, Mayo Clinic, Rochester, MN, USA
| | - Jesse Gilbert
- Department of Ophthalmology and Visual Sciences, The Ohio State University, Columbus, OH, USA
| | - Shan Fan
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - David M. Reed
- Department of Ophthalmology and Visual Sciences, The Ohio State University, Columbus, OH, USA
| | - David O. Hodge
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Sayoko E. Moroi
- Department of Ophthalmology and Visual Sciences, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
3
|
Downs JC. Continuous Wireless Telemetric Measurement of Intraocular Pressure (IOP), Ocular Perfusion Pressure (OPP), and Cerebrospinal Fluid Pressure (CSFP) in Nonhuman Primates (NHPs). Methods Mol Biol 2025; 2858:265-289. [PMID: 39433682 PMCID: PMC12002344 DOI: 10.1007/978-1-0716-4140-8_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Intraocular pressure (IOP) and cerebrospinal fluid pressure (CSFP) telemetry in large animal models can be used to determine the exact IOP, CSFP, translaminar pressure, and translaminar pressure gradient exposure that each normal and treated eye is subjected to relative to its fellow eye. In this way, it is possible to determine the independent contributions of each of these parameters (mean and/or transient fluctuations) to the risk of both the onset and rate of progression of glaucoma. Importantly, we have shown that IOP and CSFP fluctuate continuously by up to 100% over the course of the day, so snapshot cage-side IOP measurements are unable to adequately capture the pressure in the eye; CSFP is not measurable noninvasively at all. Implementation of IOP and CSFP telemetry will allow us to precisely determine the pressure insult in each eye of each animal and thereby unravel the true mechanisms underlying pressure-induced damage to the retinal ganglion cells in glaucoma.
Collapse
Affiliation(s)
- J Crawford Downs
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
4
|
Asrani SG, McGlumphy EJ, Al-Aswad LA, Chaya CJ, Lin S, Musch DC, Pitha I, Robin AL, Wirostko B, Johnson TV. The relationship between intraocular pressure and glaucoma: An evolving concept. Prog Retin Eye Res 2024; 103:101303. [PMID: 39303763 DOI: 10.1016/j.preteyeres.2024.101303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024]
Abstract
Intraocular pressure (IOP) is the most important modifiable risk factor for glaucoma and fluctuates considerably within patients over short and long time periods. Our field's understanding of IOP has evolved considerably in recent years, driven by tonometric technologies with increasing accuracy, reproducibility, and temporal resolution that have refined our knowledge regarding the relationship between IOP and glaucoma risk and pathogenesis. The goal of this article is to review the published literature pertinent to the following points: 1) the factors that determine IOP in physiologic and pathologic states; 2) technologies for measuring IOP; 3) scientific and clinical rationale for measuring diverse IOP metrics in patients with glaucoma; 4) the impact and shortcomings of current standard-of-care IOP monitoring approaches; 5) recommendations for approaches to IOP monitoring that could improve patient outcomes; and 6) research questions that must be answered to improve our understanding of how IOP contributes to disease progression. Retrospective and prospective data, including that from landmark clinical trials, document greater IOP fluctuations in glaucomatous than healthy eyes, tendencies for maximal daily IOP to occur outside of office hours, and, in addition to mean and maximal IOP, an association between IOP fluctuation and glaucoma progression that is independent of mean in-office IOP. Ambulatory IOP monitoring, measuring IOP outside of office hours and at different times of day and night, provides clinicians with discrete data that could improve patient outcomes. Eye care clinicians treating glaucoma based on isolated in-office IOP measurements may make treatment decisions without fully capturing the entire IOP profile of an individual. Data linking home blood pressure monitors and home glucose sensors to dramatically improved outcomes for patients with systemic hypertension and diabetes and will be reviewed as they pertain to the question of whether ambulatory tonometry is positioned to do the same for glaucoma management. Prospective randomized controlled studies are warranted to determine whether remote tonometry-based glaucoma management might reduce vision loss and improve patient outcomes.
Collapse
Affiliation(s)
- Sanjay G Asrani
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA
| | | | - Lama A Al-Aswad
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Craig J Chaya
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Shan Lin
- Glaucoma Center of San Francisco, San Francisco, CA, USA
| | - David C Musch
- Department of Ophthalmology & Visual Sciences and Department of Epidemiology, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA
| | - Ian Pitha
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alan L Robin
- Department of Ophthalmology & Visual Sciences and Department of Epidemiology, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA; Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Barbara Wirostko
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA.
| | - Thomas V Johnson
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Garcia-Sanchez J, Lin D, Liu WW. Mechanosensitive ion channels in glaucoma pathophysiology. Vision Res 2024; 223:108473. [PMID: 39180975 PMCID: PMC11398070 DOI: 10.1016/j.visres.2024.108473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/27/2024]
Abstract
Force sensing is a fundamental ability that allows cells and organisms to interact with their physical environment. The eye is constantly subjected to mechanical forces such as blinking and eye movements. Furthermore, elevated intraocular pressure (IOP) can cause mechanical strain at the optic nerve head, resulting in retinal ganglion cell death (RGC) in glaucoma. How mechanical stimuli are sensed and affect cellular physiology in the eye is unclear. Recent studies have shown that mechanosensitive ion channels are expressed in many ocular tissues relevant to glaucoma and may influence IOP regulation and RGC survival. Furthermore, variants in mechanosensitive ion channel genes may be associated with risk for primary open angle glaucoma. These findings suggest that mechanosensitive channels may be important mechanosensors mediating cellular responses to pressure signals in the eye. In this review, we focus on mechanosensitive ion channels from three major channel families-PIEZO, two-pore potassium and transient receptor potential channels. We review the key properties of these channels, their effects on cell function and physiology, and discuss their possible roles in glaucoma pathophysiology.
Collapse
Affiliation(s)
- Julian Garcia-Sanchez
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Danting Lin
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Wendy W Liu
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA.
| |
Collapse
|
6
|
Mozzer A, Pitha I. Cyclic strain alters the transcriptional and migratory response of scleral fibroblasts to TGFβ. Exp Eye Res 2024; 244:109917. [PMID: 38697276 DOI: 10.1016/j.exer.2024.109917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/04/2024]
Abstract
In glaucoma, scleral fibroblasts are exposed to IOP-associated mechanical strain and elevated TGFβ levels. These stimuli, in turn, lead to scleral remodeling. Here, we examine the scleral fibroblast migratory and transcriptional response to these stimuli to better understand mechanisms of glaucomatous scleral remodeling. Human peripapillary scleral (PPS) fibroblasts were cultured on parallel grooves, treated with TGFβ (2 ng/ml) in the presence of vehicle or TGFβ signaling inhibitors, and exposed to uniaxial strain (1 Hz, 5%, 12-24 h). Axis of cellular orientation was determined at baseline, immediately following strain, and 24 h after strain cessation with 0° being completely aligned with grooves and 90° being perpendicular. Fibroblasts migration in-line and across grooves was assessed using a scratch assay. Transcriptional profiling of TGFβ-treated fibroblasts with or without strain was performed by RT-qPCR and pERK, pSMAD2, and pSMAD3 levels were measured by immunoblot. Pre-strain alignment of TGFβ-treated cells with grooves (6.2 ± 1.5°) was reduced after strain (21.7 ± 5.3°, p < 0.0001) and restored 24 h after strain cessation (9.5 ± 2.6°). ERK, FAK, and ALK5 inhibition prevented this reduction; however, ROCK, YAP, or SMAD3 inhibition did not. TGFβ-induced myofibroblast markers were reduced by strain (αSMA, POSTN, ASPN, MLCK1). While TGFβ-induced phosphorylation of ERK and SMAD2 was unaffected by cyclic strain, SMAD3 phosphorylation was reduced (p = 0.0004). Wound healing across grooves was enhanced by ROCK and SMAD3 inhibition but not ERK or ALK5 inhibition. These results provide insight into the mechanisms by which mechanical strain alters the cellular response to TGFβ and the potential signaling pathways that underlie scleral remodeling.
Collapse
Affiliation(s)
- Ann Mozzer
- Department of Ophthalmology, USA; Center for Nanomedicine, USA
| | - Ian Pitha
- Department of Ophthalmology, USA; Glaucoma Center of Excellence, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
7
|
Pitha I, Du L, Nguyen TD, Quigley H. IOP and glaucoma damage: The essential role of optic nerve head and retinal mechanosensors. Prog Retin Eye Res 2024; 99:101232. [PMID: 38110030 PMCID: PMC10960268 DOI: 10.1016/j.preteyeres.2023.101232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
There are many unanswered questions on the relation of intraocular pressure to glaucoma development and progression. IOP itself cannot be distilled to a single, unifying value, because IOP level varies over time, differs depending on ocular location, and can be affected by method of measurement. Ultimately, IOP level creates mechanical strain that affects axonal function at the optic nerve head which causes local extracellular matrix remodeling and retinal ganglion cell death - hallmarks of glaucoma and the cause of glaucomatous vision loss. Extracellular tissue strain at the ONH and lamina cribrosa is regionally variable and differs in magnitude and location between healthy and glaucomatous eyes. The ultimate targets of IOP-induced tissue strain in glaucoma are retinal ganglion cell axons at the optic nerve head and the cells that support axonal function (astrocytes, the neurovascular unit, microglia, and fibroblasts). These cells sense tissue strain through a series of signals that originate at the cell membrane and alter cytoskeletal organization, migration, differentiation, gene transcription, and proliferation. The proteins that translate mechanical stimuli into molecular signals act as band-pass filters - sensing some stimuli while ignoring others - and cellular responses to stimuli can differ based on cell type and differentiation state. Therefore, to fully understand the IOP signals that are relevant to glaucoma, it is necessary to understand the ultimate cellular targets of IOP-induced mechanical stimuli and their ability to sense, ignore, and translate these signals into cellular actions.
Collapse
Affiliation(s)
- Ian Pitha
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Nanomedicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Glaucoma Center of Excellence, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Liya Du
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thao D Nguyen
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Harry Quigley
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Glaucoma Center of Excellence, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
8
|
Nicou CM, Passaglia CL. Characterization of intraocular pressure variability in conscious rats. Exp Eye Res 2024; 239:109757. [PMID: 38123009 PMCID: PMC10922224 DOI: 10.1016/j.exer.2023.109757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/10/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Elevation of mean intraocular pressure (IOP) has long been recognized as a leading risk factor for glaucoma. Less is known about the possible contribution of moment-to-moment variations in IOP to disease development and progression due to limitations of tonometry, the prevailing method of IOP measurement. Tonometry provides good estimates of mean IOP but not IOP variance. The aim of this study was to quantitatively characterize IOP variability via round-the-clock IOP telemetry in conscious unrestrained rats. The anterior chamber of one eye was implanted with a microcannula connected to a wireless backpack telemetry system, and IOP data were collected every 4 s for one week. The cannula was then repositioned under the conjunctiva, and control data were collected for an additional week. IOP statistics were computed in 30-min intervals over a 24-h period and averaged across days. All animals exhibited a diurnal variation in mean IOP, while deviations about the mean were independent of time of day. Correlation analysis of the deviations revealed transient and sustained components, which were respectively extracted from IOP records using an event detection algorithm. The amplitude and interval distributions of transient and sustained events were characterized, and their energy content was estimated based on outflow tissue resistance of rat eyes. Transient IOP events occurred ∼231 times per day and were typically ≤5 mmHg in amplitude and 2-8 min in duration, while sustained IOP events occurred ∼16 times per day and were typically ≤5 mmHg in amplitude and 20-60 min in duration. Both persisted but were greatly reduced in control recordings, implying minor contamination of IOP data by motion-induced telemetry noise. Sustained events were also often synchronous across implanted animals, indicating that they were driven by autonomic startle and stress responses or other physiological processes activated by sensory signals in the animal housing environment. Not surprisingly, the total daily fluidic energy applied to resistive outflow pathways was determined primarily by basal IOP level. Nevertheless, transient and sustained fluctuations collectively contributed 6% and diurnal fluctuations contributed 9% to daily IOP energy. It is therefore important to consider the cumulative impact of biomechanical stress that IOP fluctuations apply over time to ocular tissues.
Collapse
Affiliation(s)
- Christina M Nicou
- Medical Engineering Department, University of South Florida, Tampa, FL, 33620, USA
| | - Christopher L Passaglia
- Medical Engineering Department, University of South Florida, Tampa, FL, 33620, USA; Ophthalmology Department, University of South Florida, Tampa, FL, 33620, USA.
| |
Collapse
|
9
|
Zhu Y, Wang R, Pappas AC, Seifert P, Savol A, Sadreyev RI, Sun D, Jakobs TC. Astrocytes in the Optic Nerve Are Heterogeneous in Their Reactivity to Glaucomatous Injury. Cells 2023; 12:2131. [PMID: 37681863 PMCID: PMC10486930 DOI: 10.3390/cells12172131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 07/14/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023] Open
Abstract
The optic nerve head is thought to be the site of initial injury to retinal ganglion cell injury in glaucoma. In the initial segment of the optic nerve directly behind the globe, the ganglion cell axons are unmyelinated and come into direct contact to astrocytes, suggesting that astrocytes may play a role in the pathology of glaucoma. As in other parts of the CNS, optic nerve head astrocytes respond to injury by characteristic changes in cell morphology and gene expression profile. Using RNA-sequencing of glaucomatous optic nerve heads, single-cell PCR, and an in-vivo assay, we demonstrate that an up-regulation of astrocytic phagocytosis is an early event after the onset of increased intraocular pressure. We also show that astrocytes in the glial lamina of the optic nerve are apparently functionally heterogeneous. At any time, even in naïve nerves, some of the cells show signs of reactivity-process hypertrophy, high phagocytic activity, and expression of genetic markers of reactivity whereas neighboring cells apparently are inactive. A period of increased intraocular pressure moves more astrocytes towards the reactive phenotype; however, some cells remain unreactive even in glaucomatous nerves.
Collapse
Affiliation(s)
- Ying Zhu
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary/Schepens Eye Research Institute, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
- Department of Ophthalmology, Stanford University, 1651 Page Mill Road, Palo Alto, CA 94304, USA
| | - Rui Wang
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary/Schepens Eye Research Institute, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
- Department of Ophthalmology, The First Affiliated Hospital of Northwest University, Xi’an 710002, China
| | - Anthony C. Pappas
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary/Schepens Eye Research Institute, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
| | - Philip Seifert
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary/Schepens Eye Research Institute, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
| | - Andrej Savol
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge St., Boston, MA 02114, USA
| | - Ruslan I. Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge St., Boston, MA 02114, USA
| | - Daniel Sun
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary/Schepens Eye Research Institute, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
| | - Tatjana C. Jakobs
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary/Schepens Eye Research Institute, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
| |
Collapse
|
10
|
Patel NB, Carter-Dawson L, Frishman LJ. Neuroretinal Rim Response to Transient Intraocular Pressure Challenge Predicts the Extent of Retinal Ganglion Cell Loss in Experimental Glaucoma. Invest Ophthalmol Vis Sci 2023; 64:30. [PMID: 37256608 PMCID: PMC10233313 DOI: 10.1167/iovs.64.5.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/12/2023] [Indexed: 06/01/2023] Open
Abstract
Purpose To determine if the optic nerve head (ONH) response to transient elevated intraocular pressure (IOP) can predict the extent of neural loss in the nonhuman primate experimental glaucoma model. Methods The anterior chamber pressure of 21 healthy animals (5.4 ± 1.2 years, 8 female) was adjusted to 25 mm Hg for two hours followed by 10 mm Hg for an additional two hours. For the duration of IOP challenge the ONH was imaged using radial optical coherence tomography (OCT) scans at five-minute intervals. Afterward, a randomized sample of 14 of these subjects had unilateral experimental glaucoma induced and were monitored with OCT imaging, tonometry, and ocular biometry at two-week intervals. Results With pressure challenge, the maximum decrease in ONH minimum rim width (MRW) was 40 ± 10.5 µm at 25 mm Hg and was correlated with the precannulation MRW, Bruch's membrane opening (BMO) position, and the anterior lamina cribrosa surface position (P = 0.01). The maximum return of MRW at 10 mm Hg was 16.1 ± 5.0 µm and was not associated with any precannulation ONH feature (P = 0.24). However, healthy eyes with greater thickness return at 10 mm Hg had greater loss of MRW and retinal nerve fiber layer (RNFL) at a cumulative IOP of 1000 mm Hg · days after induction of experimental glaucoma. In addition, MRW and RNFL thinning was correlated with an increase in axial length (P < 0.01). Conclusion This study's findings suggest that the ONH's response to transient changes in IOP are associated with features of the ONH and surrounding tissues. The neural rim properties at baseline and the extent of axial elongation are associated with the severity of glaucomatous loss in the nonhuman primate model.
Collapse
Affiliation(s)
- Nimesh B Patel
- University of Houston College of Optometry, Houston, Texas, United States
| | | | - Laura J Frishman
- University of Houston College of Optometry, Houston, Texas, United States
| |
Collapse
|
11
|
Szurman P, Mansouri K, Dick HB, Mermoud A, Hoffmann EM, Mackert M, Weinreb RN, Rao HL, Seuthe AM. Safety and performance of a suprachoroidal sensor for telemetric measurement of intraocular pressure in the EYEMATE-SC trial. Br J Ophthalmol 2023; 107:518-524. [PMID: 34772665 PMCID: PMC10086291 DOI: 10.1136/bjophthalmol-2021-320023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/18/2021] [Indexed: 11/04/2022]
Abstract
AIM To investigate the safety and performance of a telemetric suprachoroidal intraocular pressure (IOP) sensor (EYEMATE-SC) and the accuracy of its IOP measurements in open angle glaucoma (OAG) patients undergoing simultaneous non-penetrating glaucoma surgery (NPGS). METHODS Prospective, multicentre, open-label, single-arm, interventional clinical trial. Twenty-four eyes of 24 patients with OAG regularly scheduled for NPGS (canaloplasty or deep sclerectomy) were simultaneously implanted with an EYEMATE-SC sensor. Six-month follow-up on the sensor's safety and performance as well as on the level of agreement between the EYEMATE-SC measurements and IOP measurements with Goldmann applanation tonometry (GAT). RESULTS The eyes underwent canaloplasty (n=15) or deep sclerectomy (n=9) and achieved successful implantation of the sensor. No device migration, dislocation or serious device-related complications occurred. A total of 367 comparisons were included in the IOP agreement analysis. The overall mean difference between GAT and EYEMATE-SC measurements was 1.31 mm Hg (lower limit of agreement (LoA) 7.55 mm Hg; upper LoA -4.92 mm Hg). The maximum difference of 2.5 mm Hg ±3.96 (LoA 0.30-2.29) was reached on day 10 and continuously improved to an agreement of -0.15 mm Hg ±2.28 (LoA -1.24 to 0.89) after 6 months. Accordingly, the percentage of eyes within an IOP difference of ±5 mm Hg improved from 78% (day 3) to 100% (6 months). CONCLUSIONS After 6 months, the EYEMATE-SC sensor was safe and well tolerated, and allowed continual IOP monitoring. TRIAL REGISTRATION NUMBER NCT03756662.
Collapse
Affiliation(s)
- Peter Szurman
- Eye Clinic Sulzbach, Knappschaft Hospital Saar, 66280 Sulzbach, Germany
| | - Kaweh Mansouri
- Glaucoma Research Centre, Montchoisi Hospital, Lausanne, Switzerland
| | - H Burkhard Dick
- Eye Clinic, University Hospital of the Ruhr University Bochum, Bochum, Germany
| | - Andre Mermoud
- Glaucoma Research Centre, Montchoisi Hospital, Lausanne, Switzerland
| | - Esther M Hoffmann
- Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Marc Mackert
- Department of Ophthalmology, University Hospital, Ludwig-Maximilians-Universitat Munchen Medizinische Fakultat, Munich, Germany
| | - Robert N Weinreb
- Department of Ophthalmology at the Shiley Eye Institute, University of California at San Diego, La Jolla, California, USA
| | - Harsha Laxmana Rao
- Glaucoma, Narayana Nethralaya, Bangalore, India
- Ophthalmology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Anna-Maria Seuthe
- Eye Clinic Sulzbach, Saar Knappschaft Hospital Sulzbach, Sulzbach, Germany
| | | |
Collapse
|
12
|
Sayah DN, Lesk MR. Ocular Rigidity and Current Therapy. Curr Eye Res 2023; 48:105-113. [PMID: 35763027 DOI: 10.1080/02713683.2022.2093380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Purpose: Ocular rigidity (OR) is an important biomechanical parameter of the eye accounting for the material and geometrical properties of the corneoscleral shell.Methods: This study used a literature search to review the role of ocular rigidity and the application of potential therapies targeting this parameter in glaucoma and myopia.Conclusion: Biomechanical modeling and improved understanding of the biochemistry, and molecular arrangement of sclera and its constituents have yielded important insights. Recent developments, including that of a non-invasive and direct OR measurement method and improved ocular imaging techniques are helping to elucidate the role of OR in healthy and diseased eyes by facilitating large scale and longitudinal clinical studies. Improved understanding of OR at the initial stages of disease processes and its alterations with disease progression will undoubtedly propel research in the field. Furthermore, a better understanding of the determinants of OR is helping to refine novel therapeutic approaches which target and alter the biomechanical properties of the sclera in sight-threatening conditions such as glaucoma and myopia.
Collapse
Affiliation(s)
- Diane N Sayah
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Canada.,School of Optometry, Université de Montréal, Montreal, Canada
| | - Mark R Lesk
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Canada.,Department of Ophthalmology, Faculty of Medicine, Université de Montréal, Montreal, Canada.,Centre Universitaire d'ophtalmologie de l'Université de Montréal de l'Hôpital Maisonneuve-Rosemont, CIUSSS-E, Montreal, Canada
| |
Collapse
|
13
|
Association of Ultra-Short-Term Intraocular Pressure Fluctuation With Disease Progression in Primary Angle Closure Glaucoma: The CUPAL Study. J Glaucoma 2022; 31:874-880. [PMID: 35980863 DOI: 10.1097/ijg.0000000000002103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 07/23/2022] [Indexed: 02/04/2023]
Abstract
PRCIS This study demonstrated significant differences in ultra-short-term IOP fluctuations, measured by a contact lens sensor between progressive and stable PACG eyes, during the first one hour after falling asleep. PURPOSE To identify the most sensitive period for detecting significant ultra-short-term intraocular pressure (IOP) fluctuation associated with disease progression in primary angle closure glaucoma (PACG). MATERIALS AND METHODS PACG eyes, which had been followed up for over 2 years under the CUHK PACG Longitudinal (CUPAL) Study, were recruited. Eyes with or without functional or structural glaucomatous progression were classified into 'progressive' or 'stable' groups on the basis of serial visual field and retinal nerve fiber layer (RNFL) thickness documentations, respectively. Ultra-short-term IOP fluctuations were recorded by Sensimed Triggerfish sensors (Sensimed AG, Lausanne, Switzerland) with 288 readings over 30 seconds, at 5-minute intervals, over a 24-hour period. In each of 7 activity-related 1-hour periods during the examining day, the mean value of the amplitude-frequency profiles of the signal fluctuations in twelve 30-second intervals was calculated by semivariogram/semi-variance. The 'progressive' and 'stable' groups were compared by permutation tests on functional t-statistics. RESULTS Among the 25 recruited PACG eyes, 16 eyes were classified as RNFL 'progressive' group (the mean rate of change in global RNFL thickness: -0.199 ±0.128 μm/mo). Higher signal fluctuations, in terms of amplitude-frequency, were found during the first 1-hour period of sleeping in the RNFL 'progressive' group compared with the RNFL 'stable' group ( P =0.028). CONCLUSIONS Between RNFL 'progressive' and 'stable' PACG eyes, significant differences in ultra-short-term IOP fluctuation at the 1-hour period after falling asleep were identified. The first hour of sleeping may be the most sensitive period for detecting significant ultra-short-term IOP fluctuation in PACG eyes.
Collapse
|
14
|
Markert JE, Turner DC, Jasien JV, Nyankerh CNA, Samuels BC, Downs JC. Ocular Pulse Amplitude Correlates With Ocular Rigidity at Native IOP Despite the Variability in Intraocular Pulse Volume With Each Heartbeat. Transl Vis Sci Technol 2022; 11:6. [PMID: 36074454 PMCID: PMC9469039 DOI: 10.1167/tvst.11.9.6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to assess ocular coat mechanical behavior using controlled ocular microvolumetric injections (MVI) of 15 µL of balanced salt solution (BSS) infused over 1 second into the anterior chamber (AC) via a syringe pump. Methods Intraocular pressure (IOP) was continuously recorded at 200 Hz with a validated implantable IOP telemetry system in 7 eyes of 7 male rhesus macaques (nonhuman primates [NHPs]) during 5 MVIs in a series at native (3 trials), 15 and 20 mm Hg baseline IOPs, repeated in 2 to 5 sessions at least 2 weeks apart. Ocular rigidity coefficients (K) and ocular pulse volume (PV) were calculated for each trial. Data were averaged across sessions within eyes; PV was analyzed with a three-level nested ANOVA, and parameter relationships were analyzed with Pearson Correlation and linear regression. Results After MVI at native baseline IOP of 10.4 ± 1.6 mm Hg, IOP increased by 9.1 ± 2.8 mm Hg (∆IOP) at a 9.6 ± 2.7 mm Hg/s slope, ocular pulse amplitude (OPA) was 0.70 ± 0.13 mm Hg on average; the average K was 0.042 ± 0.010 µL-1 and average PV was 1.16 ± 0.43 µL. PV varied significantly between trials, days, and eyes (P ≤ 0.05). OPA was significantly correlated with K at native IOP: Pearson coefficients ranged from 0.71 to 0.83 (P ≤ 0.05) and R2 ranged from 0.50 to 0.69 (P ≤ 0.05) during the first trial. Conclusions The MVI-driven ∆IOP and slope can be used to assess ocular coat mechanical behavior and measure ocular rigidity. Translational Relevance Importantly, OPA at native IOP is correlated with ocular rigidity despite the significant variability in PV between heartbeats.
Collapse
Affiliation(s)
- John E Markert
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Daniel C Turner
- Vision Science Graduate Program, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jessica V Jasien
- Vision Science Graduate Program, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Cyril N A Nyankerh
- Vision Science Graduate Program, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brian C Samuels
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - J Crawford Downs
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
15
|
Agorastou V, Schön J, Verma-Fuehring R, Dakroub M, Hillenkamp J, Puppe F, Loewen NA. HIOP-Reader: Automated Data Extraction for the Analysis of Manually Recorded Nycthemeral IOPs and Glaucoma Progression. Transl Vis Sci Technol 2022; 11:22. [PMID: 35737376 PMCID: PMC9233288 DOI: 10.1167/tvst.11.6.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Nycthemeral (24-hour) intraocular pressure (IOP) monitoring in glaucoma has been used in Europe for more than 100 years to detect peaks missed during regular office hours. Data supporting this practice are lacking, because it is difficult to correlate manually drawn IOP curves to objective glaucoma progression. To address this, we developed an automated IOP data extraction tool, HIOP-Reader. Methods Machine learning image analysis software extracted IOP data from hand-drawn, nycthemeral IOP curves of 225 retrospectively identified patients with glaucoma. The relationship between demographic parameters, IOP, and mean ocular perfusion pressure (MOPP) data to spectral-domain optical coherence tomography (SDOCT) data was analyzed. Sensitivities and specificities for the historical cutoff values of 15 mm Hg and 22 mm Hg in detecting glaucoma progression were calculated. Results Machine data extraction was 119 times faster than manual data extraction. The IOP average was 15.2 ± 4.0 mm Hg, nycthemeral IOP variation was 6.9 ± 4.2 mm Hg, and MOPP was 59.1 ± 8.9 mm Hg. Peak IOP occurred at 10 am and trough at 9 pm. Progression occurred mainly in the temporal-superior and temporal-inferior SDOCT sectors. No correlation could be established between demographic, IOP, or MOPP variables and disease progression on OCT. The sensitivity and specificity of both cutoff points (15 and 22 mm Hg) were insufficient to be clinically useful. Outpatient IOPs were noninferior to nycthemeral IOPs. Conclusions IOP data obtained during a single visit make for a poor diagnostic tool, no matter whether obtained using nycthemeral measurements or during outpatient hours. Translational Relevance HIOP-Reader rapidly extracts manually recorded IOP data to allow critical analysis of existing databases.
Collapse
Affiliation(s)
- Vaia Agorastou
- Department of Ophthalmology, University of Würzburg, Würzburg, Germany
| | - Julian Schön
- Institute for Artificial Intelligence and Knowledge Systems, Department of Informatics, University of Würzburg, Würzburg, Germany
| | | | - Mohamad Dakroub
- Department of Ophthalmology, University of Würzburg, Würzburg, Germany
| | - Jost Hillenkamp
- Department of Ophthalmology, University of Würzburg, Würzburg, Germany
| | - Frank Puppe
- Institute for Artificial Intelligence and Knowledge Systems, Department of Informatics, University of Würzburg, Würzburg, Germany
| | - Nils A Loewen
- Department of Ophthalmology, University of Würzburg, Würzburg, Germany.,Artemis Eye Centers, Frankfurt, Germany
| |
Collapse
|
16
|
Feola AJ, Girkin CA, Ethier CR, Samuels BC. A Potential Role of Acute Choroidal Expansion in Nonarteritic Anterior Ischemic Optic Neuropathy. Invest Ophthalmol Vis Sci 2022; 63:23. [PMID: 35481840 PMCID: PMC9055550 DOI: 10.1167/iovs.63.4.23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Nonarteritic anterior ischemic optic neuropathy (NAION) has been associated with a thickened choroid at the optic nerve head (ONH). Here, we use computational modeling to better understand how choroidal expansion and choroidal geometry influence tissue deformation within the ONH relative to intraocular pressure (IOP) and intracranial pressure (ICP) effects. Methods Using a model of the posterior eye that included the sclera, peripapillary sclera, annular ring, pia mater, dura mater, neural tissues, Bruch's membrane, choroid, and lamina cribrosa, we examined how varying material properties of ocular tissues influenced ONH deformations under physiological and supra-physiological, or “pathological,” conditions. We considered choroidal expansion (c. 35 µL of expansion), elevated IOP (30 mm Hg), and elevated ICP (20 mm Hg), and calculated peak strains in the ONH relative to a baseline condition representing an individual in the upright position. Results Supra-physiological choroidal expansion had the largest impact on strains in the prelaminar neural tissue. In addition, compared to a tapered choroid, a “blunt” choroid insertion at the ONH resulted in higher strains. Elevated IOP and ICP caused the highest strains within the lamina cribrosa and retrolaminar neural tissue, respectively. Conclusions Acute choroidal expansion caused large deformations of the ONH and these deformations were impacted by choroid geometry. These results are consistent with the concept that compartment syndrome due to the choroid geometry and/or expansion at the ONH contributes to NAION. Prolonged deformations due to supra-physiological loading may induce a mechanobiological response or ischemia, highlighting the potential impact of choroidal expansion on biomechanical strains in the ONH.
Collapse
Affiliation(s)
- Andrew J Feola
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Atlanta, Georgia, United States.,Department of Ophthalmology, Emory Eye Center, Emory University School of Medicine, Atlanta, Georgia, United States.,Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, United States
| | - Christopher A Girkin
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - C Ross Ethier
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, United States
| | - Brian C Samuels
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
17
|
Liu C, Li Y, Wang M, Li J, Wang N, Zhang F. Changes in intraocular pressure and ocular pulse amplitude of rhesus macaques after blue light scleral cross-linking. BMC Ophthalmol 2022; 22:87. [PMID: 35193527 PMCID: PMC8864789 DOI: 10.1186/s12886-022-02306-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 02/08/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Scleral cross-linking can enhance the biomechanical strength of the sclera and is expected to be a new operative method for the prevention of myopia. However, studies investigating the changes in intraocular pressure (IOP) and ocular pulse amplitude (OPA) after blue light-riboflavin induced scleral collagen cross-linking (SXL) in rhesus monkeys are limited. This study aimed to investigate the changes in IOP and OPA in three-year-old rhesus macaques 1 week, 1 month, and 3 months after blue light-riboflavin SXL. METHODS Seven three-year-old rhesus macaques (14 eyes) were randomly divided into two groups, with 4 monkeys in group A (8 eyes) and 3 monkeys in group B (6 eyes). The right eye of each rhesus macaque was used as the experimental eye, whereas the left eye was used as the control. In group A, one quadrant of each right eye was irradiated. In group B, two quadrants of each right eye and one quadrant of each left eye were irradiated. The IOP and OPA of both eyes were measured in all seven rhesus macaques before SXL and 1 week, 1 month, and 3 months postoperatively, and differences in the IOP and OPA between the experimental and control eyes were evaluated via the paired t test. RESULTS In groups A and B, there were no significant differences between the experimental and control eyes in the IOP or OPA before SXL or 1 week, 1 month, or 3 months postoperatively (P > 0.05). CONCLUSIONS The IOP and OPA are not significantly affected in 1 vs 0 or in 1 vs 2 quadrants of blue light SXL.
Collapse
Affiliation(s)
- Chong Liu
- Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Eye Centre, Beijing Tongren Hospital, Capital Medical University, No. 1 Dongjiaomin Xiang, Beijing, 100730 Dongcheng District China
| | - Yu Li
- Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Eye Centre, Beijing Tongren Hospital, Capital Medical University, No. 1 Dongjiaomin Xiang, Beijing, 100730 Dongcheng District China
| | - Mengmeng Wang
- Hebei Ophthalmology Key Lab, Hebei Provincial Eye Hospital, Xingtai, Hebei Province China
| | - Jing Li
- Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Eye Centre, Beijing Tongren Hospital, Capital Medical University, No. 1 Dongjiaomin Xiang, Beijing, 100730 Dongcheng District China
| | - Ningli Wang
- Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Eye Centre, Beijing Tongren Hospital, Capital Medical University, No. 1 Dongjiaomin Xiang, Beijing, 100730 Dongcheng District China
| | - Fengju Zhang
- Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Eye Centre, Beijing Tongren Hospital, Capital Medical University, No. 1 Dongjiaomin Xiang, Beijing, 100730 Dongcheng District China
| |
Collapse
|
18
|
Trabecular Meshwork Motion Profile from Pulsatile Pressure Transients: A New Platform to Simulate Transitory Responses in Humans and Nonhuman Primates. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app12010011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Trabecular meshwork (TM) motion abnormality is the leading cause of glaucoma. With technique limitations, how TM moves is still an enigma. This study describes a new laboratory platform to investigate TM motion responses to ocular transients in ex vivo eyes. The anterior segments of human cadaver and primate eyes were mounted in a perfusion system fitting. Perfusion needles were placed to establish mean baseline pressure. A perfusion pump was connected to the posterior chamber and generated an immediate transient pressure elevation. A phase-sensitive optical coherent tomography system imaged and quantified the TM motion. The peak-to-peak TM displacements (ppTMD) were determined, a tissue relaxation curve derived, and a time constant obtained. This study showed that the ppTMD increased with a rise in the pulse amplitude. The ppTMD was highest for the lowest mean pressure of 16 mmHg and decreased with mean pressure increase. The pulse frequency did not significantly change ppTMD. With a fixed pulse amplitude, an increase in mean pressure significantly reduced the time constant of recoil from maximum distension. Our research platform permitted quantitation of TM motion responses to designed pulse transients. Our findings may improve the interpretation of new TM motion measurements in clinic, aiding in understanding mechanisms and management.
Collapse
|
19
|
Hu D, Jiang J, Ding B, Xue K, Sun X, Qian S. Mechanical Strain Regulates Myofibroblast Differentiation of Human Scleral Fibroblasts by YAP. Front Physiol 2021; 12:712509. [PMID: 34658907 PMCID: PMC8514697 DOI: 10.3389/fphys.2021.712509] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/30/2021] [Indexed: 12/14/2022] Open
Abstract
Scleral extracellular matrix (ECM) remodeling is thought to play a critical role in the pathogenesis of glaucoma. Mechanical strain induced by elevated intraocular pressure can promote myofibroblast differentiation of fibroblasts and result in scleral ECM remodeling; however, the underlying mechanism remains poorly understood. Yes-associated protein (YAP) is a mechanosensory protein and the key downstream transcriptional effector of the Hippo signaling pathway. Here, we investigated the role of YAP in mechanical strain-induced myofibroblast transformation during glaucoma scleral ECM remodeling. Integrative bioinformatics analyses were performed to identify the key pathways for the ECM remodeling of the sclera in glaucoma. Sprague–Dawley rats were used to establish a chronic ocular hypertension model, and the expression of collagen type I (COL1) and YAP in the sclera was analyzed by immunohistochemical analysis and Western blotting. Furthermore, human scleral fibroblasts (HSFs) were cultured and subjected to mechanical strain. In groups with or without the YAP siRNA or YAP inhibitor, cell proliferation, migration capacity, and the expression levels of YAP, COL1, and α-smooth muscle actin (α-SMA) were evaluated by Cell Counting Kit-8 assay, scratch assay, and Western blotting. The interactions between YAP and Smad3 were demonstrated by coimmunoprecipitation, and the expression levels of COL1 and α-SMA were evaluated in groups treated with or without the Smad3 inhibitor. We first revealed that the Hippo signaling pathway may be involved in mechanical strain-induced scleral ECM remodeling through bioinformatics analysis. Furthermore, the in vivo study showed upregulated YAP, COL1, and α-SMA expression in the hypertensive sclera of rats. In vitro, mechanical strain increased YAP and COL1 expression in HSFs and promoted myofibroblast differentiation. After YAP knockdown or inhibition with verteporfin, mechanical strain-induced fibrotic changes in HSFs were markedly suppressed. Additionally, YAP showed a protein interaction with Smad3, and the upregulation of a-SMA and COL1 in response to mechanical strain was also significantly downregulated following the inhibition of Smad3. In conclusion, mechanical strain activated scleral myofibroblast differentiation via YAP. The YAP pathway may play an important role in regulating scleral myofibroblast differentiation and ECM remodeling of the sclera in glaucoma.
Collapse
Affiliation(s)
- Di Hu
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China.,Department of Ophthalmology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Junhong Jiang
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Baiyang Ding
- Spine Research Center of Wannan Medical College, Wuhu, China
| | - Kang Xue
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China
| | - Xinghuai Sun
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Shaohong Qian
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China
| |
Collapse
|
20
|
Kim J, Gardiner SK, Ramazzotti A, Karuppanan U, Bruno L, Girkin CA, Downs JC, Fazio MA. Strain by virtual extensometers and video-imaging optical coherence tomography as a repeatable metric for IOP-Induced optic nerve head deformations. Exp Eye Res 2021; 211:108724. [PMID: 34375590 PMCID: PMC8511063 DOI: 10.1016/j.exer.2021.108724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 07/27/2021] [Accepted: 08/06/2021] [Indexed: 11/20/2022]
Abstract
PURPOSE To determine if in vivo strain response of the Optic Nerve Head (ONH) to IOP elevation visualized using Optical Coherence Tomography (OCT) video imaging and quantified using novel virtual extensometers was able to be provided repeatable measurements of tissue specific deformations. METHODS The ONHs of 5 eyes from 5 non-human primates (NHPs) were imaged by Spectralis OCT. A vertical and a horizontal B-scan of the ONH were continuously recorded for 60 s at 6 Hz (video imaging mode) during IOP elevation from 10 to 30 mmHg. Imaging was repeated over three imaging sessions. The 2D normal strain was computed by template-matching digital image correlation using virtual extensometers. ANOVA F-test (F) was used to compare inter-eye, inter-session, and inter-tissue variability for the prelaminar, Bruch's membrane opening (BMO), lamina cribrosa (LC) and choroidal regions (against variance the error term). F-test of the ratio between inter-eye to inter-session variability was used to test for strain repeatability across imaging sessions (FIS). RESULTS Variability of strain across imaging session (F = 0.7263, p = 0.4855) and scan orientation was not significant (F = 1.053, p = 0.3066). Inter session variability of strain was significantly lower than inter-eye variability (FIS = 22.63, p = 0.0428) and inter-tissue variability (FIS = 99.33 p = 0.00998). After IOP elevation, strain was highest in the choroid (-18.11%, p < 0.001), followed by prelaminar tissue (-11.0%, p < 0.001), LC (-3.79%, p < 0.001), and relative change in BMO diameter (-0.57%, p = 0.704). CONCLUSIONS Virtual extensometers applied to video-OCT were sensitive to the eye-specific and tissue-specific mechanical response of the ONH to IOP and were repeatable across imaging sessions.
Collapse
Affiliation(s)
- Jihee Kim
- Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Andrea Ramazzotti
- Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Udayakumar Karuppanan
- Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Luigi Bruno
- Department of Mechanical, Energy and Management Engineering, University of Calabria, Rende, CS, Italy
| | - Christopher A Girkin
- Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - J Crawford Downs
- Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Massimo A Fazio
- Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA; Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA; The Viterbi Family Department of Ophthalmology, UC San Diego, La Jolla, CA, USA.
| |
Collapse
|
21
|
Nicou CM, Pillai A, Passaglia CL. Effects of acute stress, general anesthetics, tonometry, and temperature on intraocular pressure in rats. Exp Eye Res 2021; 210:108727. [PMID: 34390732 DOI: 10.1016/j.exer.2021.108727] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/30/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
Intraocular pressure (IOP) is important for eye health as abnormal levels can led to ocular tissue damage. IOP is typically estimated by tonometry, which only provides snapshots of pressure history. Tonometry also requires subject cooperation and corneal contact that may influence IOP readings. The aim of this research was to investigate IOP dynamics of conscious animals in response to stressors, common anesthetics, tonometry, and temperature manipulations. An eye of male Brown-Norway rats was implanted with a fluid-filled cannula connected to a wireless telemetry system that records IOP continuously. Stress effects were examined by restricting animal movements. Anesthetic effects were examined by varying isoflurane concentration or injecting a bolus of ketamine. Tonometry effects were examined using applanation and rebound tonometers. Temperature effects were examined by exposing anesthetized and conscious animals to warm or cool surfaces. Telemetry recordings revealed that IOP fluctuates spontaneously by several mmHg, even in idle and anesthetized animals. Environmental disturbances also caused transient IOP fluctuations that were synchronous in recorded animals and could last over a half hour. Animal immobilization produced a rapid sustained elevation of IOP that was blocked by anesthetics, whereas little-to-no IOP change was detected in isoflurane- or ketamine-anesthetized animals if body temperature (BT) was maintained. IOP and BT decreased precipitously when heat support was not provided and were highly correlated during surface temperature manipulations. Surface temperature had no impact on IOP of conscious animals. IOP increased slightly during applanation tonometry but not rebound tonometry. The results show that IOP is dynamically modulated by internal and external factors that can activate rapidly and last long beyond the initiating event. Wireless telemetry indicates that animal interaction induces startle and stress responses that raise IOP. Anesthesia blocks these responses, which allows for better tonometry estimates of resting IOP provided that BT is controlled.
Collapse
Affiliation(s)
- Christina M Nicou
- Medical Engineering Department, University of South Florida, Tampa, FL, 33620, USA
| | - Aditi Pillai
- Medical Engineering Department, University of South Florida, Tampa, FL, 33620, USA
| | - Christopher L Passaglia
- Medical Engineering Department, University of South Florida, Tampa, FL, 33620, USA; Ophthalmology Department, University of South Florida, Tampa, FL, 33620, USA.
| |
Collapse
|
22
|
Pang JJ, Gao F, Wu SM. Generators of Pressure-Evoked Currents in Vertebrate Outer Retinal Neurons. Cells 2021; 10:cells10061288. [PMID: 34067375 PMCID: PMC8224636 DOI: 10.3390/cells10061288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 12/19/2022] Open
Abstract
(1) Background: High-tension glaucoma damages the peripheral vision dominated by rods. How mechanosensitive channels (MSCs) in the outer retina mediate pressure responses is unclear. (2) Methods: Immunocytochemistry, patch clamp, and channel fluorescence were used to study MSCs in salamander photoreceptors. (3) Results: Immunoreactivity of transient receptor potential channel vanilloid 4 (TRPV4) was revealed in the outer plexiform layer, K+ channel TRAAK in the photoreceptor outer segment (OS), and TRPV2 in some rod OS disks. Pressure on the rod inner segment evoked sustained currents of three components: (A) the inward current at <-50 mV (Ipi), sensitive to Co2+; (B) leak outward current at ≥-80 mV (Ipo), sensitive to intracellular Cs+ and ruthenium red; and (C) cation current reversed at ~10 mV (Ipc). Hypotonicity induced slow currents like Ipc. Environmental pressure and light increased the FM 1-43-identified open MSCs in the OS membrane, while pressure on the OS with internal Cs+ closed a Ca2+-dependent current reversed at ~0 mV. Rod photocurrents were thermosensitive and affected by MSC blockers. (4) Conclusions: Rods possess depolarizing (TRPV) and hyperpolarizing (K+) MSCs, which mediate mutually compensating currents between -50 mV and 10 mV, serve as an electrical cushion to minimize the impact of ocular mechanical stress.
Collapse
|
23
|
Jasien JV, Samuels BC, Johnston JM, Downs JC. Effect of Body Position on Intraocular Pressure (IOP), Intracranial Pressure (ICP), and Translaminar Pressure (TLP) Via Continuous Wireless Telemetry in Nonhuman Primates (NHPs). Invest Ophthalmol Vis Sci 2021; 61:18. [PMID: 33074300 PMCID: PMC7585393 DOI: 10.1167/iovs.61.12.18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose Recent retrospective clinical studies and animal experiments have suggested that cerebrospinal fluid pressure (CSFP) is important in glaucoma, acting through the translaminar pressure (TLP = IOP − CSFP), which directly affects the optic nerve head. In this study, IOP and intracranial pressure (ICP; a surrogate of CSFP) were measured at various body positions to quantify the determinants of TLP. Methods We have developed an implantable wireless pressure telemetry system based on a small piezoelectric sensor with low temporal drift. Telemetry transducers were placed in the anterior chamber to measure IOP and in the brain parenchyma at eye height to measure ICP. IOP was calibrated against anterior cannulation manometry, and ICP/CSFP was calibrated against an intraparenchymal Codman ICP Express microsensor. We measured IOP, ICP, and TLP = IOP − ICP continuously at 200 Hz in three male nonhuman primates (NHPs) in three trials; pressures were then averaged for 30 seconds per body position. Relative change of IOP, ICP, and TLP from the supine (baseline) position to the seated, standing, and inverted positions were quantified. Results TLP changed significantly and instantaneously from the supine to seated (+14 mm Hg), supine to standing (+13 mm Hg) and supine to inverted (−12 mm Hg) positions (P < 0.05). There was no significant TLP change for supine to prone. ICP showed greater relative change than IOP. Conclusions TLP change due to body position change is driven more by ICP/CSFP than IOP. IOP, ICP, and TLP variability, coupled with telemetry, should allow us to test the hypotheses that IOP, ICP, or TLP fluctuations contribute independently to glaucoma onset or progression.
Collapse
Affiliation(s)
- Jessica V Jasien
- Vision Science Graduate Program, School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Brian C Samuels
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - James M Johnston
- Department of Neurosurgery, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - J Crawford Downs
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
24
|
van den Bosch JJON, Pennisi V, Invernizzi A, Mansouri K, Weinreb RN, Thieme H, Hoffmann MB, Choritz L. Implanted Microsensor Continuous IOP Telemetry Suggests Gaze and Eyelid Closure Effects on IOP-A Preliminary Study. Invest Ophthalmol Vis Sci 2021; 62:8. [PMID: 33956052 PMCID: PMC8107486 DOI: 10.1167/iovs.62.6.8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/15/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose To explore the effect of gaze direction and eyelid closure on intraocular pressure (IOP). Methods Eleven patients with primary open-angle glaucoma previously implanted with a telemetric IOP sensor were instructed to view eight equally-spaced fixation targets each at three eccentricities (10°, 20°, and 25°). Nine patients also performed eyelid closure. IOP was recorded via an external antenna placed around the study eye. Differences of mean IOP between consecutive gaze positions were calculated. Furthermore, the effect of eyelid closure on gaze-dependent IOP was assessed. Results The maximum IOP increase was observed at 25° superior gaze (mean ± SD: 4.4 ± 4.9 mm Hg) and maximum decrease at 25° inferonasal gaze (-1.6 ± 0.8 mm Hg). There was a significant interaction between gaze direction and eccentricity (P = 0.003). Post-hoc tests confirmed significant decreases inferonasally for all eccentricities (mean ± SEM: 10°: -0.7 ± 0.2, P = 0.007; 20°: -1.1 ± 0.2, P = 0.006; and 25°: -1.6 ± 0.2, P = 0.006). Eight of 11 eyes showed significant IOP differences between superior and inferonasal gaze at 25°. IOP decreased during eyelid closure, which was significantly lower than downgaze at 25° (mean ± SEM: -2.1 ± 0.3 mm Hg vs. -0.7 ± 0.2 mm Hg, P = 0.014). Conclusions Our data suggest that IOP varies reproducibly with gaze direction, albeit with patient variability. IOP generally increased in upgaze but decreased in inferonasal gaze and on eyelid closure. Future studies should investigate the patient variability and IOP dynamics.
Collapse
Affiliation(s)
| | - Vincenzo Pennisi
- Department of Ophthalmology, University Hospital Magdeburg, Germany
| | - Azzurra Invernizzi
- Laboratory for Experimental Ophthalmology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Cognitive Neuroscience Center, Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, Groningen, The Netherlands
| | - Kaweh Mansouri
- Glaucoma Research Center, Montchoisi Clinic, Swiss Visio, Lausanne, Switzerland
- Department of Ophthalmology, University of Colorado, Denver, Colorado, United States
| | - Robert N. Weinreb
- Hamilton Glaucoma Center, Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California, San Diego, La Jolla, California, United States
| | - Hagen Thieme
- Department of Ophthalmology, University Hospital Magdeburg, Germany
| | - Michael B. Hoffmann
- Department of Ophthalmology, University Hospital Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Lars Choritz
- Department of Ophthalmology, University Hospital Magdeburg, Germany
| |
Collapse
|
25
|
Kompella UB, Hartman RR, Patil MA. Extraocular, periocular, and intraocular routes for sustained drug delivery for glaucoma. Prog Retin Eye Res 2021; 82:100901. [PMID: 32891866 PMCID: PMC8317199 DOI: 10.1016/j.preteyeres.2020.100901] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 08/22/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023]
Abstract
Although once daily anti-glaucoma drug therapy is a current clinical reality, most therapies require multiple dosing and there is an unmet need to develop convenient, safe, and effective sustained release drug delivery systems for long-term treatment to improve patient adherence and outcomes. One of the first sustained release drug delivery systems was approved for the reduction of intraocular pressure in glaucoma patients. It is a polymeric reservoir-type insert delivery system, Ocusert™, placed under the eyelid and on the ocular surface for zero-order drug release over one week. The insert, marketed in two strengths, released pilocarpine on the eye surface. While many clinicians appreciated this drug product, it was eventually discontinued. No similar sustained release non-invasive drug delivery system has made it to the market to date for treating glaucoma. Drug delivery systems under development include punctal plugs, ring-type systems, contact lenses, implants, microspheres, nanospheres, gels, and other depot systems placed in the extraocular, periocular, or intraocular regions including intracameral, supraciliary, and intravitreal spaces. This article discusses the advantages and disadvantages of the various routes of administration and delivery systems for sustained glaucoma therapy. It also provides the reader with some examples and discussion of drug delivery systems that could potentially be applied for glaucoma treatment. Interestingly, one intracamerally injected implant, Durysta™, was approved recently for sustained intraocular pressure reduction. However, long-term acceptance of such devices has yet to be established. The ultimate success of the delivery system will depend on efficacy relative to eye drop dosing, safety, reimbursement options, and patient acceptance. Cautious development efforts are warranted considering prior failed approaches for sustained glaucoma drug delivery. Neuroprotective approaches for glaucoma therapy including cell, gene, protein, and drug-combination therapies, mostly administered intravitreally, are also rapidly progressing towards assessment in humans.
Collapse
Affiliation(s)
- Uday B Kompella
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Rachel R Hartman
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Madhoosudan A Patil
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
26
|
Mcmonnies CW. An examination of the baropathic nature of axial myopia. Clin Exp Optom 2021; 97:116-24. [DOI: 10.1111/cxo.12101] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/17/2013] [Accepted: 05/05/2013] [Indexed: 11/29/2022] Open
Affiliation(s)
- Charles W Mcmonnies
- School of Optometry and Vision Science, University of New South Wales, Kensington, New South Wales, Australia,
| |
Collapse
|
27
|
Mcmonnies CW. The importance of and potential for continuous monitoring of intraocular pressure. Clin Exp Optom 2021; 100:203-207. [DOI: 10.1111/cxo.12497] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 11/29/2022] Open
Affiliation(s)
- Charles W Mcmonnies
- School of Optometry and Vision Science, The University of New South Wales, Kensington, New South Wales, Australia,
| |
Collapse
|
28
|
Lakk M, Križaj D. TRPV4-Rho signaling drives cytoskeletal and focal adhesion remodeling in trabecular meshwork cells. Am J Physiol Cell Physiol 2021; 320:C1013-C1030. [PMID: 33788628 PMCID: PMC8285634 DOI: 10.1152/ajpcell.00599.2020] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Intraocular pressure (IOP) is dynamically regulated by the trabecular meshwork (TM), a mechanosensitive tissue that protects the eye from injury through dynamic regulation of aqueous humor flow. TM compensates for mechanical stress impelled by chronic IOP elevations through increased actin polymerization, tissue stiffness, and contractility. This process has been associated with open angle glaucoma; however, the mechanisms that link mechanical stress to pathological cytoskeletal remodeling downstream from the mechanotransducers remain poorly understood. We used fluorescence imaging and biochemical analyses to investigate cytoskeletal and focal adhesion remodeling in human TM cells stimulated with physiological strains. Mechanical stretch promoted F-actin polymerization, increased the number and size of focal adhesions, and stimulated the activation of the Rho-associated protein kinase (ROCK). Stretch-induced activation of the small GTPase Ras homolog family member A (RhoA), and tyrosine phosphorylations of focal adhesion proteins paxillin, focal adhesion kinase (FAK), vinculin, and zyxin were time dependently inhibited by ROCK inhibitor trans-4-[(1R)-1-aminoethyl]-N-4-pyridinylcyclohexanecarboxamide dihydrochloride (Y-27632), and by HC-067047, an antagonist of transient receptor potential vanilloid 4 (TRPV4) channels. Both TRPV4 and ROCK activation were required for zyxin translocation and increase in the number/size of focal adhesions in stretched cells. Y-27632 blocked actin polymerization without affecting calcium influx induced by membrane stretch and the TRPV4 agonist GSK1016790A. These results reveal that mechanical tuning of TM cells requires parallel activation of TRPV4, integrins, and ROCK, with chronic stress leading to sustained remodeling of the cytoskeleton and focal complexes.
Collapse
Affiliation(s)
- Monika Lakk
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah
| | - David Križaj
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah.,Department of Bioengineering, University of Utah, Salt Lake City, Utah.,Department of Neurobiology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
29
|
Pang JJ. Roles of the ocular pressure, pressure-sensitive ion channel, and elasticity in pressure-induced retinal diseases. Neural Regen Res 2021; 16:68-72. [PMID: 32788449 PMCID: PMC7818868 DOI: 10.4103/1673-5374.286953] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The intraocular pressure inside the human eye maintains 10–21 mmHg above the atmospheric pressure. Elevation of intraocular pressure is highly correlated with the retinopathy in glaucoma, and changes in the exterior pressure during mountain hiking, air traveling, and diving may also induce vision decline and retinopathy. The pathophysiological mechanism of these pressure-induced retinal disorders has not been completely clear. Retinal neurons express pressure-sensitive channels intrinsically sensitive to pressure and membrane stretch, such as the transient receptor potential channel (TRP) family permeable to Ca2+ and Na+ and the two-pore domain K channel family. Recent data have shown that pressure excites the primate retinal bipolar cell by opening TRP vanilloid 4 to mediate transient depolarizing currents, and TRP vanilloid 4 agonists enhance the membrane excitability of primate retinal ganglion cells. The eyeball wall is constructed primarily by the sclera and cornea of low elasticity, and the flow rate of the aqueous humor and intraocular pressure both fluctuate, but the mathematical relationship between the ocular elasticity, aqueous humor volume, and intraocular pressure has not been established. This review will briefly review recent literature on the pressure-related retinal pathophysiology in glaucoma and other pressure-induced retinal disorders, the elasticity of ocular tissues, and pressure-sensitive cation channels in retinal neurons. Emerging data support the global volume and the elasticity and thickness of the sclera and cornea as variables to affect the intraocular pressure level like the volume of the aqueous humor. Recent results also suggest some potential routes for TRPs to mediate retinal ganglion cell dysfunction: TRP opening upon intraocular pressure elevation and membrane stretch, enhancing glutamate release from bipolar cells, increasing intracellular Na+, Ca2+ concentration in retinal ganglion cells and extracellular glutamate concentration, inactivating voltage-gated Na+ channels, and causing excitotoxicity and dysfunction of retinal ganglion cells. Further studies on these routes likely identify novel targets and therapeutic strategies for the treatment of pressure-induced retinal disorders.
Collapse
Affiliation(s)
- Ji-Jie Pang
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
30
|
Jasien JV, Zohner YE, Asif SK, Rhodes LA, Samuels BC, Girkin CA, Morris JS, Downs JC. Comparison of extraocular and intraocular pressure transducers for measurement of transient intraocular pressure fluctuations using continuous wireless telemetry. Sci Rep 2020; 10:20893. [PMID: 33262420 PMCID: PMC7708973 DOI: 10.1038/s41598-020-77880-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 11/11/2020] [Indexed: 11/08/2022] Open
Abstract
The optimal approach for continuous measurement of intraocular pressure (IOP), including pressure transducer location and measurement frequency, is currently unknown. This study assessed the capability of extraocular (EO) and intraocular (IO) pressure transducers, using different IOP sampling rates and duty cycles, to characterize IOP dynamics. Transient IOP fluctuations were measured and quantified in 7 eyes of 4 male rhesus macaques (NHPs) using the Konigsberg EO system (continuous at 500 Hz), 12 eyes of 8 NHPs with the Stellar EO system and 16 eyes of 12 NHPs with the Stellar IO system (both measure at 200 Hz for 15 s of every 150 s period). IOP transducers were calibrated bi-weekly via anterior chamber manometry. Linear mixed effects models assessed the differences in the hourly transient IOP impulse, and transient IOP fluctuation frequency and magnitude between systems and transducer placements (EO versus IO). All systems measured 8000-12,000 and 5000-6500 transient IOP fluctuations per hour > 0.6 mmHg, representing 8-16% and 4-8% of the total IOP energy the eye must withstand during waking and sleeping hours, respectively. Differences between sampling frequency/duty cycle and transducer placement were statistically significant (p < 0.05) but the effect sizes were small and clinically insignificant. IOP dynamics can be accurately captured by sampling IOP at 200 Hz on a 10% duty cycle using either IO or EO transducers.
Collapse
Affiliation(s)
- Jessica V Jasien
- Vision Science Graduate Program, School of Optometry, University of Alabama at Birmingham, Birmingham, USA
| | | | - Sonia Kuhn Asif
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, VH 390B | 1670 University Blvd., Birmingham, AL, 35294, USA
| | - Lindsay A Rhodes
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, VH 390B | 1670 University Blvd., Birmingham, AL, 35294, USA
| | - Brian C Samuels
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, VH 390B | 1670 University Blvd., Birmingham, AL, 35294, USA
| | - Christopher A Girkin
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, VH 390B | 1670 University Blvd., Birmingham, AL, 35294, USA
| | - Jeffrey S Morris
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - J Crawford Downs
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, VH 390B | 1670 University Blvd., Birmingham, AL, 35294, USA.
| |
Collapse
|
31
|
Wilson KI, Godara P, Jasien JV, Zohner E, Morris JS, Girkin CA, Samuels BC, Downs JC. Intra-Subject Variability and Diurnal Cycle of Ocular Perfusion Pressure as Characterized by Continuous Telemetry in Nonhuman Primates. Invest Ophthalmol Vis Sci 2020; 61:7. [PMID: 32492113 PMCID: PMC7415896 DOI: 10.1167/iovs.61.6.7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To characterize ocular perfusion pressure (OPP) fluctuations with continuous telemetry over 24-hour periods across multiple days in nonhuman primates (NHPs) to test the hypotheses that OPP differs among NHPs and that the diurnal cycle of OPP is characterized by low OPP during sleep. Methods We have developed and validated two implantable radiotelemetry systems that allow continuous measurement of intraocular pressure (IOP), arterial blood pressure (BP), and OPP up to 500 Hz. OPP was measured unilaterally in 12 male NHPs for periods of 38 to 412 days. IOP transducers were calibrated directly via anterior chamber manometry, and OPP was calculated continuously as central retinal artery BP minus IOP. OPP data were corrected for signal drift between calibrations and averaged hourly. Results OPP varied widely among animals, with daily averages ranging from ∼47 to 65 mm Hg. In eight of 12 NHPs, OPP was significantly lower during sleep compared to waking hours. In three animals, the diurnal cycle was reversed and OPP was significantly higher during sleep (P < 0.05), and one NHP showed no diurnal cycle. Day-to-day OPP variability within NHPs was the largest source of overall OPP variability, even larger than the differences between NHPs. Average daily OPP showed an unexplained ∼32-day cyclic pattern in most NHPs. Conclusions Average OPP varied widely and exhibited differing diurnal cycles in NHPs, a finding that matches those of prior patient studies and indicates that OPP studies in the NHP model are appropriate. Infrequent snapshot measurements of either IOP or BP are insufficient to capture true IOP, BP, and OPP and their fluctuations.
Collapse
|
32
|
Enders P, Cursiefen C. Device profile of the EYEMATE-IO™ system for intraocular pressure monitoring: overview of its safety and efficacy. Expert Rev Med Devices 2020; 17:491-497. [DOI: 10.1080/17434440.2020.1761788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Philip Enders
- Department of Ophthalmology, University Hospital of Cologne , Cologne, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, University Hospital of Cologne , Cologne, Germany
| |
Collapse
|
33
|
Gopesh T, Camp A, Unanian M, Friend J, Weinreb RN. Rapid and Accurate Pressure Sensing Device for Direct Measurement of Intraocular Pressure. Transl Vis Sci Technol 2020; 9:28. [PMID: 32742758 PMCID: PMC7354859 DOI: 10.1167/tvst.9.3.28] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Intraocular pressure (IOP) is the primary modifiable risk factor for glaucoma. Current devices measure IOP via the dynamic response of the healthy cornea and do not provide the accurate IOP measurements for patients with altered corneal biomechanics. We seek to develop and test an accurate needle-based IOP measurement device that is not cornea dependent. Methods Our device combines a high-resolution pressure microsensor with 30- and 33-gauge Luer lock needles to provide IOP measurements via a microcontroller and USB interface to a computer. The device was calibrated in a membrane chamber and then tested and validated in the anterior chamber and post-vitrectomy vitreous chamber of rabbit eyes. The results were compared to Tonopen readings across a pressure range of 0 to 100 mm Hg, imposed in increments of 10 mm Hg. Results Both the needle based sensor device and the Tonopen demonstrated a linear relationship with changes in imposed pressure. The Tonopen was found to consistently underestimate the IOP both in the anterior and vitreous chambers. The Tonopen exhibited a significantly greater error than our needle-based sensor device. With increased pressure (>30 mm Hg), the error of the Tonopen increased, whereas the error of our device did not. The 30-gauge needle produces an insignificant improvement in accuracy over the 33-gauge needle. Conclusions A needle-based sensor device enables accurate IOP measurements over a broad range of induced IOP. Translational Relevance Direct measurement of IOP in the anterior chamber circumvents the influence of corneal parameters on IOP measurement.
Collapse
Affiliation(s)
- Tilvawala Gopesh
- Medically Advanced Devices Laboratory, Center for Medical Devices and Instrumentation, Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Andrew Camp
- Hamilton Glaucoma Center, Shiley Eye Institute and the Viterbi Family Department of Ophthalmology, University of California, San Diego, La Jolla, CA, USA
| | - Michael Unanian
- Medically Advanced Devices Laboratory, Center for Medical Devices and Instrumentation, Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, USA
| | - James Friend
- Medically Advanced Devices Laboratory, Center for Medical Devices and Instrumentation, Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Robert N Weinreb
- Hamilton Glaucoma Center, Shiley Eye Institute and the Viterbi Family Department of Ophthalmology, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
34
|
Experimental glaucoma model with controllable intraocular pressure history. Sci Rep 2020; 10:126. [PMID: 31924837 PMCID: PMC6954231 DOI: 10.1038/s41598-019-57022-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 12/18/2019] [Indexed: 12/20/2022] Open
Abstract
Glaucoma-like neuropathies can be experimentally induced by disturbing aqueous outflow from the eye, resulting in intraocular pressure (IOP) changes that are variable in magnitude and time course and permanent in duration. This study introduces a novel method of glaucoma induction that offers researchers round-the-clock measurement and reversible control of IOP for the first time. One eye of Brown-Norway rats was implanted with a cannula tethered to a pressure sensor and aqueous reservoir. IOP was raised 10 mmHg for weeks-to-months in treated animals and unaltered in control animals. Counts of Brn3a-expressing retinal ganglion cells (RGCs) in implanted eyes were indistinguishable from non-implanted eyes in control animals and 15 ± 2%, 23 ± 4%, and 38 ± 4% lower in animals exposed to 2, 4, and 9 weeks of IOP elevation. RGC loss was greater in peripheral retina at 2 weeks and widespread at longer durations. Optic nerves also showed progressive degeneration with exposure duration, yet conventional outflow facility of implanted eyes was normal (24.1 ± 2.9 nl/min/mmHg) even after 9-weeks elevation. Hence, this infusion-based glaucoma model exhibits graded neural damage with unimpaired outflow pathways. The model further revealed a potentially-significant finding that outflow properties of rat eyes do not remodel in response to chronic ocular hypertension.
Collapse
|
35
|
Turner DC, Edmiston AM, Zohner YE, Byrne KJ, Seigfreid WP, Girkin CA, Morris JS, Downs JC. Transient Intraocular Pressure Fluctuations: Source, Magnitude, Frequency, and Associated Mechanical Energy. Invest Ophthalmol Vis Sci 2019; 60:2572-2582. [PMID: 31212310 PMCID: PMC6586078 DOI: 10.1167/iovs.19-26600] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose To characterize intraocular pressure (IOP) dynamics by identifying the sources of transient IOP fluctuations and quantifying the frequency, magnitude, associated cumulative IOP-related mechanical energy, and temporal distribution. Methods IOP was monitored at 500 Hz for periods of 16 to 451 days in nine normal eyes of six conscious, unrestrained nonhuman primates using a validated, fully implanted wireless telemetry system. IOP transducers were calibrated every two weeks via anterior chamber cannulation manometry. Analysis of time-synchronized, high-definition video was used to identify the sources of transient IOP fluctuations. Results The distribution of IOP in individual eyes is broad, and changes at multiple timescales, from second-to-second to day-to-day. Transient IOP fluctuations arise from blinks, saccades, and ocular pulse amplitude and were as high as 14 mm Hg (>100%) above momentary baseline. Transient IOP fluctuations occur ∼10,000 times per waking hour, with ∼2000 to 5000 fluctuations per hour greater than 5 mm Hg (∼40%) above baseline. Transient IOP fluctuations account for up to 17% (mean of 12%) of the total cumulative IOP-related mechanical energy that the eye must withstand during waking hours. Conclusions Transient IOP fluctuations occur frequently and comprise a large and significant portion of the total IOP loading in the eye and should, therefore, be considered in future studies of cell mechanotransduction, ocular biomechanics, and/or clinical outcomes where transient IOP fluctuations may be important. If IOP dynamics are similar in humans, clinical snapshot IOP measurements are insufficient to capture true IOP.
Collapse
Affiliation(s)
- Daniel C Turner
- Department of Vision Sciences, School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Anna M Edmiston
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | | | - Kevin J Byrne
- Boston University School of Medicine, Boston, Massachusetts, United States
| | | | - Christopher A Girkin
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Jeffrey S Morris
- The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States
| | - J Crawford Downs
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
36
|
The Influence of Translaminar Pressure Gradient and Intracranial Pressure in Glaucoma: A Review. J Glaucoma 2019; 29:141-146. [DOI: 10.1097/ijg.0000000000001421] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
37
|
Jasien JV, Turner DC, Girkin CA, Downs JC. Cyclic Pattern of Intraocular Pressure (IOP) and Transient IOP Fluctuations in Nonhuman Primates Measured with Continuous Wireless Telemetry. Curr Eye Res 2019; 44:1244-1252. [PMID: 31170817 PMCID: PMC6829065 DOI: 10.1080/02713683.2019.1629594] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/04/2019] [Accepted: 06/04/2019] [Indexed: 01/26/2023]
Abstract
Purpose: Most studies on intraocular pressure (IOP) to monitor IOP "fluctuations" in glaucoma patients have been performed with snapshot tonometry techniques that obtain IOP measurements at single time points weeks to months apart. However, IOP telemetry has shown that IOP varies from second-to-second due to blinks, saccades, and systolic vascular filling. The purpose of this study was to characterize the cyclic pattern of baseline IOP and transient IOP fluctuations in 3 nonhuman primates (NHPs).Methods: Bilateral IOP was measured using a proven implantable telemetry system and recorded 500 times per second, 24 hours a day, up to 451 continuous days in 3 male rhesus macaques aged 4 to 5 years old. The IOP transducers were calibrated every two weeks via anterior chamber cannulation manometry and all data were continuously corrected for signal drift via software, filtered for signal noise and dropout, and peaks and troughs were quantified and counted using a finite impulse response filter; waking hours were defined as 6:00-18:00 hours based on room light cycle.Results: Fourier transform analyses of baseline IOP and the hourly mean frequency of transient IOP fluctuations > 0.6 mmHg, 0.6-5 mmHg and > 5 mmHg above baseline during waking hours exhibited an approximate 16- to 91-day cyclic pattern in all NHPs. There were no measured environmental or experimental factors associated with this cyclical pattern.Conclusions: While the importance of the cyclic pattern identified in IOP and its fluctuations is unknown at this time, it is plausible that this pattern is relevant to both homeostasis and pathophysiology of the ONH, corneoscleral shell, and aqueous outflow pathways.
Collapse
Affiliation(s)
- Jessica V. Jasien
- Vision Science Graduate Program, School of Optometry, University of Alabama at Birmingham
| | - Daniel C. Turner
- Vision Science Graduate Program, School of Optometry, University of Alabama at Birmingham
| | - Christopher A. Girkin
- Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham
| | - J. Crawford Downs
- Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham
| |
Collapse
|
38
|
Fazio MA, Girard MJA, Lee W, Morris JS, Burgoyne CF, Downs JC. The Relationship Between Scleral Strain Change and Differential Cumulative Intraocular Pressure Exposure in the Nonhuman Primate Chronic Ocular Hypertension Model. Invest Ophthalmol Vis Sci 2019; 60:4141-4150. [PMID: 31598625 PMCID: PMC6785842 DOI: 10.1167/iovs.19-27060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/17/2019] [Indexed: 01/15/2023] Open
Abstract
Purpose To determine the relationship between peripapillary scleral strain change and cumulative differential IOP exposure in nonhuman primates (NHPs) with unilateral chronic ocular hypertension. Methods Posterior scleral shells from 6 bilaterally normal and 10 unilateral chronic ocular hypertension NHPs were pressurized from 5 to 45 mm Hg, and the resulting full-field, three-dimensional, scleral surface deformations were acquired using laser speckle interferometry. Scleral tensile strain (local tissue deformation) was calculated by analytical differentiation of the displacement field; zero strain was assumed at 5 mm Hg. Maximum principal strain was used to represent the scleral strain, and strains were averaged over a 15°-wide (∼3.6-mm) circumpapillary region adjacent to the ONH. The relative difference in mean strain was calculated between fellow eyes and compared with the differential cumulative IOP exposure within NHPs during the study period. The relationship between the relative difference in scleral strain and the differential cumulative IOP exposure in fellow eyes was assessed using an F test and quadratic regression model. Results Relative differential scleral tensile strain was significantly associated with differential cumulative IOP exposure in contralateral eyes in the chronic ocular hypertension NHPs, with the bilaterally normal NHPs showing no significant strain difference between fellow eyes. The sclera in the chronic ocular hypertension eyes was more compliant than in their fellow eyes at low levels of differential cumulative IOP exposure, but stiffer at larger differential IOPs (P < 0.0001). Conclusions These cross-sectional findings suggest that longitudinal IOP-induced changes in scleral mechanical behavior are dependent on the magnitude of differential cumulative IOP exposure.
Collapse
Affiliation(s)
- Massimo A. Fazio
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Michael J. A. Girard
- In Vivo Biomechanics Laboratory, Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Wonyul Lee
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Jeffrey S. Morris
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Claude F. Burgoyne
- Optic Nerve Head Biomechanics Laboratory, Devers Eye Institute, Portland, Oregon, United States
| | - J. Crawford Downs
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
39
|
Sanchez I, Martin R. Advances in diagnostic applications for monitoring intraocular pressure in Glaucoma: A review. JOURNAL OF OPTOMETRY 2019; 12:211-221. [PMID: 31405810 PMCID: PMC6978552 DOI: 10.1016/j.optom.2018.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/20/2018] [Accepted: 12/12/2018] [Indexed: 05/24/2023]
Abstract
Continuous intraocular pressure (IOP) monitoring for improving glaucoma diagnosis and treatment has remained a challenge for the past 60 years because glaucoma is the second leading cause of irreversible blindness worldwide. Several devices with different measurement principles and recently developed biosensors with semiconductor materials offer exciting properties. However, none of these devices for continuous IOP monitoring have been fully integrated into clinical practice, primarily due to technical problems. This review summarizes state-of-the-art biosensors developed for IOP monitoring by explaining their basic functions and applications, the main technology (pressure transductors, piezoresistive sensors, capacitive sensors, and resonant sensors), measurement approach (noninvasive, minimally invasive or invasive (surgically implantable)), and telemetry characteristics. To provide updated information for clinicians and researchers, we also describe the advantages and limitations of the application of these new sensors to eye care management. Despite significant improvements in IOP biosensor technology, the accuracy of their measurements must be improved to obtain a clear equivalence with actual IOP (measured in units of mmHg) to facilitate their clinical application. In addition, telemetry systems may be simplified to prevent adverse outcomes for patients and to guarantee the safety of stored data.
Collapse
Affiliation(s)
- Irene Sanchez
- Universidad de Valladolid, Departamento de Física Teórica, Atómica y Óptica, Paseo de Belén, 7, Campus Miguel Delibes, Valladolid 47011, Spain; Universidad de Valladolid, Instituto Universitario de Oftalmobiología Aplicada (IOBA), Paseo de Belén, 17, Campus Miguel Delibes, Valladolid 47011, Spain; Optometry Research Group, IOBA Eye Institute, School of Optometry, University of Valladolid, Valladolid 47011, Spain.
| | - Raul Martin
- Universidad de Valladolid, Departamento de Física Teórica, Atómica y Óptica, Paseo de Belén, 7, Campus Miguel Delibes, Valladolid 47011, Spain; Universidad de Valladolid, Instituto Universitario de Oftalmobiología Aplicada (IOBA), Paseo de Belén, 17, Campus Miguel Delibes, Valladolid 47011, Spain; Optometry Research Group, IOBA Eye Institute, School of Optometry, University of Valladolid, Valladolid 47011, Spain; School of Health Professions, Plymouth University, Plymouth PL68BH, UK
| |
Collapse
|
40
|
Jasien JV, Girkin CA, Downs JC. Effect of Anesthesia on Intraocular Pressure Measured With Continuous Wireless Telemetry in Nonhuman Primates. Invest Ophthalmol Vis Sci 2019; 60:3830-3834. [PMID: 31529079 PMCID: PMC6750888 DOI: 10.1167/iovs.19-27758] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/09/2019] [Indexed: 12/28/2022] Open
Abstract
Purpose To compare the effects of both injectable anesthesia (ketamine/dexmedetomidine versus ketamine/xylazine) and inhalant anesthesia (isoflurane) on IOP using continuous, bilateral IOP telemetry in nonhuman primates (NHP). Methods Bilateral IOP was recorded continuously using a proven implantable telemetry system in five different sessions at least 2 weeks apart in four male rhesus macaques under two conditions: ketamine (3 mg/kg) with dexmedetomidine (50 μg/kg) or ketamine with xylazine (0.5 mg/kg) for induction, both followed by isoflurane for maintenance. IOP transducers were calibrated via anterior chamber manometry. Bilateral IOP was averaged over 2 minutes after injectable anesthetic induction and again after isoflurane inhalant had stabilized the anesthetic plane, then compared to baseline IOP measurements acquired immediately prior to anesthesia (both before and after initial human contact). Results When compared to pre-contact baseline measurements, ketamine/dexmedetomidine injectable anesthesia lowers IOP by 1.5 mm Hg on average (P < 0.05), but IOP did not change with ketamine/xylazine anesthesia. IOP returned to baseline levels shortly after isoflurane gas anesthesia was initiated. However, injectable anesthesia lowered IOP by an average of 5.4 mm Hg when compared to that measured after initial human contact (P < 0.01). Conclusions Anesthetic effects on IOP are generally small when compared to precontact baseline but much larger when compared to IOP measures taken after human contact, indicating that IOP is temporarily elevated due to acute stress (similar to a "white coat effect") and then decreased with anesthetic relaxation. Anesthetic induction with ketamine/xylazine and maintenance with isoflurane gas should be used when IOP is measured postanesthesia.
Collapse
Affiliation(s)
- Jessica V. Jasien
- Vision Science Graduate Program, School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Christopher A. Girkin
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - J. Crawford Downs
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
41
|
A Protective Eye Shield Reduces Limbal Strain and Its Variability During Simulated Sleep in Adults With Glaucoma. J Glaucoma 2019; 27:77-86. [PMID: 29194205 DOI: 10.1097/ijg.0000000000000826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To determine the effect of wearing a protective eye shield (mask) on limbal strain magnitude and variability in glaucoma eyes when sleeping with 1 side of the face down (FD) against a pillow. METHODS A prospective, randomized, interventional trial was conducted at the Wilmer Eye Institute with 36 glaucoma patients. A contact lens sensor measured limbal strain (output in equivalent millivolts) during intervals of up to 60 minutes in lateral decubitus, FD, and supine positions. Eighteen subjects wore a mask during 1 of 2 FD intervals, with randomized assignment of the interval. Data from additional trials with no mask were included in some analyses. In addition, some facial-feature dimensions from 3D scanned images of 23 subjects were compared with limbal strain data. RESULTS Wearing a mask trends toward a reduced mean change in contact lens sensor output (limbal strain) on moving to a FD positions [+34.1 mVeq, P=0.01 reduced by -22.3 mVeq, P=0.09 (n=36)]. Mask wearing reduced variability in strain while FD [-22.8 mVeq, P=0.04 (n=18)]. In eyes with past progressive visual field loss, the effect of the mask reduced mean strain change when moving to FD [-44.8 mVeq, P=0.02 (n=31)]. Longer corneal apex to nose-tip and to temple lengths were associated with reduced variability while FD [P=0.02 and 0.04, respectively (n=23)]. Treating both lengths as confounding factors increased statistical significance, particularly for analysis of the no-mask change in strain data moving to and from the FD position [P=0.004 to 0.002 and P=0.03 to 0.01 (n=23)]. CONCLUSION AND RELEVANCE Wearing a mask reduced limbal strain and variation in limbal strain during simulated FD sleep, particularly in eyes with past field worsening, as did some facial features.
Collapse
|
42
|
Tu S, Li K, Ding X, Zuo C, Hu D, Ge J. TonoVet versus Tonopen in a high intraocular pressure monkey model. Mol Vis 2019; 25:391-399. [PMID: 31523117 PMCID: PMC6707614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 08/01/2019] [Indexed: 11/16/2022] Open
Abstract
Purpose The purpose of this study is to evaluate the consistency of and deviation in intraocular pressure (IOP) measurements obtained by the TonoVet rebound tonometer and the Tonopen applanation tonometer in a primate model. Methods Twenty-four-hour IOPs (nine time points) were recorded in ten monkeys with normal IOP and eight monkeys with chronic high IOP (one eye was randomly selected for measurement in each animal) using a Tonopen and TonoVet device. Measurements obtained using both handheld devices were first compared in the healthy control group (90 readings). The monkeys with chronic ocular hypertension (COHT, 72 IOP readings) were divided into three subgroups according to the level of IOP. The consistency of and deviations in the measurements were analyzed using Bland-Altman plots, linear regression, and two-tailed Student t tests. Results In monkeys with normal IOP, the two devices produced similar IOP readings (mean IOP deviation, 0.06 ± 2.08 mmHg, p = 0.761), with 56.67% of the deviation between -1 mmHg and 1 mmHg and 91.12% between -3 mmHg and 3 mmHg. However, in the animal model group (23-60 mmHg), the readings obtained by the TonoVet tonometer were higher than those obtained by the Tonopen tonometer (mean deviation, 13.76 ± 9.19 mmHg); furthermore, 75.68% of the TonoVet measurements deviated by ± 5 mmHg from the Tonopen measurements. Conclusions In animals with normal IOP, the TonoVet and Tonopen tonometers produced consistent measurements. However, in a monkey model of chronic high IOP, the measurements obtained by these tonometers were inconsistent, with higher IOPs associated with larger measurement errors. Therefore, it is necessary to be aware that among different tonometers, there may be systemic errors and deviations in IOP measurements. These findings should facilitate efforts to obtain more accurate individualized diagnoses and prevent the utilization of misleading IOP values.
Collapse
|
43
|
|
44
|
Tu S, Li K, Hu D, Li K, Ge J. Posture-Dependent 24-Hour Intraocular Pressure Fluctuation Patterns in an Intraocular Hypertension Monkey Model. Transl Vis Sci Technol 2019; 8:63. [PMID: 31293817 PMCID: PMC6602140 DOI: 10.1167/tvst.8.3.63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 03/04/2019] [Indexed: 11/24/2022] Open
Abstract
Purpose We investigate 24-hour intraocular pressure (IOP) fluctuation patterns and the influence of body position on IOP in a chronic ocular hypertension (COHT) monkey model. Methods We recorded 24-hour IOPs (nine time points) in the different body positions in 10 eyes with normal and eight with high IOP (with random selection of one eye of each monkey) using a Tonopen. The IOPs at various time points and in different body positions were compared. Results The average 24-hour IOPs in the immediate-supine, 10-minute supine, 10-minute seated, and immediate-seated positions in the COHT models were 28.64 ± 9.82, 25.42 ± 7.62, 23.49 ± 7.67, and 20.53 ± 7.80 mmHg, respectively. The diurnal-to-nocturnal IOP changes were 8.51 ± 2.93, 5.81 ± 3.67, 5.48 ± 2.97, and 3.59 ± 2.74 mmHg, respectively. The sudden shift between the supine and seated positions bring greater IOP variations (8.11 ± 2.85 mmHg) in the COHT monkeys, and the IOP fluctuations reached 14 to 38 mmHg when considering body position and the measurement time points. Conclusions The measurement time and body position influenced IOP. More elevated IOP occurred in the immediate-supine position and during the transient shift between the seated and supine positions. Maintaining a fixed position for sufficient time before measurement is important. Translational Relevance Glaucoma patients should focus on the importance of IOP measurements in the clinic occurring after an adequate amount of time in a fixed body position.
Collapse
Affiliation(s)
- Shu Tu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Kang Li
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Dongpeng Hu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Kaijing Li
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jian Ge
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
45
|
Schiotz Scleral Intraocular Pressure Readings Predict Goldmann Applanation Readings Better Than Rebound Tonometry. Cornea 2019; 38:1117-1123. [DOI: 10.1097/ico.0000000000002033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Gao F, Yang Z, Jacoby RA, Wu SM, Pang JJ. The expression and function of TRPV4 channels in primate retinal ganglion cells and bipolar cells. Cell Death Dis 2019; 10:364. [PMID: 31064977 PMCID: PMC6504919 DOI: 10.1038/s41419-019-1576-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/25/2019] [Indexed: 12/26/2022]
Abstract
The transient receptor potential vanilloid 4 (TRPV4) channel may be opened by mechanical stimuli to mediate Ca2+ and Na+ influxes, and it has been suggested to mediate glaucoma retinopathy. However, it has been mostly unclear how TRPV4 activities affect the function of primate retinal ganglion cells (RGCs). We studied RGCs and bipolar cells (BCs) in the peripheral retina of the old-world primate using whole-cell current-clamp and voltage-clamp recordings, immunomarkers and confocal microscopy. RGCs were distinguished from displaced amacrine cells (ACs) by the absence of GABA and glycine immunoreactivity and possession of an axon and a large soma in the RGC layer. Strong TRPV4 signal was concentrated in medium to large somas of RGCs, and some TRPV4 signal was found in BCs (including PKCα-positive rod BCs), as well as the end feet, soma and outer processes of Mȕller cells. TRPV4 immunoreactivity quantified by the pixel intensity histogram revealed a high-intensity component for the plexiform layers, a low-intensity component for the soma layers of ACs and Mȕller cells, and both components in the soma layers of RGCs and BCs. In large RGCs, TRPV4 agonists 4α-phorbol 12,13 didecanoate (4αPDD) and GSK1016790A reversibly enhanced the spontaneous firing and shortened the delay of voltage-gated Na+ (Nav) currents under current-clamp conditions, and under voltage-clamp conditions, 4αPDD largely reversibly increased the amplitude and frequency of spontaneous excitatory postsynaptic currents. In BCs, changes in the membrane tension induced by either applying pressure or releasing the pressure both activated a transient cation current, which reversed at ~ -10 mV and was enhanced by heating from 24 °C to 30 °C. The pressure for the half-maximal effect was ~18 mmHg. These data indicate that functional TRPV4 channels are variably expressed in primate RGCs and BCs, possibly contributing to pressure-related changes in RGCs in glaucoma.
Collapse
Affiliation(s)
- Fan Gao
- Department of Ophthalmology, Baylor College of Medicine, One Baylor Plaza, NC 205, Houston, TX, 77030, USA
| | - Zhuo Yang
- Department of Ophthalmology, Baylor College of Medicine, One Baylor Plaza, NC 205, Houston, TX, 77030, USA
| | - Roy A Jacoby
- Department of Ophthalmology, Baylor College of Medicine, One Baylor Plaza, NC 205, Houston, TX, 77030, USA
| | - Samuel M Wu
- Department of Ophthalmology, Baylor College of Medicine, One Baylor Plaza, NC 205, Houston, TX, 77030, USA
| | - Ji-Jie Pang
- Department of Ophthalmology, Baylor College of Medicine, One Baylor Plaza, NC 205, Houston, TX, 77030, USA.
| |
Collapse
|
47
|
Ou-Yang BW, Sun MS, Wang MM, Zhang FJ. Early Changes of Ocular Biological Parameters in Rhesus Monkeys After Scleral Cross-linking With Riboflavin/Ultraviolet-A. J Refract Surg 2019; 35:333-339. [PMID: 31059583 DOI: 10.3928/1081597x-20190410-03] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 04/09/2019] [Indexed: 11/20/2022]
Abstract
PURPOSE To evaluate the ocular biological parameter difference between scleral corneal cross-linking (CXL) and control eyes in rhesus monkeys by using a rebound tonometer, A-scan ultrasonography, retinoscopy, optical coherence tomography, and electroretinography (ERG). METHODS Six rhesus monkeys were used in this study, with ages ranging from 3 to 3.5 years. One eye of each rhesus monkey was randomly selected to receive riboflavin/ultraviolet-A CXL in the temporal quadrant of the equatorial sclera and the contralateral eye served as an intra-individual control. The ocular biological parameters were repeatedly measured in both eyes of the monkeys before scleral CXL and 1 week, 1 month, and 3 months postoperatively. RESULTS The intraocular pressure, refractive state, total axial length, and axial dimensions of the anterior chamber, crystalline lens, vitreous chamber, and central corneal thickness were not statistically significantly different between the control and cross-linked specimens at the different time periods (each P > .05). No obvious changes in the waveform of the standard full-field ERGs were observed in the control and cross-linked specimens. There were no statistically significant differences between the control and cross-linked specimens in the dark-adapted 0.01 ERG, the dark-adapted 3.0 ERG, the light-adapted 3.0 ERG, and the amplitudes of the a-wave and b-wave for the different time periods (each P >.05). CONCLUSIONS The scleral CXL laboratory technique might not significantly affect the ocular biological parameters of the rhesus monkey in the early postoperative period, but long-term effects and histological changes still need to be investigated further. [J Refract Surg. 2019;35(5):333-339.].
Collapse
|
48
|
Smith DW, Lee CJ, Morgan W, Gardiner BS. Estimating three-dimensional outflow and pressure gradients within the human eye. PLoS One 2019; 14:e0214961. [PMID: 30964894 PMCID: PMC6456205 DOI: 10.1371/journal.pone.0214961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/23/2019] [Indexed: 12/22/2022] Open
Abstract
In this paper we set the previously reported pressure-dependent, ordinary differential equation outflow model by Smith and Gardiner for the human eye, into a new three-dimensional (3D) porous media outflow model of the eye, and calibrate model parameters using data reported in the literature. Assuming normal outflow through anterior pathways, we test the ability of 3D flow model to predict the pressure elevation with a silicone oil tamponade. Then assuming outflow across the retinal pigment epithelium is normal, we test the ability of the 3D model to predict the pressure elevation in Schwartz-Matsuo syndrome. For the first time we find the flow model can successfully model both conditions, which helps to build confidence in the validity and accuracy of the 3D pressure-dependent outflow model proposed here. We employ this flow model to estimate the translaminar pressure gradient within the optic nerve head of a normal eye in both the upright and supine postures, and during the day and at night. Based on a ratio of estimated and measured pressure gradients, we define a factor of safety against acute interruption of axonal transport at the laminar cribrosa. Using a completely independent method, based on the behaviour of dynein molecular motors, we compute the factor of safety against stalling the dynein molecule motors, and so compromising retrograde axonal transport. We show these two independent methods for estimating factors of safety agree reasonably well and appear to be consistent. Taken together, the new 3D pressure-dependent outflow model proves itself to capable of providing a useful modeling platform for analyzing eye behaviour in a variety of physiological and clinically useful contexts, including IOP elevation in Schwartz-Matsuo syndrome and with silicone oil tamponade, and potentially for risk assessment for optic glaucomatous neuropathy.
Collapse
Affiliation(s)
- David W. Smith
- Faculty of Engineering and Mathematical Sciences, The University of Western Australia, Perth, Australia
- * E-mail:
| | - Chang-Joon Lee
- Faculty of Engineering and Mathematical Sciences, The University of Western Australia, Perth, Australia
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - William Morgan
- Lions Eye Institute, The University of Western Australia, Perth, Australia
| | - Bruce S. Gardiner
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
49
|
Turner DC, Miranda M, Morris JS, Girkin CA, Downs JC. Acute Stress Increases Intraocular Pressure in Nonhuman Primates. Ophthalmol Glaucoma 2019; 2:210-214. [PMID: 31799505 DOI: 10.1016/j.ogla.2019.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Purpose To quantify intraocular pressure (IOP) change and time course during stressful activity. Study Design Experimental Study. Subjects Three nonhuman primates (NHPs). Methods Bilateral IOP and aortic blood pressure (BP) were recorded continuously, then averaged for periods of 8-30 seconds before, during, and after a common anesthetic induction procedure (cage squeeze followed by intramuscular injection). Experiments were repeated four times in each NHP. Main Outcome Measures IOP, BP, and heart rate (HR) change during an anesthetic induction procedure. Results IOP, mean arterial pressure (MAP), and HR increased rapidly and significantly by 27%, 38%, 34%, respectively, in anticipation of anesthetic induction (Figure; p<0.05). IOP rose ~10% within 10 seconds of hearing the technician enter the outer anteroom door, and reached its maximum within ~1 minute of first anticipating human contact. IOP fell to below baseline levels within 1 minute after anesthetic induction. Conclusions IOP increases rapidly and significantly in response to stressful situations in the nonhuman primate.
Collapse
Affiliation(s)
- Daniel C Turner
- Department of Vision Sciences, School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michelle Miranda
- The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Jeffrey S Morris
- The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Christopher A Girkin
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - J Crawford Downs
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
50
|
Levy AM, Fazio MA, Grytz R. Experimental myopia increases and scleral crosslinking using genipin inhibits cyclic softening in the tree shrew sclera. Ophthalmic Physiol Opt 2019; 38:246-256. [PMID: 29691925 DOI: 10.1111/opo.12454] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 03/15/2018] [Indexed: 11/30/2022]
Abstract
PURPOSE Myopia progression is thought to involve biomechanical weakening of the sclera, which leads to irreversible deformations and axial elongation of the eye. Scleral crosslinking has been proposed as a potential treatment option for myopia control by strengthening the mechanically weakened sclera. The biomechanical mechanism by which the sclera weakens during myopia and strengthens after crosslinking is not fully understood. Here, we assess the effect of lens-induced myopia and exogenous crosslinking using genipin on the inelastic mechanical properties of the tree shrew sclera measured by cyclic tensile tests. METHODS Cyclic tensile tests were performed on 2-mm wide scleral strips at physiological loading conditions (50 cycles, 0-3.3 g, 30 s cycle-1 ). Two scleral strips were obtained from each eye of juvenile tree shrews exposed to two different visual conditions: normal and 4 days of monocular -5 D lens wear to accelerate scleral remodelling and induce myopia. Scleral strips were mechanically tested at three alternative conditions: immediately after enucleation; after incubation in phosphate buffered saline (PBS) for 24 h at 37°C; and after incubation for 24 h in PBS supplemented with genipin at a low cytotoxicity concentration (0.25 mm). Cyclic softening was defined as the incremental strain increase from one cycle to the next. RESULTS -5D lens treatment significantly increased the cyclic softening response of the sclera when compared to contralateral control eyes (0.10% ± 0.029%, mean ± standard error, P = 0.037). Exogenous crosslinking of the lens treated sclera significantly decreased the cyclic softening response (-0.12% ± 0.014%, P = 2.2 × 10-5 ). Contrary to all other groups, the genipin-cross-linked tissue did not exhibit cyclic softening significantly different from zero within the 50-cycle test. CONCLUSIONS Results indicated that cyclic tensile loading leads to an inelastic, cyclic softening of the juvenile tree shrew sclera. The softening rate increased during lens-induced myopia and was diminished after genipin crosslinking. This finding suggests that axial elongation in myopia may involve a biomechanical weakening mechanism that increased the cyclic softening response of the sclera, which was inhibited by scleral crosslinking using genipin.
Collapse
Affiliation(s)
- Alexander M Levy
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, USA
| | - Massimo A Fazio
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, USA.,Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, USA
| | - Rafael Grytz
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, USA
| |
Collapse
|