1
|
Liu Y, Li H, Shen X, Liu Y, Zhong X, Zhong J, Cao R. PCMT1 confirmed as a pan-cancer immune biomarker and a contributor to breast cancer metastasis. Am J Cancer Res 2024; 14:3711-3732. [PMID: 39267673 PMCID: PMC11387850 DOI: 10.62347/tyll7952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/07/2024] [Indexed: 09/15/2024] Open
Abstract
Protein L-isoaspartyl (D-aspartyl) methyltransferase (PIMT, gene name PCMT1) is an enzyme that repairs proteins with altered aspartate residues by methylation, restoring their normal structure and function. This study conducted a comprehensive analysis of PCMT1 in pan-cancer. The Cancer Genome Atlas, Human Protein Atlas website, and the Genotype-Tissue Expression were utilized in analysis of PCMT1 expression. We examined the association between PCMT1 expression and various factors, including gene modifications, DNA methylation, immune cell infiltration, immunological checkpoints, drug susceptibility, tumor mutation burden (TMB), and microsatellite instability (MSI). Enrichment analyses determined the potential biological roles and pathways involving PCMT1. Our focus then shifted to the role of PCMT1 in breast invasive carcinoma (BRCA). We found that PCMT1 expression was aberrant in many tumors and significantly influenced the prognosis across several cancer types. Gene alterations in PCMT1 predominantly involved deep deletions and amplifications. A negative correlation was observed between DNA methylation and PCMT1 expression across all studied cancer types except thyroid carcinoma PCMT1 exhibited positive correlations with common lymphoid progenitor and CD4(+) T helper 2 cells, whereas it was inversely correlated with central and effector memory T cells, memory CD8(+) T cells, and CD4(+) T helper 1 cells. In many cancer types, PCMT1 expression closely correlated with immunological checkpoint inhibitors, TMB, and MSI. It was also significantly linked to pathways involved in epithelial-mesenchymal transition (EMT), highlighting its role in cancer metastasis. PCMT1 emerged as a significant predictor of breast cancer progression. In vitro experiments demonstrated that reducing PCMT1 expression decreased BRCA cell migration and invasiveness. Additionally, animal studies confirmed that inhibition of PCMT1 slowed tumor growth.
Collapse
Affiliation(s)
- Yiqi Liu
- The First Affiliated Hospital, Hengyang Medical School, University of South China Hengyang 421001, Hunan, China
| | - Haobing Li
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China Hengyang 421200, Hunan, China
- Department of Medical Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China Hengyang 421200, Hunan, China
| | - Xiangyu Shen
- Department of Breast and Thyroid Surgery, Third Xiangya Hospital, Central South University Changsha 410000, Hunan, China
| | - Ying Liu
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China Hengyang 421200, Hunan, China
- Department of Medical Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China Hengyang 421200, Hunan, China
| | - Xiaoxiao Zhong
- Department of Breast and Thyroid Surgery, Third Xiangya Hospital, Central South University Changsha 410000, Hunan, China
- Department of General Surgery, Third Xiangya Hospital, Central South University Changsha 410000, Hunan, China
| | - Jing Zhong
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China Hengyang 421200, Hunan, China
- Institute of Cancer Research, The First Affiliated Hospital, Hengyang Medical School, University of South China Hengyang 421200, Hunan, China
| | - Renxian Cao
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China Hengyang 421200, Hunan, China
- Institute of Cancer Research, The First Affiliated Hospital, Hengyang Medical School, University of South China Hengyang 421200, Hunan, China
| |
Collapse
|
2
|
Gupta A, Mardi P, Mishra PKK, Kumar A, Kumar R, Mahapatra A, Jena A, Behera PC. Evaluation of supplemented protein-L-isoaspartate-O-methyltransferase ( PIMT) gene of Carica papaya and Ricinus communis in stress survival of Escherichia coli BL21(DE3) cells. Prep Biochem Biotechnol 2024; 54:882-895. [PMID: 38170207 DOI: 10.1080/10826068.2023.2297692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
In growing plant population, effect of stress is a perturb issue affecting its physiological, biochemical, yield loss and developmental growth. Protein-L-isoaspartate-O-methyltransferase (PIMT) is a broadly distributed protein repair enzyme which actuate under stressful environment or aging. Stress can mediate damage converting protein bound aspartate (Asp) residues to isoaspartate (iso-Asp). This spontaneous and deleterious conversion occurs at an elevated state of stress and aging. Iso-Asp formation is associated with protein inactivation and compromised cellular survival. PIMT can convert iso-Asp back to Asp, thus repairing and contributing to cellular survival. The present work describes the isolation, cloning, sequencing and expression of PIMT genes of Carica papaya (Cp pimt) and Ricinus communis (Rc pimt) Using gene specific primers, both the pimts were amplified from their respective cDNAs and subsequently cloned in prokaryotic expression vector pProEXHTa. BL21(DE3) strain of E. coli cells were used as expression host. The expression kinetics of both the PIMTs were studied with various concentrations of IPTG and at different time points. Finally, the PIMT supplemented BL21(DE3) cells were evaluated against different stresses in comparison to their counterparts with the empty vector control.
Collapse
Affiliation(s)
- Akanksha Gupta
- Plant Biotechnology, Department of Genetics and Plant Breeding, Banaras Hindu University, Mirzapur, India
| | - Pragati Mardi
- Plant Biotechnology, Department of Genetics and Plant Breeding, Banaras Hindu University, Mirzapur, India
| | - Prasanta Kumar Koustasa Mishra
- Unit of Teaching Veterinary Clinical Complex, Faculty of Veterinary and Animal Sciences, Banaras Hindu University, Mirzapur, India
| | - Anshuman Kumar
- Department of Animal Genetics and Breeding, Faculty of Veterinary and Animal Sciences, Banaras Hindu University, Mirzapur, India
| | - Rajesh Kumar
- Plant Biotechnology, Department of Genetics and Plant Breeding, Banaras Hindu University, Mirzapur, India
| | - Archana Mahapatra
- Department of Veterinary Anatomy, Faculty of Veterinary and Animal Sciences, Banaras Hindu University, Mirzapur, India
| | - Anupama Jena
- Fisheries and Animal Resource Development Department, Bhubaneswar, India
| | - Prakash Chandra Behera
- Department of Veterinary Biochemistry, College of Veterinary Science and Animal Husbandry, OUAT, Bhubaneshwar, India
| |
Collapse
|
3
|
Zhou S, Zhou Y, Zhong W, Su Z, Qin Z. Involvement of protein L-isoaspartyl methyltransferase in the physiopathology of neurodegenerative diseases: Possible substrates associated with synaptic function. Neurochem Int 2023; 170:105606. [PMID: 37657764 DOI: 10.1016/j.neuint.2023.105606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/11/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Synaptic dysfunction is a typical pathophysiologic change in neurodegenerative diseases (NDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), Hintington's disease (HD) and amyotrophic lateral sclerosis (ALS), which involves protein post-translational modifications (PTMs) including L-isoaspartate (L-isoAsp) formed by isomerization of aspartate or deamidation of asparagine. The formation of L-isoAsp could be repaired by protein L-isoaspartyl methyltransferase (PIMT). Some synaptic proteins have been identified as PIMT potential substrates and play an essential role in ensuring synaptic function. In this review, we discuss the role of certain synaptic proteins as PIMT substrates in neurodegenerative disease, thus providing therapeutic synapse-centered targets for the treatment of NDs.
Collapse
Affiliation(s)
- Sirui Zhou
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yancheng Zhou
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Wanyu Zhong
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Zhonghao Su
- Department of Febrile Disease, School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Zhenxia Qin
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
4
|
Zhong J, Yuan C, Liu L, Du Y, Hui Y, Chen Z, Diao C, Yang R, Liu G, Liu X. PCMT1 regulates the migration, invasion, and apoptosis of prostate cancer through modulating the PI3K/AKT/GSK-3β pathway. Aging (Albany NY) 2023; 15:11654-11671. [PMID: 37899170 PMCID: PMC10637816 DOI: 10.18632/aging.205152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023]
Abstract
Protein L-isoaspartate (D-aspartate) O-methyltransferase (PCMT1) is a repair enzyme that catalyzes the conversion of isomerized aspartic acid (iso-Asp) residues into their normal structure, thereby restoring the configuration and function of proteins. Studies have shown that PCMT1 is overexpressed in several tumors and affects patients' prognosis. However, there are few reports on the role of PCMT1 in prostate cancer (PCa). In the present research, with the assistance of The Cancer Genome Atlas Program (TCGA) database, we found that PCMT1 was overexpressed in PCa tissues. The results of quantitative reverse transcription-polymerase chain reaction (qRT-PCR), western blot and immunohistochemistry staining also showed that PCMT1 expression was significantly increased in PCa tissues and cell lines. In PCa clinical samples, PCMT1 expression was closely related to Gleason score, clinical stage, lymph node metastasis and bone metastasis. The experiments of overexpression and knockdown of PCMT1 in vitro or in vivo showed that PCMT1 can significantly promote the proliferation, migration and invasion of PCa cells, inhibit cell apoptosis, and promote the growth of PCa. We furthermore confirmed that PCMT1 regulated the migration, invasion and apoptosis of PCa cells by modulating the phosphatidylinositol 3-kinase/AKT kinase/glycogen-synthase kinase-3β (PI3K/AKT/GSK-3β) signaling pathway. Collectively, PCMT1 plays a cancer-facilitative role in PCa by promoting the proliferation, migration and invasion of PCa cells, and inhibiting apoptosis. Therefore, PCMT1 is considered to represent a novel target for treating PCa.
Collapse
Affiliation(s)
- Jiacheng Zhong
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Chao Yuan
- Department of Urology, Jingzhou Central Hospital, Jingzhou 434020, China
| | - Lin Liu
- Department of Emergency, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Yang Du
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yumin Hui
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhiyuan Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Changhui Diao
- Department of Urology, The First People’s Hospital of Shangqiu City, Shangqiu 476100, China
| | - Rui Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Guiyong Liu
- Department of Urology, Qianjiang Central Hospital, Qianjiang 433100, China
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
5
|
Eren Karanis Mİ, Küçükosmanoğlu İ, Ünlü Y, Eryılmaz MA, Köksal H. Increased expression of ASRGL1 in invasive ductal carcinoma and its association with estrogen-progesterone receptor status of tumors. Am J Transl Res 2021; 13:7928-7934. [PMID: 34377272 PMCID: PMC8340146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/10/2021] [Indexed: 06/13/2023]
Abstract
AIMS Human asparaginase-like protein 1 (ASRGL1) is closely related to tumor growth. ASRGL1 can significantly promote cell proliferation and suppress apoptosis. To date, high levels of expression of ASRGL1 have been reported in various tumors, but the function of ASRGL1 in carcinogenesis is still not well understood. In this study, we aimed to immunohistochemically investigate the expression of ASRGL1 in non-neoplastic breast tissue and invasive ductal carcinoma. METHODS AND RESULTS ASRGL1 was evaluated immunohistochemically in 148 invasive ductal carcinomas and 105 nonneoplastic breast tissue samples to assess the impact on breast cancer development and its association with clinicopathologic features. ASRGL1 was observed positive in 63 (42.6%) and negative in 85 (57.4%) invasive ductal carcinoma. In nonneoplastic breast tissue, 24 (22.9%) cases were ASRGL1 positive and 81 (77.1%) were negative. A significant difference was observed between invasive ductal carcinoma and nonneoplastic breast tissue in terms of ASRGL1 expression, and ASRGL1 expression was increased in invasive ductal carcinoma (P = .001). Most estrogen receptor-negative tumors and progesterone receptor-negative tumors were also negative with ASRGL1 and the difference was significant (P = .006 and P = .001, respectively). The correlation between the ASRGL1 expression of the tumors and event-free survival or overall survival was not significant (P>.05). CONCLUSIONS ASRGL1 may play a role in increasing cell proliferation and breast cancer development. ASRGL-1 expression in breast cancer closely correlates with the hormone receptor status of the tumor. In breast cancer, ASRGL-1 expression does not contribute to predicting tumor behavior.
Collapse
Affiliation(s)
- Meryem İlkay Eren Karanis
- Department of Pathology, Konya Education and Research Hospital, University of Health SciencesKonya, Turkey
| | - İlknur Küçükosmanoğlu
- Department of Pathology, Konya Education and Research Hospital, University of Health SciencesKonya, Turkey
| | - Yaşar Ünlü
- Department of Pathology, Konya Education and Research Hospital, University of Health SciencesKonya, Turkey
| | - Mehmet Ali Eryılmaz
- Department of General Surgery, Konya Education and Research Hospital, University of Health SciencesKonya, Turkey
| | - Hande Köksal
- Department of General Surgery, Konya Education and Research Hospital, University of Health SciencesKonya, Turkey
| |
Collapse
|
6
|
Mishra PKK, Gattani A, Mahawar M. Isolation and Identification of Protein L-Isoaspartate-O-Methyltransferase (PIMT) Interacting Proteins in Salmonella Typhimurium. Curr Microbiol 2020; 77:695-701. [PMID: 31263924 DOI: 10.1007/s00284-019-01724-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein L-isoaspartate-O-methyltransferase (PIMT) plays an important role in restoration of covalently damaged Asn/Asp residues. It repairs the racemized forms of these amino acids in protein by forming a labile isoAsp methyl ester which readily converts back to the succinimide intermediate. Spontaneous hydrolysis of the intermediate further restores a minor portion to the normal Asp residues. While significant numbers of PIMT targets have been identified in eukaryotes, very few are documented from prokaryotes. Temperature (42 °C) induced elevation in PIMT expression level has been recently shown in a poultry isolate of Salmonella Typhimurium (ST). The enzyme was also found to be crucial for survival, virulence and colonization of ST in poultry. In the present study, co-immunoprecipitation (Co-IP) approach was used (for isolation) followed by LC-MS analysis to identify the PIMT interacting proteins of ST. Four different proteins were identified among which cytochrome C biogenesis protein A (CcmA) was further expressed in recombinant form and analysed for interaction with recombinant PIMT (rPIMT) by microtiter plate assay. Additionally, the findings were supported by alterations in secondary structure of the proteins upon co-incubation.
Collapse
Affiliation(s)
| | - Anil Gattani
- Biochemistry Division, Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly, 243122, India
| | - Manish Mahawar
- Biochemistry Division, Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly, 243122, India.
| |
Collapse
|
7
|
Beaumatin F, El Dhaybi M, Bobo C, Verdier M, Priault M. Bcl-x L deamidation and cancer: Charting the fame trajectories of legitimate child and hidden siblings. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017. [PMID: 28645514 DOI: 10.1016/j.bbamcr.2017.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Bcl-2 family proteins control programmed cell death through a complex network of interactions within and outside of this family, that are modulated by post-translational modifications (PTM). Bcl-xL, an anti-apoptotic member of this family, is overexpressed in a number of cancers, plays an important role in tumorigenesis and is correlated with drug resistance. Bcl-xL is susceptible to a number of different PTMs. Here, we focus on deamidation. We will first provide an overview of protein deamidation. We will then review how the apoptotic and autophagic functions of Bcl-xL are modified by this PTM, and how this impacts on its oncogenic properties. Possible therapeutic outcomes will also be discussed. Finally, we will highlight how the specific case of Bcl-xL deamidation provides groundings to revisit some concepts related to protein deamidation in general.
Collapse
Affiliation(s)
- Florian Beaumatin
- CNRS, Institut de Biochimie et de Génétique Cellulaires, UMR5095, 1 Rue Camille Saint-Saëns, 33077 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et de Génétique Cellulaires, UMR5095, 1 Rue Camille Saint-Saëns, 33077 Bordeaux, France
| | - Mohamad El Dhaybi
- CNRS, Institut de Biochimie et de Génétique Cellulaires, UMR5095, 1 Rue Camille Saint-Saëns, 33077 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et de Génétique Cellulaires, UMR5095, 1 Rue Camille Saint-Saëns, 33077 Bordeaux, France; EA 3842, Homéostasie Cellulaire et Pathologies, Université de Limoges, 2, rue du Docteur Marcland, 87025 Limoges Cedex, France
| | - Claude Bobo
- CNRS, Institut de Biochimie et de Génétique Cellulaires, UMR5095, 1 Rue Camille Saint-Saëns, 33077 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et de Génétique Cellulaires, UMR5095, 1 Rue Camille Saint-Saëns, 33077 Bordeaux, France
| | - Mireille Verdier
- EA 3842, Homéostasie Cellulaire et Pathologies, Université de Limoges, 2, rue du Docteur Marcland, 87025 Limoges Cedex, France
| | - Muriel Priault
- CNRS, Institut de Biochimie et de Génétique Cellulaires, UMR5095, 1 Rue Camille Saint-Saëns, 33077 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et de Génétique Cellulaires, UMR5095, 1 Rue Camille Saint-Saëns, 33077 Bordeaux, France.
| |
Collapse
|
8
|
Juang C, Chen B, Bru JL, Nguyen K, Huynh E, Momen M, Kim J, Aswad DW. Polymorphic Variants of Human Protein l-Isoaspartyl Methyltransferase Affect Catalytic Activity, Aggregation, and Thermal Stability: IMPLICATIONS FOR THE ETIOLOGY OF NEUROLOGICAL DISORDERS AND COGNITIVE AGING. J Biol Chem 2017; 292:3656-3665. [PMID: 28100787 DOI: 10.1074/jbc.m116.765222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/16/2017] [Indexed: 01/13/2023] Open
Abstract
Protein l-isoaspartyl methyltransferase (PIMT/PCMT1), a product of the human pcmt1 gene, catalyzes repair of abnormal l-isoaspartyl linkages in age-damaged proteins. Pcmt1 knock-out mice exhibit a profound neuropathology and die 30-60 days postnatal from an epileptic seizure. Here we express 15 reported variants of human PIMT and characterize them with regard to their enzymatic activity, thermal stability, and propensity to aggregation. One mutation, R36C, renders PIMT completely inactive, whereas two others, A7P and I58V, exhibit activity that is 80-100% higher than wild type. G175R is highly prone to aggregation and has greatly reduced activity. R17S and R17H show markedly enhanced sensitivity to thermal denaturation. Based on previous studies of moderate PIMT variation in humans and mice, we predict that heterozygosity for R36C, G175R, R17S, and R17H will prove detrimental to cognitive function and successful aging, whereas homozygosity (if it ever occurs) will lead to severe neurological problems in the young.
Collapse
Affiliation(s)
- Charity Juang
- From the Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California 92697-3900
| | - Baihe Chen
- From the Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California 92697-3900
| | - Jean-Louis Bru
- From the Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California 92697-3900
| | - Katherine Nguyen
- From the Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California 92697-3900
| | - Eric Huynh
- From the Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California 92697-3900
| | - Mahsa Momen
- From the Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California 92697-3900
| | - Jeungjin Kim
- From the Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California 92697-3900
| | - Dana W Aswad
- From the Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California 92697-3900
| |
Collapse
|
9
|
Pulido MA, DerHartunian MK, Qin Z, Chung EM, Kang DS, Woodham AW, Tsou JA, Klooster R, Akbari O, Wang L, Kast WM, Liu SV, Verschuuren JJ, Aswad DW, Laird-Offringa IA. Isoaspartylation appears to trigger small cell lung cancer-associated autoimmunity against neuronal protein ELAVL4. J Neuroimmunol 2016; 299:70-78. [PMID: 27725125 PMCID: PMC5152694 DOI: 10.1016/j.jneuroim.2016.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/31/2016] [Accepted: 09/02/2016] [Indexed: 12/22/2022]
Abstract
Autoantibodies against SCLC-associated neuronal antigen ELAVL4 (HuD) have been linked to smaller tumors and improved survival, but the antigenic epitope and mechanism of autoimmunity have never been solved. We report that recombinant human ELAVL4 protein incubated under physiological conditions acquires isoaspartylation, a type of immunogenic protein damage. Specifically, the N-terminal region of ELAVL4, previously implicated in SCLC-associated autoimmunity, undergoes isoaspartylation in vitro, is recognized by sera from anti-ELAVL4 positive SCLC patients and is highly immunogenic in subcutaneously injected mice and in vitro stimulated human lymphocytes. Our data suggest that isoaspartylated ELAVL4 is the trigger for the SCLC-associated anti-ELAVL4 autoimmune response.
Collapse
Affiliation(s)
- Mario A. Pulido
- Departments of Surgery and of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Meleeneh Kazarian DerHartunian
- Departments of Surgery and of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Zhenxia Qin
- Department of Molecular Biology and Biochemistry, University of California at Irvine, Irvine, CA
| | - Eric M. Chung
- Departments of Surgery and of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Diane S. Kang
- Departments of Surgery and of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Andrew W. Woodham
- Department of Molecular Microbiology and Immunology Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Jeffrey A. Tsou
- Departments of Surgery and of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | | | - Omid Akbari
- Department of Molecular Microbiology and Immunology Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Lina Wang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - W. Martin Kast
- Department of Molecular Microbiology and Immunology Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Stephen V. Liu
- Department of Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | | | - Dana W. Aswad
- Department of Molecular Biology and Biochemistry, University of California at Irvine, Irvine, CA
| | - Ite A. Laird-Offringa
- Departments of Surgery and of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
10
|
Biswas P, Chavali VRM, Agnello G, Stone E, Chakarova C, Duncan JL, Kannabiran C, Homsher M, Bhattacharya SS, Naeem MA, Kimchi A, Sharon D, Iwata T, Riazuddin S, Reddy GB, Hejtmancik JF, Georgiou G, Riazuddin SA, Ayyagari R. A missense mutation in ASRGL1 is involved in causing autosomal recessive retinal degeneration. Hum Mol Genet 2016; 25:2483-2497. [PMID: 27106100 DOI: 10.1093/hmg/ddw113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/22/2016] [Accepted: 04/11/2016] [Indexed: 12/31/2022] Open
Abstract
Inherited retinal dystrophies are a group of genetically heterogeneous conditions with broad phenotypic heterogeneity. We analyzed a large five-generation pedigree with early-onset recessive retinal degeneration to identify the causative mutation. Linkage analysis and homozygosity mapping combined with exome sequencing were carried out to map the disease locus and identify the p.G178R mutation in the asparaginase like-1 gene (ASRGL1), segregating with the retinal dystrophy phenotype in the study pedigree. ASRGL1 encodes an enzyme that catalyzes the hydrolysis of L-asparagine and isoaspartyl-peptides. Studies on the ASRGL1 expressed in Escherichia coli and transiently transfected mammalian cells indicated that the p.G178R mutation impairs the autocatalytic processing of this enzyme resulting in the loss of functional ASRGL1 and leaving the inactive precursor protein as a destabilized and aggregation-prone protein. A zebrafish model overexpressing the mutant hASRGL1 developed retinal abnormalities and loss of cone photoreceptors. Our studies suggest that the p.G178R mutation in ASRGL1 leads to photoreceptor degeneration resulting in progressive vision loss.
Collapse
Affiliation(s)
- Pooja Biswas
- Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA
| | - Venkata Ramana Murthy Chavali
- Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA.,Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Giulia Agnello
- Departments of Biomedical and Chemical Engineering, Molecular Biosciences, Section of Molecular Genetics and Microbiology, and Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Everett Stone
- Departments of Biomedical and Chemical Engineering, Molecular Biosciences, Section of Molecular Genetics and Microbiology, and Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | | | - Jacque L Duncan
- Ophthalmology, University of California San Francisco, San Francisco, CA, USA
| | - Chitra Kannabiran
- Kallam Anji Reddy Molecular Genetics Laboratory, L V Prasad Eye Institute (LVPEI), Kallam Anji Reddy Campus, L V Prasad Marg, Hyderabad 500 034, India
| | - Melissa Homsher
- Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Muhammad Asif Naeem
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Adva Kimchi
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Dror Sharon
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Takeshi Iwata
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Shaikh Riazuddin
- Allama Iqbal Medical College, University of Health Sciences Lahore, Pakistan.,National Centre for Genetic Diseases, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | | | | | - George Georgiou
- Departments of Biomedical and Chemical Engineering, Molecular Biosciences, Section of Molecular Genetics and Microbiology, and Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - S Amer Riazuddin
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Radha Ayyagari
- Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
11
|
Qin Z, Dimitrijevic A, Aswad DW. Accelerated protein damage in brains of PIMT+/- mice; a possible model for the variability of cognitive decline in human aging. Neurobiol Aging 2014; 36:1029-36. [PMID: 25465735 DOI: 10.1016/j.neurobiolaging.2014.10.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 10/14/2014] [Accepted: 10/27/2014] [Indexed: 12/18/2022]
Abstract
Isoaspartate formation is a common type of protein damage normally kept in check by the repair enzyme protein-L-isoaspartyl methyltransferase (PIMT). Mice with a knockout of the gene (Pcmt1) for this enzyme (KO, -/-) exhibit a pronounced neuropathology with fatal epileptic seizures at 30-60 days. Heterozygous (HZ, +/-) mice have 50% of the PIMT activity found in wild-type (WT, +/+) mice, but appear normal. To see if HZ mice exhibit accelerated aging at the molecular level, we compared brain extracts from HZ and WT mice at 8 months and 2 years with regard to PIMT activity, isoaspartate levels, and activity of an endogenous PIMT substrate, creatine kinase B. PIMT activity declined modestly with age in both genotypes. Isoaspartate was significantly higher in HZ than WT mice at 8 months and more so at 2 years, rising 5× faster in HZ males and 3× faster in females. Creatine kinase activity decreased with age and was always lower in the HZ mice. These findings suggest the individual variation of human PIMT levels may significantly influence the course of age-related central nervous system dysfunction.
Collapse
Affiliation(s)
- Zhenxia Qin
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Aleksandra Dimitrijevic
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Dana W Aswad
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
12
|
Dimitrijevic A, Qin Z, Aswad DW. Isoaspartyl formation in creatine kinase B is associated with loss of enzymatic activity; implications for the linkage of isoaspartate accumulation and neurological dysfunction in the PIMT knockout mouse. PLoS One 2014; 9:e100622. [PMID: 24955845 PMCID: PMC4067349 DOI: 10.1371/journal.pone.0100622] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 05/29/2014] [Indexed: 01/12/2023] Open
Abstract
Isoaspartate (isoAsp) formation is a common type of spontaneous protein damage that is normally kept in check by the repair enzyme protein-L-isoaspartyl methyltransferase (PIMT). PIMT-KO (knockout) mice exhibit a pronounced neuropathology highlighted by death from an epileptic seizure at 30 to 60 days after birth. The mechanisms by which isoaspartyl damage disrupts normal brain function are incompletely understood. Proteomic analysis of the PIMT-KO mouse brain has shown that a number of key neuronal proteins accumulate high levels of isoAsp, but the extent to which their cellular functions is altered has yet to be determined. One of the major neuronal targets of PIMT is creatine kinase B (CKB), a well-characterized enzyme whose activity is relatively easy to assay. We show here that (1) the specific activity of CKB is significantly reduced in the brains of PIMT-deficient mice, (2) that in vitro aging of recombinant CKB results in significant accumulation of isoAsp sites with concomitant loss of enzymatic activity, and (3) that incubation of in vitro aged CKB with PIMT and its methyl donor S-adenosyl-L-methionine substantially repairs the aged CKB with regard to both its isoAsp content and its enzymatic activity. These results, combined with similarity in phenotypes of PIMT-KO and CKB-KO mice, suggests that loss of normal CKB structure and function contributes to the mechanisms by which isoAsp accumulation leads to CNS dysfunction in the PIMT-KO mouse.
Collapse
Affiliation(s)
- Aleksandra Dimitrijevic
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Zhenxia Qin
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Dana W Aswad
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| |
Collapse
|
13
|
Patananan AN, Capri J, Whitelegge JP, Clarke SG. Non-repair pathways for minimizing protein isoaspartyl damage in the yeast Saccharomyces cerevisiae. J Biol Chem 2014; 289:16936-53. [PMID: 24764295 DOI: 10.1074/jbc.m114.564385] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The spontaneous degradation of asparaginyl and aspartyl residues to isoaspartyl residues is a common type of protein damage in aging organisms. Although the protein-l-isoaspartyl (d-aspartyl) O-methyltransferase (EC 2.1.1.77) can initiate the repair of l-isoaspartyl residues to l-aspartyl residues in most organisms, no gene homolog or enzymatic activity is present in the budding yeast Saccharomyces cerevisiae. Therefore, we used biochemical approaches to elucidate how proteins containing isoaspartyl residues are metabolized in this organism. Surprisingly, the level of isoaspartyl residues in yeast proteins (50-300 pmol of isoaspartyl residues/mg of protein extract) is comparable with organisms with protein-l-isoaspartyl (d-aspartyl) O-methyltransferase, suggesting a novel regulatory pathway. Interfering with common protein quality control mechanisms by mutating and inhibiting the proteasomal and autophagic pathways in vivo did not increase isoaspartyl residue levels compared with wild type or uninhibited cells. However, the inhibition of metalloproteases in in vitro aging experiments by EDTA resulted in an ∼3-fold increase in the level of isoaspartyl-containing peptides. Characterization by mass spectrometry of these peptides identified several proteins involved in metabolism as targets of isoaspartyl damage. Further analysis of these peptides revealed that many have an N-terminal isoaspartyl site and originate from proteins with short half-lives. These results suggest that one or more metalloproteases participate in limiting isoaspartyl formation by robust proteolysis.
Collapse
Affiliation(s)
- Alexander N Patananan
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute and
| | - Joseph Capri
- the Pasarow Mass Spectrometry Laboratory, Neuropsychiatric Institute-Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, California 90095
| | - Julian P Whitelegge
- the Pasarow Mass Spectrometry Laboratory, Neuropsychiatric Institute-Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, California 90095
| | - Steven G Clarke
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute and
| |
Collapse
|