1
|
Fremuntova Z, Hanusova ZB, Soukup J, Mosko T, Matej R, Holada K. Simple 3D spheroid cell culture model for studies of prion infection. Eur J Neurosci 2024; 60:4437-4452. [PMID: 38887188 DOI: 10.1111/ejn.16444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 05/15/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
Mouse neuronal CAD 5 cell line effectively propagates various strains of prions. Previously, we have shown that it can also be differentiated into the cells morphologically resembling neurons. Here, we demonstrate that CAD 5 cells chronically infected with prions undergo differentiation under the same conditions. To make our model more realistic, we triggered the differentiation in the 3D culture created by gentle rocking of CAD 5 cell suspension. Spheroids formed within 1 week and were fully developed in less than 3 weeks of culture. The mature spheroids had a median size of ~300 μm and could be cultured for up to 12 weeks. Increased expression of differentiation markers GAP 43, tyrosine hydroxylase, β-III-tubulin and SNAP 25 supported the differentiated status of the spheroid cells. The majority of them were found in the G0/G1 phase of the cell cycle, which is typical for differentiated cells. Moreover, half of the PrPC on the cell membrane was N-terminally truncated, similarly as in differentiated CAD 5 adherent cells. Finally, we demonstrated that spheroids could be created from prion-infected CAD 5 cells. The presence of prions was verified by immunohistochemistry, western blot and seed amplification assay. We also confirmed that the spheroids can be infected with the prions de novo. Our 3D culture model of differentiated CAD 5 cells is low cost, easy to produce and cultivable for weeks. We foresee its possible use in the testing of anti-prion compounds and future studies of prion formation dynamics.
Collapse
Affiliation(s)
- Zuzana Fremuntova
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Zdenka Backovska Hanusova
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jakub Soukup
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Tibor Mosko
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Radoslav Matej
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer University Hospital, Prague, Czech Republic
| | - Karel Holada
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
2
|
Narta K, Teltumbade MR, Vishal M, Sadaf S, Faruq M, Jama H, Waseem N, Rao A, Sen A, Ray K, Mukhopadhyay A. Whole Exome Sequencing Reveals Novel Candidate Genes in Familial Forms of Glaucomatous Neurodegeneration. Genes (Basel) 2023; 14:495. [PMID: 36833422 PMCID: PMC9957298 DOI: 10.3390/genes14020495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Glaucoma is the largest cause of irreversible blindness with a multifactorial genetic etiology. This study explores novel genes and gene networks in familial forms of primary open angle glaucoma (POAG) and primary angle closure glaucoma (PACG) to identify rare mutations with high penetrance. Thirty-one samples from nine MYOC-negative families (five POAG and four PACG) underwent whole-exome sequencing and analysis. A set of prioritized genes and variations were screened in an independent validation cohort of 1536 samples and the whole-exome data from 20 sporadic patients. The expression profiles of the candidate genes were analyzed in 17 publicly available expression datasets from ocular tissues and single cells. Rare, deleterious SNVs in AQP5, SRFBP1, CDH6 and FOXM1 from POAG families and in ACACB, RGL3 and LAMA2 from PACG families were found exclusively in glaucoma cases. AQP5, SRFBP1 and CDH6 also revealed significant altered expression in glaucoma in expression datasets. Single-cell expression analysis revealed enrichment of identified candidate genes in retinal ganglion cells and corneal epithelial cells in POAG; whereas for PACG families, retinal ganglion cells and Schwalbe's Line showed enriched expression. Through an unbiased exome-wide search followed by validation, we identified novel candidate genes for familial cases of POAG and PACG. The SRFBP1 gene found in a POAG family is located within the GLC1M locus on Chr5q. Pathway analysis of candidate genes revealed enrichment of extracellular matrix organization in both POAG and PACG.
Collapse
Affiliation(s)
- Kiran Narta
- Genomics & Molecular Medicine, CSIR-Institute of Genomics & Integrative Biology, Mathura Road (Near Sukhdev Vihar), New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manoj Ramesh Teltumbade
- Genomics & Molecular Medicine, CSIR-Institute of Genomics & Integrative Biology, Mathura Road (Near Sukhdev Vihar), New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mansi Vishal
- Genomics & Molecular Medicine, CSIR-Institute of Genomics & Integrative Biology, Mathura Road (Near Sukhdev Vihar), New Delhi 110025, India
- CSIR-Indian Institute of Chemical Biology, Raja S. C. Mullick Road, Kolkata 700032, India
| | - Samreen Sadaf
- Genomics & Molecular Medicine, CSIR-Institute of Genomics & Integrative Biology, Mathura Road (Near Sukhdev Vihar), New Delhi 110025, India
| | - Mohd. Faruq
- Genomics & Molecular Medicine, CSIR-Institute of Genomics & Integrative Biology, Mathura Road (Near Sukhdev Vihar), New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Hodan Jama
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Naushin Waseem
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Aparna Rao
- L. V. Prasad Eye Institute, Bhubaneswar 751024, India
| | | | - Kunal Ray
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- CSIR-Indian Institute of Chemical Biology, Raja S. C. Mullick Road, Kolkata 700032, India
| | - Arijit Mukhopadhyay
- Genomics & Molecular Medicine, CSIR-Institute of Genomics & Integrative Biology, Mathura Road (Near Sukhdev Vihar), New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Translational Medicine Unit, Biomedical Research & Innovation Centre, University of Salford, Salford M5 4WT, UK
| |
Collapse
|
3
|
Li L, He S, Liu Y, Yorio T, Ellis DZ. Sigma-1R Protects Retinal Ganglion Cells in Optic Nerve Crush Model for Glaucoma. Invest Ophthalmol Vis Sci 2021; 62:17. [PMID: 34406331 PMCID: PMC8375012 DOI: 10.1167/iovs.62.10.17] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/28/2021] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The purpose of this study was to determine the effects of the Sigma-1R (σ-1r) on retinal ganglion cell (RGC) survival following optic nerve crush (ONC) and the signaling mechanism involved in the σ-1r protection. METHODS The overall strategy was to induce injury by ONC and mitigate RGC death by increasing σ-1r expression and/or activate σ-1r activity in σ-1r K/O mice and wild type (WT) mice. AAV2-σ-1r vector was used to increase σ-1r expression and σ-1r agonist used to activate the σ-1r and RGCs were counted. Immunohistochemical and Western blot analysis determined phosphorylated (p)-c-Jun, c-Jun, and Caspase-3. Pattern electroretinography (PERG) determined RGC activity. RESULTS RGC counts and function were similar in pentazocine-treated WT mice when compared to untreated mice and in WT mice when compared with σ-1r K/O mice. Pentazocine-induced effects and the effects of σ-1r K/O were only observable after ONC. ONC resulted in decreased RGC counts and activity in both WT and σ-1r K/O mice, with σ-1r K/O mice experiencing significant decreases compared with WT mice. The σ-1r transgenic expression resulted in increased RGC counts and activity following ONC. In WT mice, treatment with σ-1r agonist pentazocine resulted in increased RGC counts and increased activity when compared with untreated WT mice. There were time-dependent increases in c-jun, p-c-jun, and caspase-3 expression in ONC mice that were mitigated with pentazocine-treatment. CONCLUSIONS These findings suggest that the apoptotic pathway is involved in RGC losses seen in an ONC model. The σ-1r offers neuroprotection, as activation and/or transgenic expression of σ-1r attenuated the apoptotic pathway and restored RGCs number and function following ONC.
Collapse
Affiliation(s)
- Linya Li
- Department of Pharmacology and Neuroscience University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Shaoqing He
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Yang Liu
- Department of Pharmacology and Neuroscience University of North Texas Health Science Center, Fort Worth, Texas, United States
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Thomas Yorio
- Department of Pharmacology and Neuroscience University of North Texas Health Science Center, Fort Worth, Texas, United States
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Dorette Z Ellis
- Department of Pharmaceutical Sciences, University of North Texas Systems College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas, United States
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| |
Collapse
|
4
|
Kodati B, Stankowska DL, Krishnamoorthy VR, Krishnamoorthy RR. Involvement of c-Jun N-terminal kinase 2 (JNK2) in Endothelin-1 (ET-1) Mediated Neurodegeneration of Retinal Ganglion Cells. Invest Ophthalmol Vis Sci 2021; 62:13. [PMID: 33978676 PMCID: PMC8131991 DOI: 10.1167/iovs.62.6.13] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Purpose The goal of this study was to determine whether JNK2 played a causative role in endothelin-mediated loss of RGCs in mice. Methods JNK2−/− and wild type (C57BL/6) mice were intravitreally injected in one eye with 1 nmole of ET-1, whereas the contralateral eye was injected with the vehicle. At two time points (two hours and 24 hours) after the intravitreal injections, mice were euthanized, and phosphorylated c-Jun was assessed in retinal sections. In a separate set of experiments, JNK2−/− and wild type mice were intravitreally injected with either 1 nmole of ET-1 or its vehicle and euthanized seven days after injection. Retinal flat mounts were stained with antibodies to the RGC marker, Brn3a, and surviving RGCs were quantified. Axonal degeneration was assessed in paraphenylenediamine stained optic nerve sections. Results Intravitreal ET-1 administration produced a significant increase in immunostaining for phospho c-Jun in wild type mice, which was appreciably lower in the JNK2 −/− mice. A significant (P < 0.05) 26% loss of RGCs was found in wild type mice, seven days after injection with ET-1. JNK2−/− mice showed a significant protection from RGC loss following ET-1 administration, compared to wild type mice injected with ET-1. A significant decrease in axonal counts and an increase in the collapsed axons was found in ET-1 injected wild type mice eyes. Conclusions JNK2 appears to play a major role in ET-1 mediated loss of RGCs in mice. Neuroprotective effects in JNK2−/− mice following ET-1 administration occur mainly in the soma and not in the axons of RGCs.
Collapse
Affiliation(s)
- Bindu Kodati
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, United States.,North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Dorota L Stankowska
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, United States.,North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Vignesh R Krishnamoorthy
- Department of Cellular and Molecular Physiology, Loyola University, Maywood, Illinois, United States
| | - Raghu R Krishnamoorthy
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, United States.,North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| |
Collapse
|
5
|
Influence of Trace Elements on Neurodegenerative Diseases of The Eye-The Glaucoma Model. Int J Mol Sci 2021; 22:ijms22094323. [PMID: 33919241 PMCID: PMC8122456 DOI: 10.3390/ijms22094323] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 02/07/2023] Open
Abstract
Glaucoma is a heterogeneous group of chronic neurodegenerative disorders characterized by a relatively selective, progressive damage to the retinal ganglion cells (RGCs) and their axons, which leads to axon loss and visual field alterations. To date, many studies have shown the role of various elements, mainly metals, in maintaining the balance of prooxidative and antioxidative processes, regulation of fluid and ion flow through cell membranes of the ocular tissues. Based on the earlier and current research results, their relationship with the development and progression of glaucoma seems obvious and is increasingly appreciated. In this review, we aimed to summarize the current evidence on the role of trace elements in the pathogenesis and prevention of glaucomatous diseases. Special attention is also paid to the genetic background associated with glaucoma-related abnormalities of physiological processes that regulate or involve the ions of elements considered as trace elements necessary for the functioning of the cells.
Collapse
|
6
|
Marola OJ, Syc-Mazurek SB, Howell GR, Libby RT. Endothelin 1-induced retinal ganglion cell death is largely mediated by JUN activation. Cell Death Dis 2020; 11:811. [PMID: 32980857 PMCID: PMC7519907 DOI: 10.1038/s41419-020-02990-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 01/02/2023]
Abstract
Glaucoma is a neurodegenerative disease characterized by loss of retinal ganglion cells (RGCs), the output neurons of the retina. Multiple lines of evidence show the endothelin (EDN, also known as ET) system is important in glaucomatous neurodegeneration. To date, the molecular mechanisms within RGCs driving EDN-induced RGC death have not been clarified. The pro-apoptotic transcription factor JUN (the canonical target of JNK signaling) and the endoplasmic reticulum stress effector and transcription factor DNA damage inducible transcript 3 (DDIT3, also known as CHOP) have been shown to act downstream of EDN receptors. Previous studies demonstrated that JUN and DDIT3 were important regulators of RGC death after glaucoma-relevant injures. Here, we characterized EDN insult in vivo and investigated the role of JUN and DDIT3 in EDN-induced RGC death. To accomplish this, EDN1 ligand was intravitreally injected into the eyes of wildtype, Six3-cre+Junfl/fl (Jun-/-), Ddit3 null (Ddit3-/-), and Ddit3-/-Jun-/- mice. Intravitreal EDN1 was sufficient to drive RGC death in vivo. EDN1 insult caused JUN activation in RGCs, and deletion of Jun from the neural retina attenuated RGC death after EDN insult. However, deletion of Ddit3 did not confer significant protection to RGCs after EDN1 insult. These results indicate that EDN caused RGC death via a JUN-dependent mechanism. In addition, EDN signaling is known to elicit potent vasoconstriction. JUN signaling was shown to drive neuronal death after ischemic insult. Therefore, the effects of intravitreal EDN1 on retinal vessel diameter and hypoxia were explored. Intravitreal EDN1 caused transient retinal vasoconstriction and regions of RGC and Müller glia hypoxia. Thus, it remains a possibility that EDN elicits a hypoxic insult to RGCs, causing apoptosis via JNK-JUN signaling. The importance of EDN-induced vasoconstriction and hypoxia in causing RGC death after EDN insult and in models of glaucoma requires further investigation.
Collapse
Affiliation(s)
- Olivia J. Marola
- grid.412750.50000 0004 1936 9166Department of Ophthalmology, Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY USA ,grid.412750.50000 0004 1936 9166Cell Biology of Disease Graduate Program, University of Rochester Medical Center, Rochester, NY USA ,grid.16416.340000 0004 1936 9174The Center for Visual Sciences, University of Rochester, Rochester, NY USA
| | - Stephanie B. Syc-Mazurek
- grid.412750.50000 0004 1936 9166Department of Ophthalmology, Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY USA ,grid.412750.50000 0004 1936 9166Medical Scientist Training Program, University of Rochester Medical Center, Rochester, NY USA
| | - Gareth R. Howell
- grid.249880.f0000 0004 0374 0039The Jackson Laboratory, 600 Main Street, Bar Harbor, ME USA
| | - Richard T. Libby
- grid.412750.50000 0004 1936 9166Department of Ophthalmology, Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY USA ,grid.16416.340000 0004 1936 9174The Center for Visual Sciences, University of Rochester, Rochester, NY USA ,grid.412750.50000 0004 1936 9166Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY USA
| |
Collapse
|
7
|
Endothelin-1 Mediated Decrease in Mitochondrial Gene Expression and Bioenergetics Contribute to Neurodegeneration of Retinal Ganglion Cells. Sci Rep 2020; 10:3571. [PMID: 32107448 PMCID: PMC7046667 DOI: 10.1038/s41598-020-60558-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 02/07/2020] [Indexed: 11/09/2022] Open
Abstract
Endothelin-1 (ET-1) is a vasoactive peptide that is elevated in aqueous humor as well as circulation of primary open angle glaucoma (POAG) patients. ET-1 has been shown to promote degeneration of optic nerve axons and apoptosis of retinal ganglion cells (RGCs), however, the precise mechanisms are still largely unknown. In this study, RNA-seq analysis was used to assess changes in ET-1 mediated gene expression in primary RGCs, which revealed that 23 out of 156 differentially expressed genes (DEGs) had known or predicted mitochondrial function, of which oxidative phosphorylation emerged as the top-most enriched pathway. ET-1 treatment significantly decreased protein expression of key mitochondrial genes including cytochrome C oxidase copper chaperone (COX17) and ATP Synthase, H+ transporting, Mitochondrial Fo Complex (ATP5H) in primary RGCs and in vivo following intravitreal ET-1 injection in rats. A Seahorse ATP rate assay revealed a significant decrease in the rate of mitochondrial ATP production following ET-1 treatment. IOP elevation in Brown Norway rats showed a trend towards decreased expression of ATP5H. Our results demonstrate that ET-1 produced a decrease in expression of vital components of mitochondrial electron transport chain, which compromise bioenergetics and suggest a mechanism by which ET-1 promotes neurodegeneration of RGCs in glaucoma.
Collapse
|
8
|
Fremuntova Z, Mosko T, Soukup J, Kucerova J, Kostelanska M, Hanusova ZB, Filipova M, Cervenakova L, Holada K. Changes in cellular prion protein expression, processing and localisation during differentiation of the neuronal cell line CAD 5. Biol Cell 2019; 112:1-21. [PMID: 31736091 DOI: 10.1111/boc.201900045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND INFORMATION Cellular prion protein (PrPC ) is infamous for its role in prion diseases. The physiological function of PrPC remains enigmatic, but several studies point to its involvement in cell differentiation processes. To test this possibility, we monitored PrPC changes during the differentiation of prion-susceptible CAD 5 cells, and then we analysed the effect of PrPC ablation on the differentiation process. RESULTS Neuronal CAD 5 cells differentiate within 5 days of serum withdrawal, with the majority of the cells developing long neurites. This process is accompanied by an up to sixfold increase in PrPC expression and enhanced N-terminal β-cleavage of the protein, which suggests a role for the PrPC in the differentiation process. Moreover, the majority of PrPC in differentiated cells is inside the cell, and a large proportion of the protein does not associate with membrane lipid rafts. In contrast, PrPC in proliferating cells is found mostly on the cytoplasmic membrane and is predominantly associated with lipid rafts. To determine the importance of PrPC in cell differentiation, a CAD 5 PrP-/- cell line with ablated PrPC expression was created using the CRISPR/Cas9 system. We observed no considerable difference in morphology, proliferation rate or expression of molecular markers between CAD 5 and CAD 5 PrP-/- cells during the differentiation initiated by serum withdrawal. CONCLUSIONS PrPC characteristics, such as cell localisation, level of expression and posttranslational modifications, change during CAD 5 cell differentiation, but PrPC ablation does not change the course of the differentiation process. SIGNIFICANCE Ablation of PrPC expression does not affect CAD 5 cell differentiation, although we observed many intriguing changes in PrPC features during the process. Our study does not support the concept that PrPC is important for neuronal cell differentiation, at least in simple in vitro conditions.
Collapse
Affiliation(s)
- Zuzana Fremuntova
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Tibor Mosko
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jakub Soukup
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic.,Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Johanka Kucerova
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Marie Kostelanska
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Zdenka Backovska Hanusova
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Marcela Filipova
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | | | - Karel Holada
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| |
Collapse
|
9
|
Liu H, Wang W, Li X, Huang C, Zhang Z, Yuan M, Li X. High hydrostatic pressure induces apoptosis of retinal ganglion cells via regulation of the NGF signalling pathway. Mol Med Rep 2019; 19:5321-5334. [PMID: 31059045 PMCID: PMC6522898 DOI: 10.3892/mmr.2019.10206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 04/02/2019] [Indexed: 12/23/2022] Open
Abstract
High pressure is the most important factor inducing retinal ganglion cell (RGC) apoptosis. However, the underlying mechanisms remain obscure. The present study investigated the effects of different levels of hydrostatic pressure (HP) on RGCs and the potential mechanisms involved. Primary cultured rat RGCs were exposed to five levels of HP (0, 20, 40, 60 and 80 mmHg) for 24 h. Morphological changes in RGCs were observed. The viability and apoptosis rate of RGCs were detected using a Cell Counting Kit‑8 assay and Annexin V‑fluorescein isothiocyanate/propidium iodide flow cytometry, respectively. Western blotting, reverse transcription‑quantitative polymerase chain reaction and immunofluorescence were used to detect the expression and mRNA levels of nerve growth factor (NGF), protein kinase B (AKT), apoptosis signal‑regulating kinase 1 (ASK1), forkhead box O1 (FoxO1) and cAMP response element binding protein (CREB). In the 0‑ and 20‑mmHg groups, there were no apoptotic morphological changes. In the 40 mmHg group, parts of the cell were shrunken or disrupted. In the 60 mmHg group, neurite extension was weakened and parts of the cells were disintegrating or dying. In the 80 mmHg group, the internal structures of the cells were not visible at all. The apoptosis rates of RGCs were significantly higher and the viability rates significantly lower under 40, 60 and 80 mmHg compared with under 0 or 20 mmHg (all P<0.01). The expression and mRNA levels of NGF, AKT and CREB decreased in a dose‑dependent manner in the 40‑, 60‑ and 80‑mmHg groups (all P<0.05), but those of ASK1 and FoxO1 increased in a dose‑dependent manner (all P<0.05). Interestingly, the alterations to the expression and mRNA levels of CREB were significantly larger compared with the changes in ASK1 or FoxO1 in the 40‑, 60‑ and 80‑mmHg groups (all P<0.01). The results of the present study demonstrate that elevated HP of 40, 60 or 80 mmHg reduces viability and induces apoptosis in RGCs, which may occur through effects on the NGF/ASK1/FoxO1 and NGF/AKT/CREB pathways, of which the latter is more strongly affected.
Collapse
Affiliation(s)
- Hongji Liu
- College of Ophthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| | - Wei Wang
- Department of Ophthalmology, Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, Yunnan 646000, P.R. China
| | - Xiang Li
- Department of Ophthalmology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| | - Chao Huang
- Central Laboratory, Shenzhen Bao'an People's Hospital Affiliated to Southern Medical University, Shenzhen, Guangdong 518100, P.R. China
| | - Zongduan Zhang
- Department of Ophthalmology, The Affiliated Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Mingyue Yuan
- College of Ophthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| | - Xiangyu Li
- College of Ophthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
10
|
Zhu H, Zhang W, Zhao Y, Shu X, Wang W, Wang D, Yang Y, He Z, Wang X, Ying Y. GSK3β-mediated tau hyperphosphorylation triggers diabetic retinal neurodegeneration by disrupting synaptic and mitochondrial functions. Mol Neurodegener 2018; 13:62. [PMID: 30466464 PMCID: PMC6251088 DOI: 10.1186/s13024-018-0295-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 11/14/2018] [Indexed: 12/28/2022] Open
Abstract
Background Although diabetic retinopathy (DR) has long been considered as a microvascular disorder, mounting evidence suggests that diabetic retinal neurodegeneration, in particular synaptic loss and dysfunction of retinal ganglion cells (RGCs) may precede retinal microvascular changes. Key molecules involved in this process remain poorly defined. The microtubule-associated protein tau is a critical mediator of neurotoxicity in Alzheimer’s disease (AD) and other neurodegenerative diseases. However, the effect of tau, if any, in the context of diabetes-induced retinal neurodegeneration has yet to be ascertained. Here, we investigate the changes and putative roles of endogeneous tau in diabetic retinal neurodegeneration. Methods To this aim, we combine clinically used electrophysiological techniques, i.e. pattern electroretinogram and visual evoked potential, and molecular analyses in a well characterized high-fat diet (HFD)-induced mouse diabetes model in vivo and primary retinal ganglion cells (RGCs) in vitro. Results We demonstrate for the first time that tau hyperphosphorylation via GSK3β activation causes vision deficits and synapse loss of RGCs in HFD-induced DR, which precedes retinal microvasculopathy and RGCs apoptosis. Moreover, intravitreal administration of an siRNA targeting to tau or a specific inhibitor of GSK3β reverses synapse loss and restores visual function of RGCs by attenuating tau hyperphosphorylation within a certain time frame of DR. The cellular mechanisms by which hyperphosphorylated tau induces synapse loss of RGCs upon glucolipotoxicity include i) destabilizing microtubule tracks and impairing microtubule-dependent synaptic targeting of cargoes such as mRNA and mitochondria; ii) disrupting synaptic energy production through mitochondria in a GSK3β-dependent manner. Conclusions Our study proposes mild retinal tauopathy as a new pathophysiological model for DR and tau as a novel therapeutic target to counter diabetic RGCs neurodegeneration occurring before retinal vasculature abnormalities. Electronic supplementary material The online version of this article (10.1186/s13024-018-0295-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huazhang Zhu
- Department of Physiology, School of Basic Medical Sciences, Center for Diabetes, Obesity and Metabolism, Shenzhen University Health Sciences Center, Shenzhen, 518060, Guangdong, China
| | - Weizhen Zhang
- Department of Physiology, School of Basic Medical Sciences, Center for Diabetes, Obesity and Metabolism, Shenzhen University Health Sciences Center, Shenzhen, 518060, Guangdong, China.,Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, 100191, China
| | - Yingying Zhao
- Department of Physiology, School of Basic Medical Sciences, Center for Diabetes, Obesity and Metabolism, Shenzhen University Health Sciences Center, Shenzhen, 518060, Guangdong, China
| | - Xingsheng Shu
- Department of Physiology, School of Basic Medical Sciences, Center for Diabetes, Obesity and Metabolism, Shenzhen University Health Sciences Center, Shenzhen, 518060, Guangdong, China
| | - Wencong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510064, Guangdong, China
| | - Dandan Wang
- Department of Physiology, School of Basic Medical Sciences, Center for Diabetes, Obesity and Metabolism, Shenzhen University Health Sciences Center, Shenzhen, 518060, Guangdong, China
| | - Yangfan Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510064, Guangdong, China
| | - Zhijun He
- Department of Physiology, School of Basic Medical Sciences, Center for Diabetes, Obesity and Metabolism, Shenzhen University Health Sciences Center, Shenzhen, 518060, Guangdong, China
| | - Xiaomei Wang
- Department of Physiology, School of Basic Medical Sciences, Center for Diabetes, Obesity and Metabolism, Shenzhen University Health Sciences Center, Shenzhen, 518060, Guangdong, China
| | - Ying Ying
- Department of Physiology, School of Basic Medical Sciences, Center for Diabetes, Obesity and Metabolism, Shenzhen University Health Sciences Center, Shenzhen, 518060, Guangdong, China.
| |
Collapse
|
11
|
Mihaylova B, Vassilev A, Dimitrova G, Rankova-Yotova C, Petkova I, Ivanova S, Oscar A. Prognostic importance of endothelin-1 and endothelin receptor: a plasma levels in the early perimetric stage of primary open-angle glaucoma. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1500147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Affiliation(s)
- Bilyana Mihaylova
- Department of Ophthalmology, University Hospital ‘Alexandrovska’, Medical University of Sofia, Sofia, Bulgaria
| | - Anton Vassilev
- Department of Ophthalmology, University Hospital ‘Alexandrovska’, Medical University of Sofia, Sofia, Bulgaria
| | - Galina Dimitrova
- Department of Ophthalmology, University Hospital ‘Alexandrovska’, Medical University of Sofia, Sofia, Bulgaria
| | - Charita Rankova-Yotova
- Department of Ophthalmology, University Hospital ‘Alexandrovska’, Medical University of Sofia, Sofia, Bulgaria
| | - Iva Petkova
- Department of Ophthalmology, University Hospital ‘Alexandrovska’, Medical University of Sofia, Sofia, Bulgaria
| | - Stanislava Ivanova
- Department of Ophthalmology, University Hospital ‘Alexandrovska’, Medical University of Sofia, Sofia, Bulgaria
| | - Alexander Oscar
- Department of Ophthalmology, University Hospital ‘Alexandrovska’, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
12
|
Sharif NA. iDrugs and iDevices Discovery Research: Preclinical Assays, Techniques, and Animal Model Studies for Ocular Hypotensives and Neuroprotectants. J Ocul Pharmacol Ther 2018; 34:7-39. [PMID: 29323613 DOI: 10.1089/jop.2017.0125] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Discovery ophthalmic research is centered around delineating the molecular and cellular basis of ocular diseases and finding and exploiting molecular and genetic pathways associated with them. From such studies it is possible to determine suitable intervention points to address the disease process and hopefully to discover therapeutics to treat them. An investigational new drug (IND) filing for a new small-molecule drug, peptide, antibody, genetic treatment, or a device with global health authorities requires a number of preclinical studies to provide necessary safety and efficacy data. Specific regulatory elements needed for such IND-enabling studies are beyond the scope of this article. However, to enhance the overall data packages for such entities and permit high-quality foundation-building publications for medical affairs, additional research and development studies are always desirable. This review aims to provide examples of some target localization/verification, ocular drug discovery processes, and mechanistic and portfolio-enhancing exploratory investigations for candidate drugs and devices for the treatment of ocular hypertension and glaucomatous optic neuropathy (neurodegeneration of retinal ganglion cells and their axons). Examples of compound screening assays, use of various technologies and techniques, deployment of animal models, and data obtained from such studies are also presented.
Collapse
Affiliation(s)
- Najam A Sharif
- 1 Global Alliances & External Research , Santen Incorporated, Emeryville, California.,2 Department of Pharmaceutical Sciences, Texas Southern University , Houston, Texas.,3 Department of Pharmacology and Neuroscience, University of North Texas Health Sciences Center , Fort Worth, Texas
| |
Collapse
|
13
|
A feed-forward regulation of endothelin receptors by c-Jun in human non-pigmented ciliary epithelial cells and retinal ganglion cells. PLoS One 2017; 12:e0185390. [PMID: 28938016 PMCID: PMC5609771 DOI: 10.1371/journal.pone.0185390] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/12/2017] [Indexed: 12/21/2022] Open
Abstract
c-Jun, c-Jun N-terminal kinase(JNK) and endothelin B (ETB) receptor have been shown to contribute to the pathogenesis of glaucoma. Previously, we reported that an increase of c-Jun and CCAAT/enhancer binding protein β (C/EBPβ) immunohistostaining is associated with upregulation of the ETB receptor within the ganglion cell layer of rats with elevated intraocular pressure (IOP). In addition, both transcription factors regulate the expression of the ETB receptor in human non-pigmented ciliary epithelial cells (HNPE). The current study addressed the mechanisms by which ET-1 produced upregulation of ET receptors in primary rat retinal ganglion cells (RGCs) and HNPE cells. Treatment of ET-1 and ET-3 increased the immunocytochemical staining of c-Jun and C/EBPβ in primary rat RGCs and co-localization of both transcription factors was observed. A marked increase in DNA binding activity of AP-1 and C/EBPβ as well as elevated protein levels of c-Jun and c-Jun-N-terminal kinase (JNK) were detected following ET-1 treatment in HNPE cells. Overexpression of ETA or ETB receptor promoted the upregulation of c-Jun and also elevated its promoter activity. In addition, upregulation of C/EBPβ augmented DNA binding and mRNA expression of c-Jun, and furthermore, the interaction of c-Jun and C/EBPβ was confirmed using co-immunoprecipitation. Apoptosis of HNPE cells was identified following ET-1 treatment, and overexpression of the ETA or ETB receptor produced enhanced apoptosis. ET-1 mediated upregulation of c-Jun and C/EBPβ and their interaction may represent a novel mechanism contributing to the regulation of endothelin receptor expression. Reciprocally, c-Jun was also found to regulate the ET receptors and C/EBPβ appeared to play a regulatory role in promoting expression of c-Jun. Taken together, the data suggests that ET-1 triggers the upregulation of c-Jun through both ETA and ETB receptors, and conversely c-Jun also upregulates endothelin receptor expression, thereby generating a positive feed-forward loop of endothelin receptor activation and expression. This feed-forward regulation may contribute to RGC death and astrocyte proliferation following ET-1 treatment.
Collapse
|
14
|
He S, Stankowska DL, Ellis DZ, Krishnamoorthy RR, Yorio T. Targets of Neuroprotection in Glaucoma. J Ocul Pharmacol Ther 2017; 34:85-106. [PMID: 28820649 PMCID: PMC5963639 DOI: 10.1089/jop.2017.0041] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/08/2017] [Indexed: 12/14/2022] Open
Abstract
Progressive neurodegeneration of the optic nerve and the loss of retinal ganglion cells is a hallmark of glaucoma, the leading cause of irreversible blindness worldwide, with primary open-angle glaucoma (POAG) being the most frequent form of glaucoma in the Western world. While some genetic mutations have been identified for some glaucomas, those associated with POAG are limited and for most POAG patients, the etiology is still unclear. Unfortunately, treatment of this neurodegenerative disease and other retinal degenerative diseases is lacking. For POAG, most of the treatments focus on reducing aqueous humor formation, enhancing uveoscleral or conventional outflow, or lowering intraocular pressure through surgical means. These efforts, in some cases, do not always lead to a prevention of vision loss and therefore other strategies are needed to reduce or reverse the progressive neurodegeneration. In this review, we will highlight some of the ocular pharmacological approaches that are being tested to reduce neurodegeneration and provide some form of neuroprotection.
Collapse
Affiliation(s)
- Shaoqing He
- North Texas Eye Research Institute, University of North Texas Health Science Center , Fort Worth, Texas
| | - Dorota L Stankowska
- North Texas Eye Research Institute, University of North Texas Health Science Center , Fort Worth, Texas
| | - Dorette Z Ellis
- North Texas Eye Research Institute, University of North Texas Health Science Center , Fort Worth, Texas
| | - Raghu R Krishnamoorthy
- North Texas Eye Research Institute, University of North Texas Health Science Center , Fort Worth, Texas
| | - Thomas Yorio
- North Texas Eye Research Institute, University of North Texas Health Science Center , Fort Worth, Texas
| |
Collapse
|
15
|
Blanco R, Martínez-Navarrete G, Valiente-Soriano FJ, Avilés-Trigueros M, Pérez-Rico C, Serrano-Puebla A, Boya P, Fernández E, Vidal-Sanz M, de la Villa P. The S1P1 receptor-selective agonist CYM-5442 protects retinal ganglion cells in endothelin-1 induced retinal ganglion cell loss. Exp Eye Res 2017; 164:37-45. [PMID: 28827028 DOI: 10.1016/j.exer.2017.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/09/2017] [Accepted: 08/03/2017] [Indexed: 11/16/2022]
Abstract
We investigated the feasibility and efficacy of using a specific sphingosine 1-phosphate (S1P1) receptor agonist, CYM-5442, to slow or block retinal ganglion cell (RGC) loss in endothelin-1 (ET-1) induced RGC loss. A single intravitreal injection of ET-1 (20pmol/ul), a potent vasoactive peptide that produces retinal vessels vasoconstriction, was used to induce and characterize RGC-specific cell death. CYM-5442 (1 mgr/kg) or vehicle was administered intraperitoneally for five consecutive days after ET-1-induced RGC loss. The functional extent of RGC loss injury was evaluated with pattern visual evoked potentials (VEP) and electroretinography. RGCs and retinal nerve fiber layer (RNFL) thickness were assessed in vivo using optical coherence tomography and ex vivo using Brn3a immunohistochemistry in flat-mounted retinas. ET-1 caused significant RGC loss and function loss one week after intravitreal injection. VEP showed preserved visual function after CYM-5442 administration compared to vehicle-treated animals (11.95 ± 0.86 μV vs 3.47 ± 1.20 μV, n = 12) (p < 0.05). RNFL was significantly thicker in the CYM treated-animals compared to the vehicle (93.62 ± 3.22 μm vs 77.72 ± 0.35 μm, n = 12) (p < 0.05). Furthermore, Brn3a immunohistochemistry validated this observation, showing significantly higher RGCs numbers in CYM treated rats than in the vehicle group (76,540 ± 303 vs 52,426 ± 1,932 cells/retina, n = 9) (p = 0.05). CYM-5442 administration was associated with significant retinal cleaved caspase-3 deactivation, indicating reduced apoptotic levels. The results of the present study further demonstrate the important role of S1P1 receptor agonists to lessen intravitreal ET-1 induced RGC loss.
Collapse
Affiliation(s)
- Román Blanco
- Department of Surgery, Medical and Social Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain.
| | - Gema Martínez-Navarrete
- Institute of Bioengineering, Miguel Hernandez University, Elche, Alicante, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Francisco J Valiente-Soriano
- Department of Ophthalmology, University of Murcia and Murcia Institute of Biosanitary Research Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Marcelino Avilés-Trigueros
- Department of Ophthalmology, University of Murcia and Murcia Institute of Biosanitary Research Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Consuelo Pérez-Rico
- Department of Surgery, Medical and Social Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain; Department of Ophthalmology, Principe de Asturias University Hospital, Alcalá de Henares, Madrid, Spain
| | - Ana Serrano-Puebla
- Department of Cellular and Molecular Biology, Biological Research Center, CSIC, Madrid, Spain
| | - Patricia Boya
- Department of Cellular and Molecular Biology, Biological Research Center, CSIC, Madrid, Spain
| | - Eduardo Fernández
- Institute of Bioengineering, Miguel Hernandez University, Elche, Alicante, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Manuel Vidal-Sanz
- Department of Ophthalmology, University of Murcia and Murcia Institute of Biosanitary Research Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Pedro de la Villa
- Department of Systems Biology, University of Alcalá, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
16
|
McGrady NR, Minton AZ, Stankowska DL, He S, Jefferies HB, Krishnamoorthy RR. Upregulation of the endothelin A (ET A) receptor and its association with neurodegeneration in a rodent model of glaucoma. BMC Neurosci 2017; 18:27. [PMID: 28249604 PMCID: PMC5333388 DOI: 10.1186/s12868-017-0346-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/16/2017] [Indexed: 01/24/2023] Open
Abstract
Background Primary open angle glaucoma is a heterogeneous group of optic neuropathies that results in optic nerve degeneration and a loss of retinal ganglion cells (RGCs) ultimately causing blindness if allowed to progress. Elevation of intraocular pressure (IOP) is the most attributable risk factor for developing glaucoma and lowering of IOP is currently the only available therapy. However, despite lowering IOP, neurodegenerative effects persist in some patients. Hence, it would be beneficial to develop approaches to promote neuroprotection of RGCs in addition to IOP lowering therapies. The endothelin system is a key target for intervention against glaucomatous neurodegeneration. The endothelin family of peptides and receptors, particularly endothelin-1 (ET-1) and endothelin B (ETB) receptor, has been shown to have neurodegenerative roles in glaucoma. The purpose of this study was to examine changes in endothelin A (ETA) receptor protein expression in the retinas of adult male Brown Norway rats following IOP elevation by the Morrison’s model of ocular hypertension and the impact of ETA receptor overexpression on RGC viability in vitro. Results IOP elevation was carried out in one eye of Brown Norway rats by injection of hypertonic saline through episcleral veins. After 2 weeks of IOP elevation, immunohistochemical analysis of retinal sections from rat eyes showed an increasing trend in immunostaining for ETA receptors in multiple retinal layers including the inner plexiform layer, ganglion cell layer and outer plexiform layer. Following 4 weeks of IOP elevation, a significant increase in immunostaining for ETA receptor expression was found in the retina, primarily in the inner plexiform layer and ganglion cells. A modest increase in staining for ETA receptors was also found in the outer plexiform layer in the retina of rats with IOP elevation. Cell culture studies showed that overexpression of ETA receptors in 661W cells as well as primary RGCs decreases cell viability, compared to empty vector transfected cells. Adeno-associated virus mediated overexpression of the ETA receptor produced an increase in the ETB receptor in primary RGCs. Conclusions Elevated IOP results in an appreciable change in ETA receptor expression in the retina. Overexpression of the ETA receptor results in an overall decrease in cell viability, accompanied by an increase in ETB receptor levels, suggesting the involvement of both ETA and ETB receptors in mediating cell death. These findings raise possibilities for the development of ETA/ETB dual receptor antagonists as neuroprotective treatments for glaucomatous neuropathy. Electronic supplementary material The online version of this article (doi:10.1186/s12868-017-0346-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nolan R McGrady
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Alena Z Minton
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Dorota L Stankowska
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Shaoqing He
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Hayden B Jefferies
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Raghu R Krishnamoorthy
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA.
| |
Collapse
|
17
|
Harun-Or-Rashid M, Konjusha D, Galindo-Romero C, Hallböök F. Endothelin B Receptors on Primary Chicken Müller Cells and the Human MIO-M1 Müller Cell Line Activate ERK Signaling via Transactivation of Epidermal Growth Factor Receptors. PLoS One 2016; 11:e0167778. [PMID: 27930693 PMCID: PMC5145189 DOI: 10.1371/journal.pone.0167778] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/21/2016] [Indexed: 01/17/2023] Open
Abstract
Injury to the eye or retina triggers Müller cells, the major glia cell of the retina, to dedifferentiate and proliferate. In some species they attain retinal progenitor properties and have the capacity to generate new neurons. The epidermal growth factor receptor (EGFR) system and extracellular signal-regulated kinase (ERK) signaling are key regulators of these processes in Müller cells. The extracellular signals that modulate and control these processes are not fully understood. In this work we studied whether endothelin receptor signaling can activate EGFR and ERK signaling in Müller cells. Endothelin expression is robustly upregulated at retinal injury and endothelin receptors have been shown to transactivate EGFRs in other cell types. We analyzed the endothelin signaling system in chicken retina and cultured primary chicken Müller cells as well as the human Müller cell line MIO-M1. The Müller cells were stimulated with receptor agonists and treated with specific blockers to key enzymes in the signaling pathway or with siRNAs. We focused on endothelin receptor mediated transactivation of EGFRs by using western blot analysis, quantitative reverse transcriptase PCR and immunocytochemistry. The results showed that chicken Müller cells and the human Müller cell line MIO-M1 express endothelin receptor B. Stimulation by the endothelin receptor B agonist IRL1620 triggered phosphorylation of ERK1/2 and autophosphorylation of (Y1173) EGFR. The effects could be blocked by Src-kinase inhibitors (PP1, PP2), EGFR-inhibitor (AG1478), EGFR-siRNA and by inhibitors to extracellular matrix metalloproteinases (GM6001), consistent with a Src-kinase mediated endothelin receptor response that engage ligand-dependent and ligand-independent EGFR activation. Our data suggest a mechanism for how injury-induced endothelins, produced in the retina, may modulate the Müller cell responses by Src-mediated transactivation of EGFRs. The data give support to a view in which endothelins among several other functions, serve as an injury-signal that regulate the gliotic response of Müller cells.
Collapse
Affiliation(s)
| | - Dardan Konjusha
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | | - Finn Hallböök
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
18
|
Stankowska DL, Krishnamoorthy VR, Ellis DZ, Krishnamoorthy RR. Neuroprotective effects of curcumin on endothelin-1 mediated cell death in hippocampal neurons. Nutr Neurosci 2015; 20:273-283. [DOI: 10.1080/1028415x.2015.1119377] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Dorota L. Stankowska
- University of North Texas Health Science Center, North Texas Eye Research Institute, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| | | | - Dorette Z. Ellis
- Department of Pharmaceutical Sciences, College of Pharmacy, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| | - Raghu R. Krishnamoorthy
- University of North Texas Health Science Center, North Texas Eye Research Institute, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| |
Collapse
|