1
|
Berkowitz BA, Paruchuri A, Stanek J, Podolsky RH, Childers KL, Roberts R. Acetazolamide Challenge Changes Outer Retina Bioenergy-Linked and Anatomical OCT Biomarkers Depending on Mouse Strain. Invest Ophthalmol Vis Sci 2024; 65:21. [PMID: 38488413 PMCID: PMC10946704 DOI: 10.1167/iovs.65.3.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/27/2024] [Indexed: 03/19/2024] Open
Abstract
Purpose The purpose of this study was to test the hypothesis that optical coherence tomography (OCT) bioenergy-linked and anatomical biomarkers are responsive to an acetazolamide (ACZ) provocation. Methods C57BL/6J mice (B6J, a strain with relatively inefficient mitochondria) and 129S6/ev mice (S6, a strain with relatively efficient mitochondria) were given a single IP injection of ACZ (carbonic anhydrase inhibitor) or vehicle. In each mouse, the Mitochondrial Configuration within Photoreceptors based on the profile shape Aspect Ratio (MCP/AR) index was determined from the hyper-reflective band immediately posterior to the external limiting membrane (ELM). In addition, we tested for ACZ-induced acidification by measuring contraction of the external limiting membrane-retinal pigment epithelium (ELM-RPE) thickness; the hyporeflective band (HB) signal intensity at the photoreceptor tips was also examined. Finally, the nuclear layer thickness was measured. Results In response to ACZ, MCP/AR was greater-than-vehicle in B6J mice and lower-than-vehicle in S6 mice. ACZ-treated B6J and S6 mice both showed ELM-RPE contraction compared to vehicle-treated mice, consistent with dehydration in response to subretinal space acidification. The HB intensity at the photoreceptor tips and the outer nuclear layer thickness (B6J and S6), as well as the inner nuclear layer thickness of B6J mice, were all lower than vehicle following ACZ. Conclusions Photoreceptor respiratory efficacy can be evaluated in vivo based on distinct rod mitochondria responses to subretinal space acidification measured with OCT biomarkers and an ACZ challenge, supporting and extending our previous findings measured with light-dark conditions.
Collapse
Affiliation(s)
- Bruce A. Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Anuhya Paruchuri
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Josh Stanek
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Robert H. Podolsky
- Biostatistics and Study Methodology, Children's National Hospital, Silver Spring, Maryland, United States
| | - Karen Lins Childers
- Beaumont Research Institute, Beaumont Health, Royal Oak, Michigan, United States
| | - Robin Roberts
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
2
|
Farias-Jofre M, Romero R, Galaz J, Xu Y, Miller D, Garcia-Flores V, Arenas-Hernandez M, Winters AD, Berkowitz BA, Podolsky RH, Shen Y, Kanninen T, Panaitescu B, Glazier CR, Pique-Regi R, Theis KR, Gomez-Lopez N. Blockade of IL-6R prevents preterm birth and adverse neonatal outcomes. EBioMedicine 2023; 98:104865. [PMID: 37944273 PMCID: PMC10665693 DOI: 10.1016/j.ebiom.2023.104865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Preterm birth preceded by spontaneous preterm labour often occurs in the clinical setting of sterile intra-amniotic inflammation (SIAI), a condition that currently lacks treatment. METHODS Proteomic and scRNA-seq human data were analysed to evaluate the role of IL-6 and IL-1α in SIAI. A C57BL/6 murine model of SIAI-induced preterm birth was developed by the ultrasound-guided intra-amniotic injection of IL-1α. The blockade of IL-6R by using an aIL-6R was tested as prenatal treatment for preterm birth and adverse neonatal outcomes. QUEST-MRI evaluated brain oxidative stress in utero. Targeted transcriptomic profiling assessed maternal, foetal, and neonatal inflammation. Neonatal biometrics and neurodevelopment were tested. The neonatal gut immune-microbiome was evaluated using metagenomic sequencing and immunophenotyping. FINDINGS IL-6 plays a critical role in the human intra-amniotic inflammatory response, which is associated with elevated concentrations of the alarmin IL-1α. Intra-amniotic injection of IL-1α resembles SIAI, inducing preterm birth (7% vs. 50%, p = 0.03, Fisher's exact test) and neonatal mortality (18% vs. 56%, p = 0.02, Mann-Whitney U-test). QUEST-MRI revealed no foetal brain oxidative stress upon in utero IL-1α exposure (p > 0.05, mixed linear model). Prenatal treatment with aIL-6R abrogated IL-1α-induced preterm birth (50% vs. 7%, p = 0.03, Fisher's exact test) by dampening inflammatory processes associated with the common pathway of labour. Importantly, aIL-6R reduces neonatal mortality (56% vs. 22%, p = 0.03, Mann-Whitney U-test) by crossing from the mother to the amniotic cavity, dampening foetal organ inflammation and improving growth. Beneficial effects of prenatal IL-6R blockade carried over to neonatal life, improving survival, growth, neurodevelopment, and gut immune homeostasis. INTERPRETATION IL-6R blockade can serve as a strategy to treat SIAI, preventing preterm birth and adverse neonatal outcomes. FUNDING NICHD/NIH/DHHS, Contract HHSN275201300006C. WSU Perinatal Initiative in Maternal, Perinatal and Child Health.
Collapse
Affiliation(s)
- Marcelo Farias-Jofre
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA; Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA.
| | - Jose Galaz
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA; Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Yi Xu
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Derek Miller
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA; Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Valeria Garcia-Flores
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA; Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Marcia Arenas-Hernandez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Andrew D Winters
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, USA; Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MO, USA
| | - Bruce A Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine; Detroit, MI, USA
| | - Robert H Podolsky
- Division of Biostatistics and Design Methodology, Center for Translational Research, Children's National Hospital, Silver Spring, MD, USA
| | - Yimin Shen
- Department of Radiology, School of Medicine, Wayne State University School of Medicine, Detroit, MI, USA
| | - Tomi Kanninen
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bogdan Panaitescu
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Catherine R Glazier
- UCD School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Roger Pique-Regi
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA; Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kevin R Theis
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA; Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MO, USA
| | - Nardhy Gomez-Lopez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA; Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA; Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MO, USA; Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
3
|
Polyunsaturated Lipids in the Light-Exposed and Prooxidant Retinal Environment. Antioxidants (Basel) 2023; 12:antiox12030617. [PMID: 36978865 PMCID: PMC10044808 DOI: 10.3390/antiox12030617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The retina is an oxidative stress-prone tissue due to high content of polyunsaturated lipids, exposure to visible light stimuli in the 400–480 nm range, and high oxygen availability provided by choroidal capillaries to support oxidative metabolism. Indeed, lipids’ peroxidation and their conversion into reactive species promoting inflammation have been reported and connected to retinal degenerations. Here, we review recent evidence showing how retinal polyunsaturated lipids, in addition to oxidative stress and damage, may counteract the inflammatory response triggered by blue light-activated carotenoid derivatives, enabling long-term retina operation despite its prooxidant environment. These two aspects of retinal polyunsaturated lipids require tight control over their synthesis to avoid overcoming their protective actions by an increase in lipid peroxidation due to oxidative stress. We review emerging evidence on different transcriptional control mechanisms operating in retinal cells to modulate polyunsaturated lipid synthesis over the life span, from the immature to the ageing retina. Finally, we discuss the antioxidant role of food nutrients such as xanthophylls and carotenoids that have been shown to empower retinal cells’ antioxidant responses and counteract the adverse impact of prooxidant stimuli on sight.
Collapse
|
4
|
Saadane A, Veenstra AA, Minns MS, Tang J, Du Y, Abubakr Elghazali F, Lessieur EM, Pearlman E, Kern TS. CCR2-positive monocytes contribute to the pathogenesis of early diabetic retinopathy in mice. Diabetologia 2023; 66:590-602. [PMID: 36698021 PMCID: PMC9892100 DOI: 10.1007/s00125-022-05860-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/13/2022] [Indexed: 01/27/2023]
Abstract
AIMS/HYPOTHESIS Accumulating evidence suggests that leucocytes play a critical role in diabetes-induced vascular lesions and other abnormalities that characterise the early stages of diabetic retinopathy. However, the role of monocytes has yet to be fully investigated; therefore, we used Ccr2-/- mice to study the role of CCR2+ inflammatory monocytes in the pathogenesis of diabetes-induced degeneration of retinal capillaries. METHODS Experimental diabetes was induced in wild-type and Ccr2-/- mice using streptozotocin. After 2 months, superoxide levels, expression of inflammatory genes, leucostasis, leucocyte- and monocyte-mediated cytotoxicity against retinal endothelial cell death, retinal thickness and visual function were evaluated. Retinal capillary degeneration was determined after 8 months of diabetes. Flow cytometry of peripheral blood for differential expression of CCR2 in monocytes was assessed. RESULTS In nondiabetic mice, CCR2 was highly expressed on monocytes, and Ccr2-/- mice lack CCR2+ monocytes in the peripheral blood. Diabetes-induced retinal superoxide, expression of proinflammatory genes Inos and Icam1, leucostasis and leucocyte-mediated cytotoxicity against retinal endothelial cells were inhibited in diabetic Ccr2-deficient mice and in chimeric mice lacking Ccr2 only from myeloid cells. In order to focus on monocytes, these cells were immuno-isolated after 2 months of diabetes, and they significantly increased monocyte-mediated endothelial cell cytotoxicity ex vivo. Monocytes from Ccr2-deficient mice caused significantly less endothelial cell death. The diabetes-induced retinal capillary degeneration was inhibited in Ccr2-/- mice and in chimeric mice lacking Ccr2 only from myeloid cells. CONCLUSIONS/INTERPRETATION CCR2+ inflammatory monocytes contribute to the pathogenesis of early lesions of diabetic retinopathy.
Collapse
Affiliation(s)
- Aicha Saadane
- Department of Ophthalmology, University of California-Irvine, Irvine, CA, USA.
| | | | - Martin S Minns
- Institute for Immunology, University of California-Irvine, Irvine, CA, USA
| | - Jie Tang
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Yunpeng Du
- Department of Ophthalmology, University of California-Irvine, Irvine, CA, USA
| | | | - Emma M Lessieur
- Department of Ophthalmology, University of California-Irvine, Irvine, CA, USA
| | - Eric Pearlman
- Institute for Immunology, University of California-Irvine, Irvine, CA, USA
| | - Timothy S Kern
- Department of Ophthalmology, University of California-Irvine, Irvine, CA, USA
- Veterans Administration Medical Center Research Service, Long Beach, CA, USA
| |
Collapse
|
5
|
Berkowitz BA, Podolsky RH, Childers KL, Roberts R, Katz R, Waseem R, Robbings BM, Hass DT, Hurley JB, Sweet IR, Goodman C, Qian H, Alvisio B, Heaps S. Transducin-Deficient Rod Photoreceptors Evaluated With Optical Coherence Tomography and Oxygen Consumption Rate Energy Biomarkers. Invest Ophthalmol Vis Sci 2022; 63:22. [PMID: 36576748 PMCID: PMC9804021 DOI: 10.1167/iovs.63.13.22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Purpose To test the hypothesis that rod energy biomarkers in light and dark are similar in mice without functional rod transducin (Gnat1rd17). Methods Gnat1rd17 and wildtype (WT) mice were studied in canonically low energy demand (light) and high energy demand (dark) conditions. We measured rod inner segment ellipsoid zone (ISez) profile shape, external limiting membrane-retinal pigment epithelium (ELM-RPE) thickness, and magnitude of a hyporeflective band (HB) intensity dip located between photoreceptor tips and apical RPE; antioxidants were given in a subset of mice. Oxygen consumption rate (OCR) and visual performance indexes were also measured. Results The lower energy demand expected in light-adapted wildtype retinas was associated with an elongated ISez, thicker ELM-RPE, and higher HB magnitude, and lower OCR compared to high energy demand conditions in the dark. Gnat1rd17 mice showed a wildtype-like ISez profile shape at 20 minutes of light that became rounder at 60 minutes; at both times, ELM-RPE was smaller than wildtype values, and the HB magnitude was unmeasurable. OCR was higher than in the dark. Light-adapted Gnat1rd17 mice biomarkers were unaffected by anti-oxidants. Gnat1rd17 mice showed modest outer nuclear layer thinning and no reduction in visual performance indexes. Conclusions Light-stimulated changes in all biomarkers in WT mice are consistent with the established light-induced decrease in net energy demand. In contrast, biomarker changes in Gnat1rd17 mice raise the possibility that light increases net energy demand in the absence of rod phototransduction.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Robert H Podolsky
- Biostatistics and Study Methodology, Children's National Hospital, Silver Spring, Maryland, United States
| | - Karen Lins Childers
- Beaumont Research Institute, Beaumont Health, Royal Oak, Michigan, United States
| | - Robin Roberts
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Ryan Katz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Rida Waseem
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Brian M Robbings
- Department of Biochemistry, Department of Ophthalmology, University of Washington, Seattle, Washington, United States.,Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, United States
| | - Daniel T Hass
- Department of Biochemistry, Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - James B Hurley
- Department of Biochemistry, Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Ian R Sweet
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, United States
| | - Cole Goodman
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Haohua Qian
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Bruno Alvisio
- OSIO Bioinformatics Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Sam Heaps
- OSIO Bioinformatics Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
6
|
Berkowitz BA, Podolsky RH, Childers KL, Burgoyne T, De Rossi G, Qian H, Roberts R, Katz R, Waseem R, Goodman C. Functional Changes Within the Rod Inner Segment Ellipsoid in Wildtype Mice: An Optical Coherence Tomography and Electron Microscopy Study. Invest Ophthalmol Vis Sci 2022; 63:8. [PMID: 35816042 PMCID: PMC9284466 DOI: 10.1167/iovs.63.8.8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/19/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose To test the hypothesis that changing energy needs alter mitochondria distribution within the rod inner segment ellipsoid. Methods In mice with relatively smaller (C57BL/6J [B6J]) or greater (129S6/ev [S6]) retina mitochondria maximum reserve capacity, the profile shape of the rod inner segment ellipsoid zone (ISez) was measured with optical coherence tomography (OCT) under higher (dark) or lower (light) energy demand conditions. ISez profile shape was characterized using an unbiased ellipse descriptor (minor/major aspect ratio). Other bioenergy indexes evaluated include the external limiting membrane-retinal pigment epithelium (ELM-RPE) thickness and the magnitude of the signal intensity of a hyporeflective band located between the photoreceptor tips and apical RPE. The spatial distribution of rod ellipsoid mitochondria were also examined with electron microscopy. Results In B6J mice, darkness produced a greater ISez aspect ratio, thinner ELM-RPE, and a smaller hyporeflective band intensity than in light. In S6 mice, dark and light ISez aspect ratio values were not different and were greater than in light-adapted B6J mice; dark-adapted S6 mice showed smaller ELM-RPE thinning versus light, and negligible hyporeflective band intensity in the light. In B6J mice, mitochondria number in light increased in the distal inner segment ellipsoid and decreased proximally. In S6 mice, mitochondria number in the inner segment ellipsoid were not different between light and dark, and were greater than in B6J mice. Conclusions These data raise the possibility that rod mitochondria activity in mice can be noninvasively evaluated based on the ISez profile shape, a new OCT index that complements OCT energy biomarkers measured outside of the ISez region.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Robert H Podolsky
- Biostatistics and Study Methodology, Children's National Hospital, Silver Spring, Maryland, United States
| | - Karen Lins Childers
- Beaumont Research Institute, Beaumont Health, Royal Oak, Michigan, Unites States
| | - Tom Burgoyne
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Giulia De Rossi
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Haohua Qian
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, Unites States
| | - Robin Roberts
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Ryan Katz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Rida Waseem
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Cole Goodman
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
7
|
Neonatal Anesthesia and Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11040787. [PMID: 35453473 PMCID: PMC9026345 DOI: 10.3390/antiox11040787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/04/2023] Open
Abstract
Neonatal anesthesia, while often essential for surgeries or imaging procedures, is accompanied by significant risks to redox balance in the brain due to the relatively weak antioxidant system in children. Oxidative stress is characterized by concentrations of reactive oxygen species (ROS) that are elevated beyond what can be accommodated by the antioxidant defense system. In neonatal anesthesia, this has been proposed to be a contributing factor to some of the negative consequences (e.g., learning deficits and behavioral abnormalities) that are associated with early anesthetic exposure. In order to assess the relationship between neonatal anesthesia and oxidative stress, we first review the mechanisms of action of common anesthetic agents, the key pathways that produce the majority of ROS, and the main antioxidants. We then explore the possible immediate, short-term, and long-term pathways of neonatal-anesthesia-induced oxidative stress. We review a large body of literature describing oxidative stress to be evident during and immediately following neonatal anesthesia. Moreover, our review suggests that the short-term pathway has a temporally limited effect on oxidative stress, while the long-term pathway can manifest years later due to the altered development of neurons and neurovascular interactions.
Collapse
|
8
|
MacKinnon MJ, Berkowitz BA, Shih YYI. Superoxide free radical spin-lattice relaxivity: A quench-assisted MR study. Magn Reson Med 2021; 86:1058-1066. [PMID: 33755248 PMCID: PMC8113059 DOI: 10.1002/mrm.28722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE QuEnch-assiSTed (QUEST) MRI provides a unique biomarker of excessive production of paramagnetic free radicals (oxidative stress) in vivo. The contribution from superoxide, a common upstream species found in oxidative stress-based disease, to the QUEST metric is unclear. Here, we begin to address this question by measuring superoxide spin-lattice relaxivity (r1) in phantoms. METHODS Stable superoxide free radicals were generated in water phantoms of potassium superoxide ( KO 2 ) . To measure r1, 1/T1 of different concentration solutions of KO2 in the presence and absence of the antioxidant superoxide dismutase were measured. The 1/T1 confounding factors including acquisition sequence, pH, and water source were also evaluated. RESULTS The T1 -weighted signal intensity increased with KO2 concentration. No contribution from pH, or reaction products other than superoxide, noted on 1/T1 . Superoxide r1 was measured to be 0.29 mM-1 s-1 , in agreement with that reported for paramagnetic molecular oxygen and nitroxide free radicals. CONCLUSION Our first-in-kind measurement of superoxide free radical r1 suggests a detection sensitivity of QUEST MRI on the order of tens of μM, within the reported level of free radical production during oxidative stress in vivo. Similar studies for other common free radicals are needed.
Collapse
Affiliation(s)
- Martin J MacKinnon
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bruce A Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State School of Medicine, Detroit, MI, USA
| | - Yen-Yu Ian Shih
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
9
|
Tonade D, Kern TS. Photoreceptor cells and RPE contribute to the development of diabetic retinopathy. Prog Retin Eye Res 2021; 83:100919. [PMID: 33188897 PMCID: PMC8113320 DOI: 10.1016/j.preteyeres.2020.100919] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/27/2020] [Accepted: 10/31/2020] [Indexed: 12/26/2022]
Abstract
Diabetic retinopathy (DR) is a leading cause of blindness. It has long been regarded as vascular disease, but work in the past years has shown abnormalities also in the neural retina. Unfortunately, research on the vascular and neural abnormalities have remained largely separate, instead of being integrated into a comprehensive view of DR that includes both the neural and vascular components. Recent evidence suggests that the most predominant neural cell in the retina (photoreceptors) and the adjacent retinal pigment epithelium (RPE) play an important role in the development of vascular lesions characteristic of DR. This review summarizes evidence that the outer retina is altered in diabetes, and that photoreceptors and RPE contribute to retinal vascular alterations in the early stages of the retinopathy. The possible molecular mechanisms by which cells of the outer retina might contribute to retinal vascular damage in diabetes also are discussed. Diabetes-induced alterations in the outer retina represent a novel therapeutic target to inhibit DR.
Collapse
Affiliation(s)
- Deoye Tonade
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Timothy S Kern
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA; Veterans Administration Medical Center Research Service, Cleveland, OH, USA; Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, USA; Veterans Administration Medical Center Research Service, Long Beach, CA, USA.
| |
Collapse
|
10
|
Berkowitz BA, Podolsky RH, Childers KL, Roberts R, Schneider M, Graffice E, Sinan K, Berri A, Harp L. Correcting QUEST Magnetic Resonance Imaging-Sensitive Free Radical Production in the Outer Retina In Vivo Does Not Correct Reduced Visual Performance in 24-Month-Old C57BL/6J Mice. Invest Ophthalmol Vis Sci 2021; 62:24. [PMID: 34036313 PMCID: PMC8164372 DOI: 10.1167/iovs.62.6.24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Purpose To test the hypothesis that acutely correcting a sustained presence of outer retina free radicals measured in vivo in 24-month-old mice corrects their reduced visual performance. Methods Male C57BL/6J mice two and 24 months old were noninvasively evaluated for unremitted production of paramagnetic free radicals based on whether 1/T1 in retinal laminae are reduced after acute antioxidant administration (QUEnch-assiSTed [QUEST] magnetic resonance imaging [MRI]). Superoxide production was measured in freshly excised retina (lucigenin assay). Combining acute antioxidant administration with optical coherence tomography (i.e., QUEST OCT) tested for excessive free radical–induced shrinkage of the subretinal space volume. Combining antioxidant administration with optokinetic tracking tested for a contribution of uncontrolled free radical production to cone-based visual performance declines. Results At two months, antioxidants had no effect on 1/T1 in vivo in any retinal layer. At 24 months, antioxidants reduced 1/T1 only in superior outer retina. No age-related change in retinal superoxide production was measured ex vivo, suggesting that free radical species other than superoxide contributed to the positive QUEST MRI signal at 24 months. Also, subretinal space volume did not show evidence for age-related shrinkage and was unresponsive to antioxidants. Finally, visual performance declined with age and was not restored by antioxidants that were effective per QUEST MRI. Conclusions An ongoing uncontrolled production of outer retina free radicals as measured in vivo in 24 mo C57BL/6J mice appears to be insufficient to explain reductions in visual performance.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Robert H Podolsky
- Beaumont Research Institute, Beaumont Health, Royal Oak, Michigan, United States
| | - Karen Lins Childers
- Beaumont Research Institute, Beaumont Health, Royal Oak, Michigan, United States
| | - Robin Roberts
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Michael Schneider
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Emma Graffice
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Kenan Sinan
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Ali Berri
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Lamis Harp
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
11
|
Berkowitz BA, Podolsky RH, Childers KL, Roche SL, Cotter TG, Graffice E, Harp L, Sinan K, Berri AM, Schneider M, Qian H, Gao S, Roberts R. Rod Photoreceptor Neuroprotection in Dark-Reared Pde6brd10 Mice. Invest Ophthalmol Vis Sci 2021; 61:14. [PMID: 33156341 PMCID: PMC7671864 DOI: 10.1167/iovs.61.13.14] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Purpose The purpose of this study was to test the hypothesis that anti-oxidant and / or anti-inflammation drugs that suppress rod death in cyclic light-reared Pde6brd10 mice are also effective in dark-reared Pde6brd10 mice. Methods In untreated dark-reared Pde6brd10 mice at post-natal (P) days 23 to 24, we measured the outer nuclear layer (ONL) thickness (histology) and dark-light thickness difference in external limiting membrane-retinal pigment epithelium (ELM-RPE) (optical coherence tomography [OCT]), retina layer oxidative stress (QUEnch-assiSTed [QUEST] magnetic resonance imaging [MRI]); and microglia/macrophage-driven inflammation (immunohistology). In dark-reared P50 Pde6brd10 mice, ONL thickness was measured (OCT) in groups given normal chow or chow admixed with methylene blue (MB) + Norgestrel (anti-oxidant, anti-inflammatory), or MB or Norgestrel separately. Results P24 Pde6brd10 mice showed no significant dark-light ELM-RPE response in superior and inferior retina consistent with high cGMP levels. Norgestrel did not significantly suppress the oxidative stress of Pde6brd10 mice that is only found in superior central outer retina of males at P23. Overt rod degeneration with microglia/macrophage activation was observed but only in the far peripheral superior retina in male and female P23 Pde6brd10 mice. Significant rod protection was measured in female P50 Pde6brd10 mice given 5 mg/kg/day MB + Norgestrel diet; no significant benefit was seen with MB chow or Norgestrel chow alone, nor in similarly treated male mice. Conclusions In early rod degeneration in dark-reared Pde6brd10 mice, little evidence is found in central retina for spatial associations among biomarkers of the PDE6B mutation, oxidative stress, and rod death; neuroprotection at P50 was limited to a combination of anti-oxidant/anti-inflammation treatment in a sex-specific manner.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Robert H Podolsky
- Beaumont Research Institute, Beaumont Health, Royal Oak, Michigan, United States
| | - Karen Lins Childers
- Beaumont Research Institute, Beaumont Health, Royal Oak, Michigan, United States
| | - Sarah L Roche
- Cell Development and Disease Laboratory, Biochemistry Department, Biosciences Institute, University College Cork, Cork, Ireland
| | - Thomas G Cotter
- Cell Development and Disease Laboratory, Biochemistry Department, Biosciences Institute, University College Cork, Cork, Ireland
| | - Emma Graffice
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Lamis Harp
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Kenan Sinan
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Ali M Berri
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Michael Schneider
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Haohua Qian
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Shasha Gao
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Robin Roberts
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
12
|
Sildenafil-evoked photoreceptor oxidative stress in vivo is unrelated to impaired visual performance in mice. PLoS One 2021; 16:e0245161. [PMID: 33661941 PMCID: PMC7932139 DOI: 10.1371/journal.pone.0245161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/22/2020] [Indexed: 12/22/2022] Open
Abstract
Purpose The phosphodiesterase inhibitor sildenafil is a promising treatment for neurodegenerative disease, but it can cause oxidative stress in photoreceptors ex vivo and degrade visual performance in humans. Here, we test the hypotheses that in wildtype mice sildenafil causes i) wide-spread photoreceptor oxidative stress in vivo that is linked with ii) impaired vision. Methods In dark or light-adapted C57BL/6 mice ± sildenafil treatment, the presence of oxidative stress was evaluated in retina laminae in vivo by QUEnch-assiSTed (QUEST) magnetic resonance imaging, in the subretinal space in vivo by QUEST optical coherence tomography, and in freshly excised retina by a dichlorofluorescein assay. Visual performance indices were also evaluated by QUEST optokinetic tracking. Results In light-adapted mice, 1 hr post-sildenafil administration, oxidative stress was most evident in the superior peripheral outer retina on both in vivo and ex vivo examinations; little evidence was noted for central retina oxidative stress in vivo and ex vivo. In dark-adapted mice 1 hr after sildenafil, no evidence for outer retina oxidative stress was found in vivo. Evidence for sildenafil-induced central retina rod cGMP accumulation was suggested as a panretinally thinner, dark-like subretinal space thickness in light-adapted mice at 1 hr but not 5 hr post-sildenafil. Cone-based visual performance was impaired by 5 hr post-sildenafil and not corrected with anti-oxidants; vision was normal at 1 hr and 24 hr post-sildenafil. Conclusions The sildenafil-induced spatiotemporal pattern of oxidative stress in photoreceptors dominated by rods was unrelated to impairment of cone-based visual performance in wildtype mice.
Collapse
|
13
|
Bioenergetic Impairment of Triethylene Glycol Dimethacrylate- (TEGDMA-) Treated Dental Pulp Stem Cells (DPSCs) and Isolated Brain Mitochondria are Amended by Redox Compound Methylene Blue †. MATERIALS 2020; 13:ma13163472. [PMID: 32781723 PMCID: PMC7475988 DOI: 10.3390/ma13163472] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/27/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Triethylene glycol dimethacrylate (TEGDMA) monomers released from resin matrix are toxic to dental pulp cells, induce apoptosis, oxidative stress and decrease viability. Recently, mitochondrial complex I (CI) was identified as a potential target of TEGDMA. In isolated mitochondria supported by CI, substrates oxidation and ATP synthesis were inhibited, reactive oxygen species production was stimulated. Contrary to that, respiratory Complex II was not impaired by TEGDMA. The beneficial effects of electron carrier compound methylene blue (MB) are proven in many disease models where mitochondrial involvement has been detected. In the present study, the bioenergetic effects of MB on TEGDMA-treated isolated mitochondria and on human dental pulp stem cells (DPSC) were analyzed. METHODS Isolated mitochondria and DPSC were acutely exposed to low millimolar concentrations of TEGDMA and 2 μM concentration of MB. Mitochondrial and cellular respiration and glycolytic flux were measured by high resolution respirometry and by Seahorse XF extracellular analyzer. Mitochondrial membrane potential was measured fluorimetrically. RESULTS MB partially restored the mitochondrial oxidation, rescued membrane potential in isolated mitochondria and significantly increased the impaired cellular O2 consumption in the presence of TEGDMA. CONCLUSION MB is able to protect against TEGDMA-induced CI damage, and might provide protective effects in resin monomer exposed cells.
Collapse
|
14
|
Abstract
Patients with diabetes continue to suffer from impaired visual performance before the appearance of overt damage to the retinal microvasculature and later sight-threatening complications. This diabetic retinopathy (DR) has long been thought to start with endothelial cell oxidative stress. Yet newer data surprisingly finds that the avascular outer retina is the primary site of oxidative stress before microvascular histopathology in experimental DR. Importantly, correcting this early oxidative stress is sufficient to restore vision and mitigate the histopathology in diabetic models. However, translating these promising results into the clinic has been stymied by an absence of methods that can measure and optimize anti-oxidant treatment efficacy in vivo. Here, we review imaging approaches that address this problem. In particular, diabetes-induced oxidative stress impairs dark-light regulation of subretinal space hydration, which regulates the distribution of interphotoreceptor binding protein (IRBP). IRBP is a vision-critical, anti-oxidant, lipid transporter, and pro-survival factor. We show how optical coherence tomography can measure subretinal space oxidative stress thus setting the stage for personalizing anti-oxidant treatment and prevention of impactful declines and loss of vision in patients with diabetes.
Collapse
|
15
|
Berkowitz BA, Podolsky RH, Childers KL, Gow A, Schneider BL, Lloyd SC, Bosse KE, Conti AC, Roberts R, Berri AM, Graffice E, Sinan K, Eliwat W, Shen Y. Age-related murine hippocampal CA1 laminae oxidative stress measured in vivo by QUEnch-assiSTed (QUEST) MRI: impact of isoflurane anesthesia. GeroScience 2020; 42:563-574. [PMID: 31981008 PMCID: PMC7205849 DOI: 10.1007/s11357-020-00162-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/17/2020] [Indexed: 12/13/2022] Open
Abstract
Age-related impairments in spatial learning and memory often precede non-familial neurodegenerative disease. Ex vivo studies suggest that physiologic age-related oxidative stress in hippocampus area CA1 may contribute to prodromal spatial disorientation and to morbidity. Yet, conventional blood or cerebrospinal fluid assays appear insufficient for early detection or management of oxidative stress within CA1 sub-regions in vivo. Here, we address this biomarker problem using a non-invasive MRI index of CA1 laminae oxidative stress based on reduction in R1 (= 1/T1) after anti-oxidant administration. An R1 reduction reflects quenching of continuous and excessive production of endogenous paramagnetic free radicals. Careful motion-correction image acquisition, and avoiding repeated exposure to isoflurane, facilitates detection of hippocampus CA1 laminae oxidative stress with QUEnch-assiSTed (QUEST) MRI. Intriguingly, age- and isoflurane-related oxidative stress is localized to the stratum lacunosum of the CA1 region. Our data raise the possibility of using QUEST MRI and FDA-approved anti-oxidants to remediate spatial disorientation and later neurodegeneration with age in animals and humans.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI, 48201, USA.
| | - Robert H Podolsky
- Beaumont Research Institute, Beaumont Health, Royal Oak, MI, 48073, USA
| | | | - Alexander Gow
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Brandy L Schneider
- John D. Dingell VA Medical Center, Detroit, MI, 48201, USA
- Deptarment of Neurosurgery, School of Medicine, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Scott C Lloyd
- John D. Dingell VA Medical Center, Detroit, MI, 48201, USA
- Deptarment of Neurosurgery, School of Medicine, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Kelly E Bosse
- John D. Dingell VA Medical Center, Detroit, MI, 48201, USA
- Deptarment of Neurosurgery, School of Medicine, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Alana C Conti
- John D. Dingell VA Medical Center, Detroit, MI, 48201, USA
- Deptarment of Neurosurgery, School of Medicine, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Robin Roberts
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI, 48201, USA
| | - Ali M Berri
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI, 48201, USA
| | - Emma Graffice
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI, 48201, USA
| | - Kenan Sinan
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI, 48201, USA
| | - Waleed Eliwat
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI, 48201, USA
| | - Yimin Shen
- Department of Radiology, School of Medicine, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| |
Collapse
|
16
|
Berkowitz BA, Olds HK, Richards C, Joy J, Rosales T, Podolsky RH, Childers KL, Hubbard WB, Sullivan PG, Gao S, Li Y, Qian H, Roberts R. Novel imaging biomarkers for mapping the impact of mild mitochondrial uncoupling in the outer retina in vivo. PLoS One 2020; 15:e0226840. [PMID: 31923239 PMCID: PMC6953833 DOI: 10.1371/journal.pone.0226840] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To test the hypothesis that imaging biomarkers are useful for evaluating in vivo rod photoreceptor cell responses to a mitochondrial protonophore. METHODS Intraperitoneal injections of either the mitochondrial uncoupler 2,4 dinitrophenol (DNP) or saline were given to mice with either higher [129S6/eVTac (S6)] or lower [C57BL/6J (B6)] mitochondrial reserve capacities and were studied in dark or light. We measured: (i) the external limiting membrane-retinal pigment epithelium region thickness (ELM-RPE; OCT), which decreases substantially with upregulation of a pH-sensitive water removal co-transporter on the apical portion of the RPE, and (ii) the outer retina R1 (= 1/(spin lattice relaxation time (T1), an MRI parameter proportional to oxygen / free radical content. RESULTS In darkness, baseline rod energy production and consumption are relatively high compared to that in light, and additional metabolic stimulation with DNP provoked thinning of the ELM-RPE region compared to saline injection in S6 mice; ELM-RPE thickness was unresponsive to DNP in B6 mice. Also, dark-adapted S6 mice given DNP showed a decrease in outer retina R1 values compared to saline injection in the inferior retina. In dark-adapted B6 mice, transretinal R1 values were unresponsive to DNP in superior and inferior regions. In light, with its relatively lower basal rod energy production and consumption, DNP caused ELM-RPE thinning in both S6 and B6 mice. CONCLUSIONS The present results raise the possibility of non-invasively evaluating the mouse rod mitochondrial energy ecosystem using new DNP-assisted OCT and MRI in vivo assays.
Collapse
Affiliation(s)
- Bruce A. Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States of America
- * E-mail:
| | - Hailey K. Olds
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Collin Richards
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Joydip Joy
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Tilman Rosales
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Robert H. Podolsky
- Beaumont Research Institute, Beaumont Health, Royal Oak, MI, United States of America
| | - Karen Lins Childers
- Beaumont Research Institute, Beaumont Health, Royal Oak, MI, United States of America
| | - W. Brad Hubbard
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, United States of America
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States of America
| | - Patrick G. Sullivan
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, United States of America
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States of America
- Lexington VA Health Care System, Lexington, KY, United States of America
| | - Shasha Gao
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD, United States of America
- Department of Ophthalmology, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Yichao Li
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Haohua Qian
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Robin Roberts
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States of America
| |
Collapse
|
17
|
Kühl A, Dixon A, Hali M, Apawu AK, Muca A, Sinan M, Warila J, Braun RD, Berkowitz BA, Holt AG. Novel QUEST MRI In Vivo Measurement of Noise-induced Oxidative Stress in the Cochlea. Sci Rep 2019; 9:16265. [PMID: 31700007 PMCID: PMC6838338 DOI: 10.1038/s41598-019-52439-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/13/2019] [Indexed: 01/10/2023] Open
Abstract
Effective personalized therapeutic treatment for hearing loss is currently not available. Cochlear oxidative stress is commonly identified in the pathogenesis of hearing loss based upon findings from excised tissue, thus suggesting a promising druggable etiology. However, the timing and site(s) to target for anti-oxidant treatment in vivo are not clear. Here, we address this long-standing problem with QUEnch-assiSTed Magnetic Resonance Imaging (QUEST MRI), which non-invasively measures excessive production of free radicals without an exogenous contrast agent. QUEST MRI is hypothesized to be sensitive to noise-evoked cochlear oxidative stress in vivo. Rats exposed to a loud noise event that resulted in hair cell loss and reduced hearing capability had a supra-normal MRI R1 value in their cochleae that could be corrected with anti-oxidants, thus non-invasively indicating cochlear oxidative stress. A gold-standard oxidative damage biomarker [heme oxidase 1 (HO-1)] supported the QUEST MRI result. The results from this study highlight QUEST MRI as a potentially transformative measurement of cochlear oxidative stress in vivo that can be used as a biomarker for improving individual evaluation of anti-oxidant treatment efficacy in currently incurable oxidative stress-based forms of hearing loss.
Collapse
Affiliation(s)
- André Kühl
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Angela Dixon
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Mirabela Hali
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Aaron K Apawu
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Antonela Muca
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Moaz Sinan
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - James Warila
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Rod D Braun
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Bruce A Berkowitz
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Avril Genene Holt
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA.
- John D. Dingell Veteran Affairs Medical Center, Detroit, Michigan, USA.
| |
Collapse
|
18
|
Berkowitz BA, Romero R, Podolsky RH, Lins-Childers KM, Shen Y, Rosales T, Wadghiri YZ, Hoang DM, Arenas-Hernandez M, Garcia-Flores V, Schwenkel G, Panaitescu B, Gomez-Lopez N. QUEST MRI assessment of fetal brain oxidative stress in utero. Neuroimage 2019; 200:601-606. [PMID: 31158477 DOI: 10.1016/j.neuroimage.2019.05.069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/15/2019] [Accepted: 05/27/2019] [Indexed: 01/29/2023] Open
Abstract
PURPOSE To achieve sufficient precision of R1 (=1/T1) maps of the fetal brain in utero to perform QUEnch-assiSTed (QUEST) MRI in which a significant anti-oxidant-induced reduction in R1 indicates oxidative stress. METHODS C57BL/6 mouse fetuses in utero were gently and non-surgically isolated and secured using a homemade 3D printed clip. Using a commercial receive-only surface coil, brain maps of R1, an index sensitive to excessive and continuous free radical production, were collected using either a conventional Cartesian or a non-Cartesian (periodically rotated overlapping parallel lines with enhanced reconstruction) progressive saturation sequence. Data were normalized to the shortest TR time to remove bias. To assess oxidative stress, brain R1 maps were acquired on the lipopolysaccharide (LPS) model of preterm birth ± rosiglitazone (ROSI, which has anti-oxidant properties); phosphate buffered saline (PBS) controls ± ROSI were similarly studied. RESULTS Sufficient quality R1 maps were generated by a combination of the 3D printed clip, surface coil detection, non-Cartesian sequence, and normalization scheme ensuring minimal fetal movement, good detection sensitivity, reduced motion artifacts, and minimal baseline variations, respectively. In the LPS group, the combined caudate-putamen and thalamus region R1 was reduced (p < 0.05) with ROSI treatment consistent with brain oxidative stress; no evidence for oxidative stress was found in the pons region. In the PBS control group, brain R1's did not change with ROSI treatment. CONCLUSION The sensitivity and reproducibility of the combined approaches described herein enabled first-time demonstration of regional oxidative stress measurements of the fetal brain in utero using QUEST MRI.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA.
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, 20847, and Detroit, Michigan, 48201, USA; Department of Obstetrics and Gynecology, University of Michigan Health System, Ann Arbor, Michigan, 48109, USA; Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, Michigan, 48824, USA; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, 48201, USA; Detroit Medical Center, Detroit, Michigan, 48201, USA
| | - Robert H Podolsky
- Beaumont Research Institute, Beaumont Health, Royal Oak, Michigan, 48073, USA
| | | | - Yimin Shen
- Department of Radiology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Tilman Rosales
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Youssef Zaim Wadghiri
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), Bernard and Irene Schwartz Center for Biomedical Imaging, NYU School of Medicine and NYU Langone Health, New York, New York, 10016, USA
| | - D Minh Hoang
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), Bernard and Irene Schwartz Center for Biomedical Imaging, NYU School of Medicine and NYU Langone Health, New York, New York, 10016, USA
| | - Marcia Arenas-Hernandez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, 20847, and Detroit, Michigan, 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, 20847, and Detroit, Michigan, 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - George Schwenkel
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, 20847, and Detroit, Michigan, 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Bogdan Panaitescu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, 20847, and Detroit, Michigan, 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, 20847, and Detroit, Michigan, 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA; Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA.
| |
Collapse
|
19
|
Berkowitz BA, Podolsky RH, Lins-Childers KM, Li Y, Qian H. Outer Retinal Oxidative Stress Measured In Vivo Using QUEnch-assiSTed (QUEST) OCT. Invest Ophthalmol Vis Sci 2019; 60:1566-1570. [PMID: 30995313 PMCID: PMC6736344 DOI: 10.1167/iovs.18-26164] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/05/2019] [Indexed: 02/06/2023] Open
Abstract
Purpose To test the hypothesis that oxidative stress in the outer retina (OR = distance from external limiting membrane to the retinal pigment epithelium-choroid boundary) can be detected by using antioxidants (AOs) to correct an impaired light-evoked response as measured by optical coherence tomography (OCT). Methods C57BL/6J mice were maintained in the dark for ∼20 hours and studied by OCT before and after 1 hour of light exposure. OR thickness in dark or light was measured, and the light-dark difference (i.e., the photoresponse) was calculated. Subgroups of mice were given either saline or d-cis-diltiazem (an inducer of transient and nondamaging OR oxidative stress) ± methylene blue (24 hours before examination) and α-lipoic acid (1 hour before examination); one group was kept only in the dark and given only AOs. Results In uninjected or saline-injected control mice, the OR showed a similar and reproducible light-induced expansion; dark-adapted mice given AOs did not increase dark-adapted OR thickness. The d-cis-diltiazem-treated mice had no photoresponse (P > 0.05). The d-cis-diltiazem-treated mice given AOs corrected (P < 0.05) the suppressed OR photoresponse, indicating the presence of oxidative stress. Conclusions QUEnch-assiSTed (QUEST) OCT reproduced results from previous gold standard assays, showing that oxidative stress impairs the OR photoresponse and that d-cis-diltiazem produces OR oxidative stress. We envision future applications of QUEST OCT in a range of oxidative stress-based retinopathies.
Collapse
Affiliation(s)
- Bruce A. Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Robert H. Podolsky
- Beaumont Research Institute, Beaumont Health, Royal Oak, Michigan, United States
| | | | - Yichao Li
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Haohua Qian
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
20
|
Berkowitz BA, Podolsky RH, Farrell B, Lee H, Trepanier C, Berri AM, Dernay K, Graffice E, Shafie-Khorassani F, Kern TS, Roberts R. D-cis-Diltiazem Can Produce Oxidative Stress in Healthy Depolarized Rods In Vivo. Invest Ophthalmol Vis Sci 2019; 59:2999-3010. [PMID: 30025125 PMCID: PMC5995482 DOI: 10.1167/iovs.18-23829] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Purpose New perspectives are needed to understand decades of contradictory reports on the neuroprotective effects of the Cav1.2 L-type calcium channel blocker d-cis-diltiazem in retinitis pigmentosa (RP) models. Here, we address, in vivo, the following two knowledge gaps regarding d-cis-diltiazem's actions in the murine outer retina: (1) do normal mouse rods contain d-cis-diltiazem-insensitive Cav1.2 L-type calcium channels? (2) Can d-cis-diltiazem modify the normal rod redox environment? Methods First, transretinal Cav1.2 L-type calcium channels were noninvasively mapped with manganese-enhanced magnetic resonance imaging (MRI) following agonist Bay K 8644 in C57BL/6 (B6) and in Cav1.2 L-type calcium channel BAY K 8644-insensitive mutant B6 mice. Second, d-cis-diltiazem-treated oxidative stress-vulnerable (B6) or -resistant [129S6 (S6)] mice were examined in vivo (QUEnch-assiSTed [QUEST] MRI) and in whole retina ex vivo (lucigenin). Retinal thickness was measured using MRI. Results The following results were observed: (1) manganese uptake patterns in BAY K 8644-treated controls and mutant mice identified in vivo Cav1.2 L-type calcium channels in inner and outer retina; and (2) d-cis-diltiazem induced rod oxidative stress in dark-adapted B6 mice but not in light-adapted B6 mice or dark-adapted S6 mice (QUEST MRI). Oxidative stress in vivo was limited to inferior outer retina in dark-adapted B6 mice approximately 1-hour post d-cis-diltiazem. By approximately 4 hours post, only superior outer retina oxidative stress was observed and whole retinal superoxide production was supernormal. All groups had unremarkable retinal thicknesses. Conclusions D-cis-diltiazem's unexpectedly complex spatiotemporal outer retinal oxidative stress pattern in vivo was dependent on genetic background and rod membrane depolarization, but not apparently dependent on Cav1.2 L-type calcium channels, providing a potential rationale for contradictory results in different RP models.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States.,Department of Ophthalmology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Robert H Podolsky
- Department of Family Medicine and Public Health Sciences, Wayne State University, Detroit, Michigan, United States
| | - Benjamin Farrell
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Hojun Lee
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Christopher Trepanier
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Ali M Berri
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Kristin Dernay
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Emma Graffice
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Fatema Shafie-Khorassani
- Department of Family Medicine and Public Health Sciences, Wayne State University, Detroit, Michigan, United States
| | - Timothy S Kern
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States
| | - Robin Roberts
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
21
|
Decreased glucose-6-phosphate dehydrogenase activity along with oxidative stress affects visual contrast sensitivity in alcoholics. Alcohol 2018; 73:17-24. [PMID: 30172164 DOI: 10.1016/j.alcohol.2018.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 02/15/2018] [Accepted: 03/16/2018] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To evaluate oxidative stress and glucose-6-phosphate dehydrogenase (G6PD) status of alcoholics and discern their association, if any, with visual contrast sensitivity function. METHODS Forty male alcoholic subjects and 36 male non-alcoholic subjects with the same age and nutritional status were enrolled in this study. Serum malondialdehyde (MDA) level and glucose-6-phosphate dehydrogenase (G6PD) activity of erythrocytes were determined by spectrophotometric assay. Contrast sensitivity (CS) function of study subjects was measured using the Rabin Contrast Sensitivity Test (Precision Vision®, La Salle, Illinois, United States). RESULTS Serum MDA levels were significantly higher (p < 0.0001) and erythrocyte G6PD activity was significantly lower (p = 0.0026) in alcoholic subjects compared to the controls. CS scores of both eyes were also found to be decreased significantly in alcoholic subjects (both at p < 0.0001) compared to control subjects. On the other hand, CS scores of the alcoholic subjects were inversely correlated with the serum MDA level (r = -0.746, p < 0.0001) and directly correlated with erythrocyte G6PD activity (r = 0.78, p < 0.0001). A strong inverse correlation (r = -0.84, p < 0.0001) was also observed between serum MDA level and erythrocyte G6PD activity of alcoholic subjects. CONCLUSION Reduced G6PD activity and increased serum MDA level might be the key cause of the early visual abnormalities, such as reduced CS function of the alcoholic subjects.
Collapse
|
22
|
Bhutto IA, Ogura S, Baldeosingh R, McLeod DS, Lutty GA, Edwards MM. An Acute Injury Model for the Phenotypic Characteristics of Geographic Atrophy. Invest Ophthalmol Vis Sci 2018; 59:AMD143-AMD151. [PMID: 30208410 PMCID: PMC6133234 DOI: 10.1167/iovs.18-24245] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose Geographic atrophy (GA) is the late stage of non-neovascular age-related macular degeneration. A lack of animal models for GA has hampered treatment efforts. Presented herein is a rat model for GA using subretinal injection of sodium iodate (NaIO3). Methods Rats were given subretinal injections of NaIO3 (5 μg/μL) using a pico-injector. Fundus photographs and spectral domain optical coherent tomography scans were collected at 1, 3, 7, 14, and 28 days after injection, at which time rats were euthanized and eyes were enucleated. Eyes were either cryopreserved or dissected into retinal and choroidal flatmounts. Fluorescence immunohistochemistry was performed for retinal glial fibrillary acidic protein (activated Müller cells and astrocytes) and vimentin (Müller cells), as well as peanut agglutin lectin (photoreceptors) labeling. RPE/choroids were labeled for RPE65 and CD34. Images were collected on Zeiss confocal microscopes. Results Fundus photos, spectral domain optical coherent tomography, and RPE65 staining revealed well-demarcated areas with focal loss of RPE and photoreceptors in NaIO3-treated rats. At 1 day after injection, RPE cells appeared normal. By 3 days, there was patchy RPE and photoreceptor loss in the injected area. RPE and photoreceptors were completely degenerated in the injected area by 7 days. A large subretinal glial membrane occupied the degenerated area. Choriocapillaris was highly attenuated in the injected area at 14 and 28 days. Conclusions The rat model reported herein mimics the photoreceptor cell loss, RPE atrophy, glial membrane formation, and choriocapillaris degeneration seen in GA. This model will be valuable for developing and testing drugs and progenitor cell regenerative therapies for GA.
Collapse
Affiliation(s)
- Imran A Bhutto
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins Hospital, Baltimore, Maryland, United States.,Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Shuntaro Ogura
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins Hospital, Baltimore, Maryland, United States
| | - Rajkumar Baldeosingh
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins Hospital, Baltimore, Maryland, United States
| | - D Scott McLeod
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins Hospital, Baltimore, Maryland, United States
| | - Gerard A Lutty
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins Hospital, Baltimore, Maryland, United States
| | - Malia M Edwards
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins Hospital, Baltimore, Maryland, United States
| |
Collapse
|
23
|
Berkowitz BA, Podolsky RH, Berri AM, Dernay K, Graffice E, Shafie-Khorassani F, Roberts R. Dark Rearing Does Not Prevent Rod Oxidative Stress In Vivo in Pde6brd10 Mice. Invest Ophthalmol Vis Sci 2018; 59:1659-1665. [PMID: 29625492 PMCID: PMC5868999 DOI: 10.1167/iovs.17-22734] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose In cyclic light-reared Pde6brd10 mice, rod cell oxidative stress contributes to the degenerative phenotype. Dark rearing Pde6brd10 mice slows but does not prevent atrophy. This suggests that outer retinal oxidative stress occurs in Pde6brd10 mice independent of light exposure, a hypothesis tested in this study. Methods Mouse strains Pde6brd10 and C57Bl/6 (wild type) were dark reared until postnatal day (P) 23 (P23) or P30. In subgroups of dark-reared mice, (1) layer-specific excessive free radical production (i.e., an oxidative stress biomarker) in vivo via QUEnch-assiSTed magnetic resonance imaging (QUEST MRI) was indicated by a significant reduction in the greater-than-normal spin-lattice relaxation rate R1 (1/T1) with methylene blue, (2) superoxide production was measured ex vivo in whole retina (lucigenin), and (3) retinal layer spacing and thickness were assessed in vivo (optical coherence tomography, MRI). Results In P23 male Pde6brd10 mice, only the outer superior retina showed oxidative stress in vivo, as measured by QUEST MRI; a lucigenin assay confirmed supernormal superoxide production. In contrast, at P30, no evidence for retinal oxidative stress was observed. In P23 female Pde6brd10 mice, no retinal oxidative stress was apparent; however, at P30, oxidative stress was observed in superior inner and outer nuclear layers. Male and female Pde6brd10 mice at P23 had normal retinal thicknesses, whereas at P30, modest thinning was noted in inferior and superior retina. Conclusions We confirmed that outer retinal oxidative stress occurs in male and female dark-reared Pde6brd10 mice. Male and female Pde6brd10 mice demonstrated similar degrees of retinal thinning, but with unexpectedly distinct spatial and temporal retinal oxidative stress patterns.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States.,Department of Ophthalmology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Robert H Podolsky
- Department of Family Medicine and Public Health Sciences, Wayne State University, Detroit, Michigan, United States
| | - Ali M Berri
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Kristin Dernay
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Emma Graffice
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Fatema Shafie-Khorassani
- Department of Family Medicine and Public Health Sciences, Wayne State University, Detroit, Michigan, United States
| | - Robin Roberts
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
24
|
Berkowitz BA. Oxidative stress measured in vivo without an exogenous contrast agent using QUEST MRI. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 291:94-100. [PMID: 29705036 PMCID: PMC5963509 DOI: 10.1016/j.jmr.2018.01.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/09/2018] [Accepted: 01/24/2018] [Indexed: 05/10/2023]
Abstract
Decades of experimental studies have implicated excessive generation of reactive oxygen species (ROS) in the decline of tissue function during normal aging, and as a pathogenic factor in a vast array of fatal or debilitating morbidities. This massive body of work has important clinical implications since many antioxidants are FDA approved, readily cross blood-tissue barriers, and are effective at improving disease outcomes. Yet, the potential benefits of antioxidants have remained largely unrealized in patients because conventional methods cannot determine the dose, timing, and drug combinations to be used in clinical trials to localize and decrease oxidative stress. To address this major problem and improve translational success, new methods are urgently needed that non-invasively measure the same ROS biomarker both in animal models and patients with high spatial resolution. Here, we summarize a transformative solution based on a novel method: QUEnch-assiSTed MRI (QUEST MRI). The QUEST MRI index is a significant antioxidant-induced improvement in pathophysiology, or a reduction in 1/T1 (i.e., R1). The latter form of QUEST MRI provides a unique measure of uncontrolled production of endogenous, paramagnetic reactive oxygen species (ROS). QUEST MRI results to-date have been validated by gold standard oxidative stress assays. QUEST MRI has high translational potential because it does not use an exogenous contrast agent and requires only standard MRI equipment. Summarizing, QUEST MRI is a powerful non-invasive approach with unprecedented potential for (i) bridging antioxidant treatment in animal models and patients, (ii) identifying tissue subregions exhibiting oxidative stress, and (iii) coupling oxidative stress localization with behavioral dysfunction, disease pathology, and genetic vulnerabilities to serve as a marker of susceptibility.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201, United States; Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI 48201, United States.
| |
Collapse
|
25
|
Getsov P, Zhelev Z, Aoki I, Bakalova R. New Hypothesis and Alternative Approach for Imaging Neuronal Function and Metabolic Activity Based on Redox-Status. Balkan Med J 2018; 35:289-291. [PMID: 29588266 PMCID: PMC5981132 DOI: 10.4274/balkanmedj.2018.0286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Plamen Getsov
- Department of Radiology, Sofia University “St. Kliment Ohridski” School of Medicine, Sofia, Bulgaria,Department of Radiology, “Tsaritsa Yoanna-ISUL” University Hospital, Sofia, Bulgaria
| | - Zhivko Zhelev
- Trakia University School of Medicine, Stara Zagora, Bulgaria,Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Ichio Aoki
- Department of Molecular Imaging and Theranostics National Institute of Radiological Sciences, QST, Chiba, Japan,Group of Quantum-state Controlled MRI, National Institute of Radiological Sciences, Chiba, Japan
| | - Rumiana Bakalova
- Department of Radiology, Sofia University “St. Kliment Ohridski” School of Medicine, Sofia, Bulgaria,Department of Molecular Imaging and Theranostics National Institute of Radiological Sciences, QST, Chiba, Japan,Group of Quantum-state Controlled MRI, National Institute of Radiological Sciences, Chiba, Japan
| |
Collapse
|
26
|
Berkowitz BA, Podolsky RH, Lenning J, Khetarpal N, Tran C, Wu JY, Berri AM, Dernay K, Shafie-Khorassani F, Roberts R. Sodium Iodate Produces a Strain-Dependent Retinal Oxidative Stress Response Measured In Vivo Using QUEST MRI. Invest Ophthalmol Vis Sci 2017; 58:3286-3293. [PMID: 28666279 PMCID: PMC5493331 DOI: 10.1167/iovs.17-21850] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose We identify noninvasive biomarkers that measure the severity of oxidative stress within retina layers in sodium iodate (SI)-atrophy vulnerable (C57BL/6 [B6]) and SI-atrophy resistant (129S6/SvEvTac [S6]) mice. Methods At 24 hours after administering systemic SI to B6 and S6 mice we measured: (1) superoxide production in whole retina ex vivo, (2) excessive free radical production in vivo based on layer-specific 1/T1 values before and after α-lipoic acid (ALA) administration while the animal was inside the magnet (QUEnch-assiSTed MRI [QUEST MRI]), and (3) visual performance (optokinetic tracking) ± antioxidants; control mice were similarly assessed. Retinal layer spacing and thickness in vivo also were evaluated (optical coherence tomography, MRI). Results SI-treated B6 mice retina had a significantly higher superoxide production than SI-treated S6 mice. ALA-injected SI-treated B6 mice had reduced 1/T1 in more retinal layers in vivo than in SI-treated S6 mice. Uninjected and saline-injected SI-treated B6 mice had similar transretinal 1/T1 profiles. Notably, the inner segment layer 1/T1 of SI-treated B6 mice was responsive to ALA but was unresponsive in SI-treated S6 mice. In both SI-treated strains, antioxidants improved contrast sensitivity to similar extents; antioxidants did not change acuity in either group. Retinal thicknesses were normal in both SI-treated strains at 24 hours after treatment. Conclusions QUEST MRI uniquely measured severity of excessive free radical production within retinal layers of the same subject. Identifying the mechanisms underlying genetic vulnerabilities to oxidative stress is expected to help in understanding the pathogenesis of retinal degeneration.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States 2Department of Ophthalmology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Robert H Podolsky
- Deptarment of Family Medicine and Public Health Sciences, Wayne State University, Detroit, Michigan, United States
| | - Jacob Lenning
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Nikita Khetarpal
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Catherine Tran
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Johnny Y Wu
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Ali M Berri
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Kristin Dernay
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Fatema Shafie-Khorassani
- Deptarment of Family Medicine and Public Health Sciences, Wayne State University, Detroit, Michigan, United States
| | - Robin Roberts
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
27
|
Fan N, Silverman SM, Liu Y, Wang X, Kim BJ, Tang L, Clark AF, Liu X, Pang IH. Rapid repeatable in vivo detection of retinal reactive oxygen species. Exp Eye Res 2017; 161:71-81. [PMID: 28603016 DOI: 10.1016/j.exer.2017.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/02/2017] [Accepted: 06/05/2017] [Indexed: 12/11/2022]
Abstract
Oxidative injuries, such as those related to reactive oxygen species (ROS), have been implicated in various retinal and optic nerve disorders. Many ROS detection methods have been developed. Although widely utilized, many of these methods are useful only in post mortem tissues, or require relatively expensive equipment, or involve intraocular injection. In the present study, we demonstrated and characterized a chemiluminescent probe L-012 as a noninvasive, in vivo ROS detection agent in the mouse retina. Using optic nerve crush (ONC) and retinal ischemia/reperfusion (I/R) as injury models, we show that L-012 produced intensive luminescent signals specifically in the injured eyes. Histological examination showed that L-012 administration was safe to the retina. Additionally, compounds that reduce tissue superoxide levels, apocynin and TEMPOL, decreased injury-induced L-012 chemiluminescence. The decrease in L-012 signals correlated with their protective effects against retinal I/R-induced morphological and functional changes in the retina. Together, these data demonstrate the feasibility of a fast, simple, reproducible, and non-invasive detection method to monitor in vivo ROS in the retina. Furthermore, the results also show that reduction of ROS is a potential therapeutic approach for protection from these retinal injuries.
Collapse
Affiliation(s)
- Ning Fan
- Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology, Jinan University, Shenzhen, China; North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Sean M Silverman
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Yang Liu
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Xizhen Wang
- Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology, Jinan University, Shenzhen, China
| | - Byung-Jin Kim
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Liping Tang
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| | - Abbot F Clark
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Xuyang Liu
- Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology, Jinan University, Shenzhen, China
| | - Iok-Hou Pang
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
28
|
Berkowitz BA, Lenning J, Khetarpal N, Tran C, Wu JY, Berri AM, Dernay K, Haacke EM, Shafie-Khorassani F, Podolsky RH, Gant JC, Maimaiti S, Thibault O, Murphy GG, Bennett BM, Roberts R. In vivo imaging of prodromal hippocampus CA1 subfield oxidative stress in models of Alzheimer disease and Angelman syndrome. FASEB J 2017; 31:4179-4186. [PMID: 28592637 DOI: 10.1096/fj.201700229r] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 05/22/2017] [Indexed: 12/13/2022]
Abstract
Hippocampus oxidative stress is considered pathogenic in neurodegenerative diseases, such as Alzheimer disease (AD), and in neurodevelopmental disorders, such as Angelman syndrome (AS). Yet clinical benefits of antioxidant treatment for these diseases remain unclear because conventional imaging methods are unable to guide management of therapies in specific hippocampus subfields in vivo that underlie abnormal behavior. Excessive production of paramagnetic free radicals in nonhippocampus brain tissue can be measured in vivo as a greater-than-normal 1/T1 that is quenchable with antioxidant as measured by quench-assisted (Quest) MRI. Here, we further test this approach in phantoms, and we present proof-of-concept data in models of AD-like and AS hippocampus oxidative stress that also exhibit impaired spatial learning and memory. AD-like models showed an abnormal gradient along the CA1 dorsal-ventral axis of excessive free radical production as measured by Quest MRI, and redox-sensitive calcium dysregulation as measured by manganese-enhanced MRI and electrophysiology. In the AS model, abnormally high free radical levels were observed in dorsal and ventral CA1. Quest MRI is a promising in vivo paradigm for bridging brain subfield oxidative stress and behavior in animal models and in human patients to better manage antioxidant therapy in devastating neurodegenerative and neurodevelopmental diseases.-Berkowitz, B. A., Lenning, J., Khetarpal, N., Tran, C., Wu, J. Y., Berri, A. M., Dernay, K., Haacke, E. M., Shafie-Khorassani, F., Podolsky, R. H., Gant, J. C., Maimaiti, S., Thibault, O., Murphy, G. G., Bennett, B. M., Roberts, R. In vivo imaging of prodromal hippocampus CA1 subfield oxidative stress in models of Alzheimer disease and Angelman syndrome.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, USA; .,Department of Ophthalmology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Jacob Lenning
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Nikita Khetarpal
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Catherine Tran
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Johnny Y Wu
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Ali M Berri
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Kristin Dernay
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - E Mark Haacke
- Department of Radiology, Wayne State University, Detroit, Michigan, USA
| | - Fatema Shafie-Khorassani
- Department of Family Medicine and Public Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Robert H Podolsky
- Department of Family Medicine and Public Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - John C Gant
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, Lexington, Kentucky, USA
| | - Shaniya Maimaiti
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, Lexington, Kentucky, USA
| | - Olivier Thibault
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, Lexington, Kentucky, USA
| | - Geoffrey G Murphy
- Department of Molecular and Integrative Physiology, Molecular Behavioral Neuroscience Institute, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Brian M Bennett
- Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Faculty of Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - Robin Roberts
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
29
|
Berkowitz BA, Lewin AS, Biswal MR, Bredell BX, Davis C, Roberts R. MRI of Retinal Free Radical Production With Laminar Resolution In Vivo. Invest Ophthalmol Vis Sci 2016; 57:577-85. [PMID: 26886890 PMCID: PMC4771178 DOI: 10.1167/iovs.15-18972] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Recent studies have suggested the hypothesis that quench-assisted 1/T1 magnetic resonance imaging (MRI) measures free radical production with laminar resolution in vivo without the need of a contrast agent. Here, we test this hypothesis further by examining the spatial and detection sensitivity of quench-assisted 1/T1 MRI to strain, age, or retinal cell layer-specific genetic manipulations. Methods We studied: adult wild-type mice; mice at postnatal day 7 (P7); cre dependent retinal pigment epithelium (RPE)-specific MnSOD knockout mice; doxycycline-treated Sod2flox/flox mice lacking the cre transgene; and α-transducin knockout (Gnat1−/−) mice on a C57Bl/6 background. Transretinal 1/T1 profiles were mapped in vivo in the dark without or with antioxidant treatment, or followed by light exposure. We calibrated profiles spatially using optical coherence tomography. Results Dark-adapted RPE-specific MnSOD knockout mice had greater than normal 1/T1 in the RPE and outer nuclear layers that was corrected to wild-type levels by antioxidant treatment. Dark and light Gnat1−/− mice also had greater than normal outer retinal 1/T1 values. In adult wild-type mice, dark values of 1/T1 in the ellipsoid region and in the outer segment were suppressed by 13 minutes of light. By 29 minutes of light, 1/T1 reduction extended to the outer nuclear layer. Gnat1−/− mice demonstrated a faster light-evoked suppression of 1/T1 values in the outer retina. In P7 mice, transretinal 1/T1 profiles were the same in dark and light. Conclusions Quench-assisted MRI has the laminar resolution and detection sensitivity to evaluate normal and pathologic production of free radicals in vivo.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Anatomy and Cell Biology Wayne State University School of Medicine, Detroit, Michigan, United States 2Department of Ophthalmology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Alfred S Lewin
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States
| | - Manas R Biswal
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States
| | - Bryce X Bredell
- Department of Anatomy and Cell Biology Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Christopher Davis
- Department of Anatomy and Cell Biology Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Robin Roberts
- Department of Anatomy and Cell Biology Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|