1
|
Menon NG, Goyal R, Lema C, Woods PS, Tanguay AP, Morin AA, Das N, Jay GD, Krawetz RJ, Dufour A, Shapiro LH, Redfern RL, Ghosh M, Schmidt TA. Proteoglycan 4 (PRG4) expression and function in dry eye associated inflammation. Exp Eye Res 2021; 208:108628. [PMID: 34048779 DOI: 10.1016/j.exer.2021.108628] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/30/2021] [Accepted: 05/17/2021] [Indexed: 12/21/2022]
Abstract
Dry eye disease (DED) affects hundreds of millions of people worldwide. It is characterized by the production of inflammatory cytokines and chemokines as well as damaging matrix metalloproteinases (MMPs) at the ocular surface. While proteoglycan 4 (PRG4), a mucin-like glycoprotein present at the ocular surface, is most well known as a boundary lubricant that contributes to ocular surface integrity, it has been shown to blunt inflammation in various cell types, suggesting a dual mechanism of action. Recently, full-length recombinant human PRG4 (rhPRG4) has been shown to improve signs and symptoms of DED in humans. However, there remains a significant need for basic science research on rhPRG4's biological properties and its potential therapeutic mechanisms of action in treating DED. Therefore, the objectives of this study were to characterize endogenous PRG4 expression by telomerase-immortalized human corneal epithelial (hTCEpi) cells, examine whether exogenous rhPRG4 modulates cytokine and chemokine secretion in response to dry eye associated inflammation (TNFα and IL-1β), explore interactions between rhPRG4 and MMP-9, and understand how experimental dry eye (EDE) in mice affects PRG4 expression. PRG4 secretion from hTCEpi cells was quantified by Western blot and expression visualized by immunocytochemistry. Cytokine/chemokine production was measured by ELISA and Luminex, while rhPRG4's effect on MMP-9 activity, binding, and expression was quantified using an MMP-9 inhibitor kit, surface plasmon resonance, and reverse transcription polymerase chain reaction (RT-PCR), respectively. Finally, EDE was induced in mice, and PRG4 was visualized by immunohistochemistry in the cornea and by Western blot in lacrimal gland lysate. In vitro results demonstrate that hTCEpi cells synthesize and secrete PRG4, and PRG4 secretion is inhibited by TNFα and IL-1β. In response to these pro-inflammatory stresses, exogenous rhPRG4 significantly reduced the stimulated production of IP-10, RANTES, ENA-78, GROα, MIP-3α, and MIG, and trended towards a reduction of MIP-1α and MIP-1β. The hTCEpi cells were also able to internalize fluorescently-labelled rhPRG4, consistent with a mechanism of action that includes downstream biological signaling pathways. rhPRG4 was not digested by MMP-9, and it did not modulate MMP-9 gene expression in hTCEpi cells, but it was able to bind to MMP-9 and inhibited in vitro activity of exogenous MMP-9 in the presence of human tears. Finally, in vivo results demonstrate that EDE significantly decreased immunolocalization of PRG4 on the corneal epithelium and trended towards a reduction of PRG4 in lacrimal gland lysate. Collectively these results demonstrate rhPRG4 has anti-inflammatory properties on corneal epithelial cells, particularly as it relates to mitigating chemokine production, and is an inhibitor of MMP-9 activity, as well as that in vivo expression of PRG4 can be altered in preclinical models of DED. In conclusion, these findings contribute to our understanding of PRG4's immunomodulatory properties in the context of DED inflammation and provide the foundation and motivation for further mechanistic research of PRG4's properties on the ocular surface as well as expanding clinical evaluation of its ability as a multifunctional therapeutic agent to effectively provide relief to those who suffer from DED.
Collapse
Affiliation(s)
- Nikhil G Menon
- Biomedical Engineering Department, School of Dental Medicine, UConn Health, Farmington, CT, USA
| | - Ruchi Goyal
- Biomedical Engineering Department, School of Dental Medicine, UConn Health, Farmington, CT, USA
| | - Carolina Lema
- The Ocular Surface Institute, College of Optometry, University of Houston, Houston, TX, USA
| | - Paige S Woods
- Biomedical Engineering Department, School of Dental Medicine, UConn Health, Farmington, CT, USA
| | - Adam P Tanguay
- Biomedical Engineering Department, School of Dental Medicine, UConn Health, Farmington, CT, USA
| | - Alyssa A Morin
- Biomedical Engineering Department, School of Dental Medicine, UConn Health, Farmington, CT, USA
| | - Nabangshu Das
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Gregory D Jay
- Department of Emergency Medicine, Warren Alpert Medical School & School of Engineering, Brown University, Providence, RI, USA
| | - Roman J Krawetz
- Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Antoine Dufour
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada; Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Linda H Shapiro
- Department of Cell Biology, School of Medicine, UConn Health, Farmington, CT, USA
| | - Rachel L Redfern
- The Ocular Surface Institute, College of Optometry, University of Houston, Houston, TX, USA
| | - Mallika Ghosh
- Department of Cell Biology, School of Medicine, UConn Health, Farmington, CT, USA
| | - Tannin A Schmidt
- Biomedical Engineering Department, School of Dental Medicine, UConn Health, Farmington, CT, USA.
| |
Collapse
|
2
|
Pellegrini M, Senni C, Bernabei F, Cicero AFG, Vagge A, Maestri A, Scorcia V, Giannaccare G. The Role of Nutrition and Nutritional Supplements in Ocular Surface Diseases. Nutrients 2020; 12:nu12040952. [PMID: 32235501 PMCID: PMC7230622 DOI: 10.3390/nu12040952] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/16/2022] Open
Abstract
Dry eye disease (DED) is a multifactorial disease of the ocular surface system whose chore mechanisms are tear film instability, inflammation, tear hyperosmolarity and epithelial damage. In recent years, novel therapies specifically targeting inflammation and oxidative stress are being investigated and used in this field. Therefore, an increasing body of evidence supporting the possible role of different micronutrients and nutraceutical products for the treatment of ocular surface diseases is now available. In the present review, we analyzed in detail the effects on ocular surface of omega-3 fatty acids, vitamins A, B12, C, D, selenium, curcumin and flavonoids. Among these, the efficacy of omega-3 fatty acid supplementation in ameliorating DED signs and symptoms is supported by robust scientific evidence. Further long-term clinical trials are warranted to confirm the safety and efficacy of the supplementation of the other micronutrients and nutraceuticals.
Collapse
Affiliation(s)
- Marco Pellegrini
- Ophthalmology Unit, S.Orsola-Malpighi University Hospital, University of Bologna, 40138 Bologna, Italy; (C.S.); (F.B.)
- Correspondence: ; Tel.: +39-3343-308141
| | - Carlotta Senni
- Ophthalmology Unit, S.Orsola-Malpighi University Hospital, University of Bologna, 40138 Bologna, Italy; (C.S.); (F.B.)
| | - Federico Bernabei
- Ophthalmology Unit, S.Orsola-Malpighi University Hospital, University of Bologna, 40138 Bologna, Italy; (C.S.); (F.B.)
| | - Arrigo F. G. Cicero
- Medical and Surgical Sciences Department, University of Bologna, 40138 Bologna, Italy;
| | - Aldo Vagge
- Eye Clinic of Genoa, Policlinico San Martino, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, 16132 Genoa, Italy;
| | - Antonio Maestri
- Medical Oncology Department, Santa Maria della Scaletta Hospital, 40026 Imola, Italy;
| | - Vincenzo Scorcia
- Department of Ophthalmology, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy; (V.S.); (G.G.)
| | - Giuseppe Giannaccare
- Department of Ophthalmology, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy; (V.S.); (G.G.)
| |
Collapse
|
3
|
Li H, Zhong X, Li W, Wang Q. Effects of 1,25-dihydroxyvitamin D3 on experimental periodontitis and AhR/NF-κB/NLRP3 inflammasome pathway in a mouse model. J Appl Oral Sci 2019; 27:e20180713. [PMID: 31691738 PMCID: PMC6831029 DOI: 10.1590/1678-7757-2018-0713] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/10/2019] [Indexed: 02/05/2023] Open
Abstract
Vitamin D has been known to have important regulatory functions in inflammation and immune response and shows inhibitory effects on experimental periodontitis in animal models. However, the potential mechanism has yet to be clarified. Recent studies have highlighted Aryl hydrocarbon receptor (AhR) and its downstream signaling as a crucial regulator of immune homeostasis and inflammatory regulation. OBJECTIVE This study aimed to clarify the effect of 1,25-dihydroxyvitamin D3 (VD3) on experimental periodontitis and AhR/nuclear factor-κB (NF-κB)/NLR pyrin domain-containing 3 (NLRP3) inflammasome pathway in the gingival epithelium in a murine model. METHODOLOGY We induced periodontitis in male C57BL/6 wild-type mice by oral inoculation of Porphyromonas gingivalis (P. gingivalis), and subsequently gave intraperitoneal VD3 injection to the mice every other day for 8 weeks. Afterwards, we examined the alveolar bone using scanning electron microscopy (SEM) and detected the gingival epithelial protein using western blot analysis and immunohistochemical staining. RESULTS SEM images demonstrated that alveolar bone loss was reduced in the periodontitis mouse model after VD3 supplementation. Western blot analyses and immunohistochemical staining of the gingival epithelium showed that the expression of vitamin D receptor, AhR and its downstream cytochrome P450 1A1 were enhanced upon VD3 application. Additionally, VD3 decreased NF-κB p65 phosphorylation, and NLRP3, apoptosis-associated speck-like protein, caspase-1, interleukin-1β (IL-1β) and IL-6 protein expression. CONCLUSIONS These results implicate the alleviation of periodontitis and the alteration of AhR/NF-κB/NLRP3 inflammasome pathway by VD3 in the mouse model. The attenuation of this periodontal disease may correlate with the regulation of AhR/NF-κB/NLRP3 inflammasome pathway by VD3.
Collapse
Affiliation(s)
- Hao Li
- Guangxi Medical University, the Affiliated Hospital of Stomatology, Department of Prosthodontics, China
| | - Xinghua Zhong
- Guangxi Medical University, the Affiliated Hospital of Stomatology, Department of Prosthodontics, China
| | - Wei Li
- Sichuan University, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, China
| | - Qi Wang
- Sichuan University, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, China
| |
Collapse
|
4
|
Current therapies in alleviating liver disorders and cancers with a special focus on the potential of vitamin D. Nutr Metab (Lond) 2018; 15:13. [PMID: 29449867 PMCID: PMC5807831 DOI: 10.1186/s12986-018-0251-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 01/30/2018] [Indexed: 02/06/2023] Open
Abstract
Background Liver dysfunction is a topic of global concern with many advancing therapies being researched. Though vitamin D takes a center place, other therapies especially nutritional are also gaining ground. Vitamin D has gone beyond its role in skeletal disorders by showcasing its associations in other metabolic dysfunctions too. Result Epidemiological evidences show a correlation between the status of vitamin D and different forms of cancer. Vitamin D receptors and alterations in gene expression appear decisive in the development of chronic liver disorders. Nutritional status therefore plays a significant role in avoiding the complications related to liver dysfunctions, making it mandatory in maintaining vitamin D sufficiency in the body. Therapies with omega-3 fatty acids, antioxidants, amino acids, steroids also render benefits which could be further explored. Recent research on the progression of certain forms of liver cancer using vitamin D analogs like Seocalcitol EB 1089 has shown good promise. Conclusion The anti-inflammatory and immuno- regulatory properties of vitamin D makes its analogs, suitable candidates of better choice for the prevention and treatment of liver disorders and cancer.
Collapse
|
6
|
Zhang J, Dai Y, Wu D, Xu J. Calcitriol, the Active Metabolite of Vitamin D 3, Inhibits Dry Eye Related Corneal Inflammation In Vivo and In Vitro. Ocul Immunol Inflamm 2017; 27:257-265. [PMID: 29039981 DOI: 10.1080/09273948.2017.1372486] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE To examine the influence of topical administration of calcitriol on dry eye (DE) related corneal inflammation. METHODS Benzalkonium chloride (BAC, 0.2%) was applied to induce DE. Then rats were treated topically with calcitriol (10-6μM). Tear break-up time (TBUT), fluorescein staining score, inflammatory index, and tear volume were measured. Corneal epithelium damage and corneal inflammation were examined by H&E staining or RT-qPCR. In vitro, human corneal epithelial cells (iHCEC) were cultured in hyperosmotic medium (450 mOsM) with various concentrations of calcitriol. Levels of pro-inflammatory mediators were measured by RT-qPCR or ELISA. NF-κB activation was examined by Western blotting and immunofluorescence staining. RESULTS Calcitriol significantly ameliorated DE symptoms, attenuating corneal inflammation. In vitro studies showed that calcitriol significantly decreased the expression of pro-inflammatory mediators in iHCECs under hyperosmotic stress, probably through inhibiting NF-κB activation. CONCLUSION The results suggest that calcitriol might be a potential therapeutic agent for DE.
Collapse
Affiliation(s)
- Jing Zhang
- a Department of Ophthalmology and Visual Science , Eye & ENT Hospital of Fudan University, Key Laboratory of Myopia, Ministry of Health , Shanghai , China
| | - Yiqin Dai
- a Department of Ophthalmology and Visual Science , Eye & ENT Hospital of Fudan University, Key Laboratory of Myopia, Ministry of Health , Shanghai , China
| | - Dan Wu
- a Department of Ophthalmology and Visual Science , Eye & ENT Hospital of Fudan University, Key Laboratory of Myopia, Ministry of Health , Shanghai , China
| | - Jianjiang Xu
- a Department of Ophthalmology and Visual Science , Eye & ENT Hospital of Fudan University, Key Laboratory of Myopia, Ministry of Health , Shanghai , China
| |
Collapse
|