1
|
Yang H, Guo K, Ding P, Ning J, Zhang Y, Wang Y, Wang Z, Liu G, Shao C, Pan M, Ma Z, Yan X, Han J. Histone deacetylases: Regulation of vascular homeostasis via endothelial cells and vascular smooth muscle cells and the role in vascular pathogenesis. Genes Dis 2024; 11:101216. [PMID: 39281836 PMCID: PMC11396065 DOI: 10.1016/j.gendis.2024.101216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 09/18/2024] Open
Abstract
Histone deacetylases (HDACs) are proteases that play a key role in chromosome structural modification and gene expression regulation, and the involvement of HDACs in cancer, the nervous system, and the metabolic and immune system has been well reviewed. Our understanding of the function of HDACs in the vascular system has recently progressed, and a significant variety of HDAC inhibitors have been shown to be effective in the treatment of vascular diseases. However, few reviews have focused on the role of HDACs in the vascular system. In this study, the role of HDACs in the regulation of the vascular system mainly involving endothelial cells and vascular smooth muscle cells was discussed based on recent updates, and the role of HDACs in different vascular pathogenesis was summarized as well. Furthermore, the therapeutic effects and prospects of HDAC inhibitors were also addressed in this review.
Collapse
Affiliation(s)
- Hanyi Yang
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
- Xi'an Medical University, Xi'an, Shaanxi 710086, China
| | - Kai Guo
- Department of Thoracic Surgery, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710068, China
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Peng Ding
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Jiayi Ning
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
- Xi'an Medical University, Xi'an, Shaanxi 710086, China
| | - Yimeng Zhang
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
- Xi'an Medical University, Xi'an, Shaanxi 710086, China
| | - Yuanyong Wang
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Zhaoyang Wang
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Guanglin Liu
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Changjian Shao
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Minghong Pan
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Zhiqiang Ma
- Department of Medical Oncology, Senior Department of Oncology, Chinese PLA General Hospital, The Fifth Medical Center, Beijing 100853, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| |
Collapse
|
2
|
Watanabe M, Tsugeno Y, Sato T, Umetsu A, Nishikiori N, Furuhashi M, Ohguro H. TGF-β Isoforms Affect the Planar and Subepithelial Fibrogenesis of Human Conjunctival Fibroblasts in Different Manners. Biomedicines 2023; 11:2005. [PMID: 37509644 PMCID: PMC10377695 DOI: 10.3390/biomedicines11072005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/05/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Three highly homologous isoforms of TGF-β, TGF-β-1~3, are involved in the regulation of various pathophysiological conditions such as wound healing processes in different manners, despite the fact that they bind to the same receptors during their activation. The purpose of the current investigation was to elucidate the contributions of TGF-β-1 ~3 to the pathology associated with conjunctiva. For this purpose, the biological effects of these TGF-β isoforms on the structural and functional properties of two-dimensional (2D) and three-dimensional (3D) cultured human conjunctival fibroblasts (HconF) were subjected to the following analyses: 1) transendothelial electrical resistance (TEER), a Seahorse cellular metabolic measurement (2D), size and stiffness measurements of the 3D HTM spheroids, and the qPCR gene expression analyses of extracellular matrix (ECM) components (2D and 3D). The TGF-β isoforms caused different effects on the proliferation of the HconF cell monolayer evaluated by TEER measurements. The differences included a significant increase in the presence of 5 ng/mL TGF-β-1 and -2 and a substantial decrease in the presence of 5 ng/mL TGF-β-3, although there were no significant differences in the response to the TGF-β isoforms for cellular metabolism among the three groups. Similar to planar proliferation, the TGF-β isoforms also induced diverse effects toward the mechanical aspects of 3D HconF spheroids, where TGF-β-1 increased stiffness, TGF-β-2 caused no significant effects, and TGF-β-3 caused the downsizing of the spheroids and stiffness enhancement. The mRNA expression of the ECMs were also modulated in diverse manners by the TGF-β isoforms as well as the culture conditions for the 2D vs. 3D isoforms. Many of these TGF-β-3 inducible effects were markedly different from those caused by TGF-β1 and TGF-β-2. The findings presented herein suggest that the three TGF-β isoforms induce diverse and distinctly different effects on cellular properties and the expressions of ECM molecules in HconF and that these changes are independent of cellular metabolism, thereby inducing different effects on the epithelial and subepithelial proliferation of human conjunctiva.
Collapse
Affiliation(s)
- Megumi Watanabe
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Yuri Tsugeno
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Tatsuya Sato
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, Sapporo 060-8556, Japan
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Araya Umetsu
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Nami Nishikiori
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Masato Furuhashi
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Hiroshi Ohguro
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Japan
| |
Collapse
|
3
|
Shao CG, Sinha NR, Mohan RR, Webel AD. Novel Therapies for the Prevention of Fibrosis in Glaucoma Filtration Surgery. Biomedicines 2023; 11:657. [PMID: 36979636 PMCID: PMC10045591 DOI: 10.3390/biomedicines11030657] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Conjunctival fibrosis remains the major impediment to the success of glaucoma filtration surgery. Anti-metabolites remain the gold standard for mitigating post-surgical fibrosis, but they are associated with high complication rates and surgical failure rates. Establishing a more targeted approach to attenuate conjunctival fibrosis may revolutionize the surgical approach to glaucoma. A new strategy is needed to prevent progressive tissue remodeling and formation of a fibrotic scar, subsequently increasing surgical success and reducing the prevalence of glaucoma-related vision loss. Advancements in our understanding of molecular signaling and biomechanical cues in the conjunctival tissue architecture are broadening the horizon for new therapies and biomaterials for the mitigation of fibrosis. This review aims to highlight the strategies and current state of promising future approaches for targeting fibrosis in glaucoma filtration surgery.
Collapse
Affiliation(s)
| | - Nishant R. Sinha
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65212, USA
- One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Rajiv R. Mohan
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65212, USA
- One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65212, USA
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Aaron D. Webel
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
4
|
Swarup A, Grosskopf AK, Stapleton LM, Subramaniam VR, Li B, Weissman IL, Appel EA, Wu AY. PNP Hydrogel Prevents Formation of Symblephara in Mice After Ocular Alkali Injury. Transl Vis Sci Technol 2022; 11:31. [PMID: 35191963 PMCID: PMC8883170 DOI: 10.1167/tvst.11.2.31] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/17/2022] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To create an alkali injury symblephara mouse model to study conjunctival fibrosis pathophysiology and test polymer nanoparticle (PNP) hydrogel as a preventative therapeutic. METHODS Mice were injured using NaOH-soaked filter paper to determine the optimal NaOH concentration to induce the formation of symblephara. Injured mice were observed for 7 days to detect the formation of symblephara. Forniceal shortening observed on hematoxylin and eosin (H&E)-stained tissue sections was used as a symblephara marker. Alpha-smooth muscle actin (α-SMA) expression, Masson's trichrome assay, and periodic acid-Schiff (PAS) staining were used to determine myofibroblast expression, collagen deposition, and goblet cell integrity. PNP hydrogel, with multivalent, noncovalent interactions between modified biopolymers and nanoparticles, was applied immediately after alkali injury to determine its ability to prevent the formation of symblephara. RESULTS Forniceal shortening was observed in H&E images with 1N NaOH for 2 minutes after 7 days without globe destruction. PNP hydrogel prevented forniceal shortening after alkali injury as observed by H&E histology. α-SMA expression and collagen deposition in eye tissue sections were increased in the fornix after injury with 1N NaOH compared with uninjured controls. PNP hydrogel treatment immediately after injury reduced α-SMA expression and collagen deposition in the forniceal region. Mucin-secreting goblet cells stained with PAS were significantly lower in alkali-injured and PNP hydrogel-treated conjunctivas than in uninjured control conjunctivas. CONCLUSIONS We observed that 1N NaOH for 2 minutes induced maximal forniceal shortening and symblephara in mice. PNP hydrogel prevented forniceal shortening and conjunctival fibrosis after injury. This first murine model for symblephara will be useful to study fibrosis pathophysiology after conjunctival injury and to determine therapeutic targets for cicatrizing diseases. TRANSLATIONAL RELEVANCE This mouse model of symblephara can be useful for studying conjunctival scarring disease pathophysiology and preventative therapeutics. We tested PNP hydrogel, which prevented the formation of symblephara after injury.
Collapse
Affiliation(s)
- Aditi Swarup
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Abigail K. Grosskopf
- Department of Materials Science and Engineering, Stanford University, Palo Alto, CA, USA
| | - Lindsay M. Stapleton
- Department of Materials Science and Engineering, Stanford University, Palo Alto, CA, USA
| | - Varun R. Subramaniam
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - BaoXiang Li
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Irving L. Weissman
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Eric A. Appel
- Department of Materials Science and Engineering, Stanford University, Palo Alto, CA, USA
| | - Albert Y. Wu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
5
|
van Mechelen RJS, Wolters JE, Bertens CJF, Webers CAB, van den Biggelaar FJHM, Gorgels TGMF, Beckers HJM. Animal models and drug candidates for use in glaucoma filtration surgery: A systematic review. Exp Eye Res 2022; 217:108972. [PMID: 35114212 DOI: 10.1016/j.exer.2022.108972] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/14/2022] [Accepted: 01/26/2022] [Indexed: 12/17/2022]
Abstract
Glaucoma, a degenerative disease of the optic nerve, is the leading cause of irreversible blindness worldwide. Currently, there is no curative treatment. The only proven treatment is lowering intraocular pressure (IOP), the most important risk factor. Glaucoma filtration surgery (GFS) can effectively lower IOP. However, approximately 10% of all surgeries fail yearly due to excessive wound healing, leading to fibrosis. GFS animal models are commonly used for the development of novel treatment modalities. The aim of the present review was to provide an overview of available animal models and anti-fibrotic drug candidates. MEDLINE and Embase were systematically searched. Manuscripts until September 1st, 2021 were included. Studies that used animal models of GFS were included in this review. Additionally, the snowball method was used to identify other publications which had not been identified through the systematic search. Two hundred articles were included in this manuscript. Small rodents (e.g. mice and rats) are often used to study the fibrotic response after GFS and to test drug candidates. Due to their larger eyes, rabbits are better suited to develop medical devices. Novel drugs aim to inhibit specific pathways, e.g. through the use of modulators, monoclonal antibodies, aqueous suppressants or gene therapy. Although most newly studied drugs offer a higher safety profile compared to antimetabolites, their efficacy is in most cases lower when compared to MMC. Current literature on animal models and potential drug candidates for GFS were summarized in this review. Future research should focus on refining current animal models (for example through the induction of glaucoma prior to undertaking GFS) and standardizing animal research to ensure a higher reproducibility and reliability across different research groups. Lastly, novel therapies need to be further optimized, e.g. by conducting more research on the dosage, administration route, application frequency, the option of creating combination therapies, or the development of drug delivery systems for sustained release of anti-fibrotic medication.
Collapse
Affiliation(s)
- Ralph J S van Mechelen
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), 6202 AZ, Maastricht, the Netherlands; School for Mental Health and Neuroscience, Maastricht University, 6229 ER, Maastricht, the Netherlands; Chemelot Institute for Science and Technology (InSciTe), 6229 GS, Maastricht, the Netherlands.
| | - Jarno Ej Wolters
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), 6202 AZ, Maastricht, the Netherlands; School for Mental Health and Neuroscience, Maastricht University, 6229 ER, Maastricht, the Netherlands; Chemelot Institute for Science and Technology (InSciTe), 6229 GS, Maastricht, the Netherlands
| | - Christian J F Bertens
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), 6202 AZ, Maastricht, the Netherlands; School for Mental Health and Neuroscience, Maastricht University, 6229 ER, Maastricht, the Netherlands; Chemelot Institute for Science and Technology (InSciTe), 6229 GS, Maastricht, the Netherlands
| | - Carroll A B Webers
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), 6202 AZ, Maastricht, the Netherlands
| | - Frank J H M van den Biggelaar
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), 6202 AZ, Maastricht, the Netherlands
| | - Theo G M F Gorgels
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), 6202 AZ, Maastricht, the Netherlands
| | - Henny J M Beckers
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), 6202 AZ, Maastricht, the Netherlands
| |
Collapse
|
6
|
Swarup A, Ta CN, Wu AY. Molecular mechanisms and treatments for ocular symblephara. Surv Ophthalmol 2022; 67:19-30. [PMID: 33932469 PMCID: PMC8553799 DOI: 10.1016/j.survophthal.2021.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 01/03/2023]
Abstract
There are currently no effective methods to prevent or durably treat ocular symblephara, the adhesions between the palpebral and bulbar conjunctiva. How symblephara form at the molecular level is largely unknown. We present here an overview of current clinical symblephara treatments and describe potential molecular mechanisms behind conjunctival adhesion formation that may inform future symblephara treatment and prevention options. Understanding how symblephara form at the molecular level will facilitate treatment development. Preventative therapies may be possible by targeting symblephara progenitor cells immediately after injuries, while novel therapeutics should be aimed at modulating TGF-β pathways and effector cells in conjunctival scarring to treat symblephara formation more effectively.
Collapse
Affiliation(s)
- Aditi Swarup
- Department of Ophthalmology, Stanford University School of Medicine
| | - Christopher N Ta
- Department of Ophthalmology, Stanford University School of Medicine
| | - Albert Y Wu
- Department of Ophthalmology, Stanford University School of Medicine.
| |
Collapse
|
7
|
Zaidi SAH, Thakore N, Singh S, Guzman W, Mehrotra S, Gangaraju V, Husain S. Histone Deacetylases Regulation by δ-Opioids in Human Optic Nerve Head Astrocytes. Invest Ophthalmol Vis Sci 2021; 61:17. [PMID: 32915982 PMCID: PMC7488628 DOI: 10.1167/iovs.61.11.17] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose We determined whether δ-opioid receptor agonist (SNC-121) regulates acetylation homeostasis via controlling histone deacetylases (HDACs) activity and expression in optic nerve head (ONH) astrocytes. Methods ONH astrocytes were treated with SNC-121 (1 µM) for 24 hours. The HDAC activity was measured using HDAC-specific fluorophore-conjugated synthetic substrates, Boc-Lys(Ac)-AMC and (Boc-Lys(Tfa)-AMC). Protein and mRNA expression of each HDAC was determined by Western blotting and quantitative real-time PCR. IOP in rats was elevated by injecting 2.0 M hypertonic saline into the limbal veins. Results Delta opioid receptor agonist, SNC-121 (1 µM), treatment increased acetylation of histone H3, H2B, and H4 by 128 ± 3%, 45 ± 1%, and 68 ± 2%, respectively. The addition of Garcinol, a histone-acetyltransferase inhibitor, fully blocked SNC-121–induced histone H3 acetylation. SNC-121 reduced the activities of class I and IIb HDACs activities significantly (17 ± 3%) and this decrease in HDACs activities was fully blocked by a selective δ-opioid receptors antagonist, naltrindole. SNC-121 also decrease the mRNA expression of HDAC-3 and HDAC-6 by 19% and 18%, respectively. Furthermore, protein expression of HDAC 1, 2, 3, and 6 was significantly (P < 0.05) decreased by SNC-121 treatment. SNC-121 treatment also reduced lipopolysaccharide-induced TNF-α production from ONH astrocytes and glial fibrillary acidic protein immunostaining in the optic nerve of ocular hypertensive animals. Conclusions We provided evidence that δ-opioid receptor agonist activation increased histone acetylation, decrease HDACs class I and class IIb activities, mRNA, and protein expression, lipopolysaccharide-induced TNF-α production in ONH astrocytes. Our data also demonstrate that SNC-121 treatment decrease glial fibrillary acidic protein immunostaining in the optic nerves of animals with ocular hypertension.
Collapse
Affiliation(s)
- Syed A H Zaidi
- Hewitt Laboratory of the Ola B. Williams Glaucoma Centre, Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, South Carolina
| | - Nakul Thakore
- Hewitt Laboratory of the Ola B. Williams Glaucoma Centre, Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, South Carolina
| | - Sudha Singh
- Hewitt Laboratory of the Ola B. Williams Glaucoma Centre, Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, South Carolina
| | - Wendy Guzman
- Hewitt Laboratory of the Ola B. Williams Glaucoma Centre, Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, South Carolina
| | - Shikhar Mehrotra
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Vamsi Gangaraju
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Shahid Husain
- Hewitt Laboratory of the Ola B. Williams Glaucoma Centre, Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
8
|
AR12286 Alleviates TGF-β-Related Myofibroblast Transdifferentiation and Reduces Fibrosis after Glaucoma Filtration Surgery. Molecules 2020; 25:molecules25194422. [PMID: 32993110 PMCID: PMC7583051 DOI: 10.3390/molecules25194422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/27/2020] [Accepted: 09/24/2020] [Indexed: 11/29/2022] Open
Abstract
Scar formation can cause the failure of glaucoma filtration surgery. We investigated the effect of AR12286, a selective Rho-associated kinase inhibitor, on myofibroblast transdifferentiation and intraocular pressure assessment in rabbit glaucoma filtration surgery models. Cell migration and collagen contraction were used to demonstrate the functionality of AR12286-modulated human conjunctival fibroblasts (HConFs). Polymerase chain reaction quantitative analysis was used to determine the effect of AR12286 on the production of collagen Type 1A1 and fibronectin 1. Cell migration and collagen contraction in HConFs were activated by TGF-β1. However, compared with the control group, rabbit models treated with AR12286 exhibited higher reduction in intraocular pressure after filtration surgery, and decreased collagen levels at the wound site in vivo. Therefore, increased α-SMA expression in HConFs induced by TGF-β1 could be inhibited by AR12286, and the production of Type 1A1 collagen and fibronectin 1 in TGF-β1-treated HConFs was inhibited by AR12286. Overall, the stimulation of HConFs by TGF-β1 was alleviated by AR12286, and this effect was mediated by the downregulation of TGF-β receptor-related SMAD signaling pathways. In vivo results indicated that AR12286 thus improves the outcome of filtration surgery as a result of its antifibrotic action in the bleb tissue because AR12286 inhibited the TGF-β receptor-related signaling pathway, suppressing several downstream reactions in myofibroblast transdifferentiation.
Collapse
|
9
|
Mohamed NG, Yap TE, Almonte M, Susanna FN, Crawley L, Cordeiro MF. Focusing on surgical and laser advances in glaucoma management. EXPERT REVIEW OF OPHTHALMOLOGY 2020. [DOI: 10.1080/17469899.2020.1724538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Nada G. Mohamed
- The Ophthalmology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
- The Western Eye Hospital, Imperial College Healthcare NHS Trust, London, UK
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London, UK
| | - Timothy E. Yap
- The Western Eye Hospital, Imperial College Healthcare NHS Trust, London, UK
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London, UK
| | - Melanie Almonte
- The Western Eye Hospital, Imperial College Healthcare NHS Trust, London, UK
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London, UK
| | - Fernanda N. Susanna
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London, UK
- Department of Ophthalmology, University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | - Laura Crawley
- The Western Eye Hospital, Imperial College Healthcare NHS Trust, London, UK
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London, UK
| | - Maria Francesca Cordeiro
- The Western Eye Hospital, Imperial College Healthcare NHS Trust, London, UK
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London, UK
- Glaucoma and Retinal Neurodegeneration Group, Department of Visual Neuroscience, UCL Institute of Ophthalmology, London, UK
| |
Collapse
|
10
|
Sung MS, Heo H, Eom GH, Kim SY, Piao H, Guo Y, Park SW. HDAC2 Regulates Glial Cell Activation in Ischemic Mouse Retina. Int J Mol Sci 2019; 20:ijms20205159. [PMID: 31627491 PMCID: PMC6829428 DOI: 10.3390/ijms20205159] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/10/2019] [Accepted: 10/16/2019] [Indexed: 11/29/2022] Open
Abstract
The current study was undertaken to investigate whether histone deacetylases (HDACs) can modulate the viability of retinal ganglion cells (RGCs) and the activity of glial cells in a mouse model of retinal ischemia-reperfusion (IR) injury. C57BL/6J mice were subjected to constant elevation of intraocular pressure for 60 min to induce retinal IR injury. Expression of macroglial and microglial cell markers (GFAP and Iba1), hypoxia inducing factor (HIF)-1α, and histone acetylation was analyzed after IR injury. To investigate the role of HDACs in the activation of glial cells, overexpression of HDAC1 and HDAC2 isoforms was performed. To determine the effect of HDAC inhibition on RGC survival, trichostatin-A (TSA, 2.5 mg/kg) was injected intraperitoneally. After IR injury, retinal GFAP, Iba1, and HIF-1α were upregulated. Conversely, retinal histone acetylation was downregulated. Notably, adenoviral-induced overexpression of HDAC2 enhanced glial activation following IR injury, whereas overexpression of HDAC1 did not significantly affect glial activation. TSA treatment significantly increased RGC survival after IR injury. Our results suggest that increased activity of HDAC2 is closely related to glial activation in a mouse model of retinal IR injury and inhibition of HDACs by TSA showed neuroprotective potential in retinas with IR injuries.
Collapse
Affiliation(s)
- Mi Sun Sung
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea.
| | - Hwan Heo
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea.
| | - Gwang Hyeon Eom
- Department of Pharmacology, Chonnam National University Medical School, Hwasungun 58128, Korea.
| | - So Young Kim
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea.
| | - Helong Piao
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea.
| | - Yue Guo
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea.
| | - Sang Woo Park
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea.
| |
Collapse
|
11
|
HDAC Inhibitors: Therapeutic Potential in Fibrosis-Associated Human Diseases. Int J Mol Sci 2019; 20:ijms20061329. [PMID: 30884785 PMCID: PMC6471162 DOI: 10.3390/ijms20061329] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/05/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023] Open
Abstract
Fibrosis is characterized by excessive deposition of the extracellular matrix and develops because of fibroblast differentiation during the process of inflammation. Various cytokines stimulate resident fibroblasts, which differentiate into myofibroblasts. Myofibroblasts actively synthesize an excessive amount of extracellular matrix, which indicates pathologic fibrosis. Although initial fibrosis is a physiologic response, the accumulated fibrous material causes failure of normal organ function. Cardiac fibrosis interferes with proper diastole, whereas pulmonary fibrosis results in chronic hypoxia; liver cirrhosis induces portal hypertension, and overgrowth of fibroblasts in the conjunctiva is a major cause of glaucoma surgical failure. Recently, several reports have clearly demonstrated the functional relevance of certain types of histone deacetylases (HDACs) in various kinds of fibrosis and the successful alleviation of the condition in animal models using HDAC inhibitors. In this review, we discuss the therapeutic potential of HDAC inhibitors in fibrosis-associated human diseases using results obtained from animal models.
Collapse
|
12
|
Dahbash M, Sella R, Megiddo-Barnir E, Nisgav Y, Tarasenko N, Weinberger D, Rephaeli A, Livnat T. The Histone Deacetylase Inhibitor AN7, Attenuates Choroidal Neovascularization in a Mouse Model. Int J Mol Sci 2019; 20:ijms20030714. [PMID: 30736437 PMCID: PMC6387404 DOI: 10.3390/ijms20030714] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 02/04/2019] [Indexed: 12/17/2022] Open
Abstract
: Choroidal neovascularization (CNV) is a complication of age-related macular degeneration and a major contributing factor to vision loss. In this paper, we show that in a mouse model of laser-induced CNV, systemic administration of Butyroyloxymethyl-diethyl phosphate (AN7), a histone deacetylase inhibitor (HDACi), significantly reduced CNV area and vascular leakage, as measured by choroidal flatmounts and fluorescein angiography. CNV area reduction by systemic AN7 treatment was similar to that achieved by intravitreal bevacizumab treatment. The expression of vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF-2), and the endothelial cells marker CD31, was lower in the AN7 treated group in comparison to the control group at the laser lesion site. In vitro, AN7 facilitated retinal pigmented epithelium (RPE) cells tight junctions' integrity during hypoxia, by protecting the hexagonal pattern of ZO-1 protein in the cell borders, hence reducing RPE permeability. In conclusion, systemic AN7 should be further investigated as a possible effective treatment for CNV.
Collapse
Affiliation(s)
- Mor Dahbash
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
- Laboratory of Eye Research, Felsenstein Medical Research Center, Petach Tikva 49100, Israel.
| | - Ruti Sella
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
- Department of Ophthalmology, Rabin Medical Center, Petach Tikva 49100, Israel.
| | | | - Yael Nisgav
- Laboratory of Eye Research, Felsenstein Medical Research Center, Petach Tikva 49100, Israel.
| | - Nataly Tarasenko
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
- Laboratory of Experimental Pharmacology and Oncology, Felsenstein Medical Research Center, Petach Tikva 49100, Israel.
| | - Dov Weinberger
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
- Laboratory of Eye Research, Felsenstein Medical Research Center, Petach Tikva 49100, Israel.
- Department of Ophthalmology, Rabin Medical Center, Petach Tikva 49100, Israel.
| | - Ada Rephaeli
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
- Laboratory of Experimental Pharmacology and Oncology, Felsenstein Medical Research Center, Petach Tikva 49100, Israel.
| | - Tami Livnat
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
- Laboratory of Eye Research, Felsenstein Medical Research Center, Petach Tikva 49100, Israel.
- National Hemophilia Center, Institute of Thrombosis, and the Amalia Biron Research Institute of Thrombosis and Hemostasis, Sheba Medical Center, Tel Hashomer 52621, Israel.
| |
Collapse
|
13
|
康 欣, 申 颖, 赵 海, 王 召, 关 文, 葛 瑞, 王 瑞, 邰 雪. [Anti-scarring effect of rapamycin in rabbits following glaucoma filtering surgery]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:1389-1394. [PMID: 30514691 PMCID: PMC6744124 DOI: 10.12122/j.issn.1673-4254.2018.11.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To study the anti- scarring effect of rapamycin in rabbits receiving glaucoma filtering surgery. METHODS Ninety-six Chinchilla rabbits were randomized equally into 3 rapamycin treatment groups and one control group. All the rabbits underwent trabeculectomy, after which the rabbits in the 3 rapamycin groups were treated with eye drops containing 1%, 3%, or 5% rapamycin in the operated eyes, and those in the control groups were given castor oil 4 times a day. The intraocular pressure (IOP) and inflammatory reaction in the treated eyes were observed, and the PCNA-positive cells in the filtering bleb were detected using immunohistochemistry. RTFs isolated from the Tenon's capsule of the rabbits were cultured in vitro, and the expressions of caspase-3, caspase-8, and caspase-9 in the fibroblasts were detected after treatment with different concentrations of rapamycin. RESULTS The IOP was significantly lower in rapamycin-treated group than in the control group after the surgery (P < 0.05). The counts of the PCNA-positive cells were significantly lower in rapamycin-treated rabbits than in the control group (P < 0.05). Rapamycin treatment dose-dependently increased the expressions of caspase-3 and caspase- 9 at both the mRNA (P < 0.001) and protein (P < 0.001) levels without causing significant changes in the expressions of caspase-8. CONCLUSIONS Rapamycin can inhibit excessive proliferation of the fibroblasts in the filtering bleb to reduce scar formation after glaucoma filtration surgery in rabbits. Rapamycin also increases the expressions of caspase-3 and caspase-9 to induce apoptosis of the RTFs.
Collapse
Affiliation(s)
- 欣 康
- />内蒙古医科大学附属医院近视眼激光治疗中心,内蒙古 呼和浩特 010050Center of Myopia, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - 颖 申
- />内蒙古医科大学附属医院近视眼激光治疗中心,内蒙古 呼和浩特 010050Center of Myopia, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - 海霞 赵
- />内蒙古医科大学附属医院近视眼激光治疗中心,内蒙古 呼和浩特 010050Center of Myopia, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - 召格 王
- />内蒙古医科大学附属医院近视眼激光治疗中心,内蒙古 呼和浩特 010050Center of Myopia, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - 文英 关
- />内蒙古医科大学附属医院近视眼激光治疗中心,内蒙古 呼和浩特 010050Center of Myopia, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - 瑞春 葛
- />内蒙古医科大学附属医院近视眼激光治疗中心,内蒙古 呼和浩特 010050Center of Myopia, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - 瑞芳 王
- />内蒙古医科大学附属医院近视眼激光治疗中心,内蒙古 呼和浩特 010050Center of Myopia, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - 雪 邰
- />内蒙古医科大学附属医院近视眼激光治疗中心,内蒙古 呼和浩特 010050Center of Myopia, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| |
Collapse
|