1
|
Leck LYW, Abd El-Aziz YS, McKelvey KJ, Park KC, Sahni S, Lane DJR, Skoda J, Jansson PJ. Cancer stem cells: Masters of all traits. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167549. [PMID: 39454969 DOI: 10.1016/j.bbadis.2024.167549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Cancer is a heterogeneous disease, which contributes to its rapid progression and therapeutic failure. Besides interpatient tumor heterogeneity, tumors within a single patient can present with a heterogeneous mix of genetically and phenotypically distinct subclones. These unique subclones can significantly impact the traits of cancer. With the plasticity that intratumoral heterogeneity provides, cancers can easily adapt to changes in their microenvironment and therapeutic exposure. Indeed, tumor cells dynamically shift between a more differentiated, rapidly proliferating state with limited tumorigenic potential and a cancer stem cell (CSC)-like state that resembles undifferentiated cellular precursors and is associated with high tumorigenicity. In this context, CSCs are functionally located at the apex of the tumor hierarchy, contributing to the initiation, maintenance, and progression of tumors, as they also represent the subpopulation of tumor cells most resistant to conventional anti-cancer therapies. Although the CSC model is well established, it is constantly evolving and being reshaped by advancing knowledge on the roles of CSCs in different cancer types. Here, we review the current evidence of how CSCs play a pivotal role in providing the many traits of aggressive tumors while simultaneously evading immunosurveillance and anti-cancer therapy in several cancer types. We discuss the key traits and characteristics of CSCs to provide updated insights into CSC biology and highlight its implications for therapeutic development and improved treatment of aggressive cancers.
Collapse
Affiliation(s)
- Lionel Y W Leck
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Yomna S Abd El-Aziz
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Oral Pathology Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
| | - Kelly J McKelvey
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Kyung Chan Park
- Proteina Co., Ltd./Seoul National University, Seoul, South Korea
| | - Sumit Sahni
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Darius J R Lane
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Jan Skoda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
| | - Patric J Jansson
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
2
|
Maldonado-Mendoza J, Ramírez-Amador V, Anaya-Saavedra G. Primary oral and sinonasal mucosal melanomas in Latin America: a systematic review. Int J Oral Maxillofac Surg 2024; 53:449-460. [PMID: 38040520 DOI: 10.1016/j.ijom.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 12/03/2023]
Abstract
Primary oral and sinonasal mucosal melanomas (POSNMMs) are aggressive neoplasms with limited therapeutic alternatives. The aim of this review was to characterize the demographic, clinical, immunohistochemical, and molecular information regarding these tumors in the Latin American population. Articles published in English, Spanish, or Portuguese (1990-2022) retrieved from the PubMed/MEDLINE, Scopus, CAS, Web of Science, EBSCO, and Google Academic databases were included. Thirty-three studies, with a total of 1212 cases, were identified. Clinicopathological data were available for 870 cases and immunohistochemical and/or molecular information for 342. Nineteen studies (57.6%) reported cases of oral melanoma, three (9.1%) sinonasal melanoma, and 11 (33.3%) oral and sinonasal melanoma. Fifteen studies (45.5%) provided only clinicopathological data, 12 (36.4%) reported only immunohistochemical data, two (6.1%) shared clinicopathological and immunohistochemical data, one (3.0%) offered clinicopathological, immunohistochemical, and molecular data, one (3.0%) provided immunohistochemical and molecular data, one (3.0%) clinicopathological and molecular data, and one (3.0%) only molecular data. The mean age of individuals with POSNMMs was 58 years, and slightly more were male (male 51.3%, female 48.7%). In Latin America, POSNMMs are a rare but aggressive malignancy with a poor prognosis and limited treatment options. Although molecular data and targeted therapy are still being researched, data from Latin America indicate the need for multicenter collaborative clinical trials to unite individual and isolated efforts.
Collapse
Affiliation(s)
- J Maldonado-Mendoza
- Oral Pathology and Medicine Master Program, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| | - V Ramírez-Amador
- Oral Pathology and Medicine Master Program, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| | - G Anaya-Saavedra
- Oral Pathology and Medicine Master Program, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico.
| |
Collapse
|
3
|
Loda A, Semeraro F, Parolini S, Ronca R, Rezzola S. Cancer stem-like cells in uveal melanoma: novel insights and therapeutic implications. Biochim Biophys Acta Rev Cancer 2024; 1879:189104. [PMID: 38701937 DOI: 10.1016/j.bbcan.2024.189104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/24/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024]
Abstract
Uveal melanoma (UM) is the most common primary ocular tumor in the adult population. Even though these primary tumors are successfully treated in 90% of cases, almost 50% of patients ultimately develop metastasis, mainly in the liver, via hematological dissemination, with a median survival spanning from 6 to 12 months after diagnosis. In this context, chemotherapy regimens and molecular targeted therapies have demonstrated poor response rates and failed to improve survival. Among the multiple reasons for therapy failure, the presence of cancer stem-like cells (CSCs) represents the main cause of resistance to anticancer therapies. In the last few years, the existence of CSCs in UM has been demonstrated both in preclinical and clinical studies, and new molecular pathways and mechanisms have been described for this subpopulation of UM cells. Here, we will discuss the state of the art of CSC biology and their potential exploitation as therapeutic target in UM.
Collapse
Affiliation(s)
- Alessandra Loda
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Francesco Semeraro
- Eye Clinic, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Silvia Parolini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; National Center for Gene Therapy and Drugs based on RNA Technology - CN3, Padova, Italy; Consorzio Interuniversitario per le Biotecnologie (CIB), Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Consorzio Interuniversitario per le Biotecnologie (CIB), Italy
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
4
|
Synoradzki KJ, Paduszyńska N, Solnik M, Toro MD, Bilmin K, Bylina E, Rutkowski P, Yousef YA, Bucolo C, Zweifel SA, Reibaldi M, Fiedorowicz M, Czarnecka AM. From Molecular Biology to Novel Immunotherapies and Nanomedicine in Uveal Melanoma. Curr Oncol 2024; 31:778-800. [PMID: 38392052 PMCID: PMC10887618 DOI: 10.3390/curroncol31020058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/09/2023] [Accepted: 12/19/2023] [Indexed: 02/24/2024] Open
Abstract
Molecular biology studies of uveal melanoma have resulted in the development of novel immunotherapy approaches including tebentafusp-a T cell-redirecting bispecific fusion protein. More biomarkers are currently being studied. As a result, combined immunotherapy is being developed as well as immunotherapy with bifunctional checkpoint inhibitory T cell engagers and natural killer cells. Current trials cover tumor-infiltrating lymphocytes (TIL), vaccination with IKKb-matured dendritic cells, or autologous dendritic cells loaded with autologous tumor RNA. Another potential approach to treat UM could be based on T cell receptor engineering rather than antibody modification. Immune-mobilizing monoclonal T cell receptors (TCR) against cancer, called ImmTAC TM molecules, represent such an approach. Moreover, nanomedicine, especially miRNA approaches, are promising for future trials. Finally, theranostic radiopharmaceuticals enabling diagnosis and therapy with the same molecule bring hope to this research.
Collapse
Affiliation(s)
- Kamil J. Synoradzki
- Environmental Laboratory of Pharmacological and Toxicological Research, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Str., 02-106 Warsaw, Poland;
| | - Natalia Paduszyńska
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (N.P.); (M.S.)
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 5 Roentgen Str., 02-781 Warsaw, Poland; (E.B.); (P.R.)
| | - Malgorzata Solnik
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (N.P.); (M.S.)
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 5 Roentgen Str., 02-781 Warsaw, Poland; (E.B.); (P.R.)
| | - Mario Damiano Toro
- Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, 1 Chmielna Str., 20-079 Lublin, Poland;
- Eye Clinic, Public Health Department, Federico II University, Via Pansini 5, 80131 Naples, Italy
| | - Krzysztof Bilmin
- Research and Development Centre Novasome Sp. z o.o., 51-423 Wrocław, Poland;
| | - Elżbieta Bylina
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 5 Roentgen Str., 02-781 Warsaw, Poland; (E.B.); (P.R.)
- Department of Clinical Trials, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 5 Roentgen Str., 02-781 Warsaw, Poland; (E.B.); (P.R.)
| | - Yacoub A. Yousef
- Department of Surgery (Ophthalmology), King Hussein Cancer Centre, Amman 11941, Jordan;
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy;
| | - Sandrine Anne Zweifel
- Department of Ophthalmology, University Hospital Zurich, 8091 Zurich, Switzerland;
- Faculty of Human Medicine, University of Zurich, 8032 Zurich, Switzerland
| | - Michele Reibaldi
- Department of Surgical Sciences, Eye Clinic Section, Citta della Salute e della Scienza, Turin University, 10122 Turin, Italy;
| | - Michal Fiedorowicz
- Small Animal Magnetic Resonance Imaging Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Str., 02-106 Warsaw, Poland
| | - Anna M. Czarnecka
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 5 Roentgen Str., 02-781 Warsaw, Poland; (E.B.); (P.R.)
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Str., 02-106 Warsaw, Poland
| |
Collapse
|
5
|
Loda A, Calza S, Giacomini A, Ravelli C, Krishna Chandran AM, Tobia C, Tabellini G, Parolini S, Semeraro F, Ronca R, Rezzola S. FGF-trapping hampers cancer stem-like cells in uveal melanoma. Cancer Cell Int 2023; 23:89. [PMID: 37165394 PMCID: PMC10173517 DOI: 10.1186/s12935-023-02903-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/24/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Cancer stem-like cells (CSCs) are a subpopulation of tumor cells responsible for tumor initiation, metastasis, chemoresistance, and relapse. Recently, CSCs have been identified in Uveal Melanoma (UM), which represents the most common primary tumor of the eye. UM is highly resistant to systemic chemotherapy and effective therapies aimed at improving overall survival of patients are eagerly required. METHODS Herein, taking advantage from a pan Fibroblast Growth Factor (FGF)-trap molecule, we singled out and analyzed a UM-CSC subset with marked stem-like properties. A hierarchical clustering of gene expression data publicly available on The Cancer Genome Atlas (TCGA) was performed to identify patients' clusters. RESULTS By disrupting the FGF/FGF receptor (FGFR)-mediated signaling, we unmasked an FGF-sensitive UM population characterized by increased expression of numerous stemness-related transcription factors, enhanced aldehyde dehydrogenase (ALDH) activity, and tumor-sphere formation capacity. Moreover, FGF inhibition deeply affected UM-CSC survival in vivo in a chorioallantoic membrane (CAM) tumor graft assay, resulting in the reduction of tumor growth. At clinical level, hierarchical clustering of TCGA gene expression data revealed a strong correlation between FGFs/FGFRs and stemness-related genes, allowing the identification of three distinct clusters characterized by different clinical outcomes. CONCLUSIONS Our findings support the evidence that the FGF/FGFR axis represents a master regulator of cancer stemness in primary UM tumors and point to anti-FGF treatments as a novel therapeutic strategy to hit the CSC component in UM.
Collapse
Affiliation(s)
- Alessandra Loda
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa 11, 25123, Brescia, Italy
| | - Stefano Calza
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa 11, 25123, Brescia, Italy
| | - Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa 11, 25123, Brescia, Italy
| | - Cosetta Ravelli
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa 11, 25123, Brescia, Italy
| | - Adwaid Manu Krishna Chandran
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa 11, 25123, Brescia, Italy
| | - Chiara Tobia
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa 11, 25123, Brescia, Italy
| | - Giovanna Tabellini
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa 11, 25123, Brescia, Italy
| | - Silvia Parolini
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa 11, 25123, Brescia, Italy
| | - Francesco Semeraro
- Eye Clinic, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa 11, 25123, Brescia, Italy.
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa 11, 25123, Brescia, Italy.
| |
Collapse
|
6
|
Prognostic Biomarkers in Uveal Melanoma: The Status Quo, Recent Advances and Future Directions. Cancers (Basel) 2021; 14:cancers14010096. [PMID: 35008260 PMCID: PMC8749988 DOI: 10.3390/cancers14010096] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/15/2021] [Accepted: 12/23/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Although rare, uveal melanoma (UM) is the most common cancer that develops inside adult eyes. The prognosis is poor, since 50% of patients will develop lethal metastases in the first decade, especially to the liver. Once metastases are detected, life expectancy is limited, given that the available treatments are mostly unsuccessful. Thus, there is a need to find methods that can accurately predict UM prognosis and also effective therapeutic strategies to treat this cancer. In this manuscript, we initially compile the current knowledge on epidemiological, clinical, pathological and molecular features of UM. Then, we cover the most relevant prognostic factors currently used for the evaluation and follow-up of UM patients. Afterwards, we highlight emerging molecular markers in UM published over the last three years. Finally, we discuss the problems preventing meaningful advances in the treatment and prognostication of UM patients, as well as forecast new roadblocks and paths of UM-related research. Abstract Uveal melanoma (UM) is the most common malignant intraocular tumour in the adult population. It is a rare cancer with an incidence of nearly five cases per million inhabitants per year, which develops from the uncontrolled proliferation of melanocytes in the choroid (≈90%), ciliary body (≈6%) or iris (≈4%). Patients initially present either with symptoms like blurred vision or photopsia, or without symptoms, with the tumour being detected in routine eye exams. Over the course of the disease, metastases, which are initially dormant, develop in nearly 50% of patients, preferentially in the liver. Despite decades of intensive research, the only approach proven to mildly control disease spread are early treatments directed to ablate liver metastases, such as surgical excision or chemoembolization. However, most patients have a limited life expectancy once metastases are detected, since there are limited therapeutic approaches for the metastatic disease, including immunotherapy, which unlike in cutaneous melanoma, has been mostly ineffective for UM patients. Therefore, in order to offer the best care possible to these patients, there is an urgent need to find robust models that can accurately predict the prognosis of UM, as well as therapeutic strategies that effectively block and/or limit the spread of the metastatic disease. Here, we initially summarized the current knowledge about UM by compiling the most relevant epidemiological, clinical, pathological and molecular data. Then, we revisited the most important prognostic factors currently used for the evaluation and follow-up of primary UM cases. Afterwards, we addressed emerging prognostic biomarkers in UM, by comprehensively reviewing gene signatures, immunohistochemistry-based markers and proteomic markers resulting from research studies conducted over the past three years. Finally, we discussed the current hurdles in the field and anticipated the future challenges and novel avenues of research in UM.
Collapse
|
7
|
Yang Y, Sanders AJ, Dou QP, Jiang DG, Li AX, Jiang WG. The Clinical and Theranostic Values of Activated Leukocyte Cell Adhesion Molecule (ALCAM)/CD166 in Human Solid Cancers. Cancers (Basel) 2021; 13:cancers13205187. [PMID: 34680335 PMCID: PMC8533996 DOI: 10.3390/cancers13205187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 02/08/2023] Open
Abstract
Simple Summary ALCAM (activated leukocyte cell adhesion molecule) is an important regulator in human cancers, particularly solid tumours. Its expression in cancer tissues has prognostic values depending on cancer types and is also linked to distant metastases. A truncated form, soluble form of ALCAM (sALCAM) in circulation has been suggested to be a prognostic indicator and a potential therapeutic tool. This article summarises recent findings and progress in ALCAM and its involvement in cancer, with a primary focus on its clinical connections and therapeutic values. Abstract Activated leukocyte cell adhesion molecule (ALCAM), also known as CD166, is a cell adhesion protein that is found in multiple cell types. ALCAM has multiple and diverse roles in various physiological and pathological conditions, including inflammation and cancer. There has been compelling evidence of ALCAM’s prognostic value in solid cancers, indicating that it is a potential therapeutic target. The present article overviews the recent findings and progress in ALCAM and its involvement in cancer, with a primary focus on its clinical connections in cancer and therapeutic values.
Collapse
Affiliation(s)
- Yiming Yang
- School of Medicine, Cardiff University, Henry Wellcome Building, Cardiff CF14 4XN, UK; (Y.Y.); (Q.P.D.); (D.G.J.); (A.X.L.)
| | - Andrew J. Sanders
- School of Medicine, Cardiff University, Henry Wellcome Building, Cardiff CF14 4XN, UK; (Y.Y.); (Q.P.D.); (D.G.J.); (A.X.L.)
- Correspondence: (A.J.S.); (W.G.J.)
| | - Q. Ping Dou
- School of Medicine, Cardiff University, Henry Wellcome Building, Cardiff CF14 4XN, UK; (Y.Y.); (Q.P.D.); (D.G.J.); (A.X.L.)
- Departments of Oncology, Pharmacology and Pathology School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201-2013, USA
| | - David G. Jiang
- School of Medicine, Cardiff University, Henry Wellcome Building, Cardiff CF14 4XN, UK; (Y.Y.); (Q.P.D.); (D.G.J.); (A.X.L.)
- Stoke Mandeville Hospital, Buckinghamshire Healthcare NHS Trust, Aylesbury HP21 8AL, UK
| | - Amber Xinyu Li
- School of Medicine, Cardiff University, Henry Wellcome Building, Cardiff CF14 4XN, UK; (Y.Y.); (Q.P.D.); (D.G.J.); (A.X.L.)
| | - Wen G. Jiang
- School of Medicine, Cardiff University, Henry Wellcome Building, Cardiff CF14 4XN, UK; (Y.Y.); (Q.P.D.); (D.G.J.); (A.X.L.)
- Correspondence: (A.J.S.); (W.G.J.)
| |
Collapse
|
8
|
Ferragut F, Vachetta VS, Troncoso MF, Rabinovich GA, Elola MT. ALCAM/CD166: A pleiotropic mediator of cell adhesion, stemness and cancer progression. Cytokine Growth Factor Rev 2021; 61:27-37. [PMID: 34272152 DOI: 10.1016/j.cytogfr.2021.07.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022]
Abstract
Activated Leukocyte Cell Adhesion Molecule (ALCAM/CD166) is a glycoprotein involved in homotypic and heterotypic cell adhesion. ALCAM can be proteolytically cleaved at the cell surface by metalloproteases, which generate shedding of its ectodomain. In various tumors, ALCAM is overexpressed and serves as a valuable prognostic marker of disease progression. Moreover, CD166 has been identified as a putative cancer stem cell marker in particular cancers. Herein, we summarize biochemical aspects of ALCAM, including structure, proteolytic shedding, alternative splicing, and specific ligands, and integrate this information with biological functions of this glycoprotein including cell adhesion, migration and invasion. In addition, we discuss different patterns of ALCAM expression in distinct tumor types and its contribution to tumor progression. Finally, we highlight the role of ALCAM as a cancer stem cell marker and introduce current clinical trials associated with this molecule. Future studies are needed to define the value of shed ALCAM in biofluids or ALCAM isoform expression as prognostic biomarkers in tumor progression.
Collapse
Affiliation(s)
- Fátima Ferragut
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB) Prof. Alejandro C. Paladini, Buenos Aires, Argentina
| | - Vanina S Vachetta
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB) Prof. Alejandro C. Paladini, Buenos Aires, Argentina
| | - María F Troncoso
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB) Prof. Alejandro C. Paladini, Buenos Aires, Argentina
| | - Gabriel A Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María T Elola
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB) Prof. Alejandro C. Paladini, Buenos Aires, Argentina.
| |
Collapse
|
9
|
Huang F, Santinon F, Flores González RE, del Rincón SV. Melanoma Plasticity: Promoter of Metastasis and Resistance to Therapy. Front Oncol 2021; 11:756001. [PMID: 34604096 PMCID: PMC8481945 DOI: 10.3389/fonc.2021.756001] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/30/2021] [Indexed: 12/14/2022] Open
Abstract
Melanoma is the deadliest form of skin cancer. Although targeted therapies and immunotherapies have revolutionized the treatment of metastatic melanoma, most patients are not cured. Therapy resistance remains a significant clinical challenge. Melanoma comprises phenotypically distinct subpopulations of cells, exhibiting distinct gene signatures leading to tumor heterogeneity and favoring therapeutic resistance. Cellular plasticity in melanoma is referred to as phenotype switching. Regardless of their genomic classification, melanomas switch from a proliferative and differentiated phenotype to an invasive, dedifferentiated and often therapy-resistant state. In this review we discuss potential mechanisms underpinning melanoma phenotype switching, how this cellular plasticity contributes to resistance to both targeted therapies and immunotherapies. Finally, we highlight novel strategies to target plasticity and their potential clinical impact in melanoma.
Collapse
Affiliation(s)
- Fan Huang
- Lady Davis Institute, McGill University, Montréal, QC, Canada
- Department of Experimental Medicine, McGill University, Montréal, QC, Canada
| | - François Santinon
- Lady Davis Institute, McGill University, Montréal, QC, Canada
- Department of Experimental Medicine, McGill University, Montréal, QC, Canada
| | - Raúl Ernesto Flores González
- Lady Davis Institute, McGill University, Montréal, QC, Canada
- Department of Experimental Medicine, McGill University, Montréal, QC, Canada
| | - Sonia V. del Rincón
- Lady Davis Institute, McGill University, Montréal, QC, Canada
- Department of Experimental Medicine, McGill University, Montréal, QC, Canada
- Department of Oncology, McGill University, Montréal, QC, Canada
| |
Collapse
|
10
|
Kim DK, Ham MH, Lee SY, Shin MJ, Kim YE, Song P, Suh DS, Kim JH. CD166 promotes the cancer stem-like properties of primary epithelial ovarian cancer cells. BMB Rep 2021. [PMID: 32843129 PMCID: PMC7781915 DOI: 10.5483/bmbrep.2020.53.12.102] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cancer stem cells (CSCs) or tumor-initiating cells are thought to play critical roles in tumorigenesis, metastasis, drug resistance, and tumor recurrence. For the diagnosis and targeted therapy of CSCs, the molecular identity of biomarkers or therapeutic targets for CSCs needs to be clarified. In this study, we identified CD166 as a novel marker expressed in the sphere-forming CSC population of A2780 epithelial ovarian cancer cells and primary ovarian cancer cells. The CD166+ cells isolated from A2780 cells and primary ovarian cancer cells highly expressed CSC markers, including ALDH1a1, OCT4, and SOX2, and ABC transporters, which are implicated in the drug resistance of CSCs. The CD166+ cells exhibited enhanced CSC-like properties, such as increased sphere-forming ability, cell migration and adhesion abilities, resistance to conventional anti-cancer drugs, and high tumorigenic potential in a xenograft mouse model. Knockdown of CD166 expression in the sphere-forming ovarian CSCs abrogated their CSC-like properties. Moreover, silencing of CD166 expression in the sphere-forming CSCs suppressed the phosphorylation of focal adhesion kinase, paxillin, and SRC. These results suggest that CD166 plays a key role in the regulation of CSC-like properties and focal adhesion kinase signaling in ovarian cancer.
Collapse
Affiliation(s)
- Dae Kyoung Kim
- Departments of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Min Hee Ham
- Departments of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Seo Yul Lee
- Departments of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Min Joo Shin
- Departments of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Ye Eun Kim
- Departments of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Parkyong Song
- Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Dong-Soo Suh
- Obstetrics and Gynecology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Jae Ho Kim
- Departments of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea; Research Institute of Convergence Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Korea
| |
Collapse
|
11
|
de Lange MJ, Nell RJ, van der Velden PA. Scientific and clinical implications of genetic and cellular heterogeneity in uveal melanoma. MOLECULAR BIOMEDICINE 2021; 2:25. [PMID: 35006486 PMCID: PMC8607395 DOI: 10.1186/s43556-021-00048-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 07/16/2021] [Indexed: 10/27/2022] Open
Abstract
Here, we discuss the presence and roles of heterogeneity in the development of uveal melanoma. Both genetic and cellular heterogeneity are considered, as their presence became undeniable due to single cell approaches that have recently been used in uveal melanoma analysis. However, the presence of precursor clones and immune infiltrate in uveal melanoma have been described as being part of the tumour already decades ago. Since uveal melanoma grow in the corpus vitreous, they present a unique tumour model because every cell present in the tumour tissue is actually part of the tumour and possibly plays a role. For an effective treatment of uveal melanoma metastasis, it should be clear whether precursor clones and normal cells play an active role in progression and metastasis. We propagate analysis of bulk tissue that allows analysis of tumour heterogeneity in a clinical setting.
Collapse
Affiliation(s)
- Mark J de Lange
- Department of Ophthalmology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Rogier J Nell
- Department of Ophthalmology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Pieter A van der Velden
- Department of Ophthalmology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
12
|
Su C, Zhang J, Yarden Y, Fu L. The key roles of cancer stem cell-derived extracellular vesicles. Signal Transduct Target Ther 2021; 6:109. [PMID: 33678805 PMCID: PMC7937675 DOI: 10.1038/s41392-021-00499-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs), the subpopulation of cancer cells, have the capability of proliferation, self-renewal, and differentiation. The presence of CSCs is a key factor leading to tumor progression and metastasis. Extracellular vesicles (EVs) are nano-sized particles released by different kinds of cells and have the capacity to deliver certain cargoes, such as nucleic acids, proteins, and lipids, which have been recognized as a vital mediator in cell-to-cell communication. Recently, more and more studies have reported that EVs shed by CSCs make a significant contribution to tumor progression. CSCs-derived EVs are involved in tumor resistance, metastasis, angiogenesis, as well as the maintenance of stemness phenotype and tumor immunosuppression microenvironment. Here, we summarized the molecular mechanism by which CSCs-derived EVs in tumor progression. We believed that the fully understanding of the roles of CSCs-derived EVs in tumor development will definitely provide new ideas for CSCs-based therapeutic strategies.
Collapse
Affiliation(s)
- Chaoyue Su
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China ,grid.410737.60000 0000 8653 1072Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jianye Zhang
- grid.410737.60000 0000 8653 1072Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Yosef Yarden
- grid.13992.300000 0004 0604 7563Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Liwu Fu
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
| |
Collapse
|
13
|
Chen YN, Li Y, Wei WB. Research Progress of Cancer Stem Cells in Uveal Melanoma. Onco Targets Ther 2020; 13:12243-12252. [PMID: 33273829 PMCID: PMC7708312 DOI: 10.2147/ott.s284262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
Uveal melanoma is the most common malignant tumor in adult eyes, mostly in the choroid, but also in the iris and ciliary body. Distant metastasis is found in nearly half of the patients. Cancer stem cells are a kind of cells with the ability of self-renewal and multidirectional differentiation, which are related to tumor invasion and metastasis. Although the concept of cancer stem cells is relatively mature in other tumors, its existence and verification methods in uveal melanoma are still uncertain. A more in-depth understanding of cancer stem cells and their mechanism may reveal new strategies to treat uveal melanoma. This article reviews the concept of cancer stem cells and their research progress in uveal melanoma, including identification, probable markers, cancer stem cell targeted drug therapy and the controversies and prospects in this field.
Collapse
Affiliation(s)
- Yu Ning Chen
- Department of Ophthalmology, Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yang Li
- Department of Ophthalmology, Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Wen Bin Wei
- Department of Ophthalmology, Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
14
|
The Role of Non-Coding RNAs in Uveal Melanoma. Cancers (Basel) 2020; 12:cancers12102944. [PMID: 33053887 PMCID: PMC7600503 DOI: 10.3390/cancers12102944] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary The development of uveal melanoma is a multifactorial and multi-step process, in which abnormal gene expression plays a key role. Recently, several studies have highlighted the role of non-coding RNAs in the progression of uveal melanoma by affecting different signaling pathways. As important agents in the regulation of genes, non-coding RNAs have enormous potential to open up therapeutic pathways, predict response to treatment, and anticipate patient outcome for uveal melanoma. This review aims to provide a comprehensive view of what we know about ncRNAs in uveal melanoma currently. Abstract Uveal melanoma (UM) is the most common primary intraocular tumor in adulthood. Approximately 50% of patients develop metastatic disease, which typically affects the liver and is usually fatal within one year. This type of cancer is heterogeneous in nature and is divided into two broad groups of tumors according to their susceptibility to develop metastasis. In the last decade, chromosomal abnormalities and the aberrant expression of several signaling pathways and oncogenes in uveal melanomas have been described. Recently, importance has been given to the association of the mentioned deregulation with the expression of non-coding RNAs (ncRNAs). Here, we review the different classes of ncRNAs—such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs)—and their contribution to the development of UM. Special attention is given to miRNAs and their regulatory role in physiopathology and their potential as biomarkers. As important agents in gene regulation, ncRNAs have a huge potential for opening up therapeutic pathways, predicting response to treatment, and anticipating patient outcome for UM.
Collapse
|
15
|
Liu Y, Liang S, Yang F, Sun Y, Niu L, Ren Y, Wang H, He Y, Du J, Yang J, Lin J. Biological characteristics of endometriotic mesenchymal stem cells isolated from ectopic lesions of patients with endometriosis. Stem Cell Res Ther 2020; 11:346. [PMID: 32771033 PMCID: PMC7414689 DOI: 10.1186/s13287-020-01856-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/29/2020] [Accepted: 07/27/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Research into the pathogenesis of endometriosis (EMs) would substantially promote its effective treatment and early diagnosis. However, the aetiology of EMs is poorly understood and controversial despite the progress in EMs research in the last several decades. Currently, accumulating evidence has shed light on the importance of endometrial stem cells (EnSCs) residing in the basal layer of endometrium in the establishment and progression of endometriotic lesions. Therefore, we aimed to identify the differences between EnSCs isolated from the ectopic lesions of EMs patients (EnSC-EM-EC) and EnSCs isolated from eutopic endometrium of control group (EnSC-Control). We further performed preliminary exploration of the potential signalling pathways involved in the above abnormalities. METHODS EnSC-EM-EC (n = 12) and EnSC-Control (n = 13) were successfully isolated. Then, the proliferative capacity, migratory capacity and angiogenic potential of EnSCs were evaluated by conventional MTT assay, flow cytometry, wound healing assay, transwell assay, tube formation assay and chick embryo chorioallantoic membrane assay respectively. The expression of 11 angiogenesis-associated biological factors and 11 cytokines secreted by EnSCs and 17 adhesion molecules expressed on EnSCs were determined by protein array assays respectively. Differentially expressed genes (DEGs) between EnSC-EM-EC and EnSC-Control were analysed by RNA-sequence. RESULTS EnSC-EM-EC exhibited unique biological characteristics, including prolonged mitosis, enhanced migratory capacity and enhanced angiogenic potential. Greater amounts of angiogenic factors (especially VEGF and PDGF) were secreted by EnSC-EM-EC than by EnSC-Control; however, the distinct profiles of cytokines secreted by EnSC-EM-EC and adhesion molecules expressed by EnSC-EM-EC require further investigation. A total of 523 DEGs between EnSC-EM-EC and EnSC-Control were identified and analysed using the KEGG and Gene Ontology databases. CONCLUSIONS Our results not only improve the understanding of EMs but also contribute to the development of EnSC-EM-EC as a tool for EMs drug discovery. These cells could be of great help in exploiting promising therapeutic targets and new biomarkers for EMs treatment and prognosis.
Collapse
Affiliation(s)
- Yanli Liu
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China.,Henan Key Laboratory of Medical Tissue Regeneration, NO 601, East of JinSui Road, Xinxiang City, 453003, Henan Province, China
| | - Shengying Liang
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China.,Henan Key Laboratory of Medical Tissue Regeneration, NO 601, East of JinSui Road, Xinxiang City, 453003, Henan Province, China
| | - Fen Yang
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China.,Henan Key Laboratory of Medical Tissue Regeneration, NO 601, East of JinSui Road, Xinxiang City, 453003, Henan Province, China.,College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yuliang Sun
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Lidan Niu
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China.,College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yakun Ren
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China.,Henan Key Laboratory of Medical Tissue Regeneration, NO 601, East of JinSui Road, Xinxiang City, 453003, Henan Province, China
| | - Hongmei Wang
- The First Affiliated Hospital of Xinxiang Medical University, NO 88, JianKang Road, Weihui, Xinxiang City, 453100, Henan Province, China
| | - Yanan He
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jiang Du
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China.,College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jun Yang
- The First Affiliated Hospital of Xinxiang Medical University, NO 88, JianKang Road, Weihui, Xinxiang City, 453100, Henan Province, China.
| | - Juntang Lin
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China. .,Henan Key Laboratory of Medical Tissue Regeneration, NO 601, East of JinSui Road, Xinxiang City, 453003, Henan Province, China.
| |
Collapse
|
16
|
Zhang X, Yuan A, Zhao X, Li Z, Cui G. Tumoral Expression of CD166 in Human Esophageal Squamous Cell Carcinoma: Implications for Cancer Progression and Prognosis. Cancer Biother Radiopharm 2020; 35:214-222. [PMID: 32196367 DOI: 10.1089/cbr.2019.3089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Accumulating data showed that cancer stem cells (CSCs) identified by cell surface markers contribute to the initiation, progression, and prognosis of human cancers. In this study, the expression of CSC candidates CD166, CD44, and Lgr5 in 65 cases of esophageal squamous cell carcinoma (ESCC) and 16 cases of control esophageal tissues were examined with immunohistochemistry (IHC). The correlation between tumoral expression levels of these CSC candidates and clinicopathological variables was analyzed. IHC results showed that the expression of CD166 in esophageal control tissues was completely negative, but it was in 87.69% (57/65) ESCC tissues. The expression of CD44 and Lgr5 did not differ between esophageal control tissues and ESCC tissues (p > 0.05). In addition, there were not correlations found among the expression levels of CD166, CD44, and Lgr5 in ESCC tissues. Clinicopathological analysis revealed that the tumoral expression level of CD166 correlated with lymph node involvement and TNM staging in patients with ESCC, and lower tumoral expression of CD44 was found in patients with advanced TNM staging. Kaplan-Meier survival curves suggested that expression level of CD166 appeared to have a negative impact on overall survival rate after surgery in patients with ESCC. Such impact was not found in other two CSC candidates. The authors therefore conclude that CD166 is a potential prognostic biomarker and correlates with advanced progression features in patients with ESCC.
Collapse
Affiliation(s)
- Xiaoshan Zhang
- Research Group of Gastrointestinal Diseases, the Second Affiliated Hospital, Zhengzhou University, Zhengzhou, China.,The Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Aping Yuan
- Research Group of Gastrointestinal Diseases, the Second Affiliated Hospital, Zhengzhou University, Zhengzhou, China.,Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Xueru Zhao
- Research Group of Gastrointestinal Diseases, the Second Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Zhenfeng Li
- Research Group of Gastrointestinal Diseases, the Second Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Guanglin Cui
- Research Group of Gastrointestinal Diseases, the Second Affiliated Hospital, Zhengzhou University, Zhengzhou, China.,Faculty of Health Science, Nord University, Campus Levanger, Levanger, Norway
| |
Collapse
|
17
|
Characterization of Melanoma Cell Lines Resistant to Vemurafenib and Evaluation of Their Responsiveness to EGFR- and MET-Inhibitor Treatment. Int J Mol Sci 2019; 21:ijms21010113. [PMID: 31877948 PMCID: PMC6981576 DOI: 10.3390/ijms21010113] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022] Open
Abstract
Constitutively active mutated BRAF kinase occurs in more than 40% of patients suffering from melanoma. To block its activity, a specific inhibitor, vemurafenib, is applied as a therapy. Unfortunately, patients develop resistance to this drug rather quickly. Previously, we demonstrated that pairs of inhibitors directed against EGFR (epidermal growth factor receptor) and MET (hepatocyte growth factor receptor) trigger a synergistic cytotoxic effect in human melanoma cells, and decrease their invasive abilities. In this study, we aimed to generate and characterize melanoma cells resistant to vemurafenib treatment, and then to evaluate the effectiveness of a previously developed therapy in this model. We showed that melanoma cells resistant to the BRAF inhibitor are characterized by a lower proliferation rate and they acquire a spindle-like shape. Using Western Blot, we also noticed increased levels of EGFR, MET, and selected markers of cancer stem cells in generated cell lines. Resistant cells also exhibited increased invasive abilities and elevated proteolytic activity, observed using scratch wound assays and gelatin zymography. Moreover, combination therapy reduced their viability, as measured with a colorimetric cytotoxicity test, and decreased invasiveness. The obtained results validate the application of combination therapy directed against EGFR and MET in melanoma cells resistant to treatment with inhibitors of mutated BRAF.
Collapse
|