1
|
Rajan PK, Udoh UAS, Nakafuku Y, Pierre SV, Sanabria J. Normalization of the ATP1A1 Signalosome Rescinds Epigenetic Modifications and Induces Cell Autophagy in Hepatocellular Carcinoma. Cells 2023; 12:2367. [PMID: 37830582 PMCID: PMC10572209 DOI: 10.3390/cells12192367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/14/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. In metabolic dysfunction-associated steatohepatitis (MASH)-related HCC, cellular redox imbalance from metabolic disturbances leads to dysregulation of the α1-subunit of the Na/K-ATPase (ATP1A1) signalosome. We have recently reported that the normalization of this pathway exhibited tumor suppressor activity in MASH-HCC. We hypothesized that dysregulated signaling from the ATP1A1, mediated by cellular metabolic stress, promotes aberrant epigenetic modifications including abnormal post-translational histone modifications and dysfunctional autophagic activity, leading to HCC development and progression. Increased H3K9 acetylation (H3K9ac) and H3K9 tri-methylation (H3K9me3) were observed in human HCC cell lines, HCC-xenograft and MASH-HCC mouse models, and epigenetic changes were associated with decreased cell autophagy in HCC cell lines. Inhibition of the pro-autophagic transcription factor FoxO1 was associated with elevated protein carbonylation and decreased levels of reduced glutathione (GSH). In contrast, normalization of the ATP1A1 signaling significantly decreased H3K9ac and H3K9me3, in vitro and in vivo, with concomitant nuclear localization of FoxO1, heightening cell autophagy and cancer-cell apoptotic activities in treated HCC cell lines. Our results showed the critical role of the ATP1A1 signalosome in HCC development and progression through epigenetic modifications and impaired cell autophagy activity, highlighting the importance of the ATP1A1 pathway as a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Pradeep Kumar Rajan
- Department of Surgery, Marshall Institute for Interdisciplinary Research, Marshall University School of Medicine, Huntington, WV 25701, USA; (P.K.R.); (U.-A.S.U.); (Y.N.); (S.V.P.)
| | - Utibe-Abasi S. Udoh
- Department of Surgery, Marshall Institute for Interdisciplinary Research, Marshall University School of Medicine, Huntington, WV 25701, USA; (P.K.R.); (U.-A.S.U.); (Y.N.); (S.V.P.)
| | - Yuto Nakafuku
- Department of Surgery, Marshall Institute for Interdisciplinary Research, Marshall University School of Medicine, Huntington, WV 25701, USA; (P.K.R.); (U.-A.S.U.); (Y.N.); (S.V.P.)
| | - Sandrine V. Pierre
- Department of Surgery, Marshall Institute for Interdisciplinary Research, Marshall University School of Medicine, Huntington, WV 25701, USA; (P.K.R.); (U.-A.S.U.); (Y.N.); (S.V.P.)
| | - Juan Sanabria
- Department of Surgery, Marshall Institute for Interdisciplinary Research, Marshall University School of Medicine, Huntington, WV 25701, USA; (P.K.R.); (U.-A.S.U.); (Y.N.); (S.V.P.)
- Department of Nutrition and Metabolomic Core Facility, Case Western Reserve University School of Medicine, Cleveland, OH 44100, USA
| |
Collapse
|
2
|
Chen S, Zhang J, Sun D, Wu Y, Fang J, Wan X, Li S, Zhang S, Gu Q, Shao Q, Dong J, Xu X, Wei F, Sun Q. SYVN1 Promotes STAT3 Protein Ubiquitination and Exerts Antiangiogenesis Effects in Retinopathy of Prematurity Development. Invest Ophthalmol Vis Sci 2023; 64:8. [PMID: 37540175 PMCID: PMC10408771 DOI: 10.1167/iovs.64.11.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/17/2023] [Indexed: 08/05/2023] Open
Abstract
PURPOSE SYVN1, a gene involved in endoplasmic reticulum-associated degradation, has been found to exert a protective effect by inhibiting inflammation in retinopathy. This study aimed to clarify whether SYVN1 is involved in the pathogenesis of retinopathy of prematurity (ROP) and its potential as a candidate for target therapy. METHODS Human retinal microvascular endothelial cells (hRMECs) and a mouse model of oxygen-induced retinopathy (OIR) were used to reveal the retinopathy development-associated protein expression and molecular mechanism. An adenovirus overexpressing SYVN1 or vehicle control was injected intravitreally at postnatal day 12 (P12), and the neovascular lesions were evaluated in retinal flatmounts with immunofluorescence staining, and hematoxylin and eosin staining at P17. Visual function was assessed by using electroretinogram (ERG). RESULTS Endogenous SYVN1 expression dramatically decreased in hRMECs under hypoxia and in ROP mouse retinas. SYVN1 regulated the signal transducer and activator of transcription 3 (STAT3)/vascular endothelial growth factor (VEGF) axis. SYVN1 overexpression promoted ubiquitination and degradation of STAT3, decreased the levels of phospho-STAT3, secretion of VEGF, and formation of neovascularization in hRMECs, which could be rescued by STAT3 activator treatment. In addition, SYVN1 overexpression prevented neovascularization and extended physiologic retinal vascular development in the retinal tissues of OIR mice without affecting retinal function. CONCLUSIONS SYVN1 has a protective effect against OIR, and the molecular mechanisms are partly through SYVN1-mediated ubiquitination of STAT3 and the subsequent downregulation of VEGF. These findings strongly support our assumption that SYVN1 confers ROP resistance and may be a potentially novel pharmaceutical target against proliferative retinopathy.
Collapse
Affiliation(s)
- Shimei Chen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Jian Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Dandan Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Yidong Wu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Junwei Fang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Xiaoling Wan
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Shenping Li
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Shuchang Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Qing Gu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Qing Shao
- Department of Ophthalmology, Shanghai Aier Eye Hospital, Xuhui District, Shanghai Aier Eye Institute, Shanghai, China
| | - Jun Dong
- Department of Ophthalmology, Shanghai Aier Eye Hospital, Xuhui District, Shanghai Aier Eye Institute, Shanghai, China
| | - Xun Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Fang Wei
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Qiao Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
- Department of Ophthalmology, Shanghai Aier Eye Hospital, Xuhui District, Shanghai Aier Eye Institute, Shanghai, China
| |
Collapse
|
3
|
Markitantova Y, Simirskii V. Endogenous and Exogenous Regulation of Redox Homeostasis in Retinal Pigment Epithelium Cells: An Updated Antioxidant Perspective. Int J Mol Sci 2023; 24:10776. [PMID: 37445953 DOI: 10.3390/ijms241310776] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The retinal pigment epithelium (RPE) performs a range of necessary functions within the neural layers of the retina and helps ensure vision. The regulation of pro-oxidative and antioxidant processes is the basis for maintaining RPE homeostasis and preventing retinal degenerative processes. Long-term stable changes in the redox balance under the influence of endogenous or exogenous factors can lead to oxidative stress (OS) and the development of a number of retinal pathologies associated with RPE dysfunction, and can eventually lead to vision loss. Reparative autophagy, ubiquitin-proteasome utilization, the repair of damaged proteins, and the maintenance of their conformational structure are important interrelated mechanisms of the endogenous defense system that protects against oxidative damage. Antioxidant protection of RPE cells is realized as a result of the activity of specific transcription factors, a large group of enzymes, chaperone proteins, etc., which form many signaling pathways in the RPE and the retina. Here, we discuss the role of the key components of the antioxidant defense system (ADS) in the cellular response of the RPE against OS. Understanding the role and interactions of OS mediators and the components of the ADS contributes to the formation of ideas about the subtle mechanisms in the regulation of RPE cellular functions and prospects for experimental approaches to restore RPE functions.
Collapse
Affiliation(s)
- Yuliya Markitantova
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Vladimir Simirskii
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
4
|
Xi L. Combination of pigment epithelium derived factor with anti-vascular endothelial growth factor therapy protects the neuroretina from ischemic damage. Biomed Pharmacother 2022; 151:113113. [PMID: 35598368 DOI: 10.1016/j.biopha.2022.113113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022] Open
Abstract
Ocular ischemia is a vision-threatening disease, and is a medical condition associated with many ocular diseases. Anti-VEGF therapy has limitations related to its side effects and suppression of physiological revascularization. Pigment epithelium derived factor (PEDF) has anti-angiogenesis and neurotrophic neuroprotective functions and is a promising agent in the treatment of ischemia-induced retinal neurodegeneration. The purpose of this study is to investigate the effect of PEDF and anti-VEGF and the combined therapy on the ischemic rat eye model ex vivo. In this study, the PEDF protein, anti-VEGF drug (Avastin) or the combination of PEDF and Avastin were intravitreally injected immediately after eye enucleation. Then the eyes were incubated in Dulbecco's modified eagle medium (DMEM) at 4 ℃ for 14 h. After that the eyes were fixed immediately by formalin. VEGF, PEDF and glial fibrillary acidic protein (GFAP) were detected by immunohistochemical (IHC) staining. The IHC staining intensity was evaluated for each eye. Compared to the groups treated by vehicle, PEDF, and anti-VEGF alone, the value of staining intensity of VEGF and GFAP was significantly reduced in the retina and choroidal vessels of the PEDF/Anti-VEGF treatment group. The intravitreally injected PEDF protein can locate in the retina and the choroidal vessels. Compared to the vehicle-treatment group, both the PEDF-treatment and the PEDF/Anti-VEGF treatment groups showed significantly decreased number of TUNEL-positive nuclei, and the PEDF/Anti-VEGF treatment group had the least TUNEL-positive nuclei. Combination of PEDF and an anti-VEGF drug (Avastin) is a possible therapeutic strategy against ischemic retinal and choroidal diseases.
Collapse
Affiliation(s)
- Lei Xi
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
5
|
He SM, Sun S, Chen AQ, Lv SJ, Qiu CZ, Wei ML, Liu W, Liu HR, Zhang L, Ren DL. Hypoxia regulates cytokines expression and neutrophils migration by ERK signaling in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2022; 125:212-219. [PMID: 35569778 DOI: 10.1016/j.fsi.2022.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Normal dissolved oxygen in water is essential for maintaining the physiological functions of fish, but environmental pollution, such as eutrophication can lead to a decrease in oxygen content in water. How this reduction of dissolved oxygen in water affects the immune functions of fish and the potential regulatory mechanisms have not been thoroughly elucidated. In this study, we made full use of the aquatic model animal zebrafish to explore this question. In a model of LPS-induced inflammation, we found that hypoxia induced by infusing nitrogen into water increased the expression of pro-inflammatory cytokines, such as il-1β, il-6, and il-8. In vivo imaging also showed that hypoxia significantly increased neutrophil migration to the site of caudal fin injury in the transgenic line. Subsequently, we found that the phosphorylation level of ERK protein was significantly activated upon hypoxia and proved the roles of ERK signaling in the expression of pro-inflammatory cytokines and neutrophil migration in zebrafish. This study indicated that reduced water oxygen significantly increases the inflammatory response of the zebrafish.
Collapse
Affiliation(s)
- Shi-Min He
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Shuo Sun
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - An-Qi Chen
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Shi-Jie Lv
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Cheng-Zeng Qiu
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Mei-Li Wei
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Wei Liu
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Hui-Ru Liu
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Ling Zhang
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Da-Long Ren
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China; Anhui Province Key Laboratory of Local Livestock, Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
6
|
Liu J, Tian J, Sodhi K, Shapiro JI. The Na/K-ATPase Signaling and SGLT2 Inhibitor-Mediated Cardiorenal Protection: A Crossed Road? J Membr Biol 2021; 254:513-529. [PMID: 34297135 PMCID: PMC8595165 DOI: 10.1007/s00232-021-00192-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/06/2021] [Indexed: 12/17/2022]
Abstract
In different large-scale clinic outcome trials, sodium (Na+)/glucose co-transporter 2 (SGLT2) inhibitors showed profound cardiac- and renal-protective effects, making them revolutionary treatments for heart failure and kidney disease. Different theories are proposed according to the emerging protective effects other than the original purpose of glucose-lowering in diabetic patients. As the ATP-dependent primary ion transporter providing the Na+ gradient to drive other Na+-dependent transporters, the possible role of the sodium–potassium adenosine triphosphatase (Na/K-ATPase) as the primary ion transporter and its signaling function is not explored.
Collapse
Affiliation(s)
- Jiang Liu
- Department of Biomedical Sciences, JCE School of Medicine, Marshall University, Huntington, WV, USA.
| | - Jiang Tian
- Department of Biomedical Sciences, JCE School of Medicine, Marshall University, Huntington, WV, USA
| | - Komal Sodhi
- Department of Surgery, JCE School of Medicine, Marshall University, Huntington, WV, USA
| | - Joseph I Shapiro
- Departments of Medicine, JCE School of Medicine, Marshall University, Huntington, WV, USA
| |
Collapse
|