1
|
Shang X, Huang Y, Zhu S, Zhu Z, Zhang X, Wang W, Zhang X, Liu J, Liu J, Tang S, Ge Z, Hu Y, Yu H, Yang X, He M. Influence of intraocular and blood pressure on brain volumes: Observational and Mendelian randomization analyses. iScience 2024; 27:110817. [PMID: 39524355 PMCID: PMC11546435 DOI: 10.1016/j.isci.2024.110817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/22/2024] [Accepted: 08/22/2024] [Indexed: 11/16/2024] Open
Abstract
Intraocular pressure (IOP) is closely correlated with blood pressure (BP), and while BP has been linked to brain volumes, the effect of IOP on brain volumes remains unclear. This study analyzed participants from the UK Biobank with MRI-measured brain volumes. Observational analyses included 8,634 participants for IOP and 36,069 for BP, followed by Mendelian randomization (MR) analyses of 37,410 participants. Observational analyses revealed that each 10-mmHg increase in diastolic BP was linked to a 0.13 mL larger white matter hyperintensity (WMH) after adjusting for covariates. Associations between IOP and brain volumes were more pronounced in younger individuals or those without hypertension. MR analyses confirmed significant relationships between diastolic BP and WMH, and each 5-mmHg increase in IOP reduced gray matter volumes by 3.24 mL. The study suggests that targeting IOP and BP could help prevent brain volume reduction.
Collapse
Affiliation(s)
- Xianwen Shang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
- Centre for Eye Research Australia, Melbourne, VIC 3002, Australia
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Yu Huang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Susan Zhu
- Austin Hospital, University of Melbourne, Melbourne, VIC 3084, Australia
| | - Zhuoting Zhu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
- Centre for Eye Research Australia, Melbourne, VIC 3002, Australia
| | - Xueli Zhang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Wei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Xiayin Zhang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Jing Liu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Jiahao Liu
- Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Shulin Tang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Zongyuan Ge
- Monash e-Research Center, Faculty of Engineering, Airdoc Research, Nvidia AI Technology Research Center, Monash University, Melbourne, VIC 3800, Australia
| | - Yijun Hu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Honghua Yu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Xiaohong Yang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Mingguang He
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Centre for Eye Research Australia, Melbourne, VIC 3002, Australia
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
| |
Collapse
|
2
|
Pang Y, Bang JW, Kasi A, Li J, Parra C, Fieremans E, Wollstein G, Schuman JS, Wang M, Chan KC. Contributions of Brain Microstructures and Metabolism to Visual Field Loss Patterns in Glaucoma Using Archetypal and Information Gain Analyses. Invest Ophthalmol Vis Sci 2024; 65:15. [PMID: 38975942 PMCID: PMC11232899 DOI: 10.1167/iovs.65.8.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
Purpose To investigate the contributions of the microstructural and metabolic brain environment to glaucoma and their association with visual field (VF) loss patterns by using advanced diffusion magnetic resonance imaging (dMRI), proton magnetic resonance spectroscopy (MRS), and clinical ophthalmic measures. Methods Sixty-nine glaucoma and healthy subjects underwent dMRI and/or MRS at 3 Tesla. Ophthalmic data were collected from VF perimetry and optical coherence tomography. dMRI parameters of microstructural integrity in the optic radiation and MRS-derived neurochemical levels in the visual cortex were compared among early glaucoma, advanced glaucoma, and healthy controls. Multivariate regression was used to correlate neuroimaging metrics with 16 archetypal VF loss patterns. We also ranked neuroimaging, ophthalmic, and demographic attributes in terms of their information gain to determine their importance to glaucoma. Results In dMRI, decreasing fractional anisotropy, radial kurtosis, and tortuosity and increasing radial diffusivity correlated with greater overall VF loss bilaterally. Regionally, decreasing intra-axonal space and extra-axonal space diffusivities correlated with greater VF loss in the superior-altitudinal area of the right eye and the inferior-altitudinal area of the left eye. In MRS, both early and advanced glaucoma patients had lower gamma-aminobutyric acid (GABA), glutamate, and choline levels than healthy controls. GABA appeared to associate more with superonasal VF loss, and glutamate and choline more with inferior VF loss. Choline ranked third for importance to early glaucoma, whereas radial kurtosis and GABA ranked fourth and fifth for advanced glaucoma. Conclusions Our findings highlight the importance of non-invasive neuroimaging biomarkers and analytical modeling for unveiling glaucomatous neurodegeneration and how they reflect complementary VF loss patterns.
Collapse
Affiliation(s)
- Yueyin Pang
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, New York, United States
| | - Ji Won Bang
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, New York, United States
| | - Anisha Kasi
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, New York, United States
| | - Jeremy Li
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, New York, United States
| | - Carlos Parra
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, New York, United States
| | - Els Fieremans
- Department of Radiology, New York University Grossman School of Medicine, New York, New York, United States
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, New York, United States
| | - Gadi Wollstein
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, New York, United States
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, New York, United States
- Center for Neural Science, New York University, New York, New York, United States
- Wills Eye Hospital, Philadelphia, Pennsylvania, United States
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Joel S Schuman
- Wills Eye Hospital, Philadelphia, Pennsylvania, United States
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
- Drexel University School of Biomedical Engineering, Science and Health Studies, Philadelphia, Pennsylvania, United States
| | - Mengyu Wang
- Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts, United States
| | - Kevin C Chan
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, New York, United States
- Department of Radiology, New York University Grossman School of Medicine, New York, New York, United States
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, New York, United States
- Center for Neural Science, New York University, New York, New York, United States
- Neuroscience Institute and Tech4Health Institute, New York University Grossman School of Medicine, New York, New York, United States
| |
Collapse
|
3
|
McGrady NR, Holden JM, Ribeiro M, Boal AM, Risner ML, Calkins DJ. Axon hyperexcitability in the contralateral projection following unilateral optic nerve crush in mice. Brain Commun 2022; 4:fcac251. [PMID: 36267329 PMCID: PMC9576152 DOI: 10.1093/braincomms/fcac251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/02/2022] [Accepted: 10/01/2022] [Indexed: 11/07/2022] Open
Abstract
Optic neuropathies are characterized by degeneration of retinal ganglion cell axonal projections to the brain, including acute conditions like optic nerve trauma and progressive conditions such as glaucoma. Despite different aetiologies, retinal ganglion cell axon degeneration in traumatic optic neuropathy and glaucoma share common pathological signatures. We compared how early pathogenesis of optic nerve trauma and glaucoma influence axon function in the mouse optic projection. We assessed pathology by measuring anterograde axonal transport from retina to superior colliculus, current-evoked optic nerve compound action potential and retinal ganglion cell density 1 week following unilateral optic nerve crush or intraocular pressure elevation. Nerve crush reduced axon transport, compound axon potential and retinal ganglion cell density, which were unaffected by intraocular pressure elevation. Surprisingly, optic nerves contralateral to crush demonstrated 5-fold enhanced excitability in compound action potential compared with naïve nerves. Enhanced excitability in contralateral sham nerves is not due to increased accumulation of voltage-gated sodium channel 1.6, or ectopic voltage-gated sodium channel 1.2 expression within nodes of Ranvier. Our results indicate hyperexcitability is driven by intrinsic responses of αON-sustained retinal ganglion cells. We found αON-sustained retinal ganglion cells in contralateral, sham and eyes demonstrated increased responses to depolarizing currents compared with those from naïve eyes, while light-driven responses remained intact. Dendritic arbours of αON-sustained retinal ganglion cells of the sham eye were like naïve, but soma area and non-phosphorylated neurofilament H increased. Current- and light-evoked responses of sham αOFF-sustained retinal ganglion cells remained stable along with somato-dendritic morphologies. In retinas directly affected by crush, light responses of αON- and αOFF-sustained retinal ganglion cells diminished compared with naïve cells along with decreased dendritic field area or branch points. Like light responses, αOFF-sustained retinal ganglion cell current-evoked responses diminished, but surprisingly, αON-sustained retinal ganglion cell responses were similar to those from naïve retinas. Optic nerve crush reduced dendritic length and area in αON-sustained retinal ganglion cells in eyes ipsilateral to injury, while crush significantly reduced dendritic branching in αOFF-sustained retinal ganglion cells. Interestingly, 1 week of intraocular pressure elevation only affected αOFF-sustained retinal ganglion cell physiology, depolarizing resting membrane potential in cells of affected eyes and blunting current-evoked responses in cells of saline-injected eyes. Collectively, our results suggest that neither saline nor sham surgery provide a true control, chronic versus acute optic neuropathies differentially affect retinal ganglion cells composing the ON and OFF pathways, and acute stress can have near-term effects on the contralateral projection.
Collapse
Affiliation(s)
- Nolan R McGrady
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, AA7103 MCN/VUIIS, 1161 21st Ave. S., Nashville, TN 37232, USA
| | - Joseph M Holden
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, AA7103 MCN/VUIIS, 1161 21st Ave. S., Nashville, TN 37232, USA
| | - Marcio Ribeiro
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, AA7103 MCN/VUIIS, 1161 21st Ave. S., Nashville, TN 37232, USA
| | - Andrew M Boal
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, AA7103 MCN/VUIIS, 1161 21st Ave. S., Nashville, TN 37232, USA
| | - Michael L Risner
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, AA7103 MCN/VUIIS, 1161 21st Ave. S., Nashville, TN 37232, USA
| | - David J Calkins
- Correspondence to: David J. Calkins, PhD AA7103 MCN/VUIIS 1161 21st Ave. S., Nashville, TN 37232, USA E-mail:
| |
Collapse
|
4
|
Sharif NA. Degeneration of retina-brain components and connections in glaucoma: Disease causation and treatment options for eyesight preservation. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100037. [PMID: 36685768 PMCID: PMC9846481 DOI: 10.1016/j.crneur.2022.100037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 01/25/2023] Open
Abstract
Eyesight is the most important of our sensory systems for optimal daily activities and overall survival. Patients who experience visual impairment due to elevated intraocular pressure (IOP) are often those afflicted with primary open-angle glaucoma (POAG) which slowly robs them of their vision unless treatment is administered soon after diagnosis. The hallmark features of POAG and other forms of glaucoma are damaged optic nerve, retinal ganglion cell (RGC) loss and atrophied RGC axons connecting to various brain regions associated with receipt of visual input from the eyes and eventual decoding and perception of images in the visual cortex. Even though increased IOP is the major risk factor for POAG, the disease is caused by many injurious chemicals and events that progress slowly within all components of the eye-brain visual axis. Lowering of IOP mitigates the damage to some extent with existing drugs, surgical and device implantation therapeutic interventions. However, since multifactorial degenerative processes occur during aging and with glaucomatous optic neuropathy, different forms of neuroprotective, nutraceutical and electroceutical regenerative and revitalizing agents and processes are being considered to combat these eye-brain disorders. These aspects form the basis of this short review article.
Collapse
Affiliation(s)
- Najam A. Sharif
- Duke-National University of Singapore Medical School, Singapore,Singapore Eye Research Institute (SERI), Singapore,Department of Pharmacology and Neuroscience, University of North Texas Health Sciences Center, Fort Worth, Texas, USA,Department of Pharmaceutical Sciences, Texas Southern University, Houston, TX, USA,Department of Surgery & Cancer, Imperial College of Science and Technology, St. Mary's Campus, London, UK,Department of Pharmacy Sciences, School of School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA,Ophthalmology Innovation Center, Santen Incorporated, 6401 Hollis Street (Suite #125), Emeryville, CA, 94608, USA,Ophthalmology Innovation Center, Santen Incorporated, 6401 Hollis Street (Suite #125), Emeryville, CA, 94608, USA.
| |
Collapse
|
5
|
Mendoza M, Shotbolt M, Faiq MA, Parra C, Chan KC. Advanced Diffusion MRI of the Visual System in Glaucoma: From Experimental Animal Models to Humans. BIOLOGY 2022; 11:454. [PMID: 35336827 PMCID: PMC8945790 DOI: 10.3390/biology11030454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/10/2022] [Indexed: 11/18/2022]
Abstract
Glaucoma is a group of ophthalmologic conditions characterized by progressive retinal ganglion cell death, optic nerve degeneration, and irreversible vision loss. While intraocular pressure is the only clinically modifiable risk factor, glaucoma may continue to progress at controlled intraocular pressure, indicating other major factors in contributing to the disease mechanisms. Recent studies demonstrated the feasibility of advanced diffusion magnetic resonance imaging (dMRI) in visualizing the microstructural integrity of the visual system, opening new possibilities for non-invasive characterization of glaucomatous brain changes for guiding earlier and targeted intervention besides intraocular pressure lowering. In this review, we discuss dMRI methods currently used in visual system investigations, focusing on the eye, optic nerve, optic tract, subcortical visual brain nuclei, optic radiations, and visual cortex. We evaluate how conventional diffusion tensor imaging, higher-order diffusion kurtosis imaging, and other extended dMRI techniques can assess the neuronal and glial integrity of the visual system in both humans and experimental animal models of glaucoma, among other optic neuropathies or neurodegenerative diseases. We also compare the pros and cons of these methods against other imaging modalities. A growing body of dMRI research indicates that this modality holds promise in characterizing early glaucomatous changes in the visual system, determining the disease severity, and identifying potential neurotherapeutic targets, offering more options to slow glaucoma progression and to reduce the prevalence of this world's leading cause of irreversible but preventable blindness.
Collapse
Affiliation(s)
- Monica Mendoza
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY 11201, USA; (M.M.); (M.S.)
| | - Max Shotbolt
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY 11201, USA; (M.M.); (M.S.)
| | - Muneeb A. Faiq
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY 10017, USA; (M.A.F.); (C.P.)
| | - Carlos Parra
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY 10017, USA; (M.A.F.); (C.P.)
| | - Kevin C. Chan
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY 11201, USA; (M.M.); (M.S.)
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY 10017, USA; (M.A.F.); (C.P.)
- Department of Radiology, Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY 10016, USA
| |
Collapse
|
6
|
Choi MY, Choi JA. Ocular Dominance in Open Angle Glaucoma: the shifting trend depending on stage of the disease. KOREAN JOURNAL OF OPHTHALMOLOGY 2022; 36:236-243. [PMID: 35176838 PMCID: PMC9194727 DOI: 10.3341/kjo.2021.0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/10/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose To investigate the characteristics and distribution of ocular dominance in primary open-angle glaucoma eyes. In addition, we tried to catch any trend of ocular dominance according to the stage of disease. Methods Two hundred participants with bilateral open-angle glaucoma underwent ocular dominant testing by “the hole-in-a-card” test. Using optical coherence tomography, macular ganglion cell-inner plexiform layer, as well as circumpapillary retinal nerve fiber layer thickness were measured and compared according to ocular dominance. Of the two eyes of one subject, the eye with less glaucomatous damage based on mean deviation was considered to be the “better eye” in our study. Results Ocular dominance was in the right eye in 66% of the population and ocular dominance was positioned in the better eye in 70% of the population (p = 0.001 and p = 0.002, respectively). In conditional logistic regression analyses, right eye and better mean deviation were significantly associated with ocular dominance (p = 0.001 and p = 0.002, respectively). Ocular dominance tends to be present in the better eye and this trend was more apparent as the severity of glaucoma increased. Intereye comparison of visual field indices and retinal nerve fiber layer thickness between dominant versus nondominant eye become apparent in moderate and advanced glaucoma whereas it was not as apparent in early glaucoma. Conclusions In glaucomatous eyes, laterality and severity of glaucoma determined ocular dominance. Intereye difference between nondominant and dominant eyes increased with the severity of glaucoma. Our findings suggest the existence of potential reciprocal interactions between ocular dominance and glaucoma.
Collapse
Affiliation(s)
- Moon Young Choi
- Department of Ophthalmology and Visual Science, St. Vincent's Hospital, College of Medicine, the Catholic University of Korea, Seoul, Korea
| | - Jin A Choi
- Department of Ophthalmology and Visual Science, St. Vincent's Hospital, College of Medicine, the Catholic University of Korea, Seoul, Korea
| |
Collapse
|
7
|
Lucas-Ruiz F, Galindo-Romero C, Albaladejo-García V, Vidal-Sanz M, Agudo-Barriuso M. Mechanisms implicated in the contralateral effect in the central nervous system after unilateral injury: focus on the visual system. Neural Regen Res 2021; 16:2125-2131. [PMID: 33818483 PMCID: PMC8354113 DOI: 10.4103/1673-5374.310670] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/21/2020] [Accepted: 01/11/2021] [Indexed: 12/21/2022] Open
Abstract
The retina, as part of the central nervous system is an ideal model to study the response of neurons to injury and disease and to test new treatments. During the last decade is becoming clear that unilateral lesions in bilateral areas of the central nervous system trigger an inflammatory response in the contralateral uninjured site. This effect has been better studied in the visual system where, as a rule, one retina is used as experimental and the other as control. Contralateral retinas in unilateral models of retinal injury show neuronal degeneration and glial activation. The mechanisms by which this adverse response in the central nervous system occurs are discussed in this review, focusing primarily on the visual system.
Collapse
Affiliation(s)
- Fernando Lucas-Ruiz
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIBArrixaca) Murcia, Spain
| | - Caridad Galindo-Romero
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIBArrixaca) Murcia, Spain
| | - Virginia Albaladejo-García
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIBArrixaca) Murcia, Spain
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIBArrixaca) Murcia, Spain
| | - Marta Agudo-Barriuso
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIBArrixaca) Murcia, Spain
| |
Collapse
|
8
|
Sharif NA. Therapeutic Drugs and Devices for Tackling Ocular Hypertension and Glaucoma, and Need for Neuroprotection and Cytoprotective Therapies. Front Pharmacol 2021; 12:729249. [PMID: 34603044 PMCID: PMC8484316 DOI: 10.3389/fphar.2021.729249] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022] Open
Abstract
Damage to the optic nerve and the death of associated retinal ganglion cells (RGCs) by elevated intraocular pressure (IOP), also known as glaucoma, is responsible for visual impairment and blindness in millions of people worldwide. The ocular hypertension (OHT) and the deleterious mechanical forces it exerts at the back of the eye, at the level of the optic nerve head/optic disc and lamina cribosa, is the only modifiable risk factor associated with glaucoma that can be treated. The elevated IOP occurs due to the inability of accumulated aqueous humor (AQH) to egress from the anterior chamber of the eye due to occlusion of the major outflow pathway, the trabecular meshwork (TM) and Schlemm’s canal (SC). Several different classes of pharmaceutical agents, surgical techniques and implantable devices have been developed to lower and control IOP. First-line drugs to promote AQH outflow via the uveoscleral outflow pathway include FP-receptor prostaglandin (PG) agonists (e.g., latanoprost, travoprost and tafluprost) and a novel non-PG EP2-receptor agonist (omidenepag isopropyl, Eybelis®). TM/SC outflow enhancing drugs are also effective ocular hypotensive agents (e.g., rho kinase inhibitors like ripasudil and netarsudil; and latanoprostene bunod, a conjugate of a nitric oxide donor and latanoprost). One of the most effective anterior chamber AQH microshunt devices is the Preserflo® microshunt which can lower IOP down to 10–13 mmHg. Other IOP-lowering drugs and devices on the horizon will be also discussed. Additionally, since elevated IOP is only one of many risk factors for development of glaucomatous optic neuropathy, a treatise of the role of inflammatory neurodegeneration of the optic nerve and retinal ganglion cells and appropriate neuroprotective strategies to mitigate this disease will also be reviewed and discussed.
Collapse
Affiliation(s)
- Najam A Sharif
- Global Alliances and External Research, Ophthalmology Innovation Center, Santen Inc., Emeryville, CA, United States
| |
Collapse
|
9
|
Parisi V, Ziccardi L, Tanga L, Roberti G, Barbano L, Carnevale C, Manni G, Oddone F. Neural Conduction Along Postretinal Visual Pathways in Glaucoma. Front Aging Neurosci 2021; 13:697425. [PMID: 34408643 PMCID: PMC8365149 DOI: 10.3389/fnagi.2021.697425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose: This study was conducted in order to evaluate retinal ganglion cell (RCG) function and the neural conduction along the postretinal large and small axons and its correlation with retinal nerve fiber layer thickness (RNFL-T) in open-angle glaucoma (OAG) eyes. Methods: Thirty-seven OAG patients (mean age: 51.68 ± 9.83 years) with 24-2 Humphrey mean deviation (MD) between -2.5 and -20 dB and IOP <21 mmHg on pharmacological treatment (OAG group) and 20 age-matched controls (control group) were enrolled. In both groups, simultaneous pattern electroretinograms (PERG) and visual evoked potentials (VEP), in response to checks stimulating macular or extramacular areas (the check edge subtended 15' and 60' of visual arc, respectively), and RNFL-T (measured in superior, inferior, nasal, and temporal quadrants) were assessed. Results: In the OAG group, a significant (ANOVA, p < 0.01) reduction of 60' and 15' PERG P50-N95 and VEP N75-P100 amplitudes and of RNFL-T [overall (average of all quadrants) or temporal] with respect to controls was found; the values of 60' and 15' PERG P50 and VEP P100 implicit times and of retinocortical time (RCT; difference between VEP P100 and PERG P50 implicit times) were significantly (p < 0.01) increased with respect to control ones. The observed increased RCTs were significantly linearly correlated (Pearson's test, p < 0.01) with the reduced PERG amplitude and MD values, whereas no significant linear correlation (p < 0.01) with RNFL-T (overall or temporal) values was detected. Conclusions: In OAG, there is an impaired postretinal neural conduction along both large and small axons (increased 60' and 15' RCTs) that is related to RGC dysfunction, but independent from the RNFL morphology. This implies that, in OAG, the impairment of postretinal neural structures can be electrophysiologically identified and may contribute to the visual field defects, as suggested by the linear correlation between the increase of RCT and MD reduction.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gianluca Manni
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | | |
Collapse
|
10
|
Colbert MK, Ho LC, van der Merwe Y, Yang X, McLellan GJ, Hurley SA, Field AS, Yun H, Du Y, Conner IP, Parra C, Faiq MA, Fingert JH, Wollstein G, Schuman JS, Chan KC. Diffusion Tensor Imaging of Visual Pathway Abnormalities in Five Glaucoma Animal Models. Invest Ophthalmol Vis Sci 2021; 62:21. [PMID: 34410298 PMCID: PMC8383913 DOI: 10.1167/iovs.62.10.21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose To characterize the visual pathway integrity of five glaucoma animal models using diffusion tensor imaging (DTI). Methods Two experimentally induced and three genetically determined models of glaucoma were evaluated. For inducible models, chronic IOP elevation was achieved via intracameral injection of microbeads or laser photocoagulation of the trabecular meshwork in adult rodent eyes. For genetic models, the DBA/2J mouse model of pigmentary glaucoma, the LTBP2 mutant feline model of congenital glaucoma, and the transgenic TBK1 mouse model of normotensive glaucoma were compared with their respective genetically matched healthy controls. DTI parameters, including fractional anisotropy, axial diffusivity, and radial diffusivity, were evaluated along the optic nerve and optic tract. Results Significantly elevated IOP relative to controls was observed in each animal model except for the transgenic TBK1 mice. Significantly lower fractional anisotropy and higher radial diffusivity were observed along the visual pathways of the microbead- and laser-induced rodent models, the DBA/2J mice, and the LTBP2-mutant cats compared with their respective healthy controls. The DBA/2J mice also exhibited lower axial diffusivity, which was not observed in the other models examined. No apparent DTI change was observed in the transgenic TBK1 mice compared with controls. Conclusions Chronic IOP elevation was accompanied by decreased fractional anisotropy and increased radial diffusivity along the optic nerve or optic tract, suggestive of disrupted microstructural integrity in both inducible and genetic glaucoma animal models. The effects on axial diffusivity differed between models, indicating that this DTI metric may represent different aspects of pathological changes over time and with severity.
Collapse
Affiliation(s)
- Max K Colbert
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, United States
| | - Leon C Ho
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Yolandi van der Merwe
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Xiaoling Yang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Gillian J McLellan
- Department of Ophthalmology and Visual Sciences, University of Wisconsin - Madison, Madison, Wisconsin, United States.,McPherson Eye Research Institute, University of Wisconsin - Madison, Madison, Wisconsin, United States
| | - Samuel A Hurley
- Department of Radiology, University of Wisconsin - Madison, Madison, Wisconsin, United States
| | - Aaron S Field
- Department of Radiology, University of Wisconsin - Madison, Madison, Wisconsin, United States
| | - Hongmin Yun
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Yiqin Du
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Ian P Conner
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Carlos Parra
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, United States
| | - Muneeb A Faiq
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, United States
| | - John H Fingert
- Department of Ophthalmology and Visual Sciences, University of Iowa College of Medicine, Iowa City, Iowa, United States
| | - Gadi Wollstein
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, United States.,Center for Neural Science, College of Arts and Science, New York University, New York, New York, United States.,Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York, United States
| | - Joel S Schuman
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, United States.,Center for Neural Science, College of Arts and Science, New York University, New York, New York, United States.,Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York, United States.,Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, United States
| | - Kevin C Chan
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, United States.,Center for Neural Science, College of Arts and Science, New York University, New York, New York, United States.,Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York, United States.,Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, United States.,Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, United States
| |
Collapse
|
11
|
You M, Rong R, Zeng Z, Xia X, Ji D. Transneuronal Degeneration in the Brain During Glaucoma. Front Aging Neurosci 2021; 13:643685. [PMID: 33889083 PMCID: PMC8055862 DOI: 10.3389/fnagi.2021.643685] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/11/2021] [Indexed: 12/18/2022] Open
Abstract
The death of retinal ganglion cells (RGCs) is a key factor in the pathophysiology of all types of glaucoma, but the mechanism of pathogenesis of glaucoma remains unclear. RGCs are a group of central nervous system (CNS) neurons whose soma are in the inner retina. The axons of RGCs form the optic nerve and converge at the optic chiasma; from there, they project to the visual cortex via the lateral geniculate nucleus (LGN). In recent years, there has been increasing interest in the dysfunction and death of CNS and retinal neurons caused by transneuronal degeneration of RGCs, and the view that glaucoma is a widespread neurodegenerative disease involving CNS damage appears more and more frequently in the literature. In this review, we summarize the current knowledge of LGN and visual cortex neuron damage in glaucoma and possible mechanisms behind the damage. This review presents an updated and expanded view of neuronal damage in glaucoma, and reveals new and potential targets for neuroprotection and treatment.
Collapse
Affiliation(s)
- Mengling You
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, China
| | - Rong Rong
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, China
| | - Zhou Zeng
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, China
| | - Xiaobo Xia
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, China
| | - Dan Ji
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, China
| |
Collapse
|
12
|
van der Merwe Y, Murphy MC, Sims JR, Faiq MA, Yang XL, Ho LC, Conner IP, Yu Y, Leung CK, Wollstein G, Schuman JS, Chan KC. Citicoline Modulates Glaucomatous Neurodegeneration Through Intraocular Pressure-Independent Control. Neurotherapeutics 2021; 18:1339-1359. [PMID: 33846961 PMCID: PMC8423893 DOI: 10.1007/s13311-021-01033-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2021] [Indexed: 02/08/2023] Open
Abstract
Glaucoma is a neurodegenerative disease that causes progressive, irreversible vision loss. Currently, intraocular pressure (IOP) is the only modifiable risk factor for glaucoma. However, glaucomatous degeneration may continue despite adequate IOP control. Therefore, there exists a need for treatment that protects the visual system, independent of IOP. This study sought, first, to longitudinally examine the neurobehavioral effects of different magnitudes and durations of IOP elevation using multi-parametric magnetic resonance imaging (MRI), optokinetics and histology; and, second, to evaluate the effects of oral citicoline treatment as a neurotherapeutic in experimental glaucoma. Eighty-two adult Long Evans rats were divided into six groups: acute (mild or severe) IOP elevation, chronic (citicoline-treated or untreated) IOP elevation, and sham (acute or chronic) controls. We found that increasing magnitudes and durations of IOP elevation differentially altered structural and functional brain connectivity and visuomotor behavior, as indicated by decreases in fractional anisotropy in diffusion tensor MRI, magnetization transfer ratios in magnetization transfer MRI, T1-weighted MRI enhancement of anterograde manganese transport, resting-state functional connectivity, visual acuity, and neurofilament and myelin staining along the visual pathway. Furthermore, 3 weeks of oral citicoline treatment in the setting of chronic IOP elevation significantly reduced visual brain integrity loss and visual acuity decline without altering IOP. Such effects sustained after treatment was discontinued for another 3 weeks. These results not only illuminate the close interplay between eye, brain, and behavior in glaucomatous neurodegeneration, but also support a role for citicoline in protecting neural tissues and visual function in glaucoma beyond IOP control.
Collapse
Affiliation(s)
- Yolandi van der Merwe
- UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew C Murphy
- UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Jeffrey R Sims
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Muneeb A Faiq
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Xiao-Ling Yang
- UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Leon C Ho
- UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ian P Conner
- UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yu Yu
- Pleryon Therapeutics Limited, Shenzhen, China
| | - Christopher K Leung
- University Eye Center, Hong Kong Eye Hospital, Hong Kong, China
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Gadi Wollstein
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
- Center for Neural Science, College of Arts and Science, New York University, New York, NY, USA
| | - Joel S Schuman
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
- Center for Neural Science, College of Arts and Science, New York University, New York, NY, USA
- Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Kevin C Chan
- UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA.
- Center for Neural Science, College of Arts and Science, New York University, New York, NY, USA.
- Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA.
- Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA.
| |
Collapse
|
13
|
Cooper ML, Pasini S, Lambert WS, D'Alessandro KB, Yao V, Risner ML, Calkins DJ. Redistribution of metabolic resources through astrocyte networks mitigates neurodegenerative stress. Proc Natl Acad Sci U S A 2020; 117:18810-18821. [PMID: 32690710 PMCID: PMC7414143 DOI: 10.1073/pnas.2009425117] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In the central nervous system, glycogen-derived bioenergetic resources in astrocytes help promote tissue survival in response to focal neuronal stress. However, our understanding of the extent to which these resources are mobilized and utilized during neurodegeneration, especially in nearby regions that are not actively degenerating, remains incomplete. Here we modeled neurodegeneration in glaucoma, the world's leading cause of irreversible blindness, and measured how metabolites mobilize through astrocyte gap junctions composed of connexin 43 (Cx43). We elevated intraocular pressure in one eye and determined how astrocyte-derived metabolites in the contralateral optic projection responded. Remarkably, astrocyte networks expand and redistribute metabolites along distances even 10 mm in length, donating resources from the unstressed to the stressed projection in response to intraocular pressure elevation. While resource donation improves axon function and visual acuity in the directly stressed region, it renders the donating tissue susceptible to bioenergetic, structural, and physiological degradation. Intriguingly, when both projections are stressed in a WT animal, axon function and visual acuity equilibrate between the two projections even when each projection is stressed for a different length of time. This equilibration does not occur when Cx43 is not present. Thus, Cx43-mediated astrocyte metabolic networks serve as an endogenous mechanism used to mitigate bioenergetic stress and distribute the impact of neurodegenerative disease processes. Redistribution ultimately renders the donating optic nerve vulnerable to further metabolic stress, which could explain why local neurodegeneration does not remain confined, but eventually impacts healthy regions of the brain more broadly.
Collapse
Affiliation(s)
- Melissa L Cooper
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville TN 37232-0654
| | - Silvia Pasini
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville TN 37232-0654
| | - Wendi S Lambert
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville TN 37232-0654
| | - Karis B D'Alessandro
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville TN 37232-0654
| | - Vincent Yao
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville TN 37232-0654
| | - Michael L Risner
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville TN 37232-0654
| | - David J Calkins
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville TN 37232-0654
| |
Collapse
|
14
|
Slagle G, Groth SL, Montelongo M, Sponsel WE. Nonpenetrating Deep Sclerectomy for Progressive Glaucoma: Long-term (5-year) Follow-up of Intraocular Pressure Control and Visual Field Survival. J Curr Glaucoma Pract 2020; 14:3-9. [PMID: 32581462 PMCID: PMC7302606 DOI: 10.5005/jp-journals-10078-1273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Purpose To monitor 5-year outcomes of nonpenetrating deep sclerectomy (NPDS) with mitomycin C (MMC) in a new consecutive patient cohort. Materials and methods All eyes undergoing NPDS surgery between 1/08 and 6/12 were monitored for intraocular pressure (IOP), number of antiglaucoma medications (meds), and visual field indices [mean deviation (MD) and corrected pattern standard deviation (CPSD)], relative to the preoperative baseline using the two-tailed paired Student's t test. Results Of 106 eyes undergoing NPDS with MMC, mean IOP was 19.7 ± 0.5 [sem] mm Hg preoperatively, 11.9 ± 0.5 at 3 months, 12.5 ± 0.6 at 6 months, 12.4 ± 0.5 at 12 months, 12.6 ± 0.6 at 18 months, 11.1 ± 0.6 at 2 years, 11.8 ± 0.5 at 2.5 years, 11.0 ± 0.5 at 3 years, 11.7 ± 0.5 at 3.5 years, 10.7 ± 0.7 at 4 years, 11.6 ± 0.5 at 4.5 years, and 12.4 ± 0.7 at 5 years (average IOP reduction of 7.8 mm Hg or 37%; p < 10−6) at 5 years. About 92% of eyes had stable IOP ≥5 and ≤21 mm Hg at 5 years. Mean preoperative meds 2.7 ± 0.1 was reduced to 0.40 ±0.09 at 3 months, 0.51 ± 0.1 at 6 months, 0.38 ± 0.08 at 12 months, 0.49 ± 0.09 at 18 months, 0.41 ± 0.09 at 2 years, 0.39 ± 0.09 at 2.5 years, 0.49 ± 0.1 at 3 years, 0.58 ± 0.1 at 3.5 years, 0.49 ± 0.1 at 4 years, 0.64 ± 0.1 at 4.5 years, and 0.52 ± 0.1 at 5 years, corresponding to mean reduction of 2.2 meds (81%; p < 10−22) at 5 years. Mean deviation and CPSD were stable relative to baseline at all time intervals (R = 0.83–0.94; p < 0.0001). Conclusion With appropriate postoperative management, eyes undergoing NPDS can maintain excellent IOP control with minimal medication use and maintain very stable visual fields over an extended time frame. How to cite this article Slagle G, Groth SL, Montelongo M, et al. Nonpenetrating Deep Sclerectomy for Progressive Glaucoma: Long-term (5-year) Follow-up of Intraocular Pressure Control and Visual Field Survival. J Curr Glaucoma Pract 2020;14(1):3–9.
Collapse
Affiliation(s)
- Grant Slagle
- Chicago College of Osteopathic Medicine, Midwestern University, Westmont, Illinois, USA
| | - Sylvia L Groth
- Department of Ophthalmology Glaucoma Service, Vanderbilt University, Nashville, Tennessee, USA
| | - Mario Montelongo
- Glaucoma Service, WESMDPA Baptist Medical Center, San Antonio, Texas, USA
| | - William E Sponsel
- Department of Vision Sciences, University of the Incarnate Word, San Antonio, Texas, USA
| |
Collapse
|
15
|
Facilitating Patient-Ophthalmologist Dialog: A Call for a Patient-focused Classification of Glaucoma Diagnosis. J Glaucoma 2020; 29:329-330. [DOI: 10.1097/ijg.0000000000001481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Liu P, McKendrick A, Ma-Wyatt A, Turpin A. A Depth-Dependent Integrated VF Simulation for Analysis and Visualization of Glaucomatous VF Defects. Transl Vis Sci Technol 2020; 9:8. [PMID: 32704428 PMCID: PMC7347508 DOI: 10.1167/tvst.9.3.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Methods Results Conclusions Translational Relevance
Collapse
Affiliation(s)
- Ping Liu
- Department of Optometry and Vision Sciences, The University of Melbourne, Victoria, Australia
| | - Allison McKendrick
- Department of Optometry and Vision Sciences, The University of Melbourne, Victoria, Australia
| | - Anna Ma-Wyatt
- Department of Psychology, The University of Adelaide, South Australia, Australia
| | - Andrew Turpin
- School of Computing and Information Systems, The University of Melbourne, Victoria, Australia
| |
Collapse
|
17
|
Trivedi V, Bang JW, Parra C, Colbert MK, O'Connell C, Arshad A, Faiq MA, Conner IP, Redfern MS, Wollstein G, Schuman JS, Cham R, Chan KC. Widespread brain reorganization perturbs visuomotor coordination in early glaucoma. Sci Rep 2019; 9:14168. [PMID: 31578409 PMCID: PMC6775162 DOI: 10.1038/s41598-019-50793-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 09/19/2019] [Indexed: 11/09/2022] Open
Abstract
Glaucoma is the world's leading cause of irreversible blindness, and falls are a major public health concern in glaucoma patients. Although recent evidence suggests the involvements of the brain toward advanced glaucoma stages, the early brain changes and their clinical and behavioral consequences remain poorly described. This study aims to determine how glaucoma may impair the brain structurally and functionally within and beyond the visual pathway in the early stages, and whether these changes can explain visuomotor impairments in glaucoma. Using multi-parametric magnetic resonance imaging, glaucoma patients presented compromised white matter integrity along the central visual pathway and around the supramarginal gyrus, as well as reduced functional connectivity between the supramarginal gyrus and the visual occipital and superior sensorimotor areas when compared to healthy controls. Furthermore, decreased functional connectivity between the supramarginal gyrus and the visual brain network may negatively impact postural control measured with dynamic posturography in glaucoma patients. Taken together, this study demonstrates that widespread structural and functional brain reorganization is taking place in areas associated with visuomotor coordination in early glaucoma. These results implicate an important central mechanism by which glaucoma patients may be susceptible to visual impairments and increased risk of falls.
Collapse
Affiliation(s)
- Vivek Trivedi
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, USA
| | - Ji Won Bang
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, USA
| | - Carlos Parra
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, USA
| | - Max K Colbert
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, USA
| | - Caitlin O'Connell
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Kinesiology, East Carolina University, Greenville, NC, USA
| | - Ahmel Arshad
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, USA
| | - Muneeb A Faiq
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, USA
| | - Ian P Conner
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark S Redfern
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gadi Wollstein
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, USA.,Center for Neural Science, Faculty of Arts and Science, New York University, New York, NY, USA
| | - Joel S Schuman
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, USA.,Neuroscience Institute, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, USA.,Center for Neural Science, Faculty of Arts and Science, New York University, New York, NY, USA
| | - Rakie Cham
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kevin C Chan
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, USA. .,Department of Radiology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, USA. .,Neuroscience Institute, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, USA. .,Center for Neural Science, Faculty of Arts and Science, New York University, New York, NY, USA.
| |
Collapse
|
18
|
Faiq MA, Wollstein G, Schuman JS, Chan KC. Cholinergic nervous system and glaucoma: From basic science to clinical applications. Prog Retin Eye Res 2019; 72:100767. [PMID: 31242454 PMCID: PMC6739176 DOI: 10.1016/j.preteyeres.2019.06.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 02/08/2023]
Abstract
The cholinergic system has a crucial role to play in visual function. Although cholinergic drugs have been a focus of attention as glaucoma medications for reducing eye pressure, little is known about the potential modality for neuronal survival and/or enhancement in visual impairments. Citicoline, a naturally occurring compound and FDA approved dietary supplement, is a nootropic agent that is recently demonstrated to be effective in ameliorating ischemic stroke, traumatic brain injury, Parkinson's disease, Alzheimer's disease, cerebrovascular diseases, memory disorders and attention-deficit/hyperactivity disorder in both humans and animal models. The mechanisms of its action appear to be multifarious including (i) preservation of cardiolipin, sphingomyelin, and arachidonic acid contents of phosphatidylcholine and phosphatidylethanolamine, (ii) restoration of phosphatidylcholine, (iii) stimulation of glutathione synthesis, (iv) lowering glutamate concentrations and preventing glutamate excitotoxicity, (v) rescuing mitochondrial function thereby preventing oxidative damage and onset of neuronal apoptosis, (vi) synthesis of myelin leading to improvement in neuronal membrane integrity, (vii) improving acetylcholine synthesis and thereby reducing the effects of mental stress and (viii) preventing endothelial dysfunction. Such effects have vouched for citicoline as a neuroprotective, neurorestorative and neuroregenerative agent. Retinal ganglion cells are neurons with long myelinated axons which provide a strong rationale for citicoline use in visual pathway disorders. Since glaucoma is a form of neurodegeneration involving retinal ganglion cells, citicoline may help ameliorate glaucomatous damages in multiple facets. Additionally, trans-synaptic degeneration has been identified in humans and experimental models of glaucoma suggesting the cholinergic system as a new brain target for glaucoma management and therapy.
Collapse
Affiliation(s)
- Muneeb A Faiq
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States
| | - Gadi Wollstein
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States
| | - Joel S Schuman
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States
| | - Kevin C Chan
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States; Department of Radiology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, United States; Center for Neural Science, Faculty of Arts and Science, New York University, New York, NY, United States.
| |
Collapse
|
19
|
Kasi A, Faiq MA, Chan KC. In vivo imaging of structural, metabolic and functional brain changes in glaucoma. Neural Regen Res 2019; 14:446-449. [PMID: 30539811 PMCID: PMC6334611 DOI: 10.4103/1673-5374.243712] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Glaucoma, the world’s leading cause of irreversible blindness, is a condition for which elevated intraocular pressure is currently the only modifiable risk factor. However, the disorder can continue to progress even at reduced intraocular pressure. This indicates additional key factors that contribute to the etiopathogenesis. There has been a growing amount of literature suggesting glaucoma as a neurodegenerative disease of the visual system. However, it remains debatable whether the observed pathophysiological conditions are causes or consequences. This review summarizes recent in vivo imaging studies that helped advance the understanding of early glaucoma involvements and disease progression in the brains of humans and experimental animal models. In particular, we focused on the non-invasive detection of early structural and functional brain changes before substantial clinical visual field loss in glaucoma patients; the eye-brain interactions across disease severity; the metabolic changes occurring in the brain’s visual system in glaucoma; and, the widespread brain involvements beyond the visual pathway as well as the potential behavioral relevance. If the mechanisms of glaucomatous brain changes are reliably identified, novel neurotherapeutics that target parameters beyond intraocular pressure lowering can be the promise of the near future, which would lead to reduced prevalence of this irreversible but preventable disease.
Collapse
Affiliation(s)
- Anisha Kasi
- NYU Langone Eye Center, Department of Ophthalmology, NYU School of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Muneeb A Faiq
- NYU Langone Eye Center, Department of Ophthalmology, NYU School of Medicine, NYU Langone Health; Department of Radiology, NYU School of Medicine, NYU Langone Health; Center for Neural Science, Faculty of Arts and Science, New York University, New York, NY, USA
| | - Kevin C Chan
- NYU Langone Eye Center, Department of Ophthalmology, NYU School of Medicine, NYU Langone Health; Department of Radiology, NYU School of Medicine, NYU Langone Health; Center for Neural Science, Faculty of Arts and Science, New York University, New York, NY, USA
| |
Collapse
|
20
|
Choi JA, Jung IY, Jee D. The Relationship Between the Sighting Eye and Functional and Structural Asymmetries in Glaucoma. ACTA ACUST UNITED AC 2018; 59:5447-5454. [DOI: 10.1167/iovs.18-24083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Jin A Choi
- Department of Ophthalmology and Visual Science, St. Vincent's Hospital, College of Medicine, the Catholic University of Korea, Seoul, Korea
| | - Il-Young Jung
- Department of Ophthalmology and Visual Science, St. Vincent's Hospital, College of Medicine, the Catholic University of Korea, Seoul, Korea
| | - Donghyun Jee
- Department of Ophthalmology and Visual Science, St. Vincent's Hospital, College of Medicine, the Catholic University of Korea, Seoul, Korea
| |
Collapse
|
21
|
Trevino R, Sponsel WE, Majcher CE, Allen J, Rabin J. Association of Diopsys® Short-duration Transient Visual Evoked Potential Latency with Visual Field Progression in Chronic Glaucoma. J Curr Glaucoma Pract 2018; 12:29-35. [PMID: 29861579 PMCID: PMC5981090 DOI: 10.5005/jp-journals-10028-1240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 12/16/2017] [Indexed: 11/23/2022] Open
Abstract
Aim To determine the association of Diopsys® NOVA-LX amplitude and latency abnormality scores with perimetric staging of chronic glaucoma, and to explore potential single-visit short-duration transient visual evoked potential (SD-tVEP) trend detection ability utilizing Humphrey 30-2 field progression data. Materials and methods Setting: Glaucoma subspecialty clinic. Participants: Treated adult chronic glaucoma patients undergoing SD-tVEP evaluation. Main outcome measures: (1) Proportion of eyes designated as suspect or abnormal by the NOVA-LX multifactorial algorithm were determined as a function of glaucoma severity using the most recent Humphrey visual field analyzer (HVFA) 30-2 field. (2) Association between long-term HVFA-guided progression analysis (GPA) annual slopes and SD-tVEP abnormality was assessed to determine whether a single VEP test might help to identify eyes more prone to progressive visual field (VF) loss. Results One hundred and thirty-three eyes of 84 patients (mean age 68 years) were analyzed. The SD-tVEP abnormality increased proportionately with severity of VF loss under high-contrast (Hc) test conditions for both latency (p = 0.001) and amplitude (p < 0.01). The HVFA progression analysis printouts existed for 91 eyes (mean 12.3 fields per eye/range 5-18). Nearly three-quarters (72.5%) of eyes with mean annual HVFA progression >0.7 dB/year (n = 29) had single-visit VEP latency abnormalities. Fewer than half (46.7%) of the remainder (n = 62) showed latency abnormality. Mean progression for eyes with abnormal vs normal VEP latency was -0.87 ± 0.3 dB/year vs -0.32 ± 0.4 dB/year. Conclusion Diopsys NOVA-LX Hc latency abnormality shows strong association with VF loss among a diverse population of clinical patients undergoing active treatment for chronic glaucoma, and appears likely to afford clinically useful trend-detecting test. Clinical significance The SD-tVEP has the potential to serve as a single-visit clinical indicator to identify glaucoma patients at high risk for VF progression. How to cite this article: Trevino R, Sponsel WE, Majcher CE, Allen J, Rabin J. Association of Diopsys® Short-duration Transient Visual Evoked Potential Latency with Visual Field Progression in Chronic Glaucoma. J Curr Glaucoma Pract 2018;12(1):29-35.
Collapse
Affiliation(s)
- Richard Trevino
- Optometrist, Rosenberg School of Optometry, University of the Incarnate Word, San Antonio, Texas, USA
| | - William E Sponsel
- Director, Professor and Consultant, Department of Ophthalmology, CLI Eyes of Africa Clinic and Surgery Center, Malawi, Africa; WESMDPA Baptist Medical Center Glaucoma Service, San Antonio, Texas; Department of Biomedical Engineering, University of Texas San Antonio, San Antonio, Texas; Rosenberg School of Optometry, University of the Incarnate Word, San Antonio, Texas, USA
| | - Carolyn E Majcher
- Optometrist, Rosenberg School of Optometry, University of the Incarnate Word, San Antonio, Texas, USA
| | - Joey Allen
- Optometrist, Rosenberg School of Optometry, University of the Incarnate Word, San Antonio, Texas, USA
| | - Jeffery Rabin
- Optometrist, Rosenberg School of Optometry, University of the Incarnate Word, San Antonio, Texas, USA
| |
Collapse
|
22
|
Sharif NA. iDrugs and iDevices Discovery Research: Preclinical Assays, Techniques, and Animal Model Studies for Ocular Hypotensives and Neuroprotectants. J Ocul Pharmacol Ther 2018; 34:7-39. [PMID: 29323613 DOI: 10.1089/jop.2017.0125] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Discovery ophthalmic research is centered around delineating the molecular and cellular basis of ocular diseases and finding and exploiting molecular and genetic pathways associated with them. From such studies it is possible to determine suitable intervention points to address the disease process and hopefully to discover therapeutics to treat them. An investigational new drug (IND) filing for a new small-molecule drug, peptide, antibody, genetic treatment, or a device with global health authorities requires a number of preclinical studies to provide necessary safety and efficacy data. Specific regulatory elements needed for such IND-enabling studies are beyond the scope of this article. However, to enhance the overall data packages for such entities and permit high-quality foundation-building publications for medical affairs, additional research and development studies are always desirable. This review aims to provide examples of some target localization/verification, ocular drug discovery processes, and mechanistic and portfolio-enhancing exploratory investigations for candidate drugs and devices for the treatment of ocular hypertension and glaucomatous optic neuropathy (neurodegeneration of retinal ganglion cells and their axons). Examples of compound screening assays, use of various technologies and techniques, deployment of animal models, and data obtained from such studies are also presented.
Collapse
Affiliation(s)
- Najam A Sharif
- 1 Global Alliances & External Research , Santen Incorporated, Emeryville, California.,2 Department of Pharmaceutical Sciences, Texas Southern University , Houston, Texas.,3 Department of Pharmacology and Neuroscience, University of North Texas Health Sciences Center , Fort Worth, Texas
| |
Collapse
|
23
|
Monroy GL, Won J, Spillman DR, Dsouza R, Boppart SA. Clinical translation of handheld optical coherence tomography: practical considerations and recent advancements. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-30. [PMID: 29260539 PMCID: PMC5735247 DOI: 10.1117/1.jbo.22.12.121715] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/04/2017] [Indexed: 05/21/2023]
Abstract
Since the inception of optical coherence tomography (OCT), advancements in imaging system design and handheld probes have allowed for numerous advancements in disease diagnostics and characterization of the structural and optical properties of tissue. OCT system developers continue to reduce form factor and cost, while improving imaging performance (speed, resolution, etc.) and flexibility for applicability in a broad range of fields, and nearly every clinical specialty. An extensive array of components to construct customized systems has also become available, with a range of commercial entities that produce high-quality products, from single components to full systems, for clinical and research use. Many advancements in the development of these miniaturized and portable systems can be linked back to a specific challenge in academic research, or a clinical need in medicine or surgery. Handheld OCT systems are discussed and explored for various applications. Handheld systems are discussed in terms of their relative level of portability and form factor, with mention of the supporting technologies and surrounding ecosystem that bolstered their development. Additional insight from our efforts to implement systems in several clinical environments is provided. The trend toward well-designed, efficient, and compact handheld systems paves the way for more widespread adoption of OCT into point-of-care or point-of-procedure applications in both clinical and commercial settings.
Collapse
Affiliation(s)
- Guillermo L. Monroy
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
| | - Jungeun Won
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
| | - Darold R. Spillman
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
| | - Roshan Dsouza
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
| | - Stephen A. Boppart
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
- University of Illinois at Urbana-Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
- Carle-Illinois College of Medicine, Urbana, Illinois, United States
- Address all correspondence to: Stephen A. Boppart, E-mail:
| |
Collapse
|
24
|
Sponsel WE, Johnson SL, Trevino R, Gonzalez A, Groth SL, Majcher C, Fulton DC, Reilly MA. Pattern Electroretinography and Visual Evoked Potentials Provide Clinical Evidence of CNS Modulation of High- and Low-Contrast VEP Latency in Glaucoma. Transl Vis Sci Technol 2017; 6:6. [PMID: 29134137 PMCID: PMC5678951 DOI: 10.1167/tvst.6.6.6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/06/2017] [Indexed: 12/17/2022] Open
Abstract
Purpose Both pattern electroretinography (PERG) and visual evoked potentials (VEP) can be performed using low- (15%; Lc) and high- (85%; Hc) contrast gratings that may preferentially stimulate the magno- and parvocellular pathways. We observed that among glaucomatous patients showing only one VEP latency deficit per eye, there appeared to be a very strong tendency for an Hc delay in one eye and an Lc delay in the other. Methods Diopsys NOVA-LX system was used to measure VEP Hc and Lc latency among a clinical glaucoma population to find all individuals with either a single Hc or Lc latency abnormality in each eye (group 1), or with greater than 0 and less than 4 Hc or Lc VEP latency abnormalities in the two eyes (group 2) to determine whether a significant inverse correlation existed for these values in either group. Hc and Lc PERG data were also evaluated to assess associated retinal ganglion cell responses. Results A strong inverse correlation (P = 0.0000003) was observed between the Hc and Lc VEP latency values among the 64 eyes in group 1. Group 2 provided a comparable result (n = 143; 286 eyes; P = 0.0005). PERG (n = 81; 162 eyes) also showed strong bilateral symmetry for magnitude values (P < 0.0001 for both Lc and Hc in groups 1 and 2). Conclusions Bilateral retention of both low-resolution/high-speed and high-resolution/low-speed function may persist with both eyes open despite symmetrically pathologic retinal ganglion cell PERG waveform asynchrony for Hc and Lc stimuli in the paired eyes. Translational Relevance Clinical electrophysiology strongly suggests binocular compensation for dynamic dysfunction operates under central nervous system (CNS) control in glaucoma.
Collapse
Affiliation(s)
- William E Sponsel
- WESMDPA Baptist Medical Center Glaucoma Service, San Antonio, TX, USA.,Vision Sciences, University of the Incarnate Word Rosenberg School of Optometry, San Antonio, TX, USA.,Department of Biomedical Engineering, University of Texas San Antonio, San Antonio, TX, USA
| | - Susan L Johnson
- Vision Sciences, University of the Incarnate Word Rosenberg School of Optometry, San Antonio, TX, USA
| | - Rick Trevino
- Vision Sciences, University of the Incarnate Word Rosenberg School of Optometry, San Antonio, TX, USA
| | | | | | - Carolyn Majcher
- Vision Sciences, University of the Incarnate Word Rosenberg School of Optometry, San Antonio, TX, USA
| | | | - Matthew A Reilly
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
25
|
Toris CB, Gelfman C, Whitlock A, Sponsel WE, Rowe-Rendleman CL. Making Basic Science Studies in Glaucoma More Clinically Relevant: The Need for a Consensus. J Ocul Pharmacol Ther 2017; 33:501-518. [PMID: 28777040 DOI: 10.1089/jop.2017.0001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Glaucoma is a chronic, progressive, and debilitating optic neuropathy that causes retinal damage and visual defects. The pathophysiologic mechanisms of glaucoma remain ill-defined, and there is an indisputable need for contributions from basic science researchers in defining pathways for translational research. However, glaucoma researchers today face significant challenges due to the lack of a map of integrated pathways from bench to bedside and the lack of consensus statements to guide in choosing the right research questions, techniques, and model systems. Here, we present the case for the development of such maps and consensus statements, which are critical for faster development of the most efficacious glaucoma therapy. We underscore that interrogating the preclinical path of both successful and unsuccessful clinical programs is essential to defining future research. One aspect of this is evaluation of available preclinical research tools. To begin this process, we highlight the utility of currently available animal models for glaucoma and emphasize that there is a particular need for models of glaucoma with normal intraocular pressure. In addition, we outline a series of discoveries from cell-based, animal, and translational research that begin to reveal a map of glaucoma from cell biology to physiology to disease pathology. Completion of these maps requires input and consensus from the global glaucoma research community. This article sets the stage by outlining various approaches to such a consensus. Together, these efforts will help accelerate basic science research, leading to discoveries with significant clinical impact for people with glaucoma.
Collapse
Affiliation(s)
- Carol B Toris
- 1 Department of Ophthalmology and Visual Sciences, Case Western Reserve University , Cleveland, Ohio
| | | | | | - William E Sponsel
- 3 WESMD Professional Association , San Antonio, Texas.,4 Department of Biomedical Engineering, University of Texas San Antonio , San Antonio, Texas.,5 Department of Vision Sciences, University of the Incarnate Word , San Antonio, Texas
| | | |
Collapse
|
26
|
Rabin J, Kryder A, Lam D. Binocular facilitation of cone-specific visual evoked potentials in colour deficiency. Clin Exp Optom 2017. [PMID: 28636141 DOI: 10.1111/cxo.12567] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Neural compensatory mechanisms have been proposed, which preserve the binocular visual field in glaucoma, as well as cognition in Alzheimer's disease and motor function in Parkinson's disease. It is conceivable that comparable mechanisms operate to preserve function in congenital and/or dystrophic disease. In hereditary colour vision deficiency (CVD), we observed significant facilitation in the amplitude of the binocular cone-specific visual evoked potential (VEP) compared to the monocular amplitude for the cone type corresponding to the CVD. We propose that this finding may reflect preservation of function in hereditary colour vision deficiency. METHODS Binocular and monocular L, M and S cone-specific VEPs were recorded from 12 colour vision deficient subjects and 17 with normal colour vision, confirmed to be CVD or normal on a battery of colour vision tests. Binocular VEP amplitudes were compared to monocular amplitudes within subjects and between subject groups. RESULTS Subjects with CVDs showed binocular facilitation of VEP amplitude (enhancement more than 2.0 times; mean: 2.8 times, p = 0.0003) for the cone type corresponding to their CVD. Mean facilitation of 2.8 times exceeded binocular enhancement for other cone types within CVDs (2.8 times versus 1.2 times) and compared to colour vision normals (2.8 times versus 1.2 times). CONCLUSIONS Hereditary CVDs show binocular facilitation of cone VEP signals for the cone type corresponding to their CVD. As CVD is typically assessed with foveal stimuli, our findings using wider-field binocular stimulation suggest that enhanced colour perception may occur in CVD across a more extensive area of visual field. These results may relate to binocular visual field enhancement in glaucoma and improved colour vision in CVD at supra-threshold levels of stimulation.
Collapse
Affiliation(s)
- Jeff Rabin
- The Rosenberg School of Optometry, University of the Incarnate Word, San Antonio, Texas, USA
| | - Andrew Kryder
- The Rosenberg School of Optometry, University of the Incarnate Word, San Antonio, Texas, USA
| | - Dan Lam
- The Rosenberg School of Optometry, University of the Incarnate Word, San Antonio, Texas, USA
| |
Collapse
|
27
|
Murphy MC, Conner IP, Teng CY, Lawrence JD, Safiullah Z, Wang B, Bilonick RA, Kim SG, Wollstein G, Schuman JS, Chan KC. Retinal Structures and Visual Cortex Activity are Impaired Prior to Clinical Vision Loss in Glaucoma. Sci Rep 2016; 6:31464. [PMID: 27510406 PMCID: PMC4980591 DOI: 10.1038/srep31464] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/18/2016] [Indexed: 12/14/2022] Open
Abstract
Glaucoma is the second leading cause of blindness worldwide and its pathogenesis remains unclear. In this study, we measured the structure, metabolism and function of the visual system by optical coherence tomography and multi-modal magnetic resonance imaging in healthy subjects and glaucoma patients with different degrees of vision loss. We found that inner retinal layer thinning, optic nerve cupping and reduced visual cortex activity occurred before patients showed visual field impairment. The primary visual cortex also exhibited more severe functional deficits than higher-order visual brain areas in glaucoma. Within the visual cortex, choline metabolism was perturbed along with increasing disease severity in the eye, optic radiation and visual field. In summary, this study showed evidence that glaucoma deterioration is already present in the eye and the brain before substantial vision loss can be detected clinically using current testing methods. In addition, cortical cholinergic abnormalities are involved during trans-neuronal degeneration and can be detected non-invasively in glaucoma. The current results can be of impact for identifying early glaucoma mechanisms, detecting and monitoring pathophysiological events and eye-brain-behavior relationships, and guiding vision preservation strategies in the visual system, which may help reduce the burden of this irreversible but preventable neurodegenerative disease.
Collapse
Affiliation(s)
- Matthew C Murphy
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, PA, USA.,UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Louis J. Fox Center for Vision Restoration, University of Pittsburgh, PA, USA
| | - Ian P Conner
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, PA, USA.,UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Louis J. Fox Center for Vision Restoration, University of Pittsburgh, PA, USA.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA, USA
| | - Cindy Y Teng
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, PA, USA.,UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jesse D Lawrence
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, PA, USA.,UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zaid Safiullah
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, PA, USA.,UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bo Wang
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Louis J. Fox Center for Vision Restoration, University of Pittsburgh, PA, USA.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA, USA
| | - Richard A Bilonick
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, PA, USA
| | - Seong-Gi Kim
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, USA.,Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Korea
| | - Gadi Wollstein
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Louis J. Fox Center for Vision Restoration, University of Pittsburgh, PA, USA.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA, USA
| | - Joel S Schuman
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Louis J. Fox Center for Vision Restoration, University of Pittsburgh, PA, USA.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, USA.,Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA.,Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA
| | - Kevin C Chan
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, PA, USA.,UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Louis J. Fox Center for Vision Restoration, University of Pittsburgh, PA, USA.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, USA.,Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
28
|
Central visual pathways in glaucoma: evidence for distal mechanisms of neuronal self-repair. J Neuroophthalmol 2016; 35 Suppl 1:S29-37. [PMID: 26274834 DOI: 10.1097/wno.0000000000000291] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
As in other age-related neurodegenerative diseases, progression of neurodegeneration in glaucoma involves early axonopathy. In glaucoma, this is marked by degradation of active transport along retinal ganglion cell (RGC) axons projecting from the retina to the brain. In experimental systems, transport degradation occurs first in the most distal site in the RGC projection, the superior colliculus (SC) of the midbrain. Even as degradation progresses from one retinotopic sector to the next, important structures in the affected sectors persist, including synapses from RGC axon terminals onto SC neurons. This structural persistence is accompanied by focally increased brain-derived neurotrophic factor in hypertrophic SC astrocyte glia and defines a therapeutic window of opportunity. Thus, central brain structures in glaucoma may respond to disease-relevant stress by induction of mechanisms useful for maintaining retinal signals.
Collapse
|
29
|
Hu S, Smith ND, Saunders LJ, Crabb DP. Patterns of Binocular Visual Field Loss Derived from Large-Scale Patient Data from Glaucoma Clinics. Ophthalmology 2015; 122:2399-406. [DOI: 10.1016/j.ophtha.2015.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/06/2015] [Accepted: 08/06/2015] [Indexed: 02/08/2023] Open
|
30
|
Yucel YH, Gupta N. A framework to explore the visual brain in glaucoma with lessons from models and man. Exp Eye Res 2015; 141:171-8. [DOI: 10.1016/j.exer.2015.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 06/29/2015] [Accepted: 07/09/2015] [Indexed: 01/13/2023]
|
31
|
Reilly MA, Villarreal A, Maddess T, Sponsel WE. Refined Frequency Doubling Perimetry Analysis Reaffirms Central Nervous System Control of Chronic Glaucomatous Neurodegeneration. Transl Vis Sci Technol 2015; 4:7. [PMID: 26069866 DOI: 10.1167/tvst.4.3.7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 04/19/2015] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Refined analysis of frequency doubling perimetric data was performed to assess binocular visual field conservation in patients with comparable degrees of bilateral glaucomatous damage, to determine whether unilateral visual field loss is random, anatomically symmetric, or non-random in relation to the fellow eye. METHODS Case control study of 41 consecutive patients with bilaterally mild to severe glaucoma; each right eye visual field locus was paired with randomly-selected co-isopteric left eye loci, performing 690,000 (10,000 complete sets of 69 loci) such iterations per subject. The potential role of anatomic symmetry in bilateral visual field conservation was also assessed by pairing mirror-image loci of the right- and left-eye fields. The mean values of the random co-isopteric and the symmetric mirror pairings were compared with natural point-for-point pairings of the two eyes by paired t-test. RESULTS Mean unilateral Matrix threshold across the entire 30-degree visual field were 17.0 dB left and 18.4 dB right (average 17.7). The better of the naturally paired concomitant loci yielded binocular equivalent mean bilateral Matrix threshold of 20.9 dB, 1.6 dB higher than the population mean of the 690,000 coisopteric pairings (t = -10.4; P < 10-12). Thus, a remarkable natural tendency for conservation of the binocular Matrix visual field was confirmed, far stronger than explicable by random chance. Symmetric pairings of precise mirror-image loci also produced values higher than random co-isopteric pairings (Δ 1.1 dB; t = -4.0; P = 0.0004). CONCLUSIONS Refined data analysis of paired Matrix visual fields confirms the existence of a natural optimization of binocular visual function in severe bilateral glaucoma via interlocking fields that could only be created by CNS involvement. The disparity of paired Matrix threshold values at mirror-image loci was also highly nonrandom and quantitatively inverse from the expected if anatomic symmetry factors were merely passively contributing systematically to the compensatory binocular Matrix effect. TRANSLATIONAL RELEVANCE The paired eyes and brain are reaffirmed to function as a unified system in the progressive age-related neurodegenerative condition chronic open angle glaucoma, maximizing the binocular visual field. Given the extensive homology of this disorder with other age-related neurodegenerations, it is reasonable to assume that the brain will similarly resist simultaneous bilateral loss of paired functional zones in both hemispheres in diseases like Alzheimer's and Parkinson's disease. Glaucomatous eyes at all stages of the disease appear to provide a highly accessible paired-organ study model for developing therapeutics to optimize conservation of function in neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | | | - William Eric Sponsel
- Biomedical Engineering, University of Texas at San Antonio (UTSA), San Antonio, TX, USA ; Australian Research Council Centre of Excellence in Vision Science, Canberra, Australia ; Baptist Medical Center WESMDPA Glaucoma Service, San Antonio, TX, USA ; Rosenberg School of Optometry UIW, San Antonio, TX, USA
| |
Collapse
|
32
|
Sponsel WE, Reilly MA, Maddess T. Definitive Response to Denniss and Artes: The Paired Eyes and Brain in One Person Are One Unit. Transl Vis Sci Technol 2015; 4:8. [PMID: 25806145 DOI: 10.1167/tvst.4.2.8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 02/06/2015] [Indexed: 11/24/2022] Open
Affiliation(s)
- William E Sponsel
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas, USA ; Australian Research Council Centre of Excellence in Vision Science (ACEVS), Australian National University, Canberra, Australia
| | - Matthew A Reilly
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Ted Maddess
- Australian Research Council Centre of Excellence in Vision Science (ACEVS), Australian National University, Canberra, Australia
| |
Collapse
|
33
|
Denniss J, Artes PH. Extraordinary Claims Require Extraordinary Evidence: Centrally Mediated Preservation of Binocular Visual Field in Glaucoma is Unlikely. Transl Vis Sci Technol 2015; 4:3. [PMID: 25635235 DOI: 10.1167/tvst.4.1.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 11/14/2014] [Indexed: 11/24/2022] Open
Affiliation(s)
- Jonathan Denniss
- Visual Neuroscience Group, School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Paul H Artes
- Ophthalmology & Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
34
|
Sharif NA. Novel potential treatment modalities for ocular hypertension: focus on angiotensin and bradykinin system axes. J Ocul Pharmacol Ther 2015; 31:131-45. [PMID: 25599263 DOI: 10.1089/jop.2014.0114] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Despite the availability of modern surgical procedures, new drug delivery techniques, health authority-approved single topical ocular drugs, and combination products thereof, there continues to be an unmet medical need for novel treatment modalities for preserving vision. This is especially true for the treatment of glaucoma and the high risk factor often associated with this ocular disease, elevated intraocular pressure (IOP). Undesirable local or systemic side effects, frequency of dosing, lack of sustained IOP lowering, and lack of prevention of diurnal IOP spikes are among the greatest challenges. The very recent discovery, characterization, and publication of 2 novel IOP-lowering agents that pertain to the renin-angiotensin and kallikrein-kinin axes potentially offer novel means to treat and control ocular hypertension (OHT). Here, some contextual introductory information is provided first, followed by more detailed discussion of the properties and actions of diminazene aceturate (DIZE; a novel angiotensin-converting enzyme-2 activator) and FR-190997 (a nonpeptide bradykinin receptor-2 agonist) in relation to their anti-OHT activities in rodent and cynomolgus monkey eyes, respectively. It is anticipated that these compounds will pave the way for future discovery, development, and marketing of novel drugs to treat glaucoma and thus help save sight for millions of people afflicted with this slow progressive optic neuropathy.
Collapse
Affiliation(s)
- Najam A Sharif
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University , Houston, Texas
| |
Collapse
|
35
|
Steinbach MJ. Cyclops. Can J Ophthalmol 2014. [DOI: 10.1016/j.jcjo.2014.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|