1
|
Saeed A, Hadoux X, van Wijngaarden P. Hyperspectral retinal imaging biomarkers of ocular and systemic diseases. Eye (Lond) 2025; 39:667-672. [PMID: 38778136 PMCID: PMC11885810 DOI: 10.1038/s41433-024-03135-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/20/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Hyperspectral imaging is a frontier in the field of medical imaging technology. It enables the simultaneous collection of spectroscopic and spatial data. Structural and physiological information encoded in these data can be used to identify and localise typically elusive biomarkers. Studies of retinal hyperspectral imaging have provided novel insights into disease pathophysiology and new ways of non-invasive diagnosis and monitoring of retinal and systemic diseases. This review provides a concise overview of recent advances in retinal hyperspectral imaging.
Collapse
Affiliation(s)
- Abera Saeed
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, 3002, VIC, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, 3002, VIC, Australia
| | - Xavier Hadoux
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, 3002, VIC, Australia
| | - Peter van Wijngaarden
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, 3002, VIC, Australia.
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, 3002, VIC, Australia.
| |
Collapse
|
2
|
Jong LJS, Post AL, Geldof F, Dashtbozorg B, Ruers TJM, Sterenborg HJCM. Separating Surface Reflectance from Volume Reflectance in Medical Hyperspectral Imaging. Diagnostics (Basel) 2024; 14:1812. [PMID: 39202300 PMCID: PMC11353750 DOI: 10.3390/diagnostics14161812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Hyperspectral imaging has shown great promise for diagnostic applications, particularly in cancer surgery. However, non-bulk tissue-related spectral variations complicate the data analysis. Common techniques, such as standard normal variate normalization, often lead to a loss of amplitude and scattering information. This study investigates a novel approach to address these spectral variations in hyperspectral images of optical phantoms and excised human breast tissue. Our method separates surface and volume reflectance, hypothesizing that spectral variability arises from significant variations in surface reflectance across pixels. An illumination setup was developed to measure samples with a hyperspectral camera from different axial positions but with identical zenith angles. This configuration, combined with a novel data analysis approach, allows for the estimation and separation of surface reflectance for each direction and volume reflectance across all directions. Validated with optical phantoms, our method achieved an 83% reduction in spectral variability. Its functionality was further demonstrated in excised human breast tissue. Our method effectively addresses variations caused by surface reflectance or glare while conserving surface reflectance information, which may enhance sample analysis and evaluation. It benefits samples with unknown refractive index spectra and can be easily adapted and applied across a wide range of fields where hyperspectral imaging is used.
Collapse
Affiliation(s)
- Lynn-Jade S. Jong
- Department of Surgery, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
- Department of Nanobiophysics, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Anouk L. Post
- Department of Surgery, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Freija Geldof
- Department of Surgery, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
- Department of Nanobiophysics, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Behdad Dashtbozorg
- Department of Surgery, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Theo J. M. Ruers
- Department of Surgery, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
- Department of Nanobiophysics, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | | |
Collapse
|
3
|
Bowles Johnson KE, Tang JAH, Kunala K, Huynh KT, Parkins K, Yang Q, Hunter JJ. Fluorescence Lifetime Imaging of Human Retinal Pigment Epithelium in Pentosan Polysulfate Toxicity Using Adaptive Optics Scanning Light Ophthalmoscopy. Invest Ophthalmol Vis Sci 2024; 65:27. [PMID: 38630675 PMCID: PMC11044828 DOI: 10.1167/iovs.65.4.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/16/2024] [Indexed: 04/19/2024] Open
Abstract
Purpose Fluorescence lifetime ophthalmoscopy (FLIO) is an emerging clinical modality that could provide biomarkers of retinal health beyond fluorescence intensity. Adaptive optics (AO) ophthalmoscopy provides the confocality to measure fluorescence lifetime (FL) primarily from the retinal pigment epithelium (RPE) whereas clinical FLIO has greater influence from fluorophores in the inner retina and lens. Adaptive optics fluorescence lifetime ophthalmoscopy (AOFLIO) measures of FL in vivo could provide insight into RPE health at different stages of disease. In this study, we assess changes in pentosan polysulfate sodium (PPS) toxicity, a recently described toxicity that has clinical findings similar to advanced age-related macular degeneration. Methods AOFLIO was performed on three subjects with PPS toxicity (57-67 years old) and six age-matched controls (50-64 years old). FL was analyzed with a double exponential decay curve fit and with phasor analysis. Regions of interest (ROIs) were subcategorized based on retinal features on optical coherence tomography (OCT) and compared to age-matched controls. Results Twelve ROIs from PPS toxicity subjects met the threshold for analysis by curve fitting and 15 ROIs met the threshold for phasor analysis. Subjects with PPS toxicity had prolonged FL compared to age-matched controls. ROIs of RPE degeneration had the longest FLs, with individual pixels extending longer than 900 ps. Conclusions Our study shows evidence that AOFLIO can provide meaningful information in outer retinal disease beyond what is obtainable from fluorescence intensity alone. More studies are needed to determine the prognostic value of AOFLIO.
Collapse
Affiliation(s)
| | - Janet A. H. Tang
- Center for Visual Science, University of Rochester, Rochester, New York, United States
- The Institute of Optics, University of Rochester, Rochester, New York, United States
| | - Karteek Kunala
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Khang T. Huynh
- Center for Visual Science, University of Rochester, Rochester, New York, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States
| | - Keith Parkins
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Qiang Yang
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Jennifer J. Hunter
- Flaum Eye Institute, University of Rochester, Rochester, New York, United States
- Center for Visual Science, University of Rochester, Rochester, New York, United States
- The Institute of Optics, University of Rochester, Rochester, New York, United States
- School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
4
|
Różanowska MB. Lipofuscin, Its Origin, Properties, and Contribution to Retinal Fluorescence as a Potential Biomarker of Oxidative Damage to the Retina. Antioxidants (Basel) 2023; 12:2111. [PMID: 38136230 PMCID: PMC10740933 DOI: 10.3390/antiox12122111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Lipofuscin accumulates with age as intracellular fluorescent granules originating from incomplete lysosomal digestion of phagocytosed and autophagocytosed material. The purpose of this review is to provide an update on the current understanding of the role of oxidative stress and/or lysosomal dysfunction in lipofuscin accumulation and its consequences, particularly for retinal pigment epithelium (RPE). Next, the fluorescence of lipofuscin, spectral changes induced by oxidation, and its contribution to retinal fluorescence are discussed. This is followed by reviewing recent developments in fluorescence imaging of the retina and the current evidence on the prognostic value of retinal fluorescence for the progression of age-related macular degeneration (AMD), the major blinding disease affecting elderly people in developed countries. The evidence of lipofuscin oxidation in vivo and the evidence of increased oxidative damage in AMD retina ex vivo lead to the conclusion that imaging of spectral characteristics of lipofuscin fluorescence may serve as a useful biomarker of oxidative damage, which can be helpful in assessing the efficacy of potential antioxidant therapies in retinal degenerations associated with accumulation of lipofuscin and increased oxidative stress. Finally, amendments to currently used fluorescence imaging instruments are suggested to be more sensitive and specific for imaging spectral characteristics of lipofuscin fluorescence.
Collapse
Affiliation(s)
- Małgorzata B. Różanowska
- School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, Wales, UK;
- Cardiff Institute for Tissue Engineering and Repair (CITER), Redwood Building, King Edward VII Avenue, Cardiff CF10 3NB, Wales, UK
| |
Collapse
|
5
|
Campbell JM, Mahbub SB, Habibalahi A, Agha A, Handley S, Anwer AG, Goldys EM. Clinical applications of non-invasive multi and hyperspectral imaging of cell and tissue autofluorescence beyond oncology. JOURNAL OF BIOPHOTONICS 2023; 16:e202200264. [PMID: 36602432 DOI: 10.1002/jbio.202200264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Hyperspectral and multispectral imaging of cell and tissue autofluorescence employs fluorescence imaging, without exogenous fluorophores, across multiple excitation/emission combinations (spectral channels). This produces an image stack where each pixel (matched by location) contains unique information about the sample's spectral properties. Analysis of this data enables access to a rich, molecularly specific data set from a broad range of cell-native fluorophores (autofluorophores) directly reflective of biochemical status, without use of fixation or stains. This non-invasive, non-destructive technology has great potential to spare the collection of biopsies from sensitive regions. As both staining and biopsy may be impossible, or undesirable, depending on the context, this technology great diagnostic potential for clinical decision making. The main research focus has been on the identification of neoplastic tissues. However, advances have been made in diverse applications-including ophthalmology, cardiovascular health, neurology, infection, assisted reproduction technology and organ transplantation.
Collapse
Affiliation(s)
- Jared M Campbell
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Sydney, Australia
| | - Saabah B Mahbub
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Sydney, Australia
| | - Abbas Habibalahi
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Sydney, Australia
| | - Adnan Agha
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Sydney, Australia
| | - Shannon Handley
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Sydney, Australia
| | - Ayad G Anwer
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Sydney, Australia
| | - Ewa M Goldys
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Sydney, Australia
| |
Collapse
|
6
|
Simon R, Jentsch M, Karimimousivandi P, Cao D, Messinger JD, Meller D, Curcio CA, Hammer M. Prolonged Lifetimes of Histologic Autofluorescence in Ectopic Retinal Pigment Epithelium in Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2022; 63:5. [PMID: 36469025 PMCID: PMC9730734 DOI: 10.1167/iovs.63.13.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose The purpose of this study was to investigate histologic autofluorescence lifetimes and spectra of retinal pigment epithelium (RPE) on the transition from normal aging to RPE activation and migration in age-related macular degeneration (AMD). Methods Autofluorescence lifetimes and spectra of 9 donor eyes were analyzed in cryosections by means of 2-photon excited fluorescence at 960 nm. Spectra were detected at 483 to 665 nm. Lifetimes were measured using time-correlated single photon counting in 2 spectral channels: 500 to 550 nm (short-wavelength spectral channel [SSC]) and 550 to 700 nm (long-wavelength spectral channel [LSC]). Fluorescence decays over time were approximated by a series of three exponential functions. The amplitude-weighted mean fluorescence lifetime was determined. Markers for retinoid activity (RPE65) and immune function (CD68) were immunolocalized in selected neighboring sections. Results We identified 9 RPE morphology phenotypes resulting in 399 regions of interest (ROIs) for spectral and 497 ROIs for lifetime measurements. RPE dysmorphia results in a shorter wavelength peak of spectral emission: normal aging versus RPE migrated into the retina (intraELM) = 601.7 (9.5) nm versus 581.6 (7.3) nm, P < 0.001, whereas autofluorescence lifetimes increase: normal aging versus intraELM: SSC 180 (44) picosecond (ps) versus 320 (86) ps, P < 0.001; and LSC 250 (55) ps versus 441 (76) ps, P < 0.001. Ectopic RPE within the neurosensory retina is strongly CD68 positive and RPE65 negative. Conclusions In the process of RPE degeneration, comprising different steps of dysmorphia and migration, lengthening of autofluorescence lifetimes and a hypsochromic shift of emission spectra can be observed. These autofluorescence changes might provide early biomarkers for AMD progression and contribute to our understanding of RPE-driven pathology.
Collapse
Affiliation(s)
- Rowena Simon
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | - Marius Jentsch
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | | | - Dongfeng Cao
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Jeffrey D Messinger
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Daniel Meller
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | - Christine A Curcio
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Martin Hammer
- Department of Ophthalmology, University Hospital Jena, Jena, Germany.,Center for Medical Optics and Photonics, University of Jena, Jena, Germany
| |
Collapse
|
7
|
Du X, Koronyo Y, Mirzaei N, Yang C, Fuchs DT, Black KL, Koronyo-Hamaoui M, Gao L. Label-free hyperspectral imaging and deep-learning prediction of retinal amyloid β-protein and phosphorylated tau. PNAS NEXUS 2022; 1:pgac164. [PMID: 36157597 PMCID: PMC9491695 DOI: 10.1093/pnasnexus/pgac164] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/15/2022] [Indexed: 01/16/2023]
Abstract
Alzheimer's disease (AD) is a major risk for the aging population. The pathological hallmarks of AD-an abnormal deposition of amyloid β-protein (Aβ) and phosphorylated tau (pTau)-have been demonstrated in the retinas of AD patients, including in prodromal patients with mild cognitive impairment (MCI). Aβ pathology, especially the accumulation of the amyloidogenic 42-residue long alloform (Aβ42), is considered an early and specific sign of AD, and together with tauopathy, confirms AD diagnosis. To visualize retinal Aβ and pTau, state-of-the-art methods use fluorescence. However, administering contrast agents complicates the imaging procedure. To address this problem from fundamentals, ex-vivo studies were performed to develop a label-free hyperspectral imaging method to detect the spectral signatures of Aβ42 and pS396-Tau, and predicted their abundance in retinal cross-sections. For the first time, we reported the spectral signature of pTau and demonstrated an accurate prediction of Aβ and pTau distribution powered by deep learning. We expect our finding will lay the groundwork for label-free detection of AD.
Collapse
Affiliation(s)
- Xiaoxi Du
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Nazanin Mirzaei
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Chengshuai Yang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Keith L Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Liang Gao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
8
|
Bindewald-Wittich A, Holz FG, Ach T, Fiorentzis M, Bechrakis NE, Willerding GD. Fundus Autofluorescence Imaging in Patients with Choroidal Melanoma. Cancers (Basel) 2022; 14:cancers14071809. [PMID: 35406581 PMCID: PMC8997882 DOI: 10.3390/cancers14071809] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The ocular fundus contains molecules that emit fluorescence when excited with light of an appropriate wavelength. Fundus autofluorescence imaging is based on the in vivo detection of intrinsic fluorescence and results in topographic autofluorescence mapping of the ocular fundus. In contrast to fluorescence angiography, where the fluorescing agents need to be administered intravenously, autofluorescence imaging is a non-invasive technique. Even though choroidal melanomas do not contain significant autofluorescent molecules themselves, they may lead to secondary alterations in neighbouring tissues with an impact on the autofluorescence signal recording. Fundus autofluorescence imaging in the context of choroidal melanoma is helpful for differential diagnosis and for monitoring variations over time in affected patients before and after treatment. Abstract Choroidal melanocytic lesions require reliable and precise clinical examination and diagnosis to differentiate benign choroidal nevi from choroidal melanoma, as the latter may become life-threatening through metastatic disease. To come to an accurate diagnosis, as well as for monitoring, and to assess the efficacy of therapy, various imaging modalities may be used, one of which is non-invasive fundus autofluorescence (FAF) imaging using novel high-resolution digital imaging technology. FAF imaging is based on the visualization of intrinsic fluorophores in the ocular fundus. Lipofuscin and melanolipofuscin within the postmitotic retinal pigment epithelium (RPE) cells represent the major fluorophores that contribute to the FAF signal. In addition, the presence or loss of absorbing molecular constituents may have an impact on the FAF signal. A choroidal melanoma can cause secondary retinal and RPE alterations that affect the FAF signal (e.g., occurrence of orange pigment). Therefore, FAF imaging supports multimodal imaging and gives additional information over and above conventional imaging modalities regarding retinal metabolism and RPE health status. This article summarises the features of FAF imaging and the role of FAF imaging in the context of choroidal melanoma, both before and following therapeutic intervention.
Collapse
Affiliation(s)
- Almut Bindewald-Wittich
- Augenkompetenz Zentren Heidenheim, 89518 Heidenheim, Germany
- Augenkompetenz Zentren Bopfingen, 73441 Bopfingen, Germany
- Department of Ophthalmology, University of Bonn, 53127 Bonn, Germany; (F.G.H.); (T.A.)
- Correspondence:
| | - Frank G. Holz
- Department of Ophthalmology, University of Bonn, 53127 Bonn, Germany; (F.G.H.); (T.A.)
| | - Thomas Ach
- Department of Ophthalmology, University of Bonn, 53127 Bonn, Germany; (F.G.H.); (T.A.)
| | - Miltiadis Fiorentzis
- Department of Ophthalmology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (M.F.); (N.E.B.)
| | - Nikolaos E. Bechrakis
- Department of Ophthalmology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (M.F.); (N.E.B.)
| | - Gregor D. Willerding
- Department of Ophthalmology, DRK Kliniken Berlin Westend, 14050 Berlin, Germany;
| |
Collapse
|
9
|
Beach JM, Rizvi M, Lichtenfels CB, Vince R, More SS. Topical Review: Studies of Ocular Function and Disease Using Hyperspectral Imaging. Optom Vis Sci 2022; 99:101-113. [PMID: 34897230 DOI: 10.1097/opx.0000000000001853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
SIGNIFICANCE Advances in imaging technology over the last two decades have produced significant innovations in medical imaging. Hyperspectral imaging (HSI) is one of these innovations, enabling powerful new imaging tools for clinical use and greater understanding of tissue optical properties and mechanisms underlying eye disease.Hyperspectral imaging is an important and rapidly growing area in medical imaging, making possible the concurrent collection of spectroscopic and spatial information that is usually obtained from separate optical recordings. In this review, we describe several mainstream techniques used in HSI, along with noteworthy advances in optical technology that enabled modern HSI techniques. Presented also are recent applications of HSI for basic and applied eye research, which include a novel method for assessing dry eye syndrome, clinical slit-lamp examination of corneal injury, measurement of blood oxygen saturation in retinal disease, molecular changes in macular degeneration, and detection of early stages of Alzheimer disease. The review also highlights work resulting from integration of HSI with other imaging tools such as optical coherence tomography and autofluorescence microscopy and discusses the adaptation of HSI for clinical work where eye motion is present. Here, we present the background and main findings from each of these reports along with specific references for additional details.
Collapse
Affiliation(s)
- James M Beach
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota
| | - Madeeha Rizvi
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota
| | - Caitlin B Lichtenfels
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota
| | - Robert Vince
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota
| | | |
Collapse
|
10
|
Xue Y, Browne AW, Tang WC, Delgado J, McLelland BT, Nistor G, Chen JT, Chew K, Lee N, Keirstead HS, Seiler MJ. Retinal Organoids Long-Term Functional Characterization Using Two-Photon Fluorescence Lifetime and Hyperspectral Microscopy. Front Cell Neurosci 2021; 15:796903. [PMID: 34955757 PMCID: PMC8707055 DOI: 10.3389/fncel.2021.796903] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/26/2021] [Indexed: 12/31/2022] Open
Abstract
Pluripotent stem cell-derived organoid technologies have opened avenues to preclinical basic science research, drug discovery, and transplantation therapy in organ systems. Stem cell-derived organoids follow a time course similar to species-specific organ gestation in vivo. However, heterogeneous tissue yields, and subjective tissue selection reduce the repeatability of organoid-based scientific experiments and clinical studies. To improve the quality control of organoids, we introduced a live imaging technique based on two-photon microscopy to non-invasively monitor and characterize retinal organoids’ (RtOgs’) long-term development. Fluorescence lifetime imaging microscopy (FLIM) was used to monitor the metabolic trajectory, and hyperspectral imaging was applied to characterize structural and molecular changes. We further validated the live imaging experimental results with endpoint biological tests, including quantitative polymerase chain reaction (qPCR), single-cell RNA sequencing, and immunohistochemistry. With FLIM results, we analyzed the free/bound nicotinamide adenine dinucleotide (f/b NADH) ratio of the imaged regions and found that there was a metabolic shift from glycolysis to oxidative phosphorylation. This shift occurred between the second and third months of differentiation. The total metabolic activity shifted slightly back toward glycolysis between the third and fourth months and stayed relatively stable between the fourth and sixth months. Consistency in organoid development among cell lines and production lots was examined. Molecular analysis showed that retinal progenitor genes were expressed in all groups between days 51 and 159. Photoreceptor gene expression emerged around the second month of differentiation, which corresponded to the shift in the f/b NADH ratio. RtOgs between 3 and 6 months of differentiation exhibited photoreceptor gene expression levels that were between the native human fetal and adult retina gene expression levels. The occurrence of cone opsin expression (OPN1 SW and OPN1 LW) indicated the maturation of photoreceptors in the fourth month of differentiation, which was consistent with the stabilized level of f/b NADH ratio starting from 4 months. Endpoint single-cell RNA and immunohistology data showed that the cellular compositions and lamination of RtOgs at different developmental stages followed those in vivo.
Collapse
Affiliation(s)
- Yuntian Xue
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States.,Stem Cell Research Center, University of California, Irvine, Irvine, CA, United States
| | - Andrew W Browne
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States.,Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States.,Institute for Clinical and Translational Science, University of California, Irvine, Irvine, CA, United States
| | - William C Tang
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| | - Jeffrey Delgado
- Stem Cell Research Center, University of California, Irvine, Irvine, CA, United States
| | | | | | - Jacqueline T Chen
- Stem Cell Research Center, University of California, Irvine, Irvine, CA, United States.,Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States
| | - Kaylee Chew
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| | - Nicolas Lee
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA, United States
| | | | - Magdalene J Seiler
- Stem Cell Research Center, University of California, Irvine, Irvine, CA, United States.,Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States.,Department of Physical Medicine & Rehabilitation, University of California, Irvine, Irvine, CA, United States.,Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
11
|
Schultz R, Schwanengel L, Klemm M, Meller D, Hammer M. Spectral fundus autofluorescence peak emission wavelength in ageing and AMD. Acta Ophthalmol 2021; 100:e1223-e1231. [PMID: 34850573 DOI: 10.1111/aos.15070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/26/2021] [Accepted: 11/19/2021] [Indexed: 01/18/2023]
Abstract
PURPOSE To investigate the spectral characteristics of fundus autofluorescence (FAF) in AMD patients and controls. METHODS Fundus autofluorescence spectral characteristics was described by the peak emission wavelength (PEW) of the spectra. Peak emission wavelength (PEW) was derived from the ratio of FAF recordings in two spectral channels at 500-560 nm and 560-720 nm by fluorescence lifetime imaging ophthalmoscopy. The ratio of FAF intensity in both channels was related to PEW by a calibration procedure. Peak emission wavelength (PEW) measurements were done in 44 young (mean age: 24.0 ± 3.8 years) and 18 elderly (mean age: 67.5 ± 10.2 years) healthy subjects as well as 63 patients with AMD (mean age: 74.0 ± 7.3 years) in each pixel of a 30° imaging field. The values were averaged over the central area, the inner and the outer ring of the ETDRS grid. RESULTS There was no significant difference between PEW in young and elderly controls. However, PEW was significantly shorter in AMD patients (ETDRS grid centre: 571 ± 26 nm versus 599 ± 17 nm for elderly controls, inner ring: 596 ± 17 nm versus 611 ± 11 nm, outer ring: 602 ± 16 nm versus 614 ± 11 nm). After a mean follow-up time of 50.8 ± 10.8 months, the PEW in the patients decreased significantly by 9 ± 19 nm in the inner ring of the grid. Patients, showing progression to atrophic AMD in the follow up, had significantly (p ≤ 0.018) shorter PEW at baseline than non-progressing patients. CONCLUSIONS Peak emission wavelength (PEW) is related to AMD pathology and might be a diagnostic marker in AMD. Possibly, a short PEW can predict progression to retinal and/or pigment epithelium atrophy.
Collapse
Affiliation(s)
- Rowena Schultz
- Department of Ophthalmology University Hospital Jena Jena Germany
| | | | - Matthias Klemm
- Institute of Biomedical Engineering and Informatics Technical Univ. Ilmenau Ilmenau Germany
| | - Daniel Meller
- Department of Ophthalmology University Hospital Jena Jena Germany
| | - Martin Hammer
- Department of Ophthalmology University Hospital Jena Jena Germany
- Center for Medical Optics and Photonics Univ. of Jena Jena Germany
| |
Collapse
|
12
|
Hammer M, Jakob-Girbig J, Schwanengel L, Curcio CA, Hasan S, Meller D, Schultz R. Progressive Dysmorphia of Retinal Pigment Epithelium in Age-Related Macular Degeneration Investigated by Fluorescence Lifetime Imaging. Invest Ophthalmol Vis Sci 2021; 62:2. [PMID: 34491262 PMCID: PMC8431975 DOI: 10.1167/iovs.62.12.2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Purpose The purpose of this study was to observe changes of the retinal pigment epithelium (RPE) on the transition from dysmorphia to atrophy in age-related macular degeneration (AMD) by fluorescence lifetime imaging ophthalmoscopy (FLIO). Methods Multimodal imaging including color fundus photography (CFP), optical coherence tomography (OCT), fundus autofluorescence (FAF) imaging, and FLIO was performed in 40 eyes of 37 patients with intermediate AMD and no evidence for geographic atrophy or macular neovascularization (mean age = 74.2 ± 7.0 years). Twenty-three eyes were followed for 28.3 ± 18.3 months. Seven eyes had a second follow-up after 46.6 ± 9.0 months. Thickened RPE on OCT, hyperpigmentation on CFP, hyper-reflective foci (HRF) on OCT, attributed to single or clustered intraretinal RPE, were identified. Fluorescence lifetimes in two spectral channels (short-wavelength spectral channel [SSC] = 500–560 nm, long-wavelength spectral channel [LSC] = 560–720 nm) as well as emission spectrum intensity ratio (ESIR) of the lesions were measured by FLIO. Results As hyperpigmented areas form and RPE migrates into the retina, FAF lifetimes lengthen and ESRI of RPE cells increase. Thickened RPE showed lifetimes of 256 ± 49 ps (SSC) and 336 ± 35 ps (LSC) and an ESIR of 0.552 ± 0.079. For hyperpigmentation, these values were 317 ± 68 ps (p < 0.001), 377 ± 56 ps (P < 0.001), and 0.609 ± 0.081 (P = 0.001), respectively, and for HRF 337 ± 79 ps (P < 0.001), 414 ± 50 ps (P < 0.001), and 0.654 ± 0.075 (P < 0.001). Conclusions In the process of RPE degeneration, comprising different steps of dysmorphia, hyperpigmentation, and migration, lengthening of FAF lifetimes and a hypsochromic shift of emission spectra can be observed by FLIO. Thus, FLIO might provide early biomarkers for AMD progression and contribute to our understanding of RPE pathology.
Collapse
Affiliation(s)
- Martin Hammer
- Department of Ophthalmology, University Hospital Jena, Jena, Germany.,Center for Medical Optics and Photonics, Univ. of Jena, Jena, Germany
| | | | - Linda Schwanengel
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | - Christine A Curcio
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Somar Hasan
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | - Daniel Meller
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | - Rowena Schultz
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| |
Collapse
|
13
|
Meleppat RK, Ronning KE, Karlen SJ, Kothandath KK, Burns ME, Pugh EN, Zawadzki RJ. In Situ Morphologic and Spectral Characterization of Retinal Pigment Epithelium Organelles in Mice Using Multicolor Confocal Fluorescence Imaging. Invest Ophthalmol Vis Sci 2021; 61:1. [PMID: 33137194 PMCID: PMC7645167 DOI: 10.1167/iovs.61.13.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Purpose To investigate the major organelles of the retinal pigment epithelium (RPE) in wild-type (WT, control) mice and their changes in pigmented Abca4 knockout (Abca4−/−) mice with in situ morphologic, spatial, and spectral characterization of live ex vivo flat-mounted RPE using multicolor confocal fluorescence microscopy (MCFM). Methods In situ imaging of RPE flat-mounts of agouti Abca4−/− (129S4), agouti WT (129S1/SvlmJ) controls, and B6 albino mice (C57BL/6J-Tyrc-Brd) was performed with a Nikon A1 confocal microscope. High-resolution confocal image z-stacks of the RPE cell mosaic were acquired with four different excitation wavelengths (405 nm, 488 nm, 561 nm, and 640 nm). The autofluorescence images of RPE, including voxel-by-voxel emission spectra, were acquired and processed with Nikon NIS-AR Elements software. Results The 3-dimensional multicolor confocal images provided a detailed visualization of the RPE cell mosaic, including its melanosomes and lipofuscin granules, and their varying characteristics in the different mice strains. The autofluorescence spectra, spatial distribution, and morphologic features of melanosomes and lipofuscin granules were measured. Increased numbers of lipofuscin and reduced numbers of melanosomes were observed in the RPE of Abca4−/− mice relative to controls. Conclusions A detailed assessment of the RPE autofluorescent granules and their changes ex vivo was possible with MCFM. For all excitation wavelengths, autofluorescence from the RPE cells was predominantly contributed by lipofuscin granules, while melanosomes were found to be essentially nonfluorescent. The red shift of the emission peak confirmed the presence of multiple chromophores within lipofuscin granules. The elevated autofluorescence levels in Abca4−/− mice correlated well with the increased number of lipofuscin granules.
Collapse
Affiliation(s)
- Ratheesh K Meleppat
- UC Davis Eyepod Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, California, United States.,Department of Ophthalmology & Vision Science, University of California Davis, Davis, California, United States
| | - Kaitryn E Ronning
- Center for Neuroscience, University of California Davis, Davis, California, United States
| | - Sarah J Karlen
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, California, United States
| | - Karuna K Kothandath
- UC Davis Eyepod Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, California, United States.,Department of Ophthalmology & Vision Science, University of California Davis, Davis, California, United States
| | - Marie E Burns
- Department of Ophthalmology & Vision Science, University of California Davis, Davis, California, United States.,Center for Neuroscience, University of California Davis, Davis, California, United States.,Department of Cell Biology and Human Anatomy, University of California Davis, Davis, California, United States
| | - Edward N Pugh
- UC Davis Eyepod Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, California, United States.,Department of Cell Biology and Human Anatomy, University of California Davis, Davis, California, United States
| | - Robert J Zawadzki
- UC Davis Eyepod Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, California, United States.,Department of Ophthalmology & Vision Science, University of California Davis, Davis, California, United States
| |
Collapse
|
14
|
Tong Y, Ach T, Curcio CA, Smith RT. Hyperspectral autofluorescence characterization of drusen and sub-RPE deposits in age-related macular degeneration. ACTA ACUST UNITED AC 2021; 6. [PMID: 33791592 PMCID: PMC8009528 DOI: 10.21037/aes-20-12] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Background: Soft drusen and basal linear deposit (BLinD) are two forms of the same extracellular lipid rich material that together make up an Oil Spill on Bruch’s membrane (BrM). Drusen are focal and can be recognized clinically. In contrast BLinD is thin and diffusely distributed, and invisible clinically, even on highest resolution OCT, but has been detected on en face hyperspectral autofluorescence (AF) imaging ex vivo. We sought to optimize histologic hyperspectral AF imaging and image analysis for recognition of drusen and sub-RPE deposits (including BLinD and basal laminar deposit), for potential clinical application. Methods: Twenty locations specifically with drusen and 12 additional locations specifically from fovea, perifovea and mid-periphery from RPE/BrM flatmounts from 4 AMD donors underwent hyperspectral AF imaging with 4 excitation wavelengths (λex 436, 450, 480 and 505 nm), and the resulting image cubes were simultaneously decomposed with our published non-negative matrix factorization (NMF). Rank 4 recovery of 4 emission spectra was chosen for each excitation wavelength. Results: A composite emission spectrum, sensitive and specific for drusen and presumed sub-RPE deposits (the SDr spectrum) was recovered with peak at 510–520 nm in all tissues with drusen, with greatest amplitudes at excitations λex 436, 450 and 480 nm. The RPE spectra of combined sources Lipofuscin (LF)/Melanolipofuscin (MLF) were of comparable amplitude and consistently recapitulated the spectra S1, S2 and S3 previously reported from all tissues: tissues with drusen, foveal and extra-foveal locations. Conclusions: A clinical hyperspectral AF camera, with properly chosen excitation wavelengths in the blue range and a hyperspectral AF detector, should be capable of detecting and quantifying drusen and sub-RPE deposits, the earliest known lesions of AMD, before any other currently available imaging modality.
Collapse
Affiliation(s)
- Yuehong Tong
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas Ach
- Department of Ophthalmology, University Hospital Bonn, Germany
| | - Christine A Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, AL, USA
| | - R Theodore Smith
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
15
|
Schultz R, Gamage KCLK, Messinger JD, Curcio CA, Hammer M. Fluorescence Lifetimes and Spectra of RPE and Sub-RPE Deposits in Histology of Control and AMD Eyes. Invest Ophthalmol Vis Sci 2021; 61:9. [PMID: 32897378 PMCID: PMC7488209 DOI: 10.1167/iovs.61.11.9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Purpose To investigate fluorescence lifetimes as well as spectral characteristics of drusen and RPE autofluorescence in AMD. Methods Fluorescence lifetimes and spectra of five eyes with AMD and nine control eyes were analyzed in cryosections by means of two-photon excited fluorescence at 960 nm. Spectra were detected at 490 to 647 nm. Lifetimes were measured using time-correlated single photon counting in two spectral channels: 500 to 550 nm and 550 to 700 nm. Fluorescence decays over time were approximated by a series of three exponential functions. The amplitude-weighted mean fluorescence lifetime was determined. Results We identified 196 sub-RPE deposits (AMD, n = 76; control, n = 120) and recorded 241 RPE sites. The peak emission wavelength of sub-RPE deposits was significantly green shifted compared with RPE (peak at 570 nm vs. 610 nm), but did not differ between AMD and control donors. Sub-RPE deposits showed considerably longer mean fluorescence lifetimes than RPE (ch1, 581 ± 163 ps vs. 177 ± 25 ps; ch2, 541 ± 125 ps vs. 285 ± 31 ps; P < 0.001). Sub-RPE deposits found in AMD eyes had longer lifetimes than deposits of controls (ch1, 650 ± 167 ps vs. 537 ± 145 ps; ch2, 600 ± 125 ps vs. 504 ± 111 ps; P < 0.001). In AMD eyes, sub-RPE deposits showed a more homogenous autofluorescence distribution and more deposits were larger than 63 µm than in control eyes. Conclusions Ex vivo fluorescence imaging of sub-RPE deposits in cross-sections enables the separation of their autofluorescence from that of over- or underlying structures. Our analysis showed considerable variability of sub-RPE deposit lifetimes but not spectra. This indicates that sub-RPE deposits either consist of a variety of different fluorophores or expose the same fluorophores to different microenvironments.
Collapse
Affiliation(s)
- Rowena Schultz
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | | | - Jeffrey D Messinger
- Department of Ophthalmology and Visual Sciences, School of medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Christine A Curcio
- Department of Ophthalmology and Visual Sciences, School of medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Martin Hammer
- Department of Ophthalmology, University Hospital Jena, Jena, Germany.,Center for Medical Optics and Photonics, University of Jena, Jena, Germany
| |
Collapse
|
16
|
Lemmens S, Van Eijgen J, Van Keer K, Jacob J, Moylett S, De Groef L, Vancraenendonck T, De Boever P, Stalmans I. Hyperspectral Imaging and the Retina: Worth the Wave? Transl Vis Sci Technol 2020; 9:9. [PMID: 32879765 PMCID: PMC7442879 DOI: 10.1167/tvst.9.9.9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
Purpose Hyperspectral imaging is gaining attention in the biomedical field because it generates additional spectral information to study physiological and clinical processes. Several technologies have been described; however an independent, systematic literature overview is lacking, especially in the field of ophthalmology. This investigation is the first to systematically overview scientific literature specifically regarding retinal hyperspectral imaging. Methods A systematic literature review was conducted, in accordance with PRISMA Statement 2009 criteria, in four bibliographic databases: Medline, Embase, Cochrane Database of Systematic Reviews, and Web of Science. Results Fifty-six articles were found that meet the review criteria. A range of techniques was reported: Fourier analysis, liquid crystal tunable filters, tunable laser sources, dual-slit monochromators, dispersive prisms and gratings, computed tomography, fiber optics, and Fabry-Perrot cavity filter covered complementary metal oxide semiconductor. We present a narrative synthesis and summary tables of findings of the included articles, because methodologic heterogeneity and diverse research topics prevented a meta-analysis being conducted. Conclusions Application in ophthalmology is still in its infancy. Most previous experiments have been performed in the field of retinal oximetry, providing valuable information in the diagnosis and monitoring of various ocular diseases. To date, none of these applications have graduated to clinical practice owing to the lack of sufficiently large validation studies. Translational Relevance Given the promising results that smaller studies show for hyperspectral imaging (e.g., in Alzheimer's disease), advanced research in larger validation studies is warranted to determine its true clinical potential.
Collapse
Affiliation(s)
- Sophie Lemmens
- University Hospitals UZ Leuven, Department of Ophthalmology, Leuven, Belgium
- KU Leuven, Biomedical Sciences Group, Department of Neurosciences, Research Group Ophthalmology, Leuven, Belgium
- VITO (Flemish Institute for Technological Research), Health Unit, Boeretang, Belgium
| | - Jan Van Eijgen
- University Hospitals UZ Leuven, Department of Ophthalmology, Leuven, Belgium
- KU Leuven, Biomedical Sciences Group, Department of Neurosciences, Research Group Ophthalmology, Leuven, Belgium
- VITO (Flemish Institute for Technological Research), Health Unit, Boeretang, Belgium
| | - Karel Van Keer
- University Hospitals UZ Leuven, Department of Ophthalmology, Leuven, Belgium
- KU Leuven, Biomedical Sciences Group, Department of Neurosciences, Research Group Ophthalmology, Leuven, Belgium
| | - Julie Jacob
- University Hospitals UZ Leuven, Department of Ophthalmology, Leuven, Belgium
- KU Leuven, Biomedical Sciences Group, Department of Neurosciences, Research Group Ophthalmology, Leuven, Belgium
| | - Sinéad Moylett
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Lies De Groef
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Toon Vancraenendonck
- VITO (Flemish Institute for Technological Research), Health Unit, Boeretang, Belgium
| | - Patrick De Boever
- VITO (Flemish Institute for Technological Research), Health Unit, Boeretang, Belgium
- Hasselt University, Centre of Environmental Sciences, Agoralaan, Belgium
| | - Ingeborg Stalmans
- University Hospitals UZ Leuven, Department of Ophthalmology, Leuven, Belgium
- KU Leuven, Biomedical Sciences Group, Department of Neurosciences, Research Group Ophthalmology, Leuven, Belgium
| |
Collapse
|
17
|
Orellanos-Rios J, Yokoyama S, Bhuiyan A, Gao L, Otero-Marquez O, Smith RT. Translational Retinal Imaging. Asia Pac J Ophthalmol (Phila) 2020; 9:269-277. [PMID: 32487917 PMCID: PMC7299229 DOI: 10.1097/apo.0000000000000292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/03/2020] [Indexed: 11/25/2022] Open
Abstract
The diagnosis and treatment of medical retinal disease is now inseparable from retinal imaging in all its multimodal incarnations. The purpose of this article is to present a selection of very different retinal imaging techniques that are truly translational, in the sense that they are not only new, but can guide us to new understandings of disease processes or interventions that are not accessible by present methods. Quantitative autofluorescence imaging, now available for clinical investigation, has already fundamentally changed our understanding of the role of lipofuscin in age-related macular degeneration. Hyperspectral autofluorescence imaging is bench science poised not only to unravel the molecular basis of retinal pigment epithelium fluorescence, but also to be translated into a clinical camera for earliest detection of age-related macular degeneration. The ophthalmic endoscope for vitreous surgery is a radically new retinal imaging system that enables surgical approaches heretofore impossible while it captures subretinal images of living tissue. Remote retinal imaging coupled with deep learning artificial intelligence will transform the very fabric of future medical care.
Collapse
Affiliation(s)
| | - Sho Yokoyama
- Department of Ophthalmology, Japan Community Healthcare Organization, Chukyo Hospital, Nagoya, Aichi, Japan
| | | | - Liang Gao
- Department of Biomedical Engineering, UCLA, LA, Los Angeles, CA, USA
| | - Oscar Otero-Marquez
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - R. Theodore Smith
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
18
|
Hammer M, Schultz R, Hasan S, Sauer L, Klemm M, Kreilkamp L, Zweifel L, Augsten R, Meller D. Fundus Autofluorescence Lifetimes and Spectral Features of Soft Drusen and Hyperpigmentation in Age-Related Macular Degeneration. Transl Vis Sci Technol 2020; 9:20. [PMID: 32821492 PMCID: PMC7401897 DOI: 10.1167/tvst.9.5.20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 02/06/2020] [Indexed: 01/13/2023] Open
Abstract
Purpose To investigate the autofluorescence lifetimes as well as spectral characteristics of soft drusen and retinal hyperpigmentation in age-related macular degeneration (AMD). Methods Forty-three eyes with nonexudative AMD were included in this study. Fluorescence lifetime imaging ophthalmoscopy (FLIO), which detects autofluorescence decay over time in the short (SSC) and long (LSC) wavelength channel, was performed. The mean autofluorescence lifetime (τm) and the spectral ratio (sr) of autofluorescence emission in the SSC and LSC were recorded and analyzed. In total, 2760 soft drusen and 265 hyperpigmented areas were identified from color fundus photographs and spectral domain optical coherence tomography (SD-OCT) images and superimposed onto their respective AF images. τm and sr of these lesions were compared with fundus areas without drusen. For clearly hyperfluorescent drusen, the local differences compared to fundus areas without drusen were determined for lifetimes and sr. Results Hyperpigmentation showed significantly longer τm (SSC: 341 ± 81 vs. 289 ± 70 ps, P < 0.001; LSC: 406 ± 42 vs. 343 ± 42 ps, P < 0.001) and higher sr (0.621 ± 0.077 vs. 0.539 ± 0.083, P < 0.001) compared to fundus areas without hyperpigmentation or drusen. No significant difference in τm was found between soft drusen and fundus areas without drusen. However, the sr was significantly higher in soft drusen (0.555 ± 0.077 vs. 0.539 ± 0.081, P < 0.0005). Hyperfluorescent drusen showed longer τm than surrounding fundus areas without drusen (SSC: 18 ± 42 ps, P = 0.074; LSC: 16 ± 29 ps, P = 0.020). Conclusions FLIO can quantitatively characterize the autofluorescence of the fundus, drusen, and hyperpigmentation in AMD. Translational Relevance The experimental FLIO technique was applied in a clinical investigation. As FLIO yields information on molecular changes in AMD, it might support future diagnostics.
Collapse
Affiliation(s)
- Martin Hammer
- Department of Ophthalmology, University Hospital Jena, Jena, Germany.,Center for Medical Optics and Photonics, University of Jena, Jena, Germany
| | - Rowena Schultz
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | - Somar Hasan
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | - Lydia Sauer
- John A. Moran Eye Center, Salt Lake City, UT, USA
| | - Matthias Klemm
- Technical University Ilmenau, Institute for Biomedical Techniques and Informatics, Ilmenau, Germany
| | - Lukas Kreilkamp
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | - Lynn Zweifel
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | - Regine Augsten
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | - Daniel Meller
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| |
Collapse
|
19
|
Miura M, Makita S, Azuma S, Yasuno Y, Sugiyama S, Mino T, Yamaguchi T, Agawa T, Iwasaki T, Usui Y, Rao NA, Goto H. Evaluation of Retinal Pigment Epithelium Layer Change in Vogt-Koyanagi-Harada Disease With Multicontrast Optical Coherence Tomography. Invest Ophthalmol Vis Sci 2020; 60:3352-3362. [PMID: 31917451 DOI: 10.1167/iovs.19-27378] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Clinical evaluation of retinal pigment epithelium (RPE) change is important for the therapeutic management of chronic Vogt-Koyanagi-Harada (VKH) disease. We evaluated long-term change in the RPE layer in VKH disease, using near-infrared (NIR; 817 nm) images and autofluorescence images at 488 nm (short-wavelength [SW]-AF) and 785 nm (NIR-AF), and compared those images with images from multicontrast optical coherence tomography (MC-OCT). MC-OCT is capable of simultaneous measurement of OCT angiography, polarization-sensitive OCT, and standard OCT. Methods We evaluated 24 eyes of 12 patients with chronic VKH disease. RPE changes were assessed using NIR, NIR-AF, SW-AF, and MC-OCT imaging performed from 6 to 48 months after disease onset. RPE-melanin-specific contrast OCT images were calculated using the dataset from MC-OCT. Results Granular hyper NIR-AF lesions were observed in 8 of 24 eyes (33%). Eyes with granular hyper NIR-AF lesions showed a sunset glow fundus appearance significantly more frequently than did eyes without such lesions (P < 0.0001). MC-OCT imaging confirmed that there was melanin accumulation at the RPE-Bruch's membrane band at the location of granular hyper NIR-AF lesions. Granular hyper NIR-AF lesions were unclear in SW-AF and color fundus images, but clearly detectable in NIR images. Areas of hyper NIR-AF lesions gradually decreased over time. Conclusions Melanin accumulation in the RPE layer at the location of granular hyper NIR-AF lesions was confirmed with MC-OCT imaging. Long-term follow-up showed the reversible nature of this accumulation. MC-OCT is useful for the evaluation of change at the RPE layer in chronic VKH disease.
Collapse
Affiliation(s)
- Masahiro Miura
- Department of Ophthalmology, Tokyo Medical University, Ibaraki Medical Center, Ami, Japan.,Department of Ophthalmology, Tokyo Medical University, Tokyo, Japan
| | - Shuichi Makita
- Computational Optics Group, University of Tsukuba, Tsukuba, Japan
| | - Shinnosuke Azuma
- Computational Optics Group, University of Tsukuba, Tsukuba, Japan.,Topcon Corporation, Tokyo, Japan
| | - Yoshiaki Yasuno
- Computational Optics Group, University of Tsukuba, Tsukuba, Japan
| | | | | | | | - Tetsuya Agawa
- Department of Ophthalmology, Tokyo Medical University, Ibaraki Medical Center, Ami, Japan.,Department of Ophthalmology, Tokyo Medical University, Tokyo, Japan
| | - Takuya Iwasaki
- Department of Ophthalmology, Tokyo Medical University, Ibaraki Medical Center, Ami, Japan.,Department of Ophthalmology, Tokyo Medical University, Tokyo, Japan
| | - Yoshihiko Usui
- Department of Ophthalmology, Tokyo Medical University, Tokyo, Japan
| | - Narsing A Rao
- USC-Roski Eye Institute, University of Southern California, Los Angeles, California, United States
| | - Hiroshi Goto
- Department of Ophthalmology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
20
|
|
21
|
Alterini T, Díaz-Doutón F, Burgos-Fernández FJ, González L, Mateo C, Vilaseca M. Fast visible and extended near-infrared multispectral fundus camera. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-7. [PMID: 31538437 PMCID: PMC6997669 DOI: 10.1117/1.jbo.24.9.096007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/07/2019] [Indexed: 05/15/2023]
Abstract
We present a multispectral fundus camera that performs fast imaging of the ocular posterior pole in the visible and near-infrared (400 to 1300 nm) wavelengths through 15 spectral bands, using a flashlight source made of light-emitting diodes, and CMOS and InGaAs cameras. We investigate the potential of this system for visualizing occult and overlapping structures of the retina in the unexplored wavelength range beyond 900 nm, in which radiation can penetrate deeper into the tissue. Reflectance values at each pixel are also retrieved from the acquired images in the analyzed spectral range. The available spectroscopic information and the visualization of retinal structures, specifically the choroidal vasculature and drusen-induced retinal pigment epithelium degeneration, which are hardly visible in conventional color fundus images, underline the clinical potential of this system as a new tool for ophthalmic diagnosis.
Collapse
Affiliation(s)
- Tommaso Alterini
- Universitat Politècnica de Catalunya, Center for Sensors, Instruments and Systems Development (CD6), Terrassa, Barcelona, Spain
- Address all correspondence to Tommaso Alterini, E-mail:
| | - Fernando Díaz-Doutón
- Universitat Politècnica de Catalunya, Center for Sensors, Instruments and Systems Development (CD6), Terrassa, Barcelona, Spain
| | - Francisco J. Burgos-Fernández
- Universitat Politècnica de Catalunya, Center for Sensors, Instruments and Systems Development (CD6), Terrassa, Barcelona, Spain
| | | | - Carlos Mateo
- Instituto de Microcirugía Ocular, Barcelona, Spain
| | - Meritxell Vilaseca
- Universitat Politècnica de Catalunya, Center for Sensors, Instruments and Systems Development (CD6), Terrassa, Barcelona, Spain
| |
Collapse
|
22
|
Dey N, Hong S, Ach T, Koutalos Y, Curcio CA, Smith RT, Gerig G. Tensor decomposition of hyperspectral images to study autofluorescence in age-related macular degeneration. Med Image Anal 2019; 56:96-109. [PMID: 31203169 PMCID: PMC6884332 DOI: 10.1016/j.media.2019.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/25/2019] [Accepted: 05/29/2019] [Indexed: 11/19/2022]
Abstract
Autofluorescence is the emission of light by naturally occurring tissue components on the absorption of incident light. Autofluorescence within the eye is associated with several disorders, such as Age-related Macular Degeneration (AMD) which is a leading cause of central vision loss. Its pathogenesis is incompletely understood, but endogenous fluorophores in retinal tissue might play a role. Hyperspectral fluorescence microscopy of ex-vivo retinal tissue can be used to determine the fluorescence emission spectra of these fluorophores. Comparisons of spectra in healthy and diseased tissues can provide important insights into the pathogenesis of AMD. However, the spectrum from each pixel of the hyperspectral image is a superposition of spectra from multiple overlapping tissue components. As spectra cannot be negative, there is a need for a non-negative blind source separation model to isolate individual spectra. We propose a tensor formulation by leveraging multiple excitation wavelengths to excite the tissue sample. Arranging images from different excitation wavelengths as a tensor, a non-negative tensor decomposition can be performed to recover a provably unique low-rank model with factors representing emission and excitation spectra of these materials and corresponding abundance maps of autofluorescent substances in the tissue sample. We iteratively impute missing values common in fluorescence measurements using Expectation-Maximization and use L2 regularization to reduce ill-posedness. Further, we present a framework for performing group hypothesis testing on hyperspectral images, finding significant differences in spectra between AMD and control groups in the peripheral macula. In the absence of ground truth, i.e. molecular identification of fluorophores, we provide a rigorous validation of chosen methods on both synthetic and real images where fluorescence spectra are known. These methodologies can be applied to the study of other pathologies presenting autofluorescence that can be captured by hyperspectral imaging.
Collapse
Affiliation(s)
- Neel Dey
- Department of Computer Science and Engineering, NYU Tandon School of Engineering, NY, USA.
| | - Sungmin Hong
- Department of Computer Science and Engineering, NYU Tandon School of Engineering, NY, USA
| | - Thomas Ach
- Department of Ophthalmology, University Hospital Würzburg, Würzburg, Germany
| | - Yiannis Koutalos
- Department of Ophthalmology, Medical University of South Carolina, SC, USA
| | - Christine A Curcio
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, AL, USA
| | - R Theodore Smith
- Department of Ophthalmology, Icahn School of Medicine, Mount Sinai, NY, USA
| | - Guido Gerig
- Department of Computer Science and Engineering, NYU Tandon School of Engineering, NY, USA
| |
Collapse
|
23
|
Klemm M, Sauer L, Klee S, Link D, Peters S, Hammer M, Schweitzer D, Haueisen J. Bleaching effects and fluorescence lifetime imaging ophthalmoscopy. BIOMEDICAL OPTICS EXPRESS 2019; 10:1446-1461. [PMID: 30891358 PMCID: PMC6420301 DOI: 10.1364/boe.10.001446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/02/2018] [Accepted: 12/02/2018] [Indexed: 05/13/2023]
Abstract
This study investigates the influence of photopigment bleaching on autofluorescence lifetimes in the fundus in 21 young healthy volunteers. Three measurements of 30° retinal fields in two spectral channels (SSC: 498-560 nm, LSC: 560-720 nm) were obtained for each volunteer using fluorescence lifetime imaging ophthalmoscopy (FLIO). After dark-adaptation by wearing a custom-made lightproof mask for 30 minutes, the first FLIO-measurement was recorded (dark-adapted state). Subsequently, the eye was bleached for 1 minute (luminance: 3200 cd/m2), followed by a second FLIO-measurement (bleached state). Following an additional 10 minute dark adaptation using the mask, a final FLIO-measurement was recorded (recovered state). Average values of the fluorescence lifetimes were calculated from within different areas of a standardized early treatment diabetic retinopathy study (ETDRS) grid (central area, inner and outer rings). The acquisition time in the bleached state was significantly shortened by approximately 20%. The SSC did not show any significant changes in fluorescence lifetimes with photopigment bleaching, only the LSC showed small but significant bleaching-related changes in the fluorescence lifetimes τ1 and τ2 from all regions, as well as the mean fluorescence lifetime in the central area. The fluorescence lifetime differences caused by bleaching were by far less significant than pathological changes caused by eye diseases. The magnitudes of fluorescence lifetime changes are <10% and do not interfere with healthy or disease related FLIO patterns. Thus, we conclude that bleaching is not a relevant confounder in current clinical applications of FLIO.
Collapse
Affiliation(s)
- Matthias Klemm
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, POB 100565, 98694 Ilmenau, Germany
| | - Lydia Sauer
- University Hospital Jena, Department of Ophthalmology, Am Klinikum 1, 07743 Jena, Germany
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Sascha Klee
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, POB 100565, 98694 Ilmenau, Germany
| | - Dietmar Link
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, POB 100565, 98694 Ilmenau, Germany
| | - Sven Peters
- University Hospital Jena, Department of Ophthalmology, Am Klinikum 1, 07743 Jena, Germany
| | - Martin Hammer
- University Hospital Jena, Department of Ophthalmology, Am Klinikum 1, 07743 Jena, Germany
- University of Jena, Center for Biomedical Optics and Photonics, 07740 Jena, Germany
| | - Dietrich Schweitzer
- University Hospital Jena, Department of Ophthalmology, Am Klinikum 1, 07743 Jena, Germany
| | - Jens Haueisen
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, POB 100565, 98694 Ilmenau, Germany
| |
Collapse
|
24
|
Ex Vivo Hyperspectral Autofluorescence Imaging and Localization of Fluorophores in Human Eyes with Age-Related Macular Degeneration. Vision (Basel) 2018; 2:vision2040038. [PMID: 31735901 PMCID: PMC6835627 DOI: 10.3390/vision2040038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/19/2018] [Accepted: 09/12/2018] [Indexed: 12/28/2022] Open
Abstract
To characterize fluorophore signals from drusen and retinal pigment epithelium (RPE) and their changes in age related macular degeneration (AMD), the authors describe advances in ex vivo hyperspectral autofluorescence (AF) imaging of human eye tissue. Ten RPE flatmounts from eyes with AMD and 10 from eyes without AMD underwent 40× hyperspectral AF microscopic imaging. The number of excitation wavelengths tested was initially two (436 nm and 480 nm), then increased to three (436 nm, 480 nm, and 505 nm). Emission spectra were collected at 10 nm intervals from 420 nm to 720 nm. Non-negative matrix factorization (NMF) algorithms decomposed the hyperspectral images into individual emission spectra and their spatial abundances. These include three distinguishable spectra for RPE fluorophores (S1, S2, and S3) in both AMD and non-AMD eyes, a spectrum for drusen (SDr) only in AMD eyes, and a Bruch's membrane spectrum that was detectable in normal eyes. Simultaneous analysis of datacubes excited atthree excitation wavelengths revealed more detailed spatial localization of the RPE spectra and SDr within drusen than exciting only at two wavelengths. Within AMD and non-AMD groups, two different NMF initialization methods were tested on each group and converged to qualitatively similar spectra. In AMD, the peaks of the SDr at ~510 nm (436 nm excitation) were particularly consistent. Between AMD and non-AMD groups, corresponding spectra in common, S1, S2, and S3, also had similar peak locations and shapes, but with some differences and further characterization warranted.
Collapse
|
25
|
Hammer M, Sauer L, Klemm M, Peters S, Schultz R, Haueisen J. Fundus autofluorescence beyond lipofuscin: lesson learned from ex vivo fluorescence lifetime imaging in porcine eyes. BIOMEDICAL OPTICS EXPRESS 2018; 9:3078-3091. [PMID: 29984084 PMCID: PMC6033583 DOI: 10.1364/boe.9.003078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/25/2018] [Accepted: 04/25/2018] [Indexed: 05/06/2023]
Abstract
Fundus autofluorescence (FAF) imaging is a well-established method in ophthalmology; however, the fluorophores involved need more clarification. The FAF lifetimes of 20 post mortem porcine eyes were measured in two spectral channels using fluorescence lifetime imaging ophthalmoscopy (FLIO) and compared with clinical data from 44 healthy young subjects. The FAF intensity ratio of the short and the long wavelength emission (spectral ratio) was determined. Ex vivo porcine fundus fluorescence emission is generally less intense than that seen in human eyes. The porcine retina showed significantly (p<0.05) longer lifetimes than the retinal pigment epithelium (RPE): 584 ± 128 ps vs. 121 ± 55 ps 498-560 nm, 240 ± 42 ps vs. 125 ± 20 ps at 560-720 nm. Furthermore, the lifetimes of the porcine RPE were significantly shorter (121 ± 55 ps and 125 ± 20 ps) than those measured from human fundus in vivo (162 ± 14 ps and 179 ± 13 ps, respectively). The fluorescence emission of porcine retina was shifted towards a shorter wavelength compared to that of RPE and human FAF. This data shows the considerable contribution of fluorophores in the neural retina to total FAF intensity in porcine eyes.
Collapse
Affiliation(s)
- Martin Hammer
- University Hospital Jena, Department of Ophthalmology, 07747 Jena, Am Klinikum 1, Germany
- University of Jena, Center for Biomedical Optics and Photonics, 07740 Jena, Germany
| | - Lydia Sauer
- University Hospital Jena, Department of Ophthalmology, 07747 Jena, Am Klinikum 1, Germany
- Technical University Ilmenau, Institute for Biomedical Engineering and Informatics, Gustav-Kirchhoff-Str. 2, 98693 Ilmenau, Germany
| | - Matthias Klemm
- Technical University Ilmenau, Institute for Biomedical Engineering and Informatics, Gustav-Kirchhoff-Str. 2, 98693 Ilmenau, Germany
| | - Sven Peters
- University Hospital Jena, Department of Ophthalmology, 07747 Jena, Am Klinikum 1, Germany
| | - Rowena Schultz
- University Hospital Jena, Department of Ophthalmology, 07747 Jena, Am Klinikum 1, Germany
| | - Jens Haueisen
- Technical University Ilmenau, Institute for Biomedical Engineering and Informatics, Gustav-Kirchhoff-Str. 2, 98693 Ilmenau, Germany
| |
Collapse
|
26
|
Guziewicz KE, Sinha D, Gómez NM, Zorych K, Dutrow EV, Dhingra A, Mullins RF, Stone EM, Gamm DM, Boesze-Battaglia K, Aguirre GD. Bestrophinopathy: An RPE-photoreceptor interface disease. Prog Retin Eye Res 2017; 58:70-88. [PMID: 28111324 PMCID: PMC5441932 DOI: 10.1016/j.preteyeres.2017.01.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/16/2017] [Accepted: 01/18/2017] [Indexed: 11/17/2022]
Abstract
Bestrophinopathies, one of the most common forms of inherited macular degenerations, are caused by mutations in the BEST1 gene expressed in the retinal pigment epithelium (RPE). Both human and canine BEST1-linked maculopathies are characterized by abnormal accumulation of autofluorescent material within RPE cells and bilateral macular or multifocal lesions; however, the specific mechanism leading to the formation of these lesions remains unclear. We now provide an overview of the current state of knowledge on the molecular pathology of bestrophinopathies, and explore factors promoting formation of RPE-neuroretinal separations, using the first spontaneous animal model of BEST1-associated retinopathies, canine Best (cBest). Here, we characterize the nature of the autofluorescent RPE cell inclusions and report matching spectral signatures of RPE-associated fluorophores between human and canine retinae, indicating an analogous composition of endogenous RPE deposits in Best Vitelliform Macular Dystrophy (BVMD) patients and its canine disease model. This study also exposes a range of biochemical and structural abnormalities at the RPE-photoreceptor interface related to the impaired cone-associated microvillar ensheathment and compromised insoluble interphotoreceptor matrix (IPM), the major pathological culprits responsible for weakening of the RPE-neuroretina interactions, and consequently, formation of vitelliform lesions. These salient alterations detected at the RPE apical domain in cBest as well as in BVMD- and ARB-hiPSC-RPE model systems provide novel insights into the pathological mechanism of BEST1-linked disorders that will allow for development of critical outcome measures guiding therapeutic strategies for bestrophinopathies.
Collapse
Affiliation(s)
- Karina E Guziewicz
- Department of Clinical Studies-Philadelphia, School of Veterinary Medicine, University of Pennsylvania, PA 19104, USA.
| | - Divya Sinha
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Néstor M Gómez
- Department of Anatomy & Cell Biology, School of Dental Medicine, University of Pennsylvania, PA 19104, USA
| | - Kathryn Zorych
- Department of Clinical Studies-Philadelphia, School of Veterinary Medicine, University of Pennsylvania, PA 19104, USA
| | - Emily V Dutrow
- Department of Clinical Studies-Philadelphia, School of Veterinary Medicine, University of Pennsylvania, PA 19104, USA
| | - Anuradha Dhingra
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, PA 19104, USA
| | - Robert F Mullins
- Department of Ophthalmology & Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Edwin M Stone
- Department of Ophthalmology & Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - David M Gamm
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Ophthalmology & Visual Sciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Gustavo D Aguirre
- Department of Clinical Studies-Philadelphia, School of Veterinary Medicine, University of Pennsylvania, PA 19104, USA
| |
Collapse
|
27
|
HYPERSPECTRAL AUTOFLUORESCENCE IMAGING OF DRUSEN AND RETINAL PIGMENT EPITHELIUM IN DONOR EYES WITH AGE-RELATED MACULAR DEGENERATION. Retina 2017; 36 Suppl 1:S127-S136. [PMID: 28005671 DOI: 10.1097/iae.0000000000001325] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE To elucidate the molecular pathogenesis of age-related macular degeneration (AMD) and interpretation of fundus autofluorescence imaging, the authors identified spectral autofluorescence characteristics of drusen and retinal pigment epithelium (RPE) in donor eyes with AMD. METHODS Macular RPE/Bruch membrane flat mounts were prepared from 5 donor eyes with AMD. In 12 locations (1-3 per eye), hyperspectral autofluorescence images in 10-nm-wavelength steps were acquired at 2 excitation wavelengths (λex 436, 480 nm). A nonnegative tensor factorization algorithm was used to recover 5 abundant emission spectra and their corresponding spatial localizations. RESULTS At λex 436 nm, the authors consistently localized a novel spectrum (SDr) with a peak emission near 510 nm in drusen and sub-RPE deposits. Abundant emission spectra seen previously (S0 in Bruch membrane and S1, S2, and S3 in RPE lipofuscin/melanolipofuscin, respectively) also appeared in AMD eyes, with the same shapes and peak wavelengths as in normal tissue. Lipofuscin/melanolipofuscin spectra localizations in AMD eyes varied widely in their overlap with drusen, ranging from none to complete. CONCLUSION An emission spectrum peaking at ∼510 nm (λex 436 nm) appears to be sensitive and specific for drusen and sub-RPE deposits. One or more abundant spectra from RPE organelles exhibit characteristic relationships with drusen.
Collapse
|